Interannual variability of isotopic composition in water vapor over West
Africa and its relation to ENSO
By
Atsushi Okazaki ¹ , Yusuke Satoh ¹ , Guillaume Tremoy ² , Françoise Vimeux ^{2, 3} ,
Remco Scheepmaker⁴, and Kei Yoshimura^{1, 5}
1
¹ Institute of Industrial Science, University of Tokyo, Tokyo, Japan
² Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, Institut Pierre
Simon Laplace, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
³ Laboratoire HydroSciences Montpellier, UMR 5569, Institut de Recherche pour le
Développement, CNRS-IRD-UM1-UM2, Montpellier, France
⁴ SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
⁵ Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
Submitted to Atmospheric Chemistry and Physics Discussions
Submitted on May 2014
Revised on Sep 2014
Revised on Jan 2015
Corresponding author: Atsushi Okazaki, Institute of Industrial Science, University of Tokyo, 4-6-1

36 Abstract

37	This study was performed to examine the relationship between isotopic composition in
38	near-surface vapor ($\delta^{18}O_v$) over West Africa during the monsoon season and El
39	Niño-Southern Oscillation (ENSO) activity using the Isotope-incorporated Global Spectral
40	Model. The model was evaluated using a satellite and in situ observations at daily to
41	interannual timescales. The model provided an accurate simulation of the spatial pattern and
42	seasonal and interannual variations of isotopic composition in column and surface vapor
43	and precipitation over West Africa. Encouraged by this result, a simulation stretching 34
44	years (1979 – 2012) was conducted to investigate the relation between atmospheric
45	environment and isotopic signature at the interannual time scale. The simulation indicated
46	that the depletion in the monsoon season does not appear every year at Niamey. The major
47	difference between the composite fields with and without depletion was in the amount of
48	precipitation in the upstream area of Niamey. As the interannual variation of the
49	precipitation amount is influenced by the ENSO, we regressed the monsoon season
50	averaged $\delta^{18}O_{\nu}$ from the model and annually averaged NINO3 index, and found a
51	statistically significant correlation (R=0.56, $P < 0.01$) at Niamey. This relation suggests that
52	there is a possibility of reconstructing past West African monsoon activity and ENSO using

53 climate proxies.

54 **1. Introduction**

55 The El Niño-Southern Oscillation (ENSO) is the strongest mode of interannual variability in 56 the tropics (Dai et al., 1997) and plays an important role in variability of precipitation, temperature, and circulation patterns on this timescale. El Niño can cause catastrophic 57 58 floods and droughts (Philander, 1983) and damage to ecosystems (Aronson et al., 2000). A 59 recent study projected an increase in the frequency of extreme El Niño events due to global warming (Cai et al., 2014). Therefore, it is essential to understand the natural variability of 60 ENSO. Stable water isotopes (D, ¹⁸O) have been used to infer past and present climate since 61 the work of Dansgaard (1964). Several studies have linked ENSO with isotopic variation in 62 precipitation or in seawater under the present climate (e.g., Schmidt et al., 2007; Yoshimura 63 64 et al., 2008; Tindall et al., 2009). For example, tropical South America (Vuille and Werner, 65 2005), Western and Central Pacific (Brown et al., 2006), and the Asian monsoon region 66 (Ishizaki et al., 2012) are identified as having a connection with ENSO, basically through 67 changes in local rainfall or integrated rainfall along the trajectory. However, other regions, 68 such as West Africa, have not yet been investigated in detail.

West Africa receives most precipitation in the monsoon season (July – September; JAS) and
is known for its high variability at interannual or longer timescales. The severe drought that

71	hit West Africa during the 1970s and 1980s prompted researchers to study the factors
72	controlling West African rainfall variability at interannual to multidecadal timescales (e.g.,
73	Folland et al., 1986; Palmer, 1986; Janicot et al., 1996; Giannni et al., 2003; Shanahan et al.,
74	2009; Mohino et al., 2011a, b). At present, the major role of sea surface temperatures (SST)
75	in driving the variability with land-atmosphere interactions as an amplifier (Giannni et al.,
76	2003) is widely recognized. However, there is still debate regarding the relative importance
77	of the various basins and mechanistic timescales involved (Nicholson, 2013). The Atlantic
78	(Lamb, 1978; Joly and Voldoire, 2010; Mohino et al., 2011a), Pacific (Janicot et al., 2001;
79	Mohino et al., 2011b), Indian Ocean (Palmer et al., 1986), and Mediterranean (Rowell,
80	2003; Polo et al., 2008) are all candidates. Among them, the ENSO is thought to modulate
81	the high-frequency component (interannual) of the variability (Ward, 1998; Joly et al.,
82	2007). However, the relationships are not stationary over time; the West African rainfall is
83	correlated with ENSO only after the 1970s (Janicot et al., 2001; Losada et al., 2012),
84	indicating the existence of multiple competing physical mechanisms. How the impact has
85	changed remains an open question.
86	Several studies used isotopes to understand the water cycle over West Africa at the

87 intraseasonal timescale. Risi et al. (2008b) and Tremoy et al. (2012; 2014) examined the

88	isotopic compositions of precipitation ($\delta^{18}O_P$) and vapor ($\delta^{18}O_v$), respectively, and both
89	found that δ^{18} O records the spatially and temporally integrated convective activity during
90	the monsoon season. Here δ in per mil units is defined as $(R_{sample}\!/R_{std}\!-\!1)\times\!1000,$ where R_{std}
91	is VSMOW: Vienna Standard Mean Ocean Water. Risi et al. (2010) confirmed the relation
92	using the LMDZ-iso model and suggested that δ^{18} O is controlled by convection through rain
93	re-evaporation and the progressive depletion of the vapor by convective mixing along air
94	mass trajectories. The relation between δ^{18} O and convective activity suggests the possibility
95	of reconstructing the convective activity using a climate proxy, if the relation holds at the
96	interannual timescale. The long record of precipitation should help in determining how
97	SSTs influence precipitation variability. Some studies reconstructed precipitation over West
98	Africa (Lézine and Casanova, 1989; Shanahan et al., 2009). Shanahan et al. (2009) directly
99	tied isotopic composition with the local precipitation. However it is possible that the amount
100	of rainfall along the trajectory has more impact rather than local information, as mentioned
101	above. Therefore it is still necessary to estimate the relative contributions of the main
102	controls on interannual variability of the isotopic composition in more comprehensive way.
103	In this paper, we explore the factors governing the interannual variability of monsoon
105	in this paper, we explore the factors governing the interannual variability of molisoon
104	season $\delta^{18}O_v$, which is the source of precipitation and controls $\delta^{18}O_p$ variability (Risi et al.,

2008a), over West Africa and how the ENSO signal is imprinted. As the observations cover
relatively short periods to look into the interannual variability and available variables are
limited, we use an isotope-enabled general circulation model (GCM) to complement the
observations.

109 In the following section, the model simulations and the observations are described. In Sect. 110 3, we compare the simulated and observed variability of δ^{18} O at daily to interannual

- 111 timescale. Section 4 investigates the factors controlling $\delta^{18}O_v$ at the interannual timescale by
- analyzing the simulation results and confirms the role of the identified factors by sensitivity

113 experiments. Finally, we examine the relation between δ^{18} O and ENSO in Sect. 5.

114 **2. Data and methods**

115 2.1. Observations

116 **2.1.1. Observation of HDO in vapor from space**

117 Frankenberg et al. (2009) measured column-averaged isotopologue ratio (δD) values in

- 118 water vapor using the SCanning Imaging Absorption spectroMeter for Atmospheric
- 119 CHartographY (SCIAMACHY) onboard the European research satellite ENVISAT. We
- 120 used the updated and extended version of this dataset from Scheepmaker et al. (2014),

121	covering the years 2003 – 2007. As measured δD is weighted by the H ₂ O concentration at
122	all heights, it is largely determined by the isotopic abundance in the lowest tropospheric
123	layers, where most water vapor resides. The footprint of each measurement is 120 km
124	(across-track) \times 30 km (along-track). We apply the following selection criteria concerning
125	the retrievals (Scheepmaker et al., 2014):
126	• Retrieved H ₂ O total column must be at least 70% of the a priori value.
127	• The CH_4 column in the same retrieval window must be at least within 10% of the a
128	priori value.
129	• Root-mean-square variation of the spectral residuals must be below 5%.
130	• Convergence achieved in a maximum of four iteration steps.
131	Here, the first two criteria restrict large deviations from the a priori H_2O and CH_4 columns,
132	which are normally the result of light scattering by clouds. Therefore, these two criteria
133	function as a simple cloud filter. Due to high detector noise of SCIAMACHY in the
134	short-wave infrared channels, the single measurement noise (1-sigma) is typically 40% -
135	100‰, depending on total water column, surface albedo, and viewing geometry. For the
136	region of our study, however, the mean single measurement noise is of the order of 20% –
137	50‰, due to the high albedo and optimal viewing geometry of West Africa. This random

138	error can be further reduced by averaging multiple measurements. Therefore, we average
139	the measurements according to the procedure of Yoshimura et al. (2011); we averaged
140	multiple measurements that were collected in a grid of $2.5^{\circ} \times 2.5^{\circ}$ in 6 h. We set the
141	threshold value for averaging to 10, meaning that the average of the SCIAMACHY
142	measurements in every grid cell is based on at least 10 measurements taken within 6 h.
143	From the IsoGSM simulation results, the times of the nearest satellite measurements were
144	extracted (hereafter the process is called "collocation"). Thus, there was no difference in
145	representativeness between the model and the satellite data.
146	2.1.2. In situ measurement of water isotopologues in vapor
146 147	2.1.2. In situ measurement of water isotopologues in vapor To assess the performance of the model at shorter timescales, daily $\delta^{18}O_v$ from Tremoy et al.
147	To assess the performance of the model at shorter timescales, daily $\delta^{18}O_v$ from Tremoy et al.
147 148	To assess the performance of the model at shorter timescales, daily $\delta^{18}O_v$ from Tremoy et al. (2012) was used in this study. The $\delta^{18}O_v$ was observed at about 8 m above the ground using
147 148 149	To assess the performance of the model at shorter timescales, daily $\delta^{18}O_v$ from Tremoy et al. (2012) was used in this study. The $\delta^{18}O_v$ was observed at about 8 m above the ground using a Picarro laser instrument (L1102-i model) with an accuracy of $\pm 0.25\%$ at the Institut des

152 **2.1.3.** In situ measurement of isotopes in precipitation (GNIP)

153 Observations of the monthly isotope ratio in precipitation over West Africa were obtained

154 from the Global Network for Isotopes in Precipitation (GNIP) observational database
155 (IAEA/WMO, 2014). We chose 28 GNIP stations in Africa that have full annual data
156 spanning more than 10 years. The observatory location and its operation period are
157 summarized in Table 1.

158 2.2. Isotope-enabled General Circulation Model simulation

159 The Isotope-incorporated Global Spectral Model (IsoGSM) is an atmospheric GCM, into 160 which stable water isotopes are incorporated. The model uses T62 horizontal resolution 161 (about 200 km) and 28 vertical levels, and temporal resolution of the output is 6h. The 162 convection scheme is the Relaxed Arakawa-Schubert Scheme (Moorthi and Suarez, 1992). 163 The main time integration scheme is leapfrog scheme. The model is spectrally nudged 164 toward wind and temperature fields from the National Centers for Environmental Prediction 165 (NCEP)/Department of Energy (DOE) Reanalysis 2 (R2) (Kanamitsu et al., 2002) in addition to being forced with prescribed SST and sea ice from NCEP analysis, which are the 166 same as the one used in NCEP/DOE R2 (Kanamitsu et al., 2002). After a spin-up period of 167 168 about 10 years with the constant 1979 forcing, the simulation was run from 1979 to 2012 as in Yoshimura et al. (2008). Isotope processes were incorporated following Joussaume et al. 169 170 (1984): Isotopic fractionation takes place whenever phase transition occurs. Most

171	fractionation can be assumed to occur at thermodynamic equilibrium, except for three
172	particular cases; surface evaporation form open water; condensation from vapor to ice in
173	supersaturation conditions under -20 deg-C; and evaporation and isotopic exchange from
174	liquid raindrop into unsaturated air. IsoGSM assumes no fractionation when water
175	evapotranspires over land. More details of the model configurations were described
176	previously (Yoshimura et al., 2008). The general reproducibility of the model for daily to
177	interannual time scales is well evaluated by comparing with precipitation isotope ratio
178	(Yoshimura et al., 2008) and vapor isotopologue ratio from satellite measurements
179	(Yoshimura et al., 2011), and showed sufficiently accurate results for various process
180	studies (e.g., Berkelhammer et al., 2012; Liu et al., 2013; Liu et al., 2014).
181	In addition to the standard experiment (Std) mentioned above, we carried out two sensitivity
182	experiments. The first of these experiments examined the sensitivity of the results to the
183	"equilibrium fraction ε ," which is the degree to which falling rain droplets equilibrate with
184	the surroundings. Risi et al. (2010) reported the importance of re-evaporation for $\delta^{18}O_v$ over
185	West Africa, and Yoshimura et al. (2011) found an improved simulation result with the
186	changed parameter. Following Yoshimura et al. (2011), we set this value to 10%, while in
187	the standard simulation it was set to 45%. The other sensitivity experiment was to estimate

188	the contributions to interannual variability in $\delta^{18}O_v$ of the distillation effect during
189	transportation from the source regions. In this experiment, we removed the influences of the
190	distillation processes by turning off isotopic fractionation during condensation and
191	re-evaporation from raindrops and preventing isotopic exchange between falling raindrops
192	and the surrounding vapor. Note that these effects were switched off only in a certain region
193	in the simulation. For a similar purpose, Ishizaki et al. (2012) specified transport pathways
194	and then removed these effects along the pathway. We chose a different means of removing
195	the effects in a certain domain, as we wished to specify the area that plays an important role
196	in controlling the isotopic variation at a point. Hereafter, we refer to the former sensitivity
197	experiment as the "E10" experiment and the latter as the "NoFrac" experiment. Std and
198	NoFrac cover the 1979 – 2012 period, and E10 covers the 2010 – 2011 period. The
199	simulation results used in this study are basically from Std unless otherwise noted.
200	We use both δD and $\delta^{18}O$ in the evaluation of the model, since SCIAMACHY observes δD
201	whereas Tremoy et al. (2012) observes δ^{18} O. As δ D and δ^{18} O basically respond to
202	meteorological factors in the same way, there are no differences in underlying mechanisms
203	to produce changes. Therefore, there is no problem using the combination of δD and $\delta^{18}O$ to
204	evaluate model performance. In the other section we consistently use δ^{18} O.

205 2.3. Isoflux analysis

Isoflux analysis specifies the contributions of advection, evapotranspiration, and precipitation to the changes in the isotopic composition of precipitable water in an atmospheric column. The concept of the analysis is based on budget analysis. Using such analysis, Lai et al. (2006) specifies the factors controlling $\delta^{18}O_v$ in a canopy layer. Worden et al. (2007) found the importance of re-evaporation from raindrops. Here, we developed the mass balance equation for ¹⁸O in the atmospheric column. The mass balance for total precipitable water inside the atmospheric column can be written as:

213
$$\frac{dW}{dt} = -\nabla \cdot Q + E - P \qquad (1)$$

214 where W represents the total precipitable water, Q is the vertically integrated

two-dimensional vapor flux vector, *E* is evapotranspiration, and *P* is precipitation. The term denotes the horizontal divergence of vapor flux. Here, we refer to this term as advection. A mass balance equation can also be written for ¹⁸O in the same manner as Eq. (1).

219
$$\frac{dR_{W}W}{dt} = -\nabla \cdot R_{W}Q + R_{E}E - R_{P}P \qquad (2)$$

220 where R_W , R_E , and R_P represent the isotope ratio (¹⁸O/¹⁶O) of precipitable water,

evapotranspiration, and precipitation, respectively. Multiplying Eq. (1) by R_W , and

subtracting that from Eq. (2) we obtain:

223
$$\frac{dR_{W}}{dt}W = -\nabla R_{W} \cdot Q + (R_{E} - R_{W})E - (R_{P} - R_{W})P. \quad (3)$$

224 Dividing by the R_{std} , we can rewrite Eq. (3) in δ notation as:

225
$$\frac{d\delta_{W}}{dt}W = -\nabla\delta_{W} \cdot Q + (\delta_{E} - \delta_{W})E - (\delta_{P} - \delta_{W})P. \quad (4)$$

Starting from the left, the terms represent the temporal derivative of the isotopic composition of precipitable water, the effect of advection, evapotranspiration, and precipitation to deplete or enrich the precipitable water, respectively. As the analysis specifies the contribution of each factor to the change in isotopic composition of precipitable water, the analysis period should start before initiation of isotopic depletion and end at the most depleted point. We use the 6h output of IsoGSM to calculate each term in Eq. (4), then each term is averaged over the targeting period and compared.

233 **3. Evaluation of IsoGSM**

234 3.1. Evaluation of IsoGSM at the mean state and seasonal climatology

235 The annual mean climatology of the SCIAMACHY data and the collocated IsoGSM fields

236	together with precipitable water by JRA25 (Onogi et al., 2007) and the model are shown in
237	Fig. 1. In the SCIAMACHY data, the meridional gradient over West Africa is notable; the
238	lowest values of δD were found in the Sahara and the highest in the Guinea coast. This is
239	due to the dry and therefore HDO-depleted air mass from the subsiding branch of the
240	Hadley circulation in the dry season over the Sahara and strong evaporation and/or
241	recycling of water in the Tropics (Frankenberg et al., 2009). IsoGSM simulates this spatial
242	pattern qualitatively well. Although the average is negatively biased (about 20‰)
243	(Yoshimura et al., 2011) and the latitudinal gradient is weaker in IsoGSM, bias and
244	overestimated gradient is found in SCIAMACHY when compared with ground-based
245	Fourier-Transform Spectrometers (Scheepmaker et al., 2014). Accordingly we cannot
246	conclude such differences from the satellite is indeed problematic or not at this stage.
247	Figure 2 shows time–latitude diagrams of δD and precipitable water averaged on $5^{\circ}W - 5^{\circ}E$
248	from 2003 to 2007. Over the region, vapor δD is high and wet in the monsoon season and
249	low in the dry season. In the monsoon season, the wet and isotopically heavy vapor comes
250	from the south along with the monsoon flow. The northern end of the flow coincides with
251	the location of the Inter-Tropical Discontinuity (ITD), which limits the extension of the
252	monsoon flow (Janicot et al., 2008). In the dry season, the subsiding branch of the Hadley

253	cell brings a dry and depleted air mass to the north of the area (Frankenberg et al., 2009).
254	Around 10°N, δD has two minima; one in winter reflecting the depleting effect of
255	subsidence, and the other in summer reflecting the depleting effect of convective activity
256	(Risi et al., 2010). The model captures these two regimes and the depleting effect of
257	convective activity around 10°N in the monsoon season. Pearson product moment
258	correlation coefficient (hereafter we use the term "correlation" unless otherwise noted)
259	between the observed and simulated zonally averaged δD (5°W-5°E) is 0.77 (significance
260	level: $P < 0.001$). Note that the range is widely different between them (-300‰ – 0‰ for
261	SCIAMACHY; -190‰ - 90‰ for IsoGSM). This may be because IsoGSM misses the
262	enrichment in boreal summer over tropical Africa, as suggested in previous studies
263	(Frankenberg et al., 2009; Yoshimura et al., 2011). The bias in the mean field (Risi et al.,
264	2010; Werner et al., 2011; Lee et al., 2012) and the underestimated seasonality (Risi et al.,
265	2010) are also common in other GCMs. Again, the bias in SCIAMACHY has been
266	indicated as well (Scheepmaker et al., 2014), and Risi et al. (2010) pointed out the
267	possibility that SCIAMACHY may overestimate the variability by preferentially sampling
268	high altitudes.

²⁶⁹ Then we compared the simulated $\delta^{18}O_v$ with in situ measurement from Tremoy et al. (2012)

270	in Niamey grid point over the $2010 - 2011$ period. Figure 3 shows the time series of near
271	surface daily $\delta^{18}O_v$ from the observation and IsoGSM, and the statistics are summarized in
272	Table 2. Note that only the days for which observations were available were used to
273	calculate the statistics. These measurements also showed the two isotopic minima of the
274	year (W-shape); the first in August and September, and the second in January associated
275	with the convective activity and large scale subsidence respectively. The model nicely
276	captures the two minima and simulates well the average and variability, especially in the dry
277	season. On the other hand, the model reveals rather poor reproducibility of day-to-day
278	variation during the monsoon season; the depletion and variability were both overestimated.
279	In the sensitivity experiment E10, the average and standard deviation (-14.9‰ and 1.8‰
280	respectively for monsoon season) were comparable with the observation (-15.2‰ and
281	1.8‰), and the correlation was slightly improved. Although this does not fully explain the
282	discrepancy, it implies that the parameter controlling the equilibrium fraction $\boldsymbol{\epsilon}$ can be
283	problematic. The positive points are that the $\delta^{18}O_v$ and precipitation averaged over previous
284	days showed a strong correlation ($R < 0.6$) southwest of Niamey as in the observation (Fig.
285	S3 in Tremoy et al., 2012), which means that the relation between convective activity and
286	the $\delta^{18}O_v$ is well represented, and that the comparable time evolution at the monthly scale
287	(thick lines in Fig. 3). The seasonal differences were similar, suggesting that SCIAMACHY 17

288 may overestimate the seasonal variability.

289 3.2. Evaluation of IsoGSM at the interannual scale

290	Finally we evaluate the reproducibility of IsoGSM at the interannual scale. Although our
291	target is the isotope ratio of near-surface water vapor, we use the isotope ratio of
292	precipitation to validate the model reproducibility of surface vapor isotope at the interannual
293	timescale. The reason is twofold; one is the lack of observations of vapor isotope covering
294	several years. The other one is the fact that the isotopic composition of the precipitation is
295	strongly constrained by that of the local lower tropospheric vapor (Risi et al., 2008a). Hence
296	the precipitation isotope somewhat represents surface vapor isotope, and can be used to
297	evaluate the reproducibility of vapor isotope, even though they are not identical.
298	Figure 4 compares the modeled and observed time series of annual mean $\delta^{18}O_P$ at Niamey.
299	Note that there are missing observations from 2000 to 2008, and after 2010. The correlation
300	between them is 0.74 ($P < 0.05$). The simulated (observed) annual average is -4.6‰ (-
301	4.1‰) and standard deviation is 1.2‰ (1.1‰). The factors controlling the variability will be

discussed in Sect. 4.

303 3.3. Overview of IsoGSM evaluation

304 To summarize the evaluation results, the spatial pattern in the mean state, and the seasonal 305 pattern driven by the Hadley circulation, monsoon flow, and convective activity are 306 qualitatively well simulated with an emphasis on reproducibility of the interannual 307 variability. When compared with SCIAMACHY measurements of δD , there is a slight bias 308 in the mean state, and IsoGSM largely underestimates the seasonal δD variations. When 309 compared with the in situ measurements, the bias and variation difference are not as large as 310 when compared with SCIAMACHY. Although the results of the simulation in the monsoon 311 season are not as good as those of the dry season at the daily scale, IsoGSM captures the 312 monthly scale variability fairly well. These results suggest that the model is applicable to study the interannual variability of δ^{18} O during the monsoon season. 313

4. Simulated interannual variability of vapor isotope

315 4.1. General features of interannual variability

- 316 In this section, we explore the interannual variability of $\delta^{18}O_v$ over Niamey by the standard
- 317 experiment. The simulation period is from 1979 to 2012. The most striking feature of the
- 318 interannual variability is that the depletion in the monsoon season does not appear every

319	year in the model (Fig. 4 and Fig. 5). In contrast, $\delta^{18}O_v$ depletion occurs each winter. We
320	term the years with isotopic depletion in the monsoon season the "W-shape year" following
321	Tremoy et al. (2012). To understand the factors controlling the interannual variability of
322	$\delta^{18}O_v$, it is necessary to investigate the differences between the years with and without
323	depletion. For the purpose of comparison, we set the criteria and made two composite
324	fields: W-shape year composite and non-W-shape (NW-shape) year composite. The
325	quantitative definition of a W-shape year is a year in which the surface vapor isotope value
326	averaged over JAS in Niamey is 1σ (1.1‰) less than that of the climatological average (–
327	12.9‰). We picked out six W-shape years (1988, 1999, 2009, 2010, 2011, and 2012) in the
328	period, and the rest are appointed to the NW-shape composite. The seasonal variations in
329	surface $\delta^{18}O_v$ in the two composite fields are shown in Fig. 5.
330	Here, we briefly discuss the features of the W-shape years. Figures 6 and 7 show the two
331	composite fields and their differences (W-shape years minus NW-shape years) in the
332	monsoon season. W-shape years are characterized by enhanced monsoon activity; the
333	velocities of southwesterly winds over West Africa are higher (Fig. 6l), and latitudes south
334	of 10°N receive a larger amount of precipitation, especially on the Guinean coast and the
335	West and East Sahel (Fig. 6f). Due to the larger amount of precipitation, the level of

evapotranspiration is also higher (Fig. 6i), and hence wetter conditions prevail (Fig. 6c) in W-shape years. The $\delta^{18}O_v$ is more depleted, as expected, centering on Niamey (Fig. 7c). The isotopic compositions of precipitation and evapotranspiration are also more depleted south of Niamey (Fig. 7f, i).

340 4.2. Factors controlling $\delta^{18}O_v$ at interannual timescales

341 To identify the mechanism responsible for the difference in isotopic variability between W 342 shape and NW shape years, isoflux analysis was applied to both composite fields. Here we analyze precipitable water instead of surface vapor for two reasons: first is for the sake of 343 simplicity. By analyzing precipitable water, we do not have to consider at what height 344 345 condensation and re-evaporation take place, or the effect of vertical advection; and second, 346 most of the atmospheric water resides near the surface, and therefore the isotopic composition of precipitable water should be useful as a proxy for surface $\delta^{18}O_{y}$. This kind of 347 alternation is also seen is Tremoy et al. (2012). As the analysis specifies the contribution of 348 each factor to the change in isotopic composition of precipitable water, the analysis period 349 350 should start before the initiation of isotopic depletion and end at the most depleted point. 351 Since the seasonal variation in the isotopic composition of precipitable water is almost the same as the surface $\delta^{18}O_v$ (Fig. 5), the analysis period was June-August to capture the 352

353 decrease in isotopic composition of precipitable water.

354 Figure 8 shows the results for the two composite fields at the Niamey gridcell. First, we discuss how each factor contributes to the δ_W variation in general. Precipitation lowers δ_W , 355 356 which is reasonable when considering the Rayleigh distillation model. That is, δ_P is greater 357 than δ_W ; therefore, the effect of precipitation is always negative, and contributes to lowering 358 δ_{W} . Evapotranspiration works in the opposite way. As the model does not take fractionation 359 into account on the land surface, δ_E can be assumed to be a mixture of all precipitation 360 (Yoshimura et al., 2008). Hence, δ_E is presumably larger than δ_W by the same analogy used to explain the effect of precipitation, and contributes to the increase in δ_W . The impact of 361 362 advection in this form in Eq. (4) seems weaker compared with the other terms. However, the 363 impact is the temporally averaged value. Given that the advection sometimes lowers the δ_W 364 and sometimes enriches δ_W , the fact that the averaged value is very low does not readily 365 imply that the impact itself is small. Therefore we further decompose the effect of advection 366 in Eq. (4) into:

367
$$\nabla \delta_{W} \cdot Q = \frac{\partial \delta_{W}}{\partial y} Q_{N} + \frac{\partial \delta_{W}}{\partial y} Q_{S} + \frac{\partial \delta_{W}}{\partial x} Q_{E} + \frac{\partial \delta_{W}}{\partial x} Q_{W}$$
(5)

368 where Q_N , Q_S , Q_E , and Q_W , represent the vertically integrated two-dimensional vapor flux

369	vector from the north, south, east, and west, respectively. In this form, the impact of
370	advection becomes clearer (Fig. 8b); southerly flow decreases δ_W , and easterly flow
371	increases δ_{W} . The precipitation area in the south of Niamey which produces isotopically
372	light moisture is considered to contribute decreases δ_W . While there is relatively less
373	precipitated area in the east of Niamey, which should produce isotopically heavier moisture
374	compared with the southern part, contributing to increase δ_W (Fig. 6). The impacts of the
375	westerly flow and northerly flow are ambiguous and negligible.
376	The $(d\delta_W/dt)W$ is low in W-shape years ($P < 0.05$). Precipitation further lowers δ_W and
377	evapotranspiration further increases δ_W in W-shape years reflecting the larger amounts of
378	precipitation and evapotranspiration. Although the differences between the impacts of the
379	two composite fields are large, they are not significant because of the high degree of
380	variation. The only term significantly different at 5% significance level other than
381	$(d\delta_W/dt)W$ is the impact of the southerly flow. When regressed with JAS averaged surface
382	$\delta^{18}O_v$ at the interannual timescale, the term that shows a strong correlation ($P < 0.05$) is the
383	southerly flow alone. This suggests that the monsoon flow brings depleted moisture
384	produced by heavier precipitation to the Niamey area, controlling the interannual variability
385	of $\delta^{18}O_v$. The interannual regression field of JAS averaged precipitation against Niamey

386	surface $\delta^{18}O_v$ shows the correlation at the Guinea Coast (10°W – 10°E, EQ – 10°N; Fig. 9).
387	This indicates the relative importance of the distillation process during transport, as
388	compared to local precipitation for the interannual variability of $\delta^{18}O_v$ in West Africa.
389	In this regard, the correlation between $\delta^{18}O_v$ and precipitation east of Niamey, which is also
390	located in the upstream region of Niamey, is expected to be strong, because heavier
391	precipitation falls in the East Sahel in W-shape years and the African Easterly Jet (AEJ)
392	flows toward the Niamey region at heights above 800 hPa. The correlation for this region
393	east of Niamey, however, is relatively weak ($ \mathbf{R} < 0.4$). As the southerly flow is dominant in
394	the lower atmosphere (1000 – 800 hPa) in the monsoon season, the relatively weak
395	connection between surface $\delta^{18}O_v$ and precipitation east of Niamey is reasonable.
396	4.3. Sensitivity experiment

397 To confirm the contributions of the amount of precipitation that falls at the Guinea Coast to

398 the interannual variability in $\delta^{18}O_v$ at Niamey, we carried out the sensitivity experiment,

- 399 NoFrac, in which we removed the influence of the distillation process in the Guinea Coast
- 400 (10°W 10°E, EQ 10°N). As shown in Fig. 4, most of the interannual variability in $\delta^{18}O_v$
- 401 at Niamey was removed. In the standard experiment, the average $\delta^{18}O_v$ and the variance at

402	Niamey are -12.9% and 1.16, respectively, whereas they are -11.7% and 0.15, respectively,
403	in NoFrac. The enriched average and considerably smaller variance in NoFrac confirm the
404	key role of the Guinea Coast precipitation in controlling the interannual variability of $\delta^{18}O_v$
405	at Niamey. In addition, we conducted other sensitivity experiments that were the same as
406	the sensitivity experiment NoFrac but for East Sahel ($10^{\circ}E - 30^{\circ}E$, $10^{\circ}N - 20^{\circ}N$) and
407	Niamey ($10^{\circ}E - 14^{\circ}E$, $11^{\circ}N - 15^{\circ}N$). Neither of these experiments showed a significant
408	difference from the standard experiment (data not shown): the average and variance were -
409	12.8‰ (-12.8‰) and 1.07 (1.15), respectively, for East Sahel (Niamey). These results
410	exclude the impact of precipitation in East Sahel or Niamey in controlling the interannual
411	variability, and enhance the robustness of our hypothesis.
412	5. Relationship with ENSO
413	West African rainfall in the monsoon season has been connected to ENSO (e.g., Janicot et
414	al., 2001; Joly et al., 2007; Losada et al., 2012); i.e., less precipitation during El Niño and
415	more precipitation during La Niña. Given this connection, a relation between $\delta^{18}O_{\nu}$ and
416	ENSO through precipitation change is expected. Indeed, three of six W-shape years (1988,
417	1999, and 2010) fell during a La Niña period. Therefore, we regressed JAS $\delta^{18}O_v$ from the

418 model and annually averaged the NINO3 index calculated from the NCEP SST analysis,

419	which was used to force the model. High positive correlations were found in all of West
420	Africa (Fig. 10a). The spatial distribution of the correlation between the annual average of
421	$\delta^{18}O_p$ weighted by monthly precipitation, and the annual averaged NINO3 index was almost
422	identical to the former, but the correlated area over West Africa was confined to south of
423	15°N (Fig. 10b). To validate this relation, we also show the relation between observed $\delta^{18}O_p$
424	from GNIP and the NINO3 index. The correlation pattern agreed well with GNIP over most
425	of Africa; the highest positive correlation was in West Africa, a weak negative correlation
426	was seen in the south of Central and East Africa, and a weak positive correlation was found
427	in South Africa (Fig. 10c). All of the figures indicate that δ^{18} O is significantly lower
428	(higher) during the cold (warm) phase of ENSO over West Africa. The relation between
429	δ^{18} O in West Africa and ENSO is evident from the figures. The relation results from the
430	relation between δ^{18} O and West African precipitation, as discussed in Sect. 4, and between
431	the precipitation and ENSO. This mechanism is also found in the Asian and South American
432	monsoon regions: ENSO governs precipitation and the precipitation determines the
433	interannual variability of the isotopic composition over the downstream regions (Vuille and
434	Werner, 2005; Ishizaki et al., 2012).

435 ENSO is not the only mode affecting West African rainfall (Janicot et al., 2001); Global

436	Warming, inter-decadal Pacific Oscillation (IPO), and Atlantic Multidecadal Oscillation
437	(AMO) are found to have significant impact (Mohino et al., 2011a) as well. Therefore, a
438	non-stationary relation between West African rainfall and ENSO (Janicot et al., 1996;
439	Losada et al. 2012) has been reported, but this lies beyond the scope of the present study.
440	Here, we wish to emphasize that we confirmed the statistical relation between rainfall at the
441	Guinea Coast and ENSO, in both observations (Global Precipitation Climatology Project:
442	GPCP (Huffman et al., 2009)) (R= -0.43 , P < 0.05) and the model (R= -0.45 , P < 0.05)
443	during the period 1979 – 2012. Losada et al. (2012) also showed that this relation became
444	significant after the 1970s. Hence, we ensured the robustness of the relation between the
445	isotope ratio in surface vapor, precipitation, and ENSO over West Africa.
446	6. Conclusion and perspective
447	Here, we presented the interannual variability of $\delta^{18}O_v$ in West Africa and its relation to
448	ENSO using the nudged IsoGSM model (Yoshimura et al., 2008). Our simulation indicated
449	that the isotopic depletion in the monsoon season, which was reported by Risi et al. (2010)
450	and Tremoy et al. (2012), does not occur every year. The main driver of the depletion was

- found to be precipitation at the Guinea Coast. Second, we found a relation between $\delta^{18}O$ 451
- over West Africa and ENSO; ENSO modulates the interannual variability of δ^{18} O via 452

453 precipitation at the Guinea Coast.

454	We showed the ability of the model to simulate intraseasonal to interannual time scale
455	variability, but the model performed relatively poorly on the daily scale. The parameter
456	controlling the equilibrium fraction ε is suggested to be problematic. Another possibility is
457	the lack of isotopic fractionation over the land surface. Risi et al. (2013) demonstrated the
458	importance of continental recycling and sensitivity to model parameters that modulate
459	evapotranspiration over West Africa. They indicated the importance of taking land surface
460	fractionation into account. As IsoGSM assumes that isotopic fractionation does not occur
461	over the land surface, coupling with more sophisticated land surface models would allow
462	more accurate simulations. Similarly, an atmosphere-ocean-coupled model with stable
463	isotopes is desirable to determine how ENSO impacts isotope ratio above water more
464	clearly.
465	One of the expected roles of isotope-enabled GCMs is to find "hot spots"; i.e., places at
466	which a climate proxy is sensitive to climate change, for climate reconstruction. Here, we
467	propose that δ^{18} O at Niamey may be a good proxy of West African rainfall and its relation to
468	ENSO. Indeed, we found a good correlation between the simulated δ^{18} O and a climate
460	menu from Change which has a signal of ENSO (Changhan et al. 2000) for their

469 proxy from Ghana, which has a signal of ENSO (Shanahan et al., 2009) for their

470	overlapping period (R = 0.65, P < 0.01). Despite the strong correlation, however, ENSO is
471	certainly not the single mode modulating δ^{18} O in the area. In our simulation, the last four
472	years were counted as W-shape years in which surface $\delta^{18}O_v$ was lower at Niamey and
473	precipitation over West Africa was higher, even though not all of these were La Niña years.
474	This may reflect the recent La Niña-like trend associated with the hiatus (Kosaka and Xie,
475	2013; England et al., 2014), supporting the impact of Interdecadal Pacific Oscillation (IPO)
476	on West African rainfall on a multidecadal timescale (Mohino et al., 2011a). On the other
477	hand, Shanahan et al. (2009) reconstructed West African rainfall variability from the
478	sediments of a lake in Ghana, supporting the suggestion that Atlantic SST controls the
479	multidecadal variability. Further comparisons with in situ observations and climate proxies
480	would be of interest.
481	This study confirms the relation between West African rainfall and isotopic variability at the
482	interannual time scale, which enables us to reconstruct detailed West African rainfall and,
483	this should help disentangle the non-stationarity of the impact of various SST basins on
484	West Africa rainfall.

485 Acknowledgments

486	The first author is supported by Japan Society for the Promotion of Science (JSPS) via
487	Grant-in-Aid for JSPS Fellows. A part of this research was supported by the SOUSEI from
488	MEXT, Japan, CREST from JST, Japan, JSPS KAKENHI Grant Numbers 23686071,
489	26289160, and the GCOE for Sustainable Urban Regeneration in the University of Tokyo.
490	R.S. acknowledges support from the Netherlands Space Office as part of the User Support
491	Programme Space Research project GO-AO/16.

493	References
494	
495	Aronson, R. B., Precht, W. F., Macintyre, J. G. and Murdoch, T. J. T.: Coral bleach-out in
496	Belize, Nature, 405, 36, doi:10.1038/35011132, 2000.
497	
498	Berkelhammer, M., Stott, L., Yoshimura, K., Johnson, K., and Sinha, A.: Synoptic and
499	mesoscale controls on the isotopic composition of precipitation in the western US, Clim.
500	Dynam., 38, 433-454, 2012.
501	
502	Brown, J., Simmonds, I., and Noone, D.: Modeling δ^{18} O in tropical precipitation and the
503	surface ocean for present-day climate, J. Geophys. Res., 111, D05105, 2006.
504	
505	Cai. W., Borlace, S., Lengaigne, M., Rensch, P., Collins, M., Vecchi, G., Timmermann, A.,
506	Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin,
507	FF.: Increasing frequency of extreme El Niño events due to greenhouse warming, Nat.
508	Clim. Chang., 4, doi:10.1038/NCLIMATE2100, 2014.
509	
510	Dai, A., Fung, I. Y., Del Genio, A. D.: Surface observed global land precipitation variations
511	during 1900-88, J. Climate, 10, 2943-2962, 1997.
512	
513	Dansgaard, W., Stable isotopes in precipitation, Tellus, 16, 436-468, 1964.
514	
515	England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta,
516	A., McPhaden, M. J., Purich, A., and Santoso, A.: Recent intensification of wind-driven
517	circulation in the Pacific and the ongoing warming hiatus, Nat. Clim. Chang., 4, 222-227,
518	2014.
519	
520	Frankenberg, C., Yoshimura, K., Warneke, T., Aben, I., Butz, A., Deutscher, N., Griffith, D.,
521	Hase, F., Notholt, J., Schneider, M., Schrijver, H., and Röckmann, T.: Dynamic processes
522	governing lower-tropospheric HDO/H2O ratios as observed from space and ground,
523	Science, 325, 1374-1377, 2009.
524	
525	Folland, C. K., Palmer, T. N., and Parker, D. E.: Sahel rainfall and worldwide sea

526 527	temperatures, 1901-85, Nature, 320, 602-607, 1986.
528	Gianni, A., Saravanan, R., Chang, P.: Oceanic forcing of Sahel rainfall on interannual to
529 530	interdecadal time scales, Science, 302, 1027, doi:20.1126/science.1089357, 2003.
531	Huffman, G. J., Alder, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation
532	record: GPCP Version 2.1, Geophys. Res. Lett., 36, L17808, 2009.
533	
534	IAEA/WMO, Global Network of Isotopes in Precipitation, The GNIP Database, 2014.
535	Accessible at: <u>http://www.iaea.org/water</u>
536	
537	Ishizaki, Y., Yoshimura, K., Kanae, S., Kimoto, M., Kurita, N., and Oki, T.: Interannual
538	variability of $H_2^{18}O$ in precipitation over the Asian monsoon region, J. Geophys. Res.,
539	117, D16308, 2012.
540	
541	Janicot, S., Moron, V., and Fontaine, B.: Sahel droughts and ENSO dynamics, Geophys. Res.
542	Lett., 23 (5), 515-518, 1996.
543	
544	Janicot, S., Trzaska, S., and Poccard, I.: Summer Sahel-ENSO teleconnection and decadal
545	time scale SST variations, Clim. Dynam., 18, 303-320, 2001.
546	
547	Janicot, S et al.: Large-scale overview of the summer monsoon over West Africa during the
548	AMMA field experiment in 2006, Ann. Geophys., 26, 2569-2595, 2008.
549	
550	Joly, M., Voldoire, A., Douville, H., Terray, P., and Royer, JF.: African monsoon
551	teleconnections with tropical SSTs: validation and evolution in a set of IPCC4
552	simulations, Clim. Dynam., 29, 1-20, 2007.
553	
554	Joly, M. and Voldoire, A.: Role of Gulf of Guinea in the interannual variability of the West
555	African monsoon: what do we learn from CMIP3 coupled simulations?, Int. J. Climatol.,
556	30, 1843-1856, 2010.
557	
558	Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation model of water isotope
559	cycles in the atmosphere, Nature, 311, 24-29, 1984.
560	

561 562 563	Kanamitsu, M., Ebisuzaki, W., Woolen, J., Potter, J., and Fiorino, M.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631-1643, 2002.
564 565 566	Kosaka, Y. and Xie, SP.: Recent global-warming hiatus tied to equatorial Pacific surface cooling, Nat. Clim. Chang., 501, 403-407, 2013.
567 568 569 570	Lai, C-T., Ehleringer, J. R., Bond, B. J., and Paw U, K. T.: Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ^{18} O of water vapour in Pacific Northwest coniferous forests, Plant Cell Environ., 29, 77-94, 2006.
571 572 573	Lamb, P. J.: Large-scale tropical Atlantic surface circulation patterns associated with Subsaharan weather anomalies, Tellus, 30, 240-251, 1978.
574 575 576 577 578	Lee, JE., Risi, C., Fung, I., Worden, J., Scheepmaker, R. A., Linder, B., and Frankenberg, C.: Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation, J. Geophys. Res., 117, D15112, 2012.
579 580 581 582	Lézine, AM., and Casanova, J.: Pollen and hydrological evidence for the interpretation of past climates in tropical West Africa during the Holocene, Quaternary Science Reviews, 8, 45-55, 1989.
583 584 585 586 587	Liu, G., Kojima, K., Yoshimura, K., Okai, T., Suzuki, A., Oki, T., Siringan, F. P., Yoneda, M., and Kawahata, H.: A model-based test of accuracy of seawater oxygen isotope ratio record derived from a coral dual proxy method at southeastern Luzon Island, the Philippines, J. Geophys. Res-Biogeo., 118, 853-859, 2013.
588 589 590 591	Liu, Z., Yoshimura, K., Bowen, G. J., Buenning, N. H., Risi, C., Welker, J. M. and Yuan, F.: Paired oxygen isotope records reveal modern North American atmospheric dynamics during the Holocene, Nature communications, 5, 3701, doi:10.1038/ncomms4701, 2014.
592 593 594	Losada, T., Rodiriguez-Fonseca, B., Mohino, E., Bader, J., Janicot, S., and Mechoso, C. R.: Tropical SST and Sahel rainfall: A non-stationary relationship, Geophys. Res. Lett., 39, L12705, 2012.

596 597	Mohino, E., Janicot, S., Bader, J.: Sahel rainfall and decadal to multi-decadal sea surface temperature variability, Clim. Dynam., 37, 419-440, 2011a.
598	temperature variability, emil. Dynam., 37, 417-440, 2011a.
599	Mohino, E., Rodriguez-Fonseca, B., Losada, T., Gervois, S., Janicot, S., Bader, J., Ruti, P.,
600	and Chauvin, F.: Changes in the interannual SST-forced signals on West African rainfall.
601	AGCM intercomparison, Clim. Dynam., 37, 1707-1725, 2011b.
602	
603	Moorthi, S. and Suarez, S. J.: Relaxed Arakawa-Schubert: A parameterization of moist
604	convection for general circulation models, Mon. Weather Rev., 120, 978-1002, 1992.
605	
606	Nicholson, S. E.: The West African Sahel: A review of recent studies on the rainfall regime
607	and its interannual variability, ISRN Meteorology, 2013, 1-32, 2013.
608	
609	Onogi, K., Tsusui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto,
610	T., Yamazaki, N., Komahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K.,
611	Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-25 Reanalysis, 85, 369-432,
612	2007.
613	
614	Palmer, T. N.: Influence of the Atlantic, Pacific and Indian Ocean on Sahel rainfall, Nature,
615	322, 251-253, 1986.
616	
617	Philander, S. G. H.: Anomalous El Niño of 1982-1983, Nature, 305, 16,
618	doi:10.1038/305016a0, 1983.
619	
620	Polo, I., Rodriguez-Fonseca, B., Losada, T., and Garcia-Serrano, J.: Tropical Atlantic
621	variability modes (1979-2002). Part I: Time-evolving SST modes related to West African
622	rainfall, J. Climate, 21, 6457-6475, 2008.
623	
624	Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the isotopic
625	composition (δ^{18} O and δ D) of precipitation and water vapor in the tropics: 2. Physical
626	interpretation of the amount effect, J. Geophys. Res., 113, D19306, 2008a.
627	
628	Risi, C., Bony, S., Vimeux, F., Descroix, L., Ibrahim, B., Lebreton, E., Mamadou, I., and
629	Sultan, B.: What controls the isotopic composition of the African monsoon precipitation?
630	Insights from event-based precipitation collected during the 2006 AMMA field campaign,

632

Geophys. Res. Lett., 35, L24808, 2008b.

633	Risi, C., Bony, S., Vimeux, F., Frankenberg, C., Noone, D., and Worden, J.: Understanding
634	the Sahelian water budget through the isotopic composition of water vapor and
635	precipitation, J. Geophys. Res., 115, D24110, 2010.

- 636
- Risi, C., Noone, D., Frankenberg, C., and Worden, J.: Role of continental recycling in
 intraseasonal variations of continental moisture as deduced from model simulations and
 water vapor isotopic measurements, Water Resour. Res., 49, 4136-4156, 2013.
- Rowell, D. P.: The impact of Mediterranean SSTs on the Sahelian rainfall season, J. Climate,16, 849-862, 2003.
- 643

647

640

Scheepmaker, R. A., Frankenberg, C., Deutscher, N. M., Schneider, M., Lnadgraf, J., and
Aben, I.: Validation of SCIAMACHY HDO/H2O measurements using the TCCON and
NDACC-MUSICA networks, Atmos. Meas. Tech. Discuss., 7, 11799-11851, 2014.

- Schmidt, G. A., LeGrande, A., and Hoffmann, G.: Water isotope expressions of intrinsic and
 forced variability in a coupled ocean-atmosphere model, J. Geophys. Res., 112, D10103,
 2007.
- 651

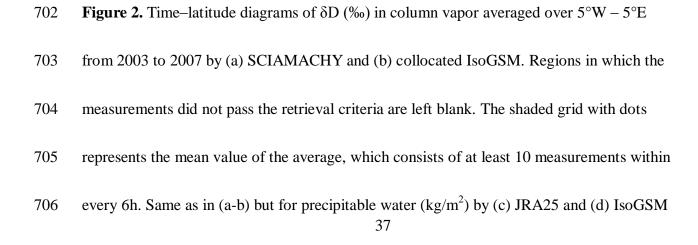
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., Peck, J. A., Scholz, C. A., and King, J. W.: Atlantic forcing of persistent drought in West Africa, Science, 324, 377-380, 2009.

- 655
- Tindall, J.C., Valdes, P. J., and Sime, L. C.: Stable water isotopes in HadCM3: Isotopic
 signature of El Nino-Southern Oscillation and tropical amount effect, J. Geophys. Res.,
 114, D04111, 2009.
- 659

- 663
- Tremoy, G., Vimeux, F., Soumana, S., Souley, I., Risi, C., Favreau, G., and Oï, M.:
- 665 Clustering mesoscale convective systems with laser-based water vapor δ^{18} O monitoring

Tremoy, G., Vimeux, F., Mayaki, S., Souley, I., Cattani, O., Risi, C., Favreau, G., and Oï,
 M.: A 1-year long δ¹⁸O record of water vapor in Niamey (Niger) reveals insightful
 atmospheric processes at different timescales, Geophys. Res. Lett., 39, L08805, 2012.

666	in Niamey (Niger), J. Geophys. Res., doi: 10.1002/2013JD020968, 2014.
667	
668	Vuille, M., and Werner, M.: Stable isotopes in precipitation recording South American
669	summer monsoon and ENSO variability: observations and model results, Clim. Dynam.,
670	25, 401-413, 2005.
671	
672	Ward, N.: Diagnosis and short-lead time prediction of summer rainfall in tropical North
673	Africa at interannual and multidecadal timescales, J. Climate, 11, 3167-3191, 1998.
674	
675	Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.: Stable water
676	isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope
677	modeling on a global scale, J. Geophys. Res., 116, D15109, 2011.
678	
679	Worden J., Noone, D., and Bowmann, K.: Importance of rain evaporation and continental
680	convection in the tropical water cycle, Nature, 445, 528-532, 2007.
681	
682	Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T.: Historical isotope simulation using
683	Reanalysis atmospheric data, J. Geophys. Res., 113, D19108, 2008.
684	
685	Yoshimura, K., Frankenberg, C., Lee, J., Kanamitsu, M., Worden, J., and Röckmann, T.:
686	Comparison of an isotopic atmospheric general circulation model with new quasi-global
687	satellite measurements of water vapor isotopologues, J. Geophys. Res., 116, D19118,
688	2011.


691 **Table Captions**

692 **Table 1.** Locations and operational periods of the GNIP observatories used in this study.

Table 2. Averages, standard deviations, their differences (simulations minus observations) and correlation coefficients for the simulations and observations from the 2010 to 2011 time series. *P < 0.05.

696 Figure Captions

Figure 1. Annual mean δD (‰) in column vapor by (a) SCIAMACHY and (b) collocated
IsoGSM. Regions in which the measurements did not pass the retrieval criteria were left
blank. The shaded grid with dots represents the mean value of the average, which consists
of at least 10 measurements within every 6h. Annual mean precipitable water (kg/m²) by (c)
JRA25 and (d) IsoGSM is also shown.

is also shown.

Figure 3. Temporal evolution from June 2010 to May 2011 of near-surface $\delta^{18}O_v$ (‰): the thin red and green lines are the daily averaged observations and model values, respectively. The thick red and green lines connected by dots are the monthly averaged observations and model values, respectively.

Figure 4. Interannual variability of annual mean δ¹⁸O_p (‰) at Niamey by the standard
experiment (green) and by GNIP observation (red), together with that of near-surface δ¹⁸O_v
(‰) during JAS at Niamey by the standard experiment (black) and the sensitivity
experiment NoFrac (white).

Figure 5. Seasonal variation of surface $\delta^{18}O_v$ (‰) in W-shape years (red) and NW-shape

717 years (black). Bars denote the interannual standard deviations for each month of the two

718 composite fields. Closed red squares indicate that the monthly $\delta^{18}O_v$ in the W-shape year

719 differs significantly from NW-shape year (P < 0.05).

Figure 6. JAS average of 2 m height specific humidity (g/kg) (a) in W-shape years, (b) in

NW-shape years, and (c) the difference between them. (d - f) Same as in (a - c) but for

722 precipitation (mm/day). (g - i) Same as in (a - c) but for evapotranspiration (mm/day). (j - i)

1) Same as in (a-c) but for geopotential height at 925 hPa (gpm). Vectors denote wind at 925
hPa.

Figure 7. JAS average of isotopic composition of 2 m height vapor (‰) (a) in W-shape years, (b) in NW-shape years, and (c) the difference between them. (d – f) Same as in (a – c) but for isotopic composition of precipitation (‰). (g – i) Same as in (a – c) but for δ^{18} O in evapotranspiration (‰).

729Figure 8. (a) Temporal derivative of the isotopic composition in precipitable water during730JJA and the contributions of advection, evapotranspiration, and precipitation to the vapor731isotope change in NW-shape years (white) and W-shape years (gray) (% mm/day). (b)732Same as in (a), but for the decomposed terms of the advection isoflux (% mm/day). **P* <</td>

733 0.05 between two composites.

Figure 9. Correlation coefficient between JAS averaged $\delta^{18}O_v$ at Niamey (green dot) and

precipitation. The contoured area represents statistical significance (P < 0.01).

736 Figure 10. Correlation coefficient between the annual averaged NINO3 index and a) the

simulated July – September averaged vapor isotope ratio, b) annual averaged simulated

precipitation isotope ratio weighted by monthly precipitation, and c) annual averaged

- observed precipitation isotope ratio weighted by monthly precipitation. Regions with
- significant positive (negative) correlations at the 90% confidence level are circled with solid
- 741 (dotted) lines in a) and b). Sites with significant correlations at the 90% confidence level are
- indicated by crosses in c).

Tables

745 Table 1. Locations and operational periods of the	GNIP observatories used in this study.
--	--

7	4	6	
1	т	υ.	

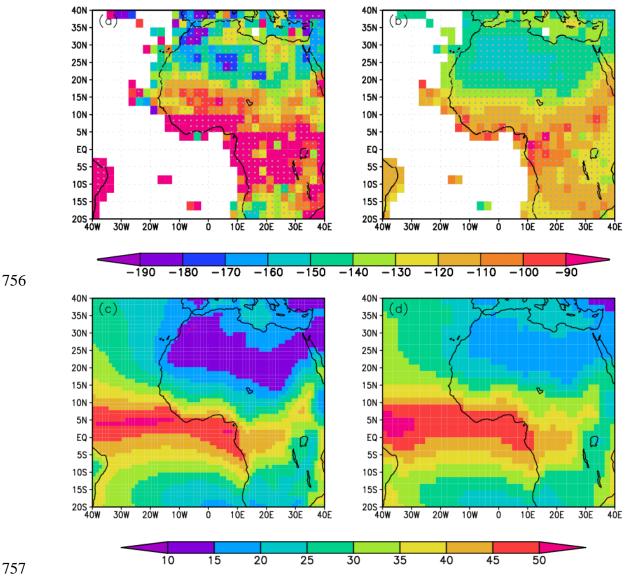
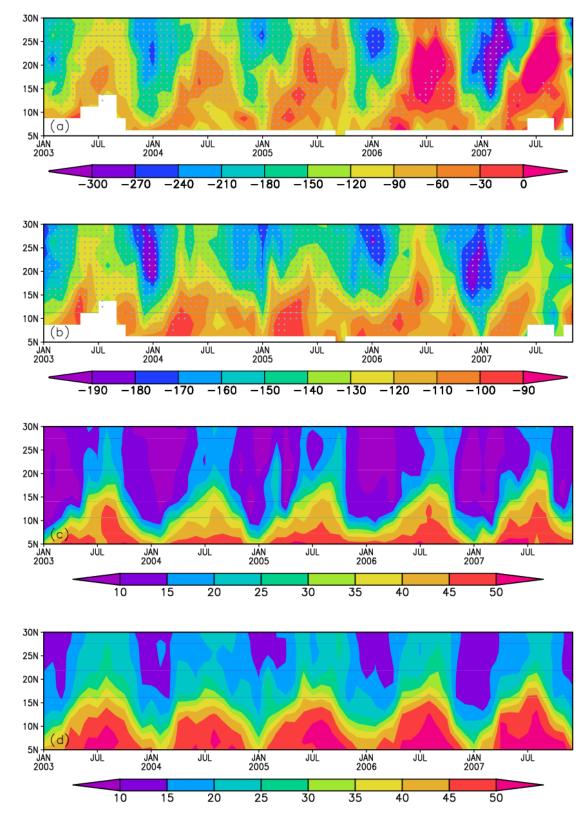

Station Name	Latitude	Longitude	Operation Period
Tunis	36°50'N	10°14'E	1967-2006
Algiers	36°47'N	3°03'E	1998-2006
Sfax	34°43'N	10°41'E	1992-2008
Fes Sais	33°58'N	4°59'W	1994-2008
Sidi Barrani	31°38'N	25°57'E	1978-2003
Bamako	13°42'N	8°00'W	1962-2007
Niamey	13°29'N	2°05'E	1992-2009
N'djamena	12°08'N	15°02'E	1960-1995
Addis Ababa	9°00'N	38°44'E	1961-2009
Sao Tome	0°23'N	6°43'E	1962-1976
Entebbe	0°03'N	32°27'E	1960-2006
Kinshasa	4°22'S	15°15'E	1961-1972
Diego Garcia Island	7°19'S	72°26'E	1962-2003
Dar Es Salaam	6°53'S	39°12'E	1960-1976
Ascension Island	7°55'S	14°25'W	1961-2009
Malange	9°33'S	16°22'E	1969-1983
Ndola	13°00'S	28°39'E	1968-2009
Menongue	14°40'S	17°42'E	1969-1983
St. Helena	15°58'S	5°42' Е	1962-1975
Harare	17°48'S	31°01'W	1960-2003
Antananarivo	18°54'S	47°32'E	1961-1975
Saint Denis	20°54'S	55°29'E	2001-2009
Windhoek	22°57'S	17°09'E	1961-2001
Pretoria	25°43'S	28°10'E	1958-2001
Malan	33°58'S	18°36'E	1961-2009
Cape Town	33°57'S	18°28'E	1995-2008
Gough Island	40°21'S	9°53'W	1960-2009
Marion Island	46°53'S	37°52' Е	1961-2009

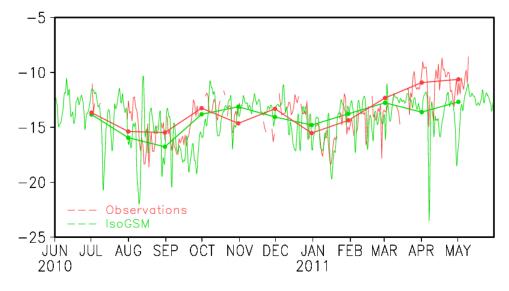
Table 2. Averages, standard deviations, their differences (simulations minus observations)


and correlation coefficients for the simulations and observations from the 2010 to 2011 time refers. P < 0.05.

		Ave. [‰]		S.D. [‰]			Cor.	
		Sim.	Obs.	Diff.	Sim.	Obs.	Diff.	
Std.	whole period	-14.6	-13.7	0.9	2.2	2.1	0.1	0.46*
	monsoon season	-16.1	-15.2	0.9	2.3	1.8	0.5	0.16
	dry season	-14.7	-15.0	-0.3	1.7	1.6	0.1	0.63*
E10	whole period	-13.9		-0.2	1.7		-0.4	0.46
	monsoon season	-14.9		-0.3	1.8		0.0	0.20
	dry season	-15.2		-0.2	1.7		0.1	0.64*

Figures

Figure 1. Annual mean δD (‰) in column vapor by (a) SCIAMACHY and (b) collocated IsoGSM. Regions in which the measurements did not pass the retrieval criteria were left blank. The shaded grid with dots represents the mean value of the average, which consists of at least 10 measurements within every 6h. Annual mean precipitable water (kg/m2) by (c) JRA25 and (d) IsoGSM is also shown.

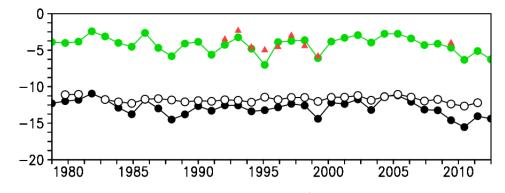
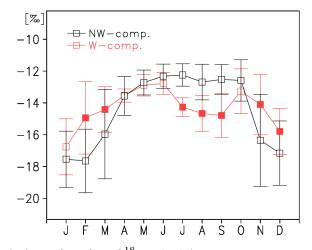


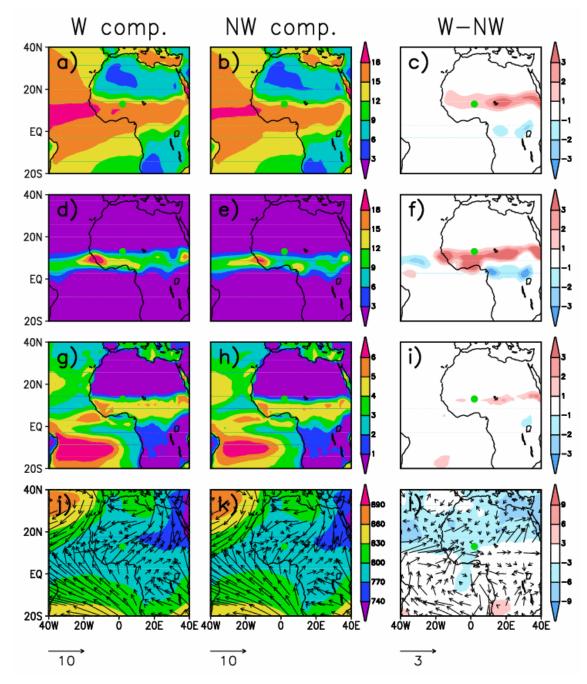
766 Figure 2. Time–latitude diagrams of δD (‰) in column vapor averaged over 5°W – 5°E

from 2003 to 2007 by (a) SCIAMACHY and (b) collocated IsoGSM. Regions in which the measurements did not pass the retrieval criteria are left blank. The shaded grid with dots represents the mean value of the average, which consists of at least 10 measurements within every 6h. Same as in (a-b) but for precipitable water (kg/m2) by (c) JRA25 and (d) IsoGSM is also shown.

772

Figure 3. Temporal evolution from June 2010 to May 2011 of near-surface δ^{18} Ov (‰): the thin red and green lines are the daily averaged observations and model values, respectively. The thick red and green lines connected by dots are the monthly averaged observations and model values, respectively.


Figure 4. Interannual variability of annual mean δ^{18} Op (‰) at Niamey by the standard experiment (green) and by GNIP observation (red), together with that of near-surface δ^{18} Ov (‰) during JAS at Niamey by the standard experiment (black) and the sensitivity experiment NoFrac (white).

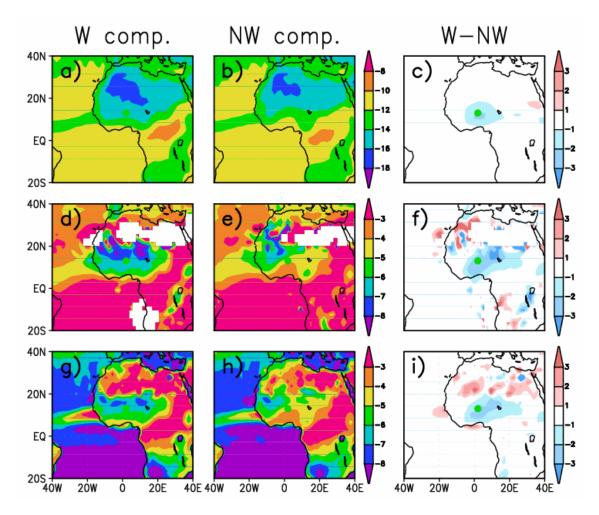
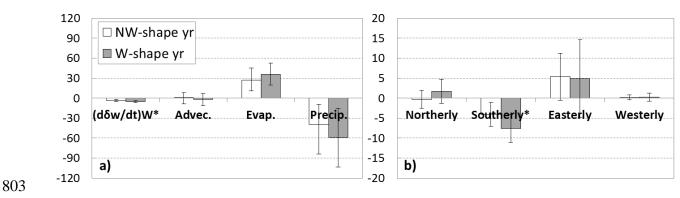
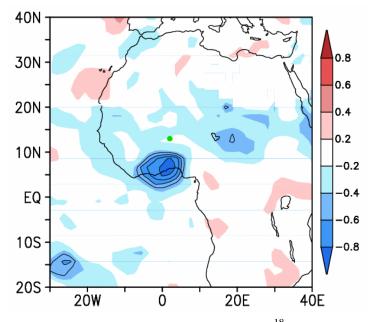

785

Figure 5. Seasonal variation of surface δ^{18} Ov (‰) in W-shape years (red) and NW-shape

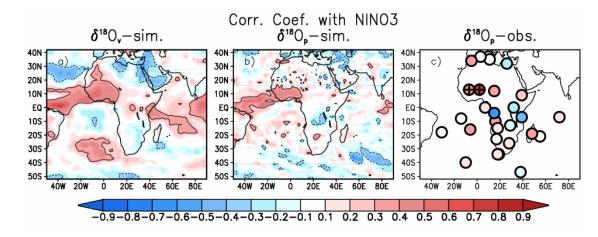
- 787 years (black). Bars denote the interannual standard deviations for each month of the two 788 composite fields. Closed red squares indicate that the monthly δ^{18} Ov in the W-shape year
- differs significantly from NW-shape year (P < 0.05).



791Figure 6. JAS average of 2 m height specific humidity (g/kg) (a) in W-shape years, (b) in792NW-shape years, and (c) the difference between them. (d - f) Same as in (a - c) but for793precipitation (mm/day). (g - i) Same as in (a - c) but for evapotranspiration (mm/day). (j - i)794l) Same as in (a-c) but for geopotential height at 925 hPa (gpm). Vectors denote wind at 925795hPa.


Figure 7. JAS average of isotopic composition of 2 m height vapor (‰) (a) in W-shape years, (b) in NW-shape years, and (c) the difference between them. (d - f) Same as in (a - c)but for isotopic composition of precipitation (‰). (g - i) Same as in (a - c) but for isotopic composition in evapotranspiration (‰).

804 Figure 8. (a) Temporal derivative of isotopic composition in precipitable water during JJA


and the contributions of advection, evapotranspiration, and precipitation to the vapor isotope change in NW-shape years (white) and W-shape years (gray) (% mm/day). (b) Same as in (a), but for the decomposed terms of the advection isoflux (% mm/day). *P < 0.05 between two composites.

811 **Figure 9.** Correlation coefficient between JAS averaged δ^{18} Ov at Niamey (green dot) and

- 812 precipitation. The contoured area represents statistical significance (P < 0.01).
- 813

814

Figure 10. Correlation coefficient between annual averaged NINO3 index and a) simulated July – September averaged vapor isotope, b) annual averaged simulated precipitation isotope weighted by monthly precipitation, and c) annual averaged observed precipitation isotope weighted by monthly precipitation. Regions with significant positive (negative)

- 819 correlations at the 90% confidence level are circled with solid (dotted) lines in a) and b).
- 820 Sites with significant correlations at the 90% confidence level are indicated by crosses in c).