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S1 The meteorological model-data assimilation framework

This section of the supplement describes the Local Ensemble Kalman Filter (LETKF) in greater
detail. Many of the equations listed below are abbreviated versions of those detailed in Hunt
et al. (2004), Desroziers et al. (2005), Hunt et al. (2007), Li et al. (2009), and Miyoshi (2011).
For a mathematical derivation of either the meteorology optimization or covariance matrix
estimation within LETKF, refer to any of those studies.

The model–data assimilation system (abbreviated CAM–LETKF) can be summarized in a
number of steps. First, we create an initial condition for modeled meteorology, in this case
using NCEP–DOE AMIP-II reanalysis (Kanamitsu et al., 2002). We generate a set of small
perturbations to the initial conditions and use these perturbations to create a set of k initial
conditions that are all slightly different. In this case, we set k = 64 (as in Liu et al., 2011, 2012).
This choice represents a compromise between thorough statistical sampling and computational
considerations: a very large k will exhaustively sample the model uncertainties. However,
k CAM–CLM realizations require 4k computer cores, so a very large k would also become
computationally prohibitive.

Second, we run a 6-hour weather forecast using CAM-CLM for each for the k model initial
conditions. The spread of this model ensemble represents our prior uncertainty in the modeled
meteorology:

xi = x̄ + Xi where i = 1....k (S1)

where xi (m × 1) is a single model realization, x̄ (m × 1) is the mean of the model ensemble,
and Xi (m× k) refers to the ith column of the matrix that defines the model ensemble spread.
In the main article (e.g., Eq. 1), we defined these variables to refer to all model time steps,
collectively. In the supplement, by contrast, we will instead define these variables to refer to
the model–data assimilation at a single, 6-hourly time step. In other words, m and n now
refer to the model outputs and number of weather observations, respectively, associated with a
single model–data assimilation cycle. This redefinition of the variables facilitates a discussion
of time-stepping in the remainder of this section.

Third, we calculate a set of k weights such that the weighted average of the realizations
best matches the meteorological observations:

x̄a = x̄b + Xbŵ (S2)

The superscript b refers to the model state before assimilation and a the model state after data
assimilation. The k × 1 vector of weights (ŵ) are estimated by minimizing a statistical cost
function with respect to the meteorological observations (Hunt et al., 2007):

J(w) = (k − 1)wTw +
(
z −H(x̄b + Xbw)

)T
R−1

(
z −H(x̄b + Xbw)

)
(S3)

In the above equation, z (n×1) represents the meteorological observations, and H() is a function
or operator that maps the model output to the observations. For example, the function H()
may convert the model units to the measurement units or may interpolate the model output
to an observation site that lies between multiple model grid boxes. Lastly, the diagonal matrix
R (n × n) represents the nugget variance, variance in the model–data residuals that is due to
measurement errors or meteorological processes too small in scale to be captured by CAM–
CLM.

Note that, in practice, we never compute the weights simultaneously for the entire global
model output. Rather, we estimate a different set of weights for each model grid box using
observations within a certain radius (in this case, within 1500km). As such, the matrices in
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Eqs. S2 and S3 represent a subset of the global model output, and the dimensions n and m are
small relative to the total number of global observations and model grid boxes, respectively.

The estimated weights (ŵ) have the following covariance matrix (k×k) (Hunt et al., 2007):

P̃a = (k − 1)I + (Yb)TR−1Yb (S4)

where H(x̄b + Xbw) ≈ ȳb + Ybw (S5)

Fourth, we generate 64 realizations that collectively represent our posterior uncertainty in
the meteorology. Like the best estimate (x̄a), these posterior realizations are also a linear
combination of the prior model realizations (Hunt et al., 2007):

xa
i = x̄a + Xb

([
(k − 1)P̃a

] 1
2

)
i

(S6)

where ‘1
2 ’ denotes the symmetric square root of the covariance matrix. The subscript i on the

right hand side of the equation refers to individual columns of the matrix.
Fifth, and finally, we adjust the overall model ensemble spread to match the model un-

certainties implied by the meteorological observations. We refer to this process as adaptive
covariance inflation (e.g., Li et al., 2009; Miyoshi, 2011). Note that this step is new since
previous CAM–LETKF studies by Liu et al. (2011) and Liu et al. (2012).

Adaptive inflation operates on the following principle: the ensemble variance and nugget
variance should match against the actual model-data residuals (e.g., Li et al., 2009):

E

[(
z −H(x̄b)

)(
z −H(x̄b)

)T]
= HPHT + R (S7)

where P = (k − 1)−1Xb(Xb)T (S8)

In that equation, E denotes the expected value, and the matrix H (n×m) is a linearization of
the function H(). In practice, however, these covariance matrices can diverge from the actual
residuals (refer to Miyoshi, 2011, for more detail). Therefore, we estimate a scaling factor
(α) for the diagonal elements of the covariance matrix P (m ×m). This scaling factor can be
estimated by manipulating Eq. S7 as in Li et al. (2009) and Miyoshi (2011):

α =
tr
[(
z −H(x̄b)

) (
z −H(x̄b)

)T ◦ R−1
]
− n

tr [HPHT ◦ R−1]
(S9)

In this equation, tr refers to the matrix trace, and the symbol ◦ indicates element-wise multi-
plication. The result of Eq. S9 is then weighted against the scaling factor from the previous
model time step to produce a final scaling factor estimate (refer to Li et al., 2009; Miyoshi,
2011).

We also estimate the nugget variance (σ2
R,j) for a given observation type (j) using the model

output and observations (Desroziers et al., 2005; Li et al., 2009):

σ2
R,j =

(zj −H(x̄a))T
(
zj −H(x̄b)

)
nj

(S10)

As with α, the result in Eq. S10 is also weighted against the estimated variance from the
previous time step to produce a final variance estimate (Li et al., 2009). Unlike the localized
LETKF calculations, we estimate a single nugget variance for the entire globe (for each mete-
orological observation type). In other words, in Eq. S10, the inputs represent global values for
observation type j, not a localized implementation as in previous equations.

After these steps, the model-assimilation cycle begins again with another 6-hour CAM–
CLM forecast. The posterior ensemble members (xa

i ) become the initial conditions for this
next CAM-CLM forecast.
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S2 CAM–LETKF performance metrics

The paragraphs that follow discuss two different metrics of CAM–LETKF performance: large-
scale meteorology model–data comparisons and a more in-depth view of the estimated variances
(i.e., the variance inflation and the nugget variance).

First, we examine the meteorology model–data residuals for the model best-guess (x̄a). Fig-
ure S1 displays the root mean squared model–measurement error (RMSE,

√
(1/n)

∑
(y −H(x̄a))2),

broken down by time and by observation type. Each point plotted in Fig. S1 is the RMSE
computed from all available global observations. This RMSE appears comparable in magni-
tude to several existing weather reanalysis products. For example, these statistics are similar to
CAM-LETKF simulations by Liu et al. (2011), though simulations in that paper cover a much
shorter time period. Furthermore, the temperature, pressure, and wind errors reported here are
in the range of those listed for North American Regional Reanalysis (NARR) and ERA-Interim
reanalysis (Mesinger et al., 2006; Dee et al., 2011).

The remainder of this section discusses the estimated covariance matrix parameters. These
estimated parameters dictate both the variance of the model ensemble and the nugget variance.
To that end, Fig. S2 displays a map of the average variance inflation factors in the model
surface layer for February and July, 2009, and Fig. S3 shows how the average variance inflation
factor changes over time through five months of CAM–LETKF simulations.

These figures show several notable patterns, three of which we discuss in more detail. First,
the inflation factors in Fig. S2 are highest over North America, Asia, and Australia, regions
with relatively abundant meteorological observations. A number of previous studies confirm
this positive correlation between data density and covariance inflation (e.g., Anderson, 2009;
Miyoshi, 2011; Miyoshi and Kunii, 2012). Furthermore, Miyoshi (2011) points out that a high
inflation factor in observation-rich regions may cause the ensemble spread to be too large down-
wind. This explanation may account for the adjacent regions of high inflation (over continents)
and low inflation (over the oceans) in Fig. S2. Second, the inflation factors are consistently
low over eastern, tropical Pacific Ocean. This feature is intentional by design; we manually
set inflation factors at a value of 0.4 in this region. Higher inflation values cause the ensemble
variance to increase rapidly in this region and lead to unphysical temperature estimates near
the tropopause. Third, the global average of the inflation factors is less than one (Fig. S3).
Even though the inflation factors, on average, decrease the ensemble variance, the global en-
semble variance remains relatively constant over time. For example, the average 6-hourly model
ensemble spread at meteorology observation sites is comparable in February, June, and July:
∼1.5 m s−1 for zonal and meridional wind (standard deviation, square root of the averaged vari-
ances), ∼0.7 K for surface temperature, and ∼1.1 mb for surface pressure. This consistency,
in spite of the small inflation average, may be due to the nonlinear nature of the meteorologi-
cal model – differences among individual ensemble members can escalate or intensify over the
6-hour meteorology forecast.

In addition to the covariance inflation, the nugget variance also remains consistent over
time. Fig. S4 shows the square root of the nugget variance for each observation type and at
each model time period. Note that we estimate different values of the nugget variances by
observation type and time, but the estimated variances are spatially constant across the globe.
These estimates remain consistent over time, except for the initial January spin-up period,
during which the estimate slowly evolves from the initial guess.
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S3 Uncertainties in atmospheric CO2 transport

This section of the supplement provides more detailed plots of the CO2 transport uncertainties
shown in Fig. 2 of the main article. In particular, the plots in this section (Figs. S5 – S8)
visualize the transport uncertainties for different time slices of the day and show how CO2

transport uncertainties differ between day and nighttime. The first two figures (Figs. S5 and
S6) display the mean 6-hour CO2 transport uncertainties for February and July, 2009, a setup
analogous to Figs. 2a and 2b in the main manuscript. Conversely, Figs. S7 and S8 exhibit the
uncertainties (standard deviations) in the month-long mean CO2 concentrations, analogous to
Figs. 2c and 2d in the main article.

In general, the 6-hourly uncertainties vary widely depending on the local time with higher
uncertainties at night (Figs. S5 and S6). Note that the hypothesis test in the main article (sec-
tions 2.4 and 3.3) only uses model output associated with local afternoon CO2 measurements.
In contrast to these 6-hourly uncertainties, the uncertainties in monthly-mean concentrations
do not vary as much by time of day (Figs. S7 and S8). For example, over North America
and northern Eurasia in February, the CO2 uncertainties are equally high during all times of
day. However, a diurnal cycle in the month-long uncertainties is apparent over some regions –
equatorial Africa, South America, and over Northern Hemisphere land regions in summer.

S4 CO2 model-data comparisons

In this portion of the supplement, we show several CO2 model and data time series from
different types of observation sites (Figs. S9 – S14). These plots illustrate the capacity of CAM–
LETKF (paired with Carbon Tracker fluxes) to reproduce hourly-averaged CO2 observations.
Furthermore, the plots provide greater context on the CO2 ensemble spread and the estimated
contribution of regional fluxes. The top panel of each figure illustrates the ensemble mean
and ensemble spread, and the bottom panel shows the estimated contribution from regional
fluxes – modeled CO2 at the observation site minus modeled concentrations at 600 hPa. This
increment is used for the hypothesis test in the main paper (section 2.4). In general, the
modeled contribution of regional fluxes is largest during summer where biosphere uptake is
strongest (e.g., LEF and AMT).
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panels (Figs. S9b– S14b) all have the same y–axis.

11



C
O

2 (
pp

m
)

39
0

39
2

39
4

39
6

39
8

40
0

−2
0

−1
0

0
10

20
30

2/1/2009 2/7/2009 2/13/2009 2/19/2009 2/25/2009

Barrow, Alaska (BRW)
a) Model-measurement comparison

b) Modeled contribution of regional fluxes

Observations
Model ensemble 
mean and range

Contribution

Figure S11: This figure is analogous to Fig. S9 but the Barrow, Alaska, in February 2009.
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Figure S12: This figure is analogous to Fig. S9 but the Barrow, Alaska, in July 2009.
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Figure S13: This figure is analogous to Fig. S9 but for the Wisconsin tall tower in July 2009.
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S5 Details of the variogram analysis

Section 3.2 of the main article describes the results of a variogram analysis of the CO2 transport
errors. The present section describes the methodology behind this analysis. We first construct
a raw variogram using the CO2 ensemble perturbations (X[CO2]). The variogram describes the
similarity between two perturbations at different time points (e.g., Kitanidis, 1997):

γ(∆t) =
1

2
(Xi(t1) −Xi(t2))2 (S11)

where Xi(t1) refers to the perturbation of the ith ensemble member at an individual location at
time t1 and Xi(t2) the perturbation from the same ensemble member and geographic location
at time t2. For each realization, we compute the raw variogram for all possible pairs of model
outputs at a given location during the month of interest. Note that, in this setup, we only use
model output associated with afternoon CO2 observations (1pm – 7pm local time). We then
bin the calculated values (from all realizations) based upon ∆t and find the mean value of γ for
all pairs in a given bin. The resulting, binned values of γ are called the empirical variogram.

Next, we fit a variogram model to the empirical variogram estimated above. In this case,
we fit an exponential model:

γ(∆t) =

{
0 if ∆t = 0

τ2 + σ2
(
1 − exp

(
−∆t

d

))
if ∆t > 0

(S12)

where σ2 is the variance of the perturbations at large separation times and d is the e-folding
decorrelation time of the perturbations. Note that the total error decorrelation time is approxi-
mately 3d. Furthermore, τ2 is the nugget variance, error variance that is not correlated in time.
Refer to Kitanidis (1997) for more detail on constructing and fitting variogram models.

The tables in this section (Tables S1a and S1b) display the results of the variogram analysis
– the individual variogram parameters fitted at each individual CO2 observation site. For more
discussion of these parameters, refer to section 3.2 of the main article.

16



Table S1a: Fitted variogram parameters by site for Feb. 2009
Site τ2 (ppm2) σ2 (ppm2) 3d (days)

AMY 0.32 3.14 4.18
GSN 0 2.85 3
RYO 0 0.28 1.93
YON 0 0.64 3.91
IZO 0 0.05 4.16
MHD 0 0.23 1.09
HEI 0 3.57 1.13
HUN 0 1.47 1.38
LMU 0 0.5 1.59
NOR 0 1.4 2.13
PAL 0 0.86 1.99
BIK 0 1.71 2.64
CBW 0 5.22 1.13
OXK 0 0.41 1.58
TRN 0 2.79 1.45
TTA 0 0.2 1.02
BRW 0 0.18 2.16
WSA 0.06 0.22 2.95
AMT 0 0.31 1.85
CHM 0 0.21 2.66
ETL 0 0.25 3.03
FSD 0 0.28 1.97
SGP 0 0.62 2.19
BAO 0 0.4 1.32
LEF 0 0.32 2.06
WBI 0 0.39 1.78
WKT 0 0.47 1.88
mean 0.01 1.1 2.2
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Table S1b: Fitted variogram parameters by site for Jul. 2009
Site τ2 (ppm2) σ2 (ppm2) 3d (days)

AMY 0.01 1.62 2.25
GSN 0 0.83 4.33
RYO 0 1.15 3.3
YON 0 0.09 1.81
IZO 0 0.05 4.54
MHD 0 0.32 1.47
HEI 0 0.41 1.55
HUN 0 0.8 2.08
LMU 0 0.15 1.97
NOR 0 0.35 1.71
PAL 0 0.53 1.73
BIK 0 0.73 2.01
CBW 0 0.57 1.59
OXK 0 0.38 2.14
TRN 0 0.4 1.92
TTA 0 0.25 1.84
BRW 0 1.01 1.9
WSA 0 1.65 2.02
AMT 0 1.44 2.68
CHM NA NA NA
ETL 0 1.58 3.24
FSD 0 1.84 1.58
SGP 0 2.31 1.94
BAO 0 0.43 2.25
LEF 0 2.9 2.42
WBI 0 4.2 1.85
WKT 0 1.71 2.49
mean 0 1.1 2.3
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S6 Statistical discussion of case study 1

This section of the supplement provides more in depth discussion of the theoretical aspects of
the hypothesis test in case study 1. The outcomes of this hypothesis test hinge both on the
variance of the CO2 transport errors but also upon any temporal correlation in those errors.
This section illustrates the idea using theoretical distributions (Fig. S15).

The hypothesis test in case study 1 (section 2.4) of the main article tests whether hypothet-
ical biases in Carbon Tracker CO2 fluxes would be detectable above errors in CO2 transport.
In other words, the null hypothesis states that a hypothetical bias in the CO2 fluxes is indis-
tinguishable from the CO2 transport errors. As discussed in section 2.4 of the main article, the
SSR (k × 1), or sum of squared CO2 transport residuals associated with each ensemble mem-
ber, will not be identical. Rather, the SSR will fall on a distribution because some ensemble
members will be closer to the best estimate (x̄[CO2]) than others. In order to reject this null
hypothesis, the flux bias (FSSR, Eq. 5) must lie within the upper 5% tail of the SSR.

Figure S15 depicts the distribution of SSR for various scenarios where the CO2 transport
residuals have pre-defined, hypothetical characteristics. This plot helps visualize how changes
in the CO2 transport residuals would affect the results of the hypothesis test. We construct the
plot as follows:

1. Define a set of hypothetical qualities for the CO2 transport errors. We will define these
errors as having a multivariate normal distribution with a mean of zero. In particular,
define the standard deviation of the 6-hourly errors (σ) and the temporal correlation
parameter (d, Eq. S12).

2. Generate a set of random numbers based based upon the parameters defined above. In
this case, we generate 670 random numbers, a plausible number of afternoon-only CO2

observations at a given observation site in one month. These random numbers represent
hypothetical CO2 transport errors with characteristics σ and d. These errors could, in
theory, be generated by an individual ensemble member in CAM–LETKF and could
represent one column of the matrix X[CO2] (see Eq. 1 of the main article).

3. Calculate the sum of squares for this randomly-generated vector of numbers. Record this
value.

4. Repeat steps 2–3 thousands of times. As noted above, the SSR from each iteration will
not be identical.

5. Collect the SSR from all iterations and plot them on a histogram.

The distributions in Fig. S15 illustrate how different types of CO2 transport errors will
influence the hypothesis test results. If the standard deviation of the errors increase, then the
entire distribution of SSR will also shift to larger values. In that case, a given surface flux
signal (FSSR) would need to be relatively large to be distinguishable above the model transport
errors. Concomitantly, if the error correlation increases, some of the ensemble members (i.e.,
individual elements of SSR) will consistently remain further from the ensemble mean. Those
members will have a high SSR, skewing the entire distribution of SSR further to the right.
In this circumstance, the surface CO2 flux signal would also need to be relatively large to be
distinguishable above atmospheric CO2 transport errors. In summary, the atmospheric CO2

observations are less sensitive to bias in the flux estimate both as the standard deviation and
temporal correlations of the CO2 transport errors increase.
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Figure S15: This figure shows the distribution of sum of squared residuals (SSR) for hypo-
thetical model ensembles with different characteristic residuals. It illustrates how different CO2

transport errors would affect the results of the hypothesis test in case study 1; as the distribu-
tion of SSR reach higher and higher values, any biases in the estimated CO2 fluxes (FSSR)
become increasingly difficult to distinguish above the transport errors.

20



S7 Plots of meteorological variables and uncertainties
(case study 2)

This section describes, in greater detail, the monthly-averaged meteorological parameters con-
sidered in the synthetic tracer experiment (sections 2.5 and 3.4). Table S2 lists all of the
meteorological parameters that we compare against the synthetic tracer CV. We compare the
synthetic tracer against the monthly-averaged meteorological parameters, the standard devi-
ation in the monthly mean parameters, and the CV of each meteorological parameter – 60
parameters in total. Of those 60 parameters, 7 showed a correlation (R2) with the tracer CV
that is greater than or equal to 0.3. Figures S16 and S17 map these monthly-averaged, mod-
eled meteorological parameters. Note that we do not include the oceans or Antarctica in the
synthetic tracer study (Sections 2.5 and 3.4, Fig. 5 and 6). In general, those regions have
small hourly CO2 fluxes compared to other regions and do not contain many continuous CO2

observation sites.
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Figure S16: Maps of the monthly-averaged meteorological parameters from Fig. 6.
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Figure S17: Maps of the monthly-averaged meteorological parameters from Fig. 6.

Table S2: Candidate meteorological variables
Meteorological variable Abbreviation Units

Zonal wind U m s−1

Meridional wind V m s−1

Total wind velocity wind m s−1

Temperature T K
Planetary boundary layer height PBLH m
Vertical velocity omega Pa s−1

Vertical velocity at 510hPa omega510 Pa s−1

Vertical diffusion diffusivity VDD m2 s
Net longwave flux at the surface FLNS W m−2

Surface sensible heat flux SHFLX W m−2

Surface latent heat flux LHFLX W m−2

Downwelling solar flux at surface FSDS W m−2

Net solar flux at surface FSNS W m−2

Solar flux reflected from surface FSRS W m−2

Net radiative flux at surface SRFRAD W m−2

Liquid cloud water LCWAT kg kg−1

Relative humidity RELHUM %
Specific humidity Q kg kg−1

Large-scale, stable precipitation rate PRECL m s−1

Convective precipitation rate PRECC m s−1
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