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Abstract

Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorologi-
cal model to simulate atmospheric CO2 transport. These models provide a quantitative
link between surface fluxes of CO2 and atmospheric measurements taken downwind.
Therefore, any errors in the meteorological model can propagate into atmospheric CO25

transport and ultimately bias the estimated CO2 fluxes. These errors, however, have
traditionally been difficult to characterize. To examine the effects of CO2 transport er-
rors on estimated CO2 fluxes, we use a global meteorological model-data assimilation
system known as “CAM–LETKF” to quantify two aspects of the transport errors: error
variances (standard deviations) and temporal error correlations. Furthermore, we de-10

velop two case studies. In the first case study, we examine the extent to which CO2
transport uncertainties can bias CO2 flux estimates. In particular, we use a common
flux estimate known as CarbonTracker to discover the minimum hypothetical bias that
can be detected above the CO2 transport uncertainties. In the second case study, we
then investigate which meteorological conditions may contribute to month-long biases15

in modeled atmospheric transport.
We estimate 6 hourly CO2 transport uncertainties in the model surface layer that

range from 0.15 to 9.6 ppm (standard deviation), depending on location, and we es-
timate an average error decorrelation time of ∼ 2.3 days at existing CO2 observation
sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes20

would need to be biased by at least 29 %, on average, before that bias were detectable
at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that
persistent, bias-type errors in atmospheric transport are associated with consistent low
net radiation, low energy boundary layer conditions. The meteorological model is not
necessarily more uncertain in these conditions. Rather, the extent to which meteoro-25

logical uncertainties manifest as persistent atmospheric transport biases appears to
depend, at least in part, on the energy and stability of the boundary layer. Existing
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CO2 flux studies may be more likely to estimate inaccurate regional fluxes under those
conditions.

1 Introduction

Scientists increasingly use atmospheric CO2 observations to estimate CO2 fluxes at
the Earth’s surface (e.g., Gurney et al., 2002; Michalak et al., 2004; Peters et al.,5

2007; Gourdji et al., 2012). This “top-down” approach contrasts with “bottom-up” stud-
ies that rely primarily on expert knowledge of biological processes (e.g., Huntzinger
et al., 2012; Raczka et al., 2013). In order to estimate the fluxes, top-down studies
typically require a meteorology model to link fluxes at the surface with measurements
taken downwind. Using this link, one can estimate the fluxes even if the atmospheric10

measurements do not themselves directly measure the fluxes.
However, both the accuracy and effective resolution of the flux estimate hinge upon

the accuracy of the meteorological model. Errors in the meteorological model may (or
may not) translate into errors in CO2 transport from the location(s) of surface fluxes
to the atmospheric measurement site(s). Subsequently, errors in CO2 transport may15

(or may not) bias estimated CO2 fluxes depending upon the error characteristics and
the space/time scales of interest. This cascading chain of cause and effect defines the
three types of errors or uncertainties that are of primary interest in this paper: (1) errors
in modeled meteorological variables, (2) errors in atmospheric CO2 transport, as they
manifest in modeled atmospheric CO2 concentrations, and (3) errors in the fluxes that20

result from problems in estimated transport. This study is particularly concerned with
how CO2 transport errors may propagate into the estimated fluxes.

More specifically, the effect of CO2 transport errors on the estimated fluxes depends
upon two important factors. First, the flux estimate becomes more uncertain as the CO2
transport error variance (or standard deviation) increases. Top-down studies that use25

Bayesian statistics will explicitly account for these variances when estimating fluxes
(e.g., Enting, 2002; Tarantola, 2005); before estimating the fluxes, the modeler first
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estimates the total variance due to an array of model or data errors – due to imperfect
atmospheric transport or imperfect measurements, among many other sources of error
(e.g. Gerbig et al., 2003; Michalak et al., 2005; Ciais et al., 2011).

Second, the flux estimate becomes more uncertain as the temporal and/or spatial
covariance in the errors increases. As the covariances increase, each CO2 measure-5

ment effectively provides less and less independent information to constrain the surface
fluxes. Error correlations, however, are often difficult to characterize (e.g. Lin and Ger-
big, 2005; Lauvaux et al., 2009) and are omitted from most existing top-down studies.
These difficulties aside, correlated transport errors can have a number of impacts on
the estimated greenhouse gas fluxes. First, a top-down study that does not account for10

these errors will typically underestimate the uncertainties in the flux estimate. Second,
correlated errors can bias the flux estimate over a region or over the entire geographic
area of interest (e.g., Stephens et al., 2007).

Quantification of this complex cause-and-effect between meteorological errors and
errors in estimated CO2 fluxes represents an ongoing research challenge, and a num-15

ber of existing studies have partly characterized these uncertainties. For example, a se-
ries of studies known as “TRANSCOM” represents one of the first coordinated projects
on CO2 transport uncertainties (Gurney et al., 2002; Baker et al., 2006). These early
studies used 13 different global atmospheric models and compared differences in top-
down CO2 budgets due to atmospheric model differences. These models gave an un-20

certainty in the Northern Hemisphere CO2 budget of ±1.1 Pg Cyr−1 (standard deviation;
mean budget of 2.4 Pg Cyr−1) (Stephens et al., 2007). Subsequent to the TRANSCOM
project, a number of studies have focused on the effects of changing vertical mixing
and/or planetary boundary layer height (PBLH) (Gerbig et al., 2008; Kretschmer et al.,
2012, 2014; Parazoo et al., 2012; Pino et al., 2012). In general, these papers found25

that uncertainties in PBLH can lead to errors of up to ∼ 3 ppm in modeled CO2. An-
other paper examined the effect of uncertain horizontal winds (Lin and Gerbig, 2005).
The authors applied a particle-trajectory model at a measurement site in Wisconsin
and found that uncertainties in the horizontal winds contributed ∼ 6 ppm (standard de-
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viation) to the overall CO2 transport uncertainty. In summary, a number of previous
studies have either perturbed individual meteorological parameters or, in the case of
TRANSCOM, sampled a subset of transport uncertainties using 13 pre-selected atmo-
spheric models.

Numerous questions still remain, however. For example, if one could carefully utilize5

all available meteorological observations, what meteorological and CO2 transport un-
certainties would remain? Furthermore, what is the combined effect of meteorological
errors from multiple parameters (e.g., wind, boundary layer, etc.) on CO2 transport and
subsequently on CO2 fluxes? In addition, which meteorological errors are most likely
to bias regional-scale CO2 flux estimates on month-long time scales?10

In the present study, we explore several facets of these questions using a global
meteorology model ensemble and a meteorology data assimilation system – the Com-
munity Atmosphere Model (CAM) and an assimilation framework known as a Local
Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007; Liu et al., 2011). CAM–
LETKF systematically estimates meteorology and CO2 transport uncertainties to an15

extent not previously possible; this framework explicitly represents the CO2 transport
uncertainties that remain after assimilating several hundred thousand meteorology ob-
servations at each 6 h model time step. To accomplish this task, CAM–LETKF uses an
ensemble of weather forecasts and optimizes the ensemble to match available meteo-
rological observations. Furthermore, CAM-LETKF adjusts the variance of the weather20

ensemble at each time step to match the modeling uncertainties implied by the mete-
orological observations.

Using this toolkit, we construct two case studies to understand both the possible
magnitude and potential drivers of bias in top-down CO2 flux budgets. Previous studies
by Liu et al. (2011) and Liu et al. (2012) used CAM–LETKF to estimate CO2 transport25

uncertainties, and this study investigates connections with top-down CO2 flux estima-
tion. First, we construct a case study with a commonly-used estimate of CO2 fluxes
known as CarbonTracker (CT): how biased would regional CO2 fluxes need to be be-
fore that bias were detectable above the meteorological uncertainties estimated by
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CAM–LETKF? We test this hypothesis at a number of atmospheric CO2 monitoring
sites in the US, Canada, Europe, and East Asia. Second, we construct a case study
using a synthetic atmospheric tracer. This synthetic experiment serves as a lens to
explore the possible meteorological factors associated with persistent, month-long de-
viations in atmospheric transport.5

2 Methods

2.1 The meteorology and CO2 model

The first component of CAM–LETKF is the meteorological model. We simulate global
meteorology using the Community Atmosphere Model (CAM) and Community Land
Model (CLM, version 3.5), run in weather forecast mode (not climate mode) (Collins10

et al., 2006; Oleson et al., 2008; Chen et al., 2010). Model simulations in this study
have a spatial resolution of 2.5◦ longitude by 1.9◦ latitude with 26 vertical model levels.
We save the global model output at 6 h time increments. Furthermore, we run the model
for two time periods: January–February 2009 and May–July 2009. The first month of
each run serves as an initial spin-up for the model-data assimilation system. The next15

section describes this assimilation in greater detail.

2.2 The meteorological model-data assimilation framework

The second component of CAM–LETKF is the data assimilation and model optimiza-
tion framework. This framework serves two purposes. First, the LETKF optimizes mod-
eled meteorology (CAM–CLM) to match available observations. Second, the LETKF20

uses an ensemble of model forecasts to represent model uncertainties that remain af-
ter data assimilation (Hunt et al., 2004, 2007). We define each ensemble member and
the mean of the entire ensemble as follows:

xi = x̄+Xi where i = 1. . .k (1)
25
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where xi (m1 ×1) is a single model ensemble member, x̄ (m1 ×1) is the mean of the
model ensemble, and Xi (m1 ×k) refers to the i th column of the matrix that defines the
ensemble spread. In this paper, the variable m1 refers to the total number of model pa-
rameters – the model estimate for a variety of meteorological variables, concatenated
across the globe and across all 6 hourly time steps in a given model run. Furthermore,5

we use k = 64 total ensemble members in this setup, as was done in Liu et al. (2011)
and Liu et al. (2012).

Using this ensemble, CAM–LETKF steps through time in sequential 6 h intervals.
First, the model ensemble at time t is optimized to match meteorological data. To this
end, we assimilate the same meteorological observations used in the National Cen-10

ters for Environmental Prediction-Department of Energy reanalysis 2 (Kanamitsu et al.,
2002): temperature (in situ and satellite), zonal wind (in situ and satellite), meridional
wind (in situ and satellite), surface pressure (in situ), and specific humidity (in situ). At
each 6 h model time step, we assimilate between ∼ 180000 to 330 000 observations
globally. At that juncture, the ensemble mean associated with time t, x̄(t), represents15

the model best guess and the ensemble members, x̄(t)+X(t), collectively represent
the posterior variances and covariances in the modeled meteorology. For the remain-
der of this paper, we define the 6 hourly meteorological uncertainties as the standard
deviation (or alternately, the range) of each row in X. Second, we run 6 h CAM–CLM
forecasts using these realizations as initial conditions – a total of 64 model forecasts.20

This ensemble of global forecasts then becomes the prior (and prior variances and
covariances) for the next LETKF assimilation cycle (Hunt et al., 2007). The 6 h cycle of
data assimilation and model forecast then begins again.

This model ensemble, by design, is guaranteed to reflect actual uncertainties in mod-
eled meteorology; at each 6 h model time step, we adjust the ensemble variance such25

that this variance matches against the model–data residuals (Li et al., 2009; Miyoshi,
2011). The Supplement describes this procedure, known as adaptive covariance infla-
tion. For further technical detail on the LETKF and adaptive covariance inflation, refer
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to the Supplement, Hunt et al. (2004), Hunt et al. (2007), Li et al. (2009), Liu et al.
(2011), or Miyoshi (2011).

2.3 CO2 transport error variances and covariances

The CAM–LETKF system described above estimates not only meteorological uncer-
tainties but also uncertainties in CO2 transport. In this study, CO2 is a passive tracer5

and is not part of the data assimilation. Instead, we use biospheric, oceanic, biomass
burning, and fossil fuel CO2 fluxes from CT (version “CT2011_oi”, Fig. 1) (Peters et al.,
2007, http://carbontracker.noaa.gov). Furthermore, we use CT as the initial condition
for global atmospheric CO2 mixing ratios on 1 January and 1 May 2009. Each CAM
ensemble member uses the same initial condition for atmospheric CO2, so any subse-10

quent differences in CO2 among the model realizations are due entirely to meteorolog-
ical uncertainties.

We estimate 6 hourly CO2 transport uncertainties using the standard deviation of
CO2 concentrations across the 64 model realizations (e.g., Fig. 2). To make this esti-
mate, we calculate the standard deviation of each row in X[CO2], where the subscript15

“[CO2]” refers to the atmospheric CO2 concentrations estimated by the ensemble. In
addition, we characterize temporal covariance or correlation in transport errors (i.e.,
in X[CO2]). To estimate an error decorrelation time, we use a variogram analysis. In
specific, we fit an exponential variogram model to afternoon-only model output (1–
7 p.m. LT) associated with a number of existing, global atmospheric CO2 observation20

sites. Both Kitanidis (1997) and the Supplement describe variograms in greater detail.
The remainder of the methods section applies this CO2 and meteorology modeling
framework to two case studies.
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2.4 Case study 1: how biased would CarbonTracker fluxes need to be before
that bias were detectable above CO2 transport uncertainties?

In this case study, we construct a hypothesis test to determine whether biases in
CT CO2 fluxes would be detectable above atmospheric transport uncertainties. CT
is a commonly-used global CO2 flux estimate created by the US National Oceanic and5

Atmospheric Administration (NOAA). To create CT, NOAA scientists use atmospheric
CO2 data from observations towers and surface sites around the world and estimate
regional scaling factors that optimize an initial CO2 flux model (Peters et al., 2007).

We test whether a hypothetical bias in regional scaling factors, like those estimated
by CT, would be detectable at atmospheric CO2 observation sites across the globe. We10

build this test using the CO2 sum of squared residuals (SSR) from the CAM–LETKF
model ensemble. A number of previous statistical and/or greenhouse gas studies con-
struct hypothesis tests using squared residuals (e.g., Sheskin, 2003; Huntzinger et al.,
2011).

In this setup, we construct the test as follows. First, compute the SSR associated15

with the transport uncertainties:

SSR =
n2∑(

H[CO2]X[CO2]

)2
(2)

This equation interpolates the model residuals (X[CO2]) to the observation sites, squares
these residuals, and sums them over the entire time period of interest. More specifically,20

the variable n2 refers to the number of hourly CO2 observations at an observation site
over the time span of the hypothesis test. In addition, H[CO2] (n2 ×m2) is the matrix that
interpolates or maps the ensemble deviations (X[CO2], dimensions m2 ×k) to the CO2
observations. Lastly, SSR (1×k) are the sum of squared residuals from each of the
k CAM–LETKF model ensemble members. Note that some of the ensemble members25

will be closer than others to the ensemble mean or best estimate (x̄[CO2]). Therefore,
the k SSRs from the k ensemble members will not be identical and will instead form
a distribution.
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Second, we compute the SSR associated with a hypothetical bias (λ) in the fluxes:

FSSR =
n2∑

(∆CO2)2

∆CO2 = λH[CO2]

(
x̄[CO2,surface] − x̄[CO2,600hPa]

)
(3)

The output of this equation, FSSR, is a scalar that estimates the squared residuals5

due to a biased flux estimate, summed over all observations at a given CO2 measure-
ment site. The variable λ represents a hypothetical bias in CT fluxes. In this study,
we conduct the hypothesis test at each measurement site individually, so the variable
λ is specific to the site being considered. In addition, the variables in parentheses
(x̄[CO2,surface] − x̄[CO2,600 hPa]) quantify the contribution of regional-scale fluxes to CO2 at10

the atmospheric observation site. Many top-down studies pre-subtract free troposphere
or marine “clean air” concentrations from the CO2 measurements or model output at
the observation sites (e.g., Gerbig et al., 2003; Gourdji et al., 2012). These top-down
studies then optimize regional fluxes to match the pre-subtracted CO2 observations.
In this study, we similarly subtract modeled concentrations at 600 hPa in the free tro-15

posphere (x̄[CO2,600 hPa]) from those at the CO2 observation sites (x̄[CO2,surface]). The
concentrations at 600 hPa are not necessarily a perfect measure of “clean air” concen-
trations. Rather, this approach is an approximation similar to that used in the existing
literature. This difference in concentrations is then used to estimate how a regional bias
in CT fluxes would manifest at a given observation site (∆CO2, in ppm).20

Finally, we test the hypothesis. If the FSSR is larger than most of the k SSR asso-
ciated with the meteorological uncertainties, then we can distinguish the flux bias (λ)
above the meteorological noise. This statement can be formalized into a hypothesis
test as follows:

A = {SSR | SSR > FSSR} (4)25

p =
|A|
k

(5)
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where A is the set of SSR that are greater than FSSR, and the expression |A| indicates
the number of elements in A. If the p value is less than 0.05, we have disproven the
null hypothesis – that the hypothetical bias (λ) in CO2 fluxes is indistinguishable above
the transport uncertainties.

Note that this hypothesis test accounts for both variance and temporal covariance in5

the CO2 transport uncertainties, a concept discussed in detail in the Supplement. In
addition, note that FSSR will almost never be zero due to diurnal or daily changes in
NEP, even if the monthly-averaged NEP at a given site is zero.

We conduct the hypothesis test above for both February and July 2009 at a variety
of different observation sites in North America, Asia, and Europe. We report the results10

of this hypothesis test for a representative selection of global CO2 observation sites
– different types of observation towers located on different continents and in different
biomes. Furthermore, we test this hypothesis using month-long modeled time series
corresponding to afternoon data only (1–7 p.m. LT). We use this month-long window
because CO2 budgets are often reported in month-long increments.15

In summary, case study 1 quantifies the extent to which atmospheric CO2 transport
errors can obscure any regional biases in estimated CO2 fluxes. The next case study, in
contrast, explores the meteorological conditions under which sustained CO2 transport
errors may be more likely to occur.

2.5 Case study 2: which meteorological factors may be associated with sus-20

tained, month-long transport biases?

We create a relatively simple, synthetic experiment to explore the meteorological con-
ditions under which month-long model biases in atmospheric transport may occur. The
spatial patterns in the CO2 transport uncertainties are heavily influenced by spatial pat-
terns in the CO2 fluxes (Fig. 2). In other words, regions with large fluxes or large diurnal25

flux variability also show higher CO2 transport uncertainties. As a result, it is difficult
to disentangle the effect of different meteorological parameters on CO2 transport un-
certainties. Instead, we create a synthetic tracer with constant global emissions in both
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space and time. This experiment serves as a lens to explore the possible effects of
different meteorological parameters independent of the spatial variability in CO2 fluxes.

To this end, we initialize CAM-LETKF runs with zero atmospheric concentration of
this synthetic tracer and then run CAM-LETKF forward for one month using constant
global emissions (e.g., for both February and July 2009). Any uncertainties in the at-5

mospheric distribution of this tracer are solely due to meteorological parameters, not
due to the spatial distribution of the underlying fluxes.

Next, we calculate the coefficient of variation (CV) associated with the monthly-
averaged surface concentrations. The CV is an inverted signal-to-noise ratio; it mea-
sures the uncertainty in modeled surface concentrations relative to the average surface10

concentration (σµ ). For example, an uncertainty of 1 ppm in modeled concentrations is
most problematic if the signal from surface fluxes is weak, and a 1 ppm uncertainty is
less problematic if the signal from surface sources is strong.

For this setup, the CV equals the standard deviation in the monthly-averaged sur-
face concentrations divided by the monthly surface concentration averaged across all15

64-realizations. We then plot the tracer CV against monthly-averaged meteorological
parameters and their associated uncertainties from CAM–LETKF. These relationships
give insight into the meteorological conditions or meteorological uncertainties that are
associated with month-long biases in the modeled synthetic tracer.

3 Results and discussion20

3.1 Uncertainties in the 6 hourly modeled CO2 concentrations

Before examining the two case studies in detail, we first provide context on the CO2
transport uncertainties estimated with CT fluxes and CAM–LETKF. Figure 2a and b
visually summarize the average 6 hourly CO2 transport uncertainties (standard devia-
tions) in the model surface layer; these figures show how CO2 transport uncertainties25

vary across the globe – from 0.15 to 9.6 ppm (standard deviation), depending on loca-
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tion. Furthermore, the transport uncertainties in Fig. 2a and b show several distinctive
features. The largest uncertainties are localized to regions where either the magnitude
or the diurnal cycle of the CT fluxes is largest (e.g., the US Eastern Seaboard and
southern Siberia during summertime, the Amazon, the Congo, and eastern China).
CO2 transport uncertainties in the Eastern US and East Asia bleed, to a smaller de-5

gree, over the adjacent ocean where surface fluxes are small.
These transport uncertainties are in the range of the uncertainties estimated in

a number of previous studies. For example, the spatial patterns in the 6 hourly un-
certainties are similar to those modeled by Liu et al. (2011) using CAM-LETKF and
temperature-scaled CO2 fluxes from TRANSCOM 3. In addition, a number of previous10

studies focused on the effects of perturbing individual meteorological parameters at
specific observation sites or for individual aircraft campaigns (e.g., Gerbig et al., 2003,
2008; Lin and Gerbig, 2005; Kretschmer et al., 2012). Our 6 hourly transport uncer-
tainties, though very different in both scope and scale, are comparable in magnitude to
the individual parameter uncertainties estimated by Gerbig et al. (2003), Gerbig et al.15

(2008), and Kretschmer et al. (2012) but are less than the uncertainties in Lin and Ger-
big (2005). Furthermore, our estimated 6 hourly transport uncertainties also appear
similar to or slightly smaller than the model–data mismatch errors estimated at individ-
ual observation sites in several inversion studies (e.g., Peters et al., 2007; Schuh et al.,
2010; Gourdji et al., 2012). Model–data mismatch includes not only transport errors but20

also any model or data errors unrelated to an imperfect initial flux estimate. This result
may reflect the fact that atmospheric transport often dominates model-data mismatch
errors.

Figure 3 places these transport uncertainties in context of CO2 data measured at
two observation sites in the United States. These time series plots validate the model’s25

capacity to simulate daily variations in CO2 concentrations. Furthermore, the compar-
ison illustrates the magnitude of the CO2 transport uncertainties relative to the diurnal
cycle in CO2 concentrations. For example, the uncertainties at AMT in July are ∼ 30 %
of the diurnal range in the CO2 measurements. Overall, the model ensemble depicted
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in these plots usually encapsulates the hourly-averaged measurements. CT fluxes are
estimated using these CO2 observations and the TM5 transport model (Tracer Model,
version 5) (Peters et al., 2007), so one might expect the CAM model to fit the CO2 ob-
servations relatively well. In the instances when the model ensemble does not encap-
sulate the hourly-averaged CO2 measurements, one of the many other non-transport5

error types could be to blame; the ensemble spread only encompasses transport error
and does not include measurement error, error due to finite model resolution, or errors
in the fluxes. The Supplement provides more example CO2 model–data comparisons,
meteorology model validation, and data assimilation diagnostics.

3.2 CO2 transport uncertainties at longer time scales10

The uncertainty in monthly-averaged CO2 concentrations provides one measure of
how transport errors persist over time. In other words, these uncertainties provide
a metric of error correlations in CO2 transport. Uncorrelated transport errors will av-
erage out, to a large degree, over many model time steps, but temporal correlations
prevent the errors from averaging down over time. As a result, large uncertainties15

in monthly-averaged concentrations indicate the potential for persistent bias in CO2
fluxes estimated using atmospheric observations. Such bias could lead to under- or
over-estimation of regional-scale CO2 budgets.

To this end, Fig. 2c and d displays uncertainties in the month-long average surface
concentrations for February and July 2009. In contrast to the 6 hourly uncertainties,20

these uncertainties are far more spatially-distributed; the largest uncertainties are not
just associated with regions that have large fluxes. This result implies that CO2 trans-
port errors are correlated over longer periods of time in remote regions, compared to
regions with large anthropogenic or biospheric fluxes. Furthermore, month-long trans-
port uncertainties are large across the entire Northern Hemisphere during February25

even though biospheric fluxes are weak during that time period. A subsequent Sect. 3.4
explores possible reasons why these month-long biases occur. In particular, the case

23694

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/23681/2014/acpd-14-23681-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/23681/2014/acpd-14-23681-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 23681–23709, 2014

Meteorological
uncertainties and

CO2 flux estimation

S. M. Miller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

study discussed in that section provides insight into why the month-long uncertainties
may be large across the Northern Hemisphere during winter.

A variogram analysis provides an additional measure of the error correlations in
CO2 transport (see Sect. 2.3 and the Supplement). Based upon this analysis, we esti-
mate CO2 transport error decorrelation times of 2.2 and 2.3 days at global atmospheric5

CO2 observation sites during February and July, respectively (see Table S1). The error
decorrelation times are generally longer at marine sites (average of 2.9 and 2.7 days in
February and July, respectively) or at sites that are far from large CO2 fluxes. For ex-
ample, the longest error decorrelation times occur at coastal sites in Japan, Korea and
the Canary Islands. In contrast, decorrelation times are usually shorter than average10

for observation sites on the European mainland.
This level of temporal correlation in the CO2 transport errors implies several large-

scale conclusions for estimating CO2 fluxes. First, observation sites that are far from
large fluxes are more likely to produce a biased CO2 budget than sites near to large
surface fluxes. These “remote” sites see a lower CO2 signal from surface fluxes, and15

the transport errors at these locations are generally correlated over longer periods of
time. Second, most existing top-down studies will underestimate the uncertainties in
estimated CO2 fluxes. Existing inversions rarely account for error correlations in CO2
transport and most likely underestimate the posterior uncertainties as a direct result.
The next Sect. 3.3 quantifies the impact of the transport uncertainties discussed above20

on surface flux estimation.

3.3 Case study 1: how biased would CT fluxes need to be before that bias were
detectable above the CO2 transport uncertainties?

We use a case study from CT to understand how transport errors translate into uncer-
tainty in a top-down, CO2 flux estimate. In specific, if the flux scaling factors estimated25

by CT were incorrect, how wrong would those scaling factors need to be before the
problem were detectable above atmospheric transport errors?
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Figure 4 shows the results of this case study (described in Sect. 2.4) at a selection
of global CO2 observation sites. The y-axis of each bar plot shows the minimum bias
that would be detectable using hourly-averaged CO2 observations collected over an
entire month. The mean minimum detectable bias across all non-marine sites is 29 %
(at a month-long time scale). The results are not substantially different at short versus5

tall non-marine tower sites: 27 % and 31 %, respectively. In other words, the tall towers
examined in this analysis are neither more or less sensitive to biased CO2 fluxes in
comparison to the set of short towers in Fig. 4. At marine sites, in contrast, the minimum
detectable bias is far larger: 76 % on average.

These results show a number of additional trends across the different observation10

sites. In general, towers that are near large sources are better able to detect bias in
the modeled fluxes. These include observation sites in the central and eastern US or
in Germany and Eastern Europe – sites that are strongly influence by terrestrial (ver-
sus marine) airflow relative to other locations. Most of these towers see large signals
from biospheric fluxes during summer (Figs. S9–S14). Other towers, in contrast, are15

less sensitive to detecting bias during the summertime (e.g., the marine towers and
towers in the western US). The western US towers, for example, are surrounded by
weak biosphere uptake that is diluted into a larger mixed layer during summer. But
during summer, transport uncertainties increase due to large seasonal fluxes in adja-
cent regions. The sensitivity of the marine Japanese and Korean sites also declines20

in the summer. At these sites, the signal from surface fluxes is largest in winter. Dur-
ing summer, biosphere uptake somewhat cancels the signal from large anthropogenic
emissions in China.

Note that this analysis only considers uncertainties due to meteorology. The capa-
bilities of the atmospheric observations would deteriorate if other errors were included25

(e.g., measurement errors or errors due to model resolution).
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3.4 Case study 2: which meteorological factors are associated with sustained,
month-long atmospheric transport biases?

We now examine the results of the synthetic tracer experiment (Sect. 2.5) to uncover
possible drivers of atmospheric transport biases.

Figure 5 displays the coefficient of variation (CV) for monthly-averaged surface con-5

centrations of the synthetic tracer. The CV, a unitless quantity, does not just indicate
where the uncertainties are largest. Rather, the CV indicates the magnitude of these
uncertainties relative to the mean modeled tracer concentration. Arguably, this noise-
to-signal ratio measures the influence of transport uncertainties more effectively than
a simple standard deviation. The remainder of this section focuses only on land regions10

because most existing top-down studies focus on land fluxes.
This coefficient shows a number of distinctive seasonal and spatial patterns. Like the

uncertainties in monthly-averaged CO2 (Fig. 2c and d), the CV in Fig. 5 is highest in
boreal and arctic regions of the Northern Hemisphere during winter. The CV is lowest
over Europe, Australia, and the Amazon during all seasons.15

We plot the synthetic tracer CV against numerous modeled meteorological param-
eters to understand the possible drivers behind the transport uncertainties. Of the 60
variables tested (Table S2), seven of the variables showed correlations (R2) with the
tracer CV that are greater or equal to 0.3 (Fig. 6). Meteorological conditions that lead
to high atmospheric stability and low energy are most closely associated with persis-20

tent tracer uncertainties (relative to mean surface concentrations). For example, a high
tracer CV is associated with low temperatures, low net radiative flux, low net solar flux,
low planetary boundary layer height, and low vertical diffusion diffusivity. Furthermore,
many of the meteorological variables exhibit a nonlinear relationship with the tracer CV;
the CV increases more quickly when net radiation and planetary boundary heights are25

low.
The results of this synthetic tracer experiment hold a number of potential applications

to top-down CO2 flux estimation. The danger of obtaining a biased CO2 budget is likely
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higher in regions with consistent low energy, limited vertical mixing, and/or high albedo.
These biases are unlikely to be represented by most existing inversion uncertainty
calculations, as explained in the previous sections. Furthermore, the meteorological
model ensemble is not necessarily more uncertain these regions (see Figs. S16 and
S17). Note that month-long CO2 transport biases did not correlate as strongly with5

meteorology uncertainties. Rather, the extent to which meteorological uncertainties
translate into tracer transport uncertainties appears to depend, at least in part, on the
stability and net energy input associated with the boundary layer.

4 Conclusions

In this paper, we use two case studies to investigate the potential for bias in top-down10

CO2 flux estimates due to errors in modeled atmospheric CO2 transport. The first case
study examines the ability of in situ atmospheric observations to detect bias in esti-
mated CO2 fluxes. Among other results, we find that CT would need to be biased by
29 %, on average, before that bias were detectable above CO2 transport uncertainties
at terrestrial, atmospheric observation sites. These results are strongly influenced by15

temporal correlations in the transport uncertainties. In other words, atmospheric CO2
measurements contain less information about the fluxes than is usually assumed by
top-down studies that overlook transport error covariances. As a result, most existing
inversions are likely to underestimate the uncertainties in estimated CO2 fluxes and/or
may be vulnerable to unforeseen biases in the estimated fluxes. Accounting for these20

correlated errors can be as simple as modifying one of the covariance matrix inputs
in a Bayesian inversion. Accordingly, this study provides information to improve the
setup of future top-down inverse modeling studies – an improvement that will widen
the confidence interval on the estimated fluxes.

In a subsequent case study, we investigate the factors associated with month-long25

biases in atmospheric transport. The largest short-term CO2 transport errors correlate
strongly with the location of the largest surface fluxes, but month-long biases in at-
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mospheric transport are not only localized to regions with large fluxes. Rather, these
biases may be more likely to occur at observation sites that are far from large fluxes
and in regions with high atmospheric stability and low net radiation. Existing top-down
flux studies may be more likely to estimate inaccurate regional fluxes under those con-
ditions.5

The Supplement related to this article is available online at
doi:10.5194/acpd-14-23681-2014-supplement.
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Figure 1. Average CT CO2 fluxes (version 2011oi) for (a) Feburary and (b) July 2009. The
fluxes include biosphere, ocean, fossil fuel, and biomass burning fluxes (http://www.esrl.noaa.
gov/gmd/ccgg/carbontracker/CT2011_oi).
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Figure 2. The top panels display average 6 hourly CO2 transport uncertainties estimated by
CAM–LETKF. The uncertainties (standard deviations) are for the surface model layer for (a)
February and (b) July 2009. To create these plots, we calculate the ensemble variance at each
time step and subsequently average the variances across all time steps. These standard devi-
ations are the square root these meaned 6 hourly variances. Furthermore, these plots include
model output from all 24 h of each day. The Supplement provides analogous figures for daytime-
or nighttime-only model output. The bottom-panels (c and d), in contrast, display the standard
deviation in month-long averaged surface CO2 concentrations.
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Figure 3. Hourly averaged measured CO2 at (a) Moody, Texas, and (b) Argyle, Maine, com-
pared against the CAM–LETKF model ensemble. Measurements are from the top inlet height at
each location. In this figure, the model ensemble represents uncertainties due to atmospheric
transport but not other errors (e.g., due to the fluxes, model resolution, etc.).
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Figure 4. Results of the hypothesis test (Sects. 2.4 and 3.3) at a selection of global CO2 obser-
vation sites. Panel (a) shows the location, name, and type of each observation site examined in
the hypothesis test. At sites with multiple measurement or inlet heights, we model the top inlet.
Panels (b) and (c) show the test results for February and July 2009. The test asks the following
question: how biased would CT fluxes need to be before CO2 observation sites would detect
that bias above the estimated CO2 transport uncertainties?
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Figure 5. The coefficient of variation (CV, unitless) for the monthly-averaged model surface
layer. The results plotted here are for the synthetic tracer simulation (Sects. 2.5 and 3.4). In
that simulation, the synthetic fluxes have a constant spatial distribution. The resulting CV (σ/µ)
shows the distribution of month-long, surface-level transport uncertainties independent of the
spatial distribution in the fluxes. Note that this plot displays the results from land regions only.
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Figure 6. Each panel shows the correlation between the synthetic tracer CV (Fig. 5) and various
monthly-averaged meteorological parameters estimated by CAM-LETKF. We test the correla-
tion with 60 different parameters (Table S2) and plot the relationships for which R2 ≥ 0.3. In all
cases, we fit both a standard major axis regression and nonlinear least squares ( 1

[β1×parameter+β2] )
and plot the regression with the higher correlation coefficient.

23709

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/23681/2014/acpd-14-23681-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/23681/2014/acpd-14-23681-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

