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The current review concentrates on two topics related to the calculation of fluxes by the gradient 

technique employed in the study. 

 

Calculation of eddy diffusivity 

By gradient technique the vertical turbulent flux can be represented by 
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The vertical eddy diffusivity can be parameterised as 
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K στ= , where τ and σw represent the 

Lagrangian turbulent time scale and the standard deviation of vertical velocity, respectively.  

 

The authors state that the time scale is the unit time scale (1 s). This cannot be the case in general 

because the Lagrangian turbulent time scale depends on the observation level as well as turbulent 

state of the atmosphere. Justification of using 1 sec as the relevant time scale is needed.  

 

For example, the Lagrangian stochastic models employ frequently for the atmospheric surface 

layer (ASL) dispersion the time scale defined by 
ε

σ
τ

0

22

C

w=  (e.g. Wilson and Sawford, 1996, 

Boundary-Layer Meteorol. 78, 191-2010, 1996), where 0C  stands for the Kolmogorov constant. 

By using the common ASL parameterisation for the dissipation rate of the turbulent kinetic 

energy 
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u  is the friction velocity, k is the von Karman constant (0.4), and εφ  

the stability function for ε  (see e.g. Kaimal, J. C., and Finnigan, J. J., Atmospheric Boundary 

Layer Flows. Their Structure and Measurement, Oxford University Press, New York, 1994), and 

the common parameterisation for 
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expression for the Lagrangian time scale becomes 
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can be expressed as 
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=τ , showing that the time scale is proportional to height and 

inversely proportional to 
*

u . 

 

The study involves measurement of turbulent statistics by the EC system, including the 

momentum, sensible and latent heat fluxes. Those measurements define the friction velocity u* 

as well as the Obukhov length scale characterising the stability of the ASL. Further, the ASL 

similarity theory would allow to infer the eddy diffusivity via 
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stability function for scalar (heat), can be taken e.g. from Kaimal and Finnigan (1994). Under 

near-neutral conditions the stability function 
c
φ approaches unity and the eddy diffusivity is 

defined only by the observation level and the friction velocity (inferred from the measured 

momentum flux). This would be perhaps most direct way to obtain the eddy diffusivity from the 

available measurements. The authors could use this definition of the eddy diffusivity or at least 

verify their approach by comparing with this well established definition of 
z

K . 

 

Averaging of gradients and eddy diffusivities, calculation of average fluxes 

As was explained in the manuscript, the concentration gradients were averaged over 50 to 140 

hrs and the half-hour eddy diffusivity values obtained from the EC measurements were averaged 

over the same periods for the purpose of flux calculation. In general, the micrometeorological 

measurements are used over half-hourly to hourly time period (let us say T) for calculation of 

turbulent fluxes. In order to obtain correct time averaged flux (over 50 to 140 hrs) one should 

ideally calculate fluxes over stationary time periods (1/2 to 1 hr) and then average the fluxes. 

Thus, in general
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over non-stationary, long period of time).  

 

However, if the eddy diffusivity 
z

K is relatively constant, then the average fluxes obtained by 

both ways would be close. If 
z

K varies significantly during 50 to 140 hrs used for averaging of 

profiles, there is a risk of obtaining biased time-averaged flux estimates. As shown above, the 
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eddy diffusivity is proportional to u* and under higher wind (also proportional to u*) the eddy 

diffusivity is expected to be higher and the concentration gradients smaller, respectively.  

 

Below a simplified reasoning for evaluation of the average flux uncertainty follows. Let us 

assume 
c
φ is constant over time (e.g. near-neutral conditions), but *u  varies such that pdf of *u

corresponds to observations. Then assuming that the flux (source strength) is constant over time (

0F ), it can be presented for certain friction velocity value 0*u  by

0

0*
0

z

Cuzk
F

c
∂

∂
−=

φ
. For 

arbitrary ε0** uu =  (with ε representing a dimensionless random variable) the flux reads as 
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separately over time, and then calculating the product as the flux 

estimate 
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expected to be in the order of ten to a few tens of percents, which can be considered perhaps as 

the underestimated uncertainty due to over-simplification of the matter (assuming constant 

source and near-neutral stability).  

 

The authors should evaluate the error introduced by averaging of profiles and 
z

K over non-

stationary period of time or convince by some reasoning (e.g. based on the expected source and 

z
K  behaviour over the averaging period) that the error is expected to be reasonably small. 

 


