
Reply to reviewer #1

Scot M. Miller, et. al.

We would like to thank the reviewer for suggestions and comments on the manuscript. The

reviewer’s detailed suggestions have been very helpful in improving the manuscript. Below,

we have included the reviewers comments (in bold) along with our reply and the associated

changes/updates to the manuscript.

• My main criticism if focused on case study #1 and the framing of this exper-
iment as a way to quantify the bias detection limit of carbotracker (CT). But
CT does not work on a month by month basis lie your lambda scaling factoor,
it does not consider signals site-by-site like here but instead a whole network,
and it does not scale flux signals locally at each site like in your FSSR but over
a large spatial area that is also seen by other sites. [...] Framing this exper-
iment as a way to determine the balance between large-scale flux influences
and transport errors is in that sense more appropriate, and I think describes
better what was actually done.

The reviewer brings up a great suggestion here, and we have re-framed case study #1

accordingly. As the reviewer points out, the goal of this investigation is not to re-estimate

the uncertainty bounds on CarbonTracker. Rather, our goal is to understand the magni-

tude of these transport uncertainties relative to the fluxes. To that end, this case study

provides ones means to relate these two entities (the transport uncertainties and fluxes)

in the absence of an explicit model adjoint. We no longer frame the case study as a

means to quantify the bias detection limit of CarbonTracker. Rather, as the reviewer

suggests (below), we have re-framed the case study to examine the following question:

how does the magnitude of the transport uncertainties compare against the afternoon,

atmospheric CO2 signal from regional surface fluxes? We have modified the manuscript

text and figures accordingly.

• Specifically, your comparison of transport noise (SSR) and flux biases (FSSR)
is done in squared residual space which only measures the magnitude of a
signal, but does not account for its sign. A bias in fluxes would typically
manifest itself as a consistent over- or underestimate of the true concentrations
observed and even if these are small (say 0.5 ppm) compared to the more
random transport uncertainties (say 3 ppm), their consistency in sign over
longer periods of time would make them detectable. In fact, in a Bayesian
inversion the system would try to overcome this small bias as by design it
strives for zero mean residuals even in the presence of large observation error
covariances.

The reviewer raises a very good point here, and we have clarified this point in the revised

manuscript. As the reviewer explains, a Bayesian inversion will optimize the fluxes to

minimize or remove any biases between the model and the observations. If a transport

model is completely unbiased relative to the actual atmosphere, then the CO2 budget
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estimated by an inversion should also be unbiased. (This statement assumes that other
components of the inversion, including the observations, are unbiased.)

In contrast, the inversion may estimate an erroneous or biased budget if the atmospheric
transport model is biased. For example, imagine a hypothetical transport model that
consistently overestimates vertical mixing. One could construct a Bayesian inversion
to optimize CO2 fluxes using that transport estimate. The inversion will optimize the
fluxes to minimize any model-measurement bias. However, the resulting flux estimate
is unlikely to be correct; the inversion would erroneously increase the magnitude of the
fluxes to compensate for errors in vertical mixing. The model would appear to match the
CO2 measurements, but the estimated fluxes would nonetheless be biased relative to the
true fluxes. In this case, the bias in the fluxes would be undetectable with respect to the
atmospheric observations. Stephens et al. (2007) adeptly discuss this topic in the context
of atmospheric inverse modeling.

We have re-designed case study one in the manuscript to make this comparison more
direct. Among other changes, the revised case study no longer uses squared residuals. We
hope the revision makes this point about biases more transparent.

• To overcome this criticism, I would suggest one of two approaches:

(1) is to try and change the metric so that it includes more sites at once and

includes also spatial covariances between residuals. The new metric then also

needs to account in some way for the sign of the residuals.

(2) Is to write the question of this case study differently and to say that

you’ll try to estimate to what variation in flux magnitude the meteorological

uncertainty corresponds for each site given a realistic surface flux from CT.

This also means that most of the use of the word “bias” gets replaced by “flux

signal”.

The reviewer makes two good suggestions for revising the manuscript. We have re-framed
the case study according to the reviewer’s second suggestion. In addition, we have also
included multi-site comparisons in the revised manuscript, as per the reviewer’s first
suggestion. To this end, we have revised sections 2.4, 3.3, and Fig. 4.

• I find the discussion section a bit too short, and would like to see some more

connections to other studies in this field. For example, some reflection could

be added on the LETKF methods used by these authors in the past, and about

the possible gain of co-simulating CO2 and transport errors. Also, there is

room for some reflection on the covariations of CO2 surface fluxes, and those

that shape the weather conditions (water and energy and momentum fluxes).

What would the next step with this type of system look like when surface

fluxes also become a function of the weather variables?

We have lengthened the discussion section to include these points, as suggested by the
reviewer. For example, in section 3.4 of the revised manuscript, we discuss the possible
gain of co-simulating CO2 surface fluxes and transport errors. That approach could
provide a more complete picture of how meteorological uncertainties affect CO2 fluxes
from the origin of the fluxes to the locations where we actually measure atmospheric
CO2. For example, Lin et al. (2011) explored how uncertainties in flux model drivers
affected fluxes estimated for Canadian boreal forests. They found that uncertainties in
downward shortwave radiation contributed to the largest uncertainties in the simulated
fluxes. Similarly, Law et al. (2002) and Gourdji et al. (2012), among many others, have
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shown that both air temperature and specific humidity are drivers of CO2 fluxes. These
meteorological variables (e.g., downward shortwave radiation, temperature, and specific
humidity) correlate with the persistent atmospheric transport uncertainties discussed in
section 3.4. A future study could connect these uncertainties (in transport and flux
estimation) to gain an even broader picture of how meteorological uncertainties affect
CO2 flux modeling and ultimately top-down CO2 flux estimates.

• Furthermore, these findings can nicely be connected to the error budgets

presented in Pino et al., (2011) and in Williams et al (2011). Both take a look

at the driving forces behind variations in CO2 in the PBL, one from a local

and one from a larger perspective.

We have added references to both papers in the revised manuscript. Pino et al. (2012)
argue that estimated morning PBL heights play a critical role to modeled CO2 concentra-
tions during midday. They examined transport errors at diurnal scales but point out that
the role of different boundary layer processes could change when examined over longer
time scales. Our analysis examines transport errors at both the diurnal and monthly time
scales and can extend the arguments presented by Pino et al. (2012) to these longer time
scales.

Williams et al. (2011) argue that previous meteorological model discrepancies are usually
due to overestimated vertical mixing. According to the authors, “However, the simple
inverse proportionality between errors in vertical gradients and mixing only works when
there are no systematic errors in the surface flux, horizontal advective transport, or non-
linear vertical advective transport (i.e., synoptic-scale eddies).” In our analysis, we place
these individual error sources, like those invested by Williams et al. (2011), in the context
of other transport processes or uncertainties at sub-daily to monthly time scales.

• Note that I remain a bit puzzled on the implementation of the SSR vs FSSR

metric in equations 4 and 5 + the explanation in the supplement and would

like to see some clarification.

We have simplified the approach in this section of the manuscript to make the methods
easier to follow and more transparent.

• p.23684: I could not find where the range is actually applied instead of the

SDV

We have removed the phrase “or alternately the range” from the manuscript. In the
revised manuscript, we primarily refer to the 95% confidence interval throughout the
manuscript.

• p.23684: What is the temporal resolution of these fluxes?

We reformatted CarbonTracker fluxes to a 6-hourly resolution. This resolution is identical
to the CAM model time step. We use this 6-hourly resolution for all model simulations
presented in the manuscript. Figure 2, by contrast displays monthly-averaged CT fluxes.
The primary objective of this figure is to illustrate the spatial and seasonal distribution
of the fluxes. We do not use these monthly-averages in the actual model runs or analysis.
We have clarified this point throughout the manuscript.

• p.23684: So this means that the feedbacks of meteorological errors on carbon

exchange are not accounted for? In other words, different weather does lead

to different water exchange, but not other carbon fluxes. Okay, I got it.

The reviewer is correct here. We have added a sentence to section 2.3 clarifying this point.
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• p.23685: Larger than most means more than 32 if k=64 members?

We agree with the reviewer that this text is ambiguous as written. We have re-framed

this section of the methods accordingly.

• So this suggests that for p to get to 0.05, there must be 64*0.05 = 3.2 elements

in A (eq 5). And when there are four or more SSRs in the set that are larger

than FSSR then you have proven the null-hypothesis that bias in fluxes is

indistinguishable above transport uncertainties. This seems quite strict to

me.

Oh wait, I think there might simply be a typo here and you actually meant

0.5 instead of 0.05? Sorry, I spotted this kind of late because 0.05 is such a

typical p-value in statistics...

We have simplified the approach in this section of the methods and no longer use a

hypothesis test or associated p-values. In the revised manuscript, we estimate confidence

intervals in modeled atmospheric CO2 and compare those uncertainties against the surface

flux signal. We no longer test an explicit hypothesis.

• Can you elaborate in the main text how this temporal covariance is accounted

for. I am sure the Supplement gives info but I’d rather like to understand it

here.

The reviewer makes a great suggestion here, and we have elaborated on this point in

section 2.2 of the manuscript.

Both spatial and temporal covariance are built into the transport errors estimated by

CAM-LETKF. The CAM-LETKF system includes 64 different ensemble members. At

the first time step, we launch 64 weather forecasts simultaneously, one for each ensemble

member. At the end of the first 6-hour time step, we optimize these ensemble mem-

bers collectively to match meteorological observations, and the spread of these ensemble

members represents our posterior uncertainty in the meteorology. We then use these op-

timized ensemble members as initial conditions for the next time step and re-launch 64

simultaneous weather forecasts.

Transport uncertainties within one ensemble member can easily persist over many time

steps. For example, if the PBL height in one ensemble member is lower than the ensemble

average at one time step, it will probably be lower than average at the next time step. In

this way, transport uncertainties or errors can persist over many time steps.

• p.23687: This suggests you indeed used fluxes including a diurnal cycle.

That statement is correct. We have updated the methods section to make this point

clearer to the reader.

• p.23688: I think this is an absolutely wonderful conclusion to draw, and hope

it will get a prominent place in the abstract and conclusions

Thank you for the encouraging suggestion! We have modified case study #1 to focus

more specifically on these conclusions. Furthermore, we have made these points more

prominent in both the abstract and conclusion.

• p.23688: I do not think this case study uses an appropriate question, as your

test is not a correct metric to determine the minimum size of flux biases that

are detectable through atmospheric CO2.
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We agree with the reviewer here. We have re-framed case study #1 based upon the
reviewer’s suggestions above.

• p.23688: This effect of measurement bias was explored by Masarie et al.,

(2011), please reference.

This is a good suggestion, and we have included this reference in the revised manuscript
accordingly.

• p.23689: What does the number 0.3 represent?

A correlation coefficient of R2 = 0.3 does not represent any specific threshold. Rather, we
simply wanted to show the meteorological variables that correlate best with the transport
uncertainties (instead of including 60 different scatterplots). We have modified this section
of the revised manuscript. Instead, we now show the two variables that correlate most
closely over land regions and over the ocean (four total variables).

• p.23689: Since this point is now mentioned a second time, a reference to Pino

et al., (2012) is in place as he already showed such PBL-CO2 error relations.

We have included this reference in the revised manuscript.

• p.23689: Again, your analysis is very nice but this conclusions is not correct.

Since one of the authors is associated with the CT group at NOAA, perhaps a

synthetic inversion could be done to prove this statement beyond my doubt?

We agree and have re-framed case study #1 accordingly.

• p.23689: This second part is very nice. Can you speculate how this conclusion

might change if the interactions between the meteorological variables and the

CO2 fluxes themselves were included in a follow-up study?

The reviewer poses an interesting question: what would be the effect of including these
meteorological uncertainties in the bottom-up or biogeochemical model that generates
the CO2 fluxes? The uncertainties in estimate CO2 fluxes would likely increase. We have
added a discussion on this point to section 3.4. Refer to the discussion earlier in this reply
for more detail on this point.

• p.23690: I find the discussion section a bit too short, and would like to see

some more connections to other studies in this field.

We have expanded the discussion accordingly (see the discussion earlier in this reply for
more detail).

• p.23693: You could compare these to the posterior flux uncertainty in CT and

show that they are at least as large indeed.

As per the reviewer’s suggestion, we have re-framed case study #1 to de-emphasize any
direct comparison against the posterior uncertainties in CarbonTracker. As such, we
would hesitate to make that comparison explicit here.

Furthermore, it might be difficult to make a direct comparison in this instance. CAM–
LETKF estimates the variances and covariances due to transport errors. This information
is often incorporated into one of the covariance matrices in a Bayesian inversion. This
matrix is often termed the ’model-data mismatch matrix’ or ’observational error covari-
ance matrix’. This covariance matrix is then combined with the prior covariance matrix
to compute the posterior uncertainty. Hence, this suggestion would require comparing
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somewhat different quantities. In other words, if we compared transport uncertainties
against the posterior flux uncertainty we would be comparing two very different covari-
ances matrices to one another.

• p.23694: What do the letters below the x-axis indicate?

We have removed these letters from any analogous plots in the revised manuscript. The
letters below the x-axis that figure indicated whether the CO2 measurement sites were
marine (“M”), short towers (“S”), or tall towers (“T”).

• p.23694: Why do we only see the land CV? Was the constant flux also only

applied over land? This was not clear to me from the description yet.

In the revised manuscript, we discuss these results over both land and ocean regions (in
section 3.4 and Figs. 6-7).

• p.23695: The variables 1,2 and 4 look very similar as one would expect from

meteorological principles. In the same way, 5 and 6 are closely related. What

is perhaps more interesting is that (1) the PBL height which in the end is

most directly related to the CO2 mixing ratios is not shaped the same as

these primary drivers. This stresses the need for a meteorological model to

calculate the (co)variances of transport errors rather than to just use some

simple proxy. And (b) is that the CV of temperature and CO2 are very similar

which is because they are shaped by the same large scale synoptic systems.

This is also discussed in the Williams et al., (2011) paper, and the driving

power behind the LETK methods shown by Kang, Kalnay, Liu, and Fung

(co-authors here). Perhaps this is worth to mention in the discussion.

The reviewer makes a great point here. We have also added an analysis over ocean regions,
and the errors here correlate most closely with zonal winds. This added analysis further
supports the reviewer’s comment above on the role of synoptic scale systems. Also, these
variables cannot explain all of the uncertainties, and this result stresses the need for
a meteorological model to calculate transport errors over the use of a single proxy for
transport errors (like PBLH). We have added a discussion of these points to section 3.4
of the revised manuscript.

• p.19: This 5% I guess corresponds the p=0.05 probability stated in the main

text. That suggests this was not just a typo, and I remain confused on equa-

tions 5 and the use of this test.

We have removed the hypothesis test from case study #1 to make the analysis simpler
and more straightforward. Concomitantly, we have removed most equations to streamline
and simplify the revised text.

• p.19: This is a nice illustration of the properties of the SSR, which I think

correctly assumes transport errors to be normally distributed around a zero

mean. But the problem I have is in the comparison to FSSR, which for a

biased flux would not just be a residual around some mean, but an actual

signal with a sign and a spatial pattern. See for instance the figures S9, S11,

and S14 that both represent winter conditions. A shift of the fluxes by 10%

upwards would lift both lines for the ensemble mean upwards by 0.5-2.0 ppm

and reveal a systematic offset (if the model mean was a bit more unbiased

which it is not without data assimilation of the fluxes) at three locations.
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If the atmospheric transport errors were completely uncorrelated from one model time
step to another, then it might be relatively easy to distinguish a bias in modeled concen-
trations caused by an erroneous flux estimate. However, the atmospheric transport errors
estimated in this study are often correlated in both space and time. In other words,
these errors are modeled as a multivariate normal distribution, and the covariances in
this distribution can be large. As a result, transport errors could bias the model relative
to the measurements over many time steps. In that case, it could be very difficult to
distinguish the difference between sustained model-data differences due to the fluxes or
due to transport errors. We have revised and re-framed case study #1 to better explain
and more prominently feature the role of spatially and temporally correlated transport
errors.
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Reply to reviewer #2

Scot M. Miller, et. al.

We would like to thank the reviewer for suggestions and comments on the manuscript. The
reviewer’s detailed suggestions have been very helpful in improving the manuscript. Below,
we have included the reviewers comments (in bold) along with our reply and the associated
changes/updates to the manuscript.

• General comment: Not all sources of transport model uncertainty are cap-
tured by an ensemble of forecasts with a single transport model. Somewhere
in the paper it should clearly be listed which uncertainties are not included
(e.g. spatial representation error/model resolution, uncertainty arising from
imperfect parameterizations of turbulent processes and cloud transport, other
structural model errors such as numerical diffusion).

The reviewer makes a good point here. We have added text accordingly in sections 2.2
to clarify this point.

• P23684 L12: “correlated errors can bias” I suggest to replace this by “spatially
correlated errors can bias”

We have changed this statement to “temporally and/or spatially correlated errors can
bias ....”.

• P23694 L4-6: The case that the ensemble does not encapsulate the CO2 mea-
surements might also be related to differences in the transport models used
here and for CT (TM5). This should be mentioned.

We have added comments to this effect in sections 2.2 and 3.1 of the revised manuscript.

• P23695 L17-18: “most existing top-down studies will underestimate the un-
certainties in estimated CO2 fluxes” here references should be given as this is
quite a strong statement. Some inverse modelling systems e.g. use error infla-
tion to allow for covariance on timescales shorter than a week (e.g. Rödenbeck
et al., 2003).

We have re-written this statement in the revised manuscript. In that statement, we wanted
to communicate the importance of accounting for spatial and/or temporal correlations in
the transport errors. For example, an inversion that includes these covariances would
estimate larger uncertainties in the fluxes relative to one that uses a diagonal covariance
matrix. We have revised that statement to clarify our intended meaning. Furthermore,
we have expanded case study #1 in the revised manuscript to better indicate how these
spatial and/or temporal error covariances can affect the estimated fluxes.

• P23695 L25: I suggest dropping the comma after “top-down”

We have updated the manuscript accordingly.
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• P23696 L5-8: It might not a property of the tall towers to be more or less
sensitive, but a property of the transport model. It should be mentioned that
there is not really a difference expected, given the vertical resolution of the
transport model. In that context, it would be appropriate to mention the
number of vertical levels in the lowest km as this information seems hard to
find for the reader.

We have clarified this point in the manuscript. In most regions there are 3 vertical levels
within the lowest kilometer of CAM. (These three levels are centered at 929.6, 970.6, and
992.6 hPa over regions where the land/water surface is at sea level.). Hence, some CO2

observation sites are associated with the lowest vertical level of the model while others
are associated with the next vertical level. We have removed any comments from the
manuscript on differences between short versus tall towers.

• P23696 L8-9: I have difficulties averaging the bar plots for marine sites to 76%.
There are three bars that are of scale, and the others average to something
around 35% in February and 45% in July.

We have updated the analysis with more observation sites and have modified the associ-
ated figure.

• P23698 L3-5: Figs. S16 and S17 do not really provide any information regard-
ing the uncertainty represented in the meteorological ensemble, as they only
show monthly mean values for each of the variables. A parameter that might
be interesting in this regard is the coefficient of variation for the boundary
layer height (PBLH), as a small uncertainty in PBLH will lead to a large
uncertainty in tracer in regions with low average PBLH.

We have added several additional plots to the supplement that visualize additional mete-
orological variables and their uncertainties (including the coefficient of variation for the
boundary layer height).

• Supplement S1, P1, first line of 3rd paragraph: suggest replacing “for each
for the” by “for each of the”

We have changed this text in the supplement.

• Supplement S2, P4, 4th paragraph: I don’t quite understand why there is a
need for manually setting inflation factors to 0.4 (the lowest values globally);
in the text “unphysical temperature estimates near the tropopause” are men-
tioned. Are there no satellite data in this region available that are assimilated?
Kalnay et al., (1996) mentions that TOVS sounder data are assimilated; also
there should be a few radiosonde data in that region.

This issue is due to an enigmatic temperature instability in the meteorological model. In
the forecast stage of the CAM model, the ensemble’s temperature spread in this region
can increase rapidly if the initial conditions (i.e., the posterior estimate from the previous
time step) have a sufficiently large spread.

Normally, one might expect the adaptive inflation to correct for this issue; the adap-
tive inflation adjusts the variance of the meteorology model ensemble to match the ac-
tual model-data residuals. In theory, this procedure should prevent the ensemble spread
from exploding (given sufficient data). However, the inflation factor by design cannot
change suddenly from one time step to another. The adaptive inflation procedure uses
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the previous time step as the prior inflation estimate, and that prior estimate has a fi-
nite uncertainty (in this case, a prior standard deviation of 0.03 – similar to the values
used by Miyoshi (2011)). Because of this prior uncertainty, the adaptive inflation factor
must evolve slowly over many days (if it changes at all). In most cases, this property is
desirable because it prevents a single (or small number of) observation(s) from making
dramatic changes to the evolution of the model-data system. However, in the case of this
temperature instability, the instability in the model develops over 4-5 model time steps,
much faster than the response time of the adaptive inflation factor.

The adaptive inflation procedure requires an initial inflation estimate for the first time
step of the model run (i.e., an initial condition). The adaptive procedure then updates
this estimate at the each model time step (e.g., Eq. S10). For this initial estimate or
initial condition, we set a small value (0.4) for the equatorial western Pacific. During
the one-month model spin-up period, the estimated inflation value evolves substantially
from the initial estimate in most regions of the globe (e.g., Fig. S2). Over this region
of the Pacific, however, the estimated inflation factor does not evolve or change very
much; either this initial estimate is consistent with the actual model-data residuals or the
meteorological data (and the adaptive inflation procedure) are not very informative over
the region. In either case, this small initial condition prevents the ensemble spread from
becoming unstable over the region.

We have added more explanation on these points within section S2 of the article supple-
ment.

• Supplement S3, P8, figures S7 and S8: The colour scale labelling seems to
be wrong; I would expect a significantly smaller range for monthly averaged
concentrations than for 6 hourly concentrations

Thank you for point out this mistake! The legend on these figures should be identical to
Fig. 2c and 2d. We have corrected these figures in the revised manuscript.

• Supplement S5, table S1: it should be mentioned (in the legend or in the text
on page 16) that the locations for each of the sites can be seen in Figure 4,
panel a).

This is a good suggestion. We have added many more observation sites to the analysis.
As a result, we removed Fig. 4a and instead now list all of the site locations in table S1.

• Supplement S6, Figure S15: SSR should have units (ppm2), those should be
added

We have revised case study #1 and no longer use sum of squared residuals (SSR). We
have updated the supplemental figures accordingly.
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Reply to reviewer #3

Scot M. Miller, et. al.

We would like to thank the reviewer for suggestions and comments on the manuscript. The
reviewer’s detailed suggestions have been very helpful in improving the manuscript. Below,
we have included the reviewers comments (in bold) along with our reply and the associated
changes/updates to the manuscript.

• These uncertainties are calculated based on a coarse resolution meteorological
model, which has a spatial resolution of 2.5o longitude x 1.9o latitude. In the
reality, there are other additional error terms introduced due to fine-scale
variations that cannot be captured by the coarse model. These additional
terms will be more significant depending on the regions and/or periods you
sample.

Uncertainties in the posterior meteorology estimate include uncertainties in the model,
uncertainties due to measurement errors, and uncertainties due to meteorological patterns
that are smaller in scale than the model resolution. The latter two uncertainties are
incorporated into the posterior estimate via the R covariance matrix (e.g., Hunt et al.
2007). This matrix, often referred to as the nugget covariance matrix, is used as an input
into the meteorology model-data assimilation and the posterior uncertainty calculation.
We estimate the elements of the R matrix directly from the meteorological data using
an adaptive approach outlined by Li et. al. (2009). This adaptive approach estimates
the collective variance due to measurement error and uncertainties due to meteorological
processes that occur at scales smaller than the model resolution. Hence, errors due to
small-scale processes are a component of the posterior meteorology and CO2 estimates.
However, we cannot resolve the spatial distribution of these fine-scale errors at sub-grid
scale.

In addition, one goal of this study is to run simulations that are analogous to commonly-
used, top-down global CO2 flux estimates like CarbonTracker. The grid used in this
study is comparable, if not smaller, than many existing global CO2 inversion studies. For
example, CarbonTracker has a 2◦ latitude by 3◦ longitude global resolution (Peters et al.,
2007, http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). Other global inversion
studies, like Mueller et al. (2008) and Gourdji et al. (2008) used a resolution of 3.75◦ by
5◦, and Basu et al. (2013) used a 4◦ by 6◦ resolution. One could argue that there are
advantages to estimating global CO2 fluxes using a model with finer spatial resolution.
With that said, the resolution used here is analogous to that used by common top-down
CO2 flux products like CarbonTracker and would be able to speak more directly to the
types of transport errors that would be encountered in those efforts.

• The mentioned model ensemble method cannot account for these fine-scale
spatial variations, given that the weights (to match the meteorological obser-
vations) are estimated for each grid box using observations within a radius
about 1500 km.

1
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We do not compare the model estimate in one grid box against wind or temperature
observations taken 1500km away. As the reviewer points out, that approach would be
ill-advised. We have added text to the supplement (section S1) to clarify and further
explain this point.

In the LETKF, we estimate a set of weighting factors for the 64 ensemble members such
that the weighted ensemble best matches the meteorological observations. To achieve this,
we first interpolate the gridded model output to the observation locations and times. We
then estimate a unique weighting factor for each individual grid box. If we estimated the
weights using only model-measurement pairs in the grid box of interest, several problems
could arise. First, there may not be many relevant observations that are sensitive to
that specific grid box, particularly over the open ocean or near the poles. In those
circumstances, the estimated weights could be inaccurate. Second, that approach could
produce vastly different weights in adjacent grid boxes, a result that is unlikely to be
physically realistic. For example, the estimated weights for one model grid box over
eastern North Dakota should look somewhat similar to the weights for a grid box over
western North Dakota. If the two sets of weights were completely unrelated, one could
argue that the optimization would be an over-fit.

Instead, we use model-measurement pairs within a certain geographic radius to compute
each set of weights. This approach ensures coherence among adjacent grid boxes and
ensures that the optimization is not an over-fit to the data. We further taper the influ-
ence of model-observation pairs on the optimization depending on their distance from the
grid box in question (using a Blackman window function as described by Oppenheim and
Schafer (1989) and Liu et al. (2012)). Hence, model-measurement pairs located within
the model grid box of interest will influence the optimization much more strongly than
model-observation pairs located 1000km away. A radius of 1500km for the Blackman
window function is comparable to values used throughout the meteorological literature.
For example, Liu et al. (2011) and Liu et al. (2012) also used a 1500km radius. Further-
more, Miyoshi (2011) set a 1825 km radius of influence, Miyoshi and Kunii (2012) used a
1460km radius, and Szunyogh et al. (2008) used an 800km radius.

• I am not sure how nugget variance (R) is constructed and whether it neces-
sarily represents all errors due to these fine-scale variations.

Many existing meteorology studies that implement an ensemble Kalman filter have used
the published measurement error for R (e.g., Szunyogh et al., 2008; Liu et al., 2012). In
reality, R also includes a number of other errors, including errors due to meteorological
features that are smaller than the model resolution (as discussed above). To capture
this entire spectrum of errors, we estimate these errors directly from the meteorological
data, an advance over previous efforts that used only the published measurement error.
These calculations for R, by definition, will capture any variability in the measurements
that cannot be incorporated into the model ensemble. This variability includes both
measurement errors and errors due to fine-scale meteorological processes. This approach
is detailed in Eq. S11 and in Li et al. (2009).

• Moreover, I am not much convinced how a single inflation factor for each
model grid box works fine for all model parameters.

The use of a single inflation factor per grid box has been a common practice in ensemble
Kalman filters applied to weather models (e.g., Szunyogh et al., 2008; Liu et al., 2011,
2012; Miyoshi and Kunii, 2012; Kang et al., 2012). In our study, we use a relatively new
technique known as adaptive inflation to estimate the inflation factors. This approach
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estimates inflation factors based upon actual model-data residuals (Miyoshi, 2011). The
traditional approach has been to choose inflation factors subjectively based upon ’expert
knowledge.’ In fact, previous studies used zonally-constant inflation factors (e.g., Szun-
yogh et al., 2008; Saito et al., 2011; Liu et al., 2011, 2012; Yang et al., 2012). Miyoshi
(2011), in contrast, argues that this zonally-constant approach is not ideal because it
cannot differentiate between ocean and terrestrial regions. The statistical approach im-
plemented here is therefore an advancement over previous efforts because we estimate
spatially- and temporally-variable inflation factors directly from the data.

In practice, adaptive inflation can be very challenging to implement; the inflation factors
that best match the model-data residuals can, in some cases, cause instabilities in mete-
orological model that result in incompatible combinations of meteorological parameters.
These instabilities often crash one or more of the ensemble members. Furthermore, the
approach performs poorly when observations are sparse (e.g., Miyoshi, 2011). When we
estimate a single inflation factor per box, we can leverage more observations to make a
more stable inflation estimate. Hence, we felt that this framework would require more de-
velopment before we could reliably estimate unique, grid-scale inflation factors for many
different meteorological parameters.

The meteorological data-assimilation community is moving toward adaptive inflation tech-
niques that can accomplish this task (e.g., Zheng et al., 2013). However, this kind of
in-depth methodological development is beyond the scope of our study.

• Hence I fear that the values reported for CO2 transport uncertainty (globally)
can be far away from reality. This could be one of the reasons why Fig. 2
does not generally show high transport related uncertainties in the coastal
sides (sea/land breeze effects?).

We do see larger uncertainties in zonal winds along many coastal regions, presumably
related to sea breezes. We have added a new plot to the supplement that illustrates these
features (Fig. S17). These uncertainties are particularly prominent across the west coast
of North America where sea breezes are an important component of coastal weather. In
our simulations, uncertainties in zonal winds at the coastline do not always translate into
large uncertainties in modeled CO2 concentrations. For example, uncertainties in both
zonal and meridional winds are high along the coast of British Columbia and Alaska
in February (Fig. S17). Since those regions have small CO2 fluxes in winter, large
uncertainties in the winds do not translate into large uncertainties in 6-hourly modeled
atmospheric CO2 (Fig. 2a).

• The authors may wish to provide more detailed discussion regarding this
aspect and it is worthwhile to mention explicitly the significant limitations of
this approach.

We have added text to the methods section 2.2 that describes both the advantages and
limitations of the meteorology model-data assimilation (e.g., the model cannot resolve the
spatial patterns of meteorological features at sub-grid scale).

• In the given design and set up, I would certainly consider that the flux bias
estimations in the case study 1 are overestimated values, because of unrealis-
tically “too strict” constraints.

We have reformulated case study #1 in a way that no longer uses a hypothesis test, and
we no longer make definitive statements on whether the observations would be able to
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‘see’ biases in a CO2 flux estimate. Instead, we visually display the 95% confidence inter-
vals in modeled atmospheric CO2 and compare those uncertainties against the afternoon
boundary layer enhancement in CO2 at various observation sites.

• The current inversion approaches followed by many modeling groups take into
account the transport uncertainties to some extent and the method is not as
simplified as the approach given here.

We have clarified this point in the revised manuscript. Most current inversion approaches
do account for transport uncertainties. However, the majority of existing inversion studies
assume that the transport uncertainties are uncorrelated in space and time. In other
words, existing studies typically use a diagonal covariance matrix to describe errors due
to atmospheric transport, measurements, and model resolution, etc. A central question
in our paper is to understand how transport errors are correlated in both space and in
time, and we find that these correlations or covariances are substantial. An inversion
study that ignores these covariances could either underestimate uncertainties in the CO2

fluxes or propagate transport errors into the estimated fluxes. We have revised the setup
for case study #1 to make this point clearer within the manuscript.

• I am a bit surprised to see totally different patterns between these two mean
values. I could not find very direct and convincing reasons for these differences
from the manuscript. Perhaps I missed some details. In that case, the authors
may wish to bring this point clearly in the discussion part.

Monthly-scale error patterns depend upon error covariances in the 6-hourly model out-
put. Different regions will have greater temporal error covariances than others. These
differences in the covariances will result in different error patterns at the 6-hourly versus
monthly scale. The underlying question is why the error covariances are so much higher
over the oceans and Arctic than over regions with large fluxes (Fig. 2).

Uncertainties in the month-long mean concentrations (Fig. 2) are most influenced by
transport errors that occur over sustained time periods. When CO2 is transported from
source/sink regions to remote regions, that transport is likely to be associated with syn-
optic time scales, and any transport errors would likely be sustained over multi-day time
periods. At these longer time scales, the surface fluxes are transported away from the
surface grid box where they occurred and can manifest as transport errors in regions that
are remote from large fluxes.

In regions with large fluxes, surface concentrations will additionally be influenced by
grid-scale winds or boundary layer mixing. Transport errors at this grid-scale may have
a shorter decorrelation time compared to errors in large-scale flow. In addition, sustained
transport errors over regions of large biosphere flux would be more likely to cancel out
at longer time scales – due to the diurnal cycle of biosphere CO2 uptake and release
(i.e., transport errors times of CO2 uptake and release will have opposite sign.). Hence,
transport errors in regions with large fluxes would likely average out or cancel to a greater
degree than those in remote areas.

We have added additional explanation on this point to section 3.2 in the revised manuscript.

• p.23692, line 13: “.. from surface sources is strong” - “.. from surface sources
and sinks is strong”

We have updated the manuscript accordingly.
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• p. 23696, line 9: “At marine sites, in contrast, the minimum detectable bias
is far larger”. Why? transport uncertainties are comparatively shown lower
over coastal areas!?

Marine sites are often located relatively far from regions with large CO2 fluxes. At
these marine sites, the signal-to-noise ratio is therefore smaller. We have added a similar
explanation to this section of the revised manuscript.

• p. 23696, line 11: “.. large sources are better ..” - “.. large sources and sinks
are better ..”

We have changed this text accordingly.
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Abstract

Estimates of CO2

✿✿✿✿✿✿✿✿✿
Estimates

✿✿
of

✿
CO2 fluxes that are based on atmospheric data

✿✿✿✿✿✿✿✿✿✿✿✿
measurements

✿
rely upon a

meteorological model to simulate atmospheric CO2 CO2 transport. These models provide a
quantitative link between surface fluxes of CO2 and atmospheric

✿✿✿
the

✿✿✿✿✿✿
fluxes

✿✿✿✿
and CO2 measure-5

ments taken downwind. Therefore, any errors in the meteorological model can
✿✿✿✿✿
Errors

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
meteorology

✿✿✿✿
can

✿✿✿✿✿✿✿✿
therefore

✿
propagate into atmospheric CO2 CO2 transport and ultimately bias

the estimated CO2 fluxes. These errors, however, have traditionally been CO2 ✿✿✿✿✿
fluxes.

✿✿✿✿✿✿
Errors

✿✿✿✿
that

✿✿✿✿✿✿
covary

✿✿
in

✿✿✿✿✿✿
space

✿✿✿✿✿✿
and/or

✿✿✿✿
time

✿✿✿✿
are

✿✿✿✿✿✿✿✿✿✿
particularly

✿✿✿✿✿✿✿✿✿✿
worrisome

✿✿✿✿✿✿✿✿
because

✿✿✿✿
they

✿✿✿✿
are

✿✿✿✿✿
more

✿✿✿✿✿✿
easily

✿✿✿✿✿✿✿✿
confused

✿✿✿✿
with

✿✿✿
the

✿✿✿✿✿✿
actual

✿✿✿✿✿✿
signal

✿✿✿✿✿
from

✿✿✿✿✿✿✿
surface

✿
CO2 ✿✿✿✿✿

fluxes
✿✿✿✿

and
✿✿✿✿

are
✿
difficult to characterize. To examine10

the effects of CO2 transport errors on estimated CO2 fluxes, we use
✿✿
In

✿✿✿✿
this

✿✿✿✿✿✿
paper,

✿✿✿
we

✿✿✿✿✿✿✿✿
leverage

a global meteorological model-data assimilation system known as ‘CAM–LETKF’ to quantify
two aspects of the transport errors: error variances (standard deviations) and temporal error
correlations. Furthermore, we develop two case studies. In the first

✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿
combined

✿✿✿✿
with

✿✿
a

✿✿✿✿
data

✿✿✿✿✿✿✿✿✿✿✿
assimilation

✿✿✿✿✿✿✿
system

✿✿✿
to

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿
errors.

✿✿✿
In

✿✿✿✿
one

✿
case study,15

we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In
particular, we use a common flux estimate known as Carbon Tracker to discover the minimum
hypothetical bias that can be detected above the CO2 transport uncertainties. In the

✿✿✿✿✿✿✿
estimate

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿
CO2 ✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿
relative

✿✿✿
to

✿
CO2 ✿✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿✿
enhancements

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
quantify

✿✿✿✿
how

✿✿✿✿✿
that

✿✿✿✿✿✿✿
answer

✿✿✿✿✿✿✿✿
changes

✿✿
if

✿✿✿
we

✿✿✿✿✿✿
either

✿✿✿✿✿✿✿✿
include

✿✿
or

✿✿✿✿✿✿✿✿
remove

✿✿✿✿✿
error20

✿✿✿✿✿✿✿✿✿✿✿
covariances.

✿✿✿
In

✿✿
a

✿
second case study, we then investigate which meteorological conditions

may contribute to
✿✿
are

✿✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿
covarying

✿✿✿✿✿✿
errors

✿✿
at

✿✿✿✿
this

✿
month-long biases in modeled

atmospheric CO2 transport
✿✿✿
time

✿✿✿✿✿
scale.

We estimate 6–hourly CO2 transport uncertainties in the model surface layer that range from
0.15 to 9.6 ppm (standard deviation), depending on location , and we estimate an average25

error decorrelation time of ∼2.3 days at existing CO2 ✿✿
In

✿✿✿
the

✿✿✿✿✿
first

✿✿✿✿
case

✿✿✿✿✿✿
study,

✿✿✿✿
we

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
of

✿✿✿✿
0.5

✿✿✿
to

✿✿
7

✿✿✿✿✿
ppm

✿✿✿
in

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿✿✿✿✿
averaged

✿
CO2 ✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations,
✿✿✿✿✿✿✿✿✿✿✿

depending
✿✿✿✿✿
upon

✿✿✿✿✿✿✿
location

✿✿✿
(95%

✿✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿✿✿
interval).

✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿✿✿✿✿✿
correspond

✿✿
to

✿✿✿✿✿✿✿
13-150%

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿
afternoon
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CO2 ✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿✿✿
enhancement

✿✿
at

✿✿✿✿✿✿✿✿✿
individual

✿
observation sites. As a consequence of these

uncertainties, we find that Carbon Tracker CO2 fluxes would need to be biased by at least 29, on
average, before that bias were detectable at existing non-marine atmospheric CO2 observation
sites. Furthermore

✿✿✿✿✿
When

✿✿✿
we

✿✿✿✿✿✿✿
remove

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances,

✿✿✿✿✿✿✿✿
however,

✿✿✿✿
the

✿✿✿✿
error

✿✿✿✿✿✿
range

✿✿✿✿✿
drops

✿✿
to

✿✿✿✿✿
2-22%.

✿✿✿✿✿✿✿✿✿
Top-down

✿✿✿✿✿✿✿
studies

✿✿✿
that

✿✿✿✿✿✿✿
ignore

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿
could

✿✿✿✿✿✿✿✿
therefore

✿✿✿✿✿✿✿✿✿✿✿✿✿
underestimate

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties5

✿✿✿✿✿✿
and/or

✿✿✿✿✿✿✿✿✿
propagate

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿
into

✿✿✿
the

✿✿✿✿
flux

✿✿✿✿✿✿✿✿
estimate.

✿

✿✿
In

✿✿✿✿
the

✿✿✿✿✿✿✿
second

✿✿✿✿✿
case

✿✿✿✿✿
study, we find that persistent, bias-type errors in atmospheric CO2

transport are associated with consistent low net radiation, low energy boundary layer conditions.
The meteorological model is not necessarily more uncertain in these conditions. Rather,
the extent to which meteorological uncertainties manifest as persistent atmospheric CO210

transportbiases appears to depend, at least in part, on the energy and stability of the
boundary layer. Existing CO2 flux studiesmay be more likely to estimate inaccurate regional
fluxesunder those conditions.

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿
persistent,

✿✿✿✿✿✿✿✿✿✿✿
month-long

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿
are

✿✿✿✿✿✿✿✿✿✿✿✿✿
anti-correlated

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿
temperature

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
planetary

✿✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿
layer

✿✿✿✿✿✿✿
(PBL)

✿✿✿✿✿✿
height

✿✿✿✿✿
over

✿✿✿✿✿✿✿✿✿
terrestrial

✿✿✿✿✿✿✿
regions.

✿✿
In

✿✿✿✿✿✿✿
marine

✿✿✿✿✿✿✿✿✿✿✿✿✿
environments,

✿✿
by

✿✿✿✿✿✿✿✿
contrast,

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
persistent

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
errors

✿✿✿
are

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿
strongly15

✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿✿
with

✿✿✿✿✿
weak

✿✿✿✿✿✿
zonal

✿✿✿✿✿✿✿
winds.

✿✿✿✿✿✿
Many

✿✿✿✿✿✿
errors,

✿✿✿✿✿✿✿✿✿
however,

✿✿✿✿
are

✿✿✿
not

✿✿✿✿✿✿✿✿✿✿
correlated

✿✿✿✿✿
with

✿✿
a
✿✿✿✿✿✿
single

✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿
parameter,

✿✿✿✿✿✿✿✿✿✿
suggesting

✿✿✿✿✿
that

✿
a
✿✿✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿
proxy

✿✿
is

✿✿✿✿
not

✿✿✿✿✿✿✿✿✿
sufficient

✿✿
to

✿✿✿✿✿✿✿✿✿✿✿
characterize

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿✿

transport.
✿✿✿✿✿✿✿✿✿
Together,

✿✿✿✿✿✿
these

✿✿✿✿
two

✿✿✿✿✿
case

✿✿✿✿✿✿✿
studies

✿✿✿✿✿✿✿
provide

✿✿✿✿✿✿✿✿✿✿✿
information

✿✿✿
to

✿✿✿✿✿✿✿✿✿
improve

✿✿✿
the

✿✿✿✿✿✿
setup

✿✿✿
of

✿✿✿✿✿✿✿
future

✿✿✿✿✿✿✿✿✿
top-down

✿✿✿✿✿✿✿✿
inverse

✿✿✿✿✿✿✿✿✿
modeling

✿✿✿✿✿✿✿✿
studies,

✿✿✿✿✿✿✿✿✿
preventing

✿✿✿✿✿✿✿✿✿✿
unforeseen

✿✿✿✿✿✿
biases

✿✿✿
in

✿✿✿✿✿✿✿✿✿
estimated CO2 ✿✿✿✿✿✿

fluxes.20

1 Introduction

Scientists increasingly use atmospheric CO2 CO2 observations to estimate CO2 CO2 fluxes at
the Earth’s surface (e.g., Gurney et al., 2002; Michalak et al., 2004; Peters et al., 2007; Gour-
dji et al., 2012). This ’

✿
“top-down’

✿
”
✿
approach contrasts with ’

✿
“bottom-up’

✿
”
✿
studies that rely

primarily on expert knowledge of biological processes (e.g., Huntzinger et al., 2012; Raczka25

et al., 2013). In order to estimate the fluxes, top-down studies typically require a
✿
meteorology

model to link fluxes at the surface with measurements taken downwind. Using this link, one can
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estimate the fluxes even if the atmospheric measurements do not themselves directly measure
the fluxes.

However, both the accuracy and effective resolution of the flux estimate hinge upon the accu-
racy of the meteorological model. Errors in the meteorological model may (or may not) translate
into errors in CO2 CO2 transport from the location(s) of surface fluxes to the atmospheric mea-5

surement site(s). Subsequently, errors in CO2 CO2 transport may (or may not) bias estimated
CO2 CO2 fluxes depending upon the error characteristics and the space/time scales of interest.
This cascading chain of cause and effect defines the three types of errors or uncertainties that
are of primary interest in this paper: (1) errors in modeled meteorological variables, (2) errors in
atmospheric CO2 transport, as they manifest in modeled atmospheric CO2 concentrations, and10

(3) errors in the fluxes that result from problems in estimated transport. This study is particularly
concerned with how CO2 transport errors may propagate into the estimated fluxes.

More specifically, the effect of CO2 CO2 transport errors on the estimated fluxes depends
upon two important factors. First, the flux estimate becomes more uncertain as the CO2 CO2

transport error variance (or standard deviation) increases. Top-down studies that use Bayesian15

statistics will explicitly account for these variances when estimating fluxes (e.g., Enting, 2002;
Tarantola, 2005); before estimating the fluxes, the modeler first estimates the total variance
due to an array of model or data errors – due to imperfect atmospheric transport or imperfect
measurements, among many other sources of error (e.g. Gerbig et al., 2003; Michalak et al.,
2005; Ciais et al., 2011).20

Second, the flux estimate becomes more uncertain as the temporal and/or spatial covariance
in the errors increases

✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿✿✿✿
increase. As the covariances increase, each CO2

CO2 measurement effectively provides less and less independent information to con-
strain the surface fluxes. Error correlations, however, are often difficult to characterize
(e.g. Lin and Gerbig, 2005; Lauvaux et al., 2009) andare omitted from most existing top-down25

studies. These difficulties aside, correlated transport errors can have a number of impacts on the
estimated greenhouse gas fluxes. First, an top-down study that does not account for these errors
will typically underestimate the uncertainties in the flux estimate. Second, correlated errors can
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✿✿✿✿✿✿✿✿✿✿✿
Furthermore,

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿
temporally-

✿✿✿✿✿✿
and/or

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
spatially-correlated

✿✿✿✿✿
errors

✿✿✿✿
can bias the flux estimate over

a
✿
region or over the entire geographic area of interest (e.g., Stephens et al., 2007).
Quantification of this complex cause-and-effect between meteorological errors and errors

in estimated CO2 CO2 fluxes represents an ongoing research challenge, and a
✿
number of

existing studies have partly characterized
✿✿✿✿✿✿✿✿✿✿✿✿
characterized

✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿
aspects

✿✿✿
of

✿
these uncertain-

ties. For example, a
✿

series of studies known as ‘TRANSCOM’
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
“TRANSCOM”

✿
represents5

one of the first coordinated projects on CO2 CO2 transport uncertainties (Gurney et al.,
2002; Baker et al., 2006). These early studies used 13 different global atmospheric models
and compared differences in top-down CO2 CO2 budgets due to atmospheric model dif-
ferences. These models gave an uncertainty in the northern hemisphere CO2 budget of ±
1.1 PgCyr−1 (standard deviation; mean budget of 2.4 PgCyr−1) (Stephens et al., 2007) .10

Subsequent to the TRANSCOM project, a
✿

number of studies have focused on the
effects of changing vertical mixing and/or planetary boundary layer height (PBLH)
(Gerbig et al., 2008; Kretschmer et al., 2012; Parazoo et al., 2012; Pino et al., 2012; Kretschmer et al., 2014)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Gerbig et al., 2008; Williams et al., 2011; Kretschmer et al., 2012, 2014; Parazoo et al., 2012; Pino et al., 2012) .

In general, these
✿✿✿✿
those

✿
papers found that uncertainties in PBLH can lead to errors of up to

∼3ppm in modeled CO2 ✿✿✿
∼ 3 ppm

✿
in

✿✿✿✿✿✿✿✿✿
modeled

✿
CO2. Another paper examined the effect of15

uncertain horizontal winds (Lin and Gerbig, 2005). The authors applied a particle-trajectory
model at a

✿
measurement site in Wisconsin and found that uncertainties in the horizontal

winds contributed ∼6 ppm
✿✿✿
∼ 6 ppm (standard deviation) to the overall CO2 CO2 transport

uncertainty. In summary, a
✿

number of previous studies have either perturbed individual
meteorological parameters or, in the case of TRANSCOM, sampled a subset of transport20

uncertainties using 13 pre-selected atmospheric models.
Numerous questions still remain, however. For example, if one could carefully utilize all

available meteorological observations, what meteorological and
✿✿✿✿
This

✿✿✿✿✿
study

✿✿✿
is

✿✿✿✿✿✿✿✿✿✿✿
particularly

✿✿✿✿✿✿✿✿✿
concerned

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿
temporal

✿✿✿✿✿✿✿
and/or

✿✿✿✿✿✿
spatial

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿✿

transport.
✿✿✿
To

✿✿✿✿
what

✿✿✿✿✿✿
extent

✿✿✿
do

✿
CO2 transport uncertainties would remain? Furthermore, what is the combined25

effect of meteorological errors from multiple parameters (e.g., wind, boundary layer, etc.) on
CO2 transport and subsequently on CO2 fluxes? In addition, which meteorological errors are
most likely to bias regional-scale CO2 flux estimates on month-long time scales?

✿✿✿✿✿
errors

✿✿✿✿✿✿
covary
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✿✿
in

✿✿✿✿✿
space

✿✿✿✿
and

✿✿✿✿✿
time?

✿✿✿✿✿
How

✿✿✿✿
large

✿✿✿✿
are

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿✿
relative

✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿
surface

✿
CO2

✿✿✿✿✿✿
fluxes,

✿✿✿✿
and

✿✿✿✿✿✿
which

✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿
factors

✿✿✿✿✿
drive

✿✿✿✿✿
large

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿✿
covariances?

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
are

✿✿✿✿✿
often

✿✿✿✿✿✿✿
difficult

✿✿
to

✿✿✿✿✿✿✿✿✿✿✿
characterize

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g. Lin and Gerbig, 2005; Lauvaux et al., 2009) and

✿✿✿
are

✿✿✿✿✿✿✿
omitted

✿✿✿✿
from

✿✿✿✿✿
most

✿✿✿✿✿✿✿✿
existing

✿✿✿✿✿✿✿✿
top-down

✿✿✿✿✿✿✿
efforts.

✿

In the present study, we
✿✿✿
We

✿
explore several facets of these questions using a

✿
global meteorol-

ogy model ensemble and a meteorology data assimilation system – the Community Atmosphere5

Model (CAM) and an assimilation framework known as a
✿
a
✿
Local Ensemble Transform Kalman

Filter (LETKF) (Hunt et al., 2007; Liu et al., 2011) . CAM–LETKF
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Hunt et al., 2007) .

✿✿✿✿✿✿
Efforts

✿✿
by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Liu et al. (2011) and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Liu et al. (2012) extended

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿✿
framework

✿✿✿
to

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿
CO2.

✿✿✿✿
This

✿✿✿✿✿✿✿✿✿✿
framework

✿
systematically estimates meteorology and CO2 CO2 transport uncertain-10

ties to an extent not previously possible; this framework
✿✿✿✿✿✿✿✿✿✿✿✿
CAM–LEKTF

✿
explicitly represents

the CO2 CO2 transport uncertainties that remain after assimilating several hundred thousand
meteorology observations at each 6-hour

✿
6 h model time step. To accomplish this task, CAM–

LETKF uses an ensemble of weather forecasts and optimizes the ensemble
✿✿
to match available

meteorological observations. Furthermore, CAM-LETKF adjusts the variance of the weather15

ensemble at each time step to match the modeling uncertainties implied by the meteorological
observations.

Using this toolkit, we construct two
✿✿✿✿✿✿
several

✿
case studies to understand both the pos-

sible magnitude and potential drivers of bias in top-down CO2 flux budgets. Previous
studies by Liu et al. (2011) and Liu et al. (2012) used CAM–LETKF to estimate CO2 transport20

uncertainties, and this study investigates connections with top-down CO2 flux estimation. First,
we construct a case study with a commonly-used estimate of CO2 fluxes known as Carbon
Tracker (CT): how biased would regional CO2 fluxes need to be before that bias were detectable
above the meteorological uncertainties estimated by CAM–LETKF? We test this hypothesis at a
number of atmospheric CO2 monitoring sites in the US, Canada, Europe, andEast Asia. Second,
we construct a case study using a synthetic atmospheric tracer. This synthetic experiment
serves as a lens to explore the possible meteorological factors associated with persistent,
month-long deviations in atmospheric transport

✿✿✿✿✿✿
drivers

✿✿
of

✿
CO2 ✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
–5
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✿✿✿✿✿
errors

✿✿✿✿
that

✿✿✿✿✿✿
persist

✿✿✿✿✿
over

✿✿✿✿✿
many

✿✿✿✿✿
time

✿✿✿✿✿
steps

✿✿✿✿✿✿
and/or

✿✿✿✿✿✿
across

✿✿✿✿✿
large

✿✿✿✿✿✿✿
regions.

✿✿✿✿
The

✿✿✿✿✿
next

✿✿✿✿✿✿
section

✿✿✿✿✿✿✿✿✿
describes

✿✿✿✿✿✿✿✿✿✿✿✿✿
CAM-LETKF

✿✿✿
and

✿✿✿✿✿
these

✿✿✿✿✿
case

✿✿✿✿✿✿
studies

✿✿
in

✿✿✿✿✿✿✿
greater

✿✿✿✿✿✿
detail.

2 Methods

2.1 The meteorology and CO2 CO2 model

The first component of CAM–LETKF is the meteorological model. We simulate global meteo-10

rology using the Community Atmosphere Model (CAM) and Community Land Model (CLM,
version 3.5), run in weather forecast mode (not climate mode) (Collins et al., 2006; Oleson et al.,
2008; Chen et al., 2010). Model simulations in this study have a spatial resolution of 2.5◦ ◦ lon-
gitude by 1.9◦ ◦ latitude with 26 vertical model levels.

✿✿
In

✿✿✿✿✿
most

✿✿✿✿✿✿✿✿
regions,

✿✿✿✿✿
there

✿✿✿
are

✿✿✿✿✿
three

✿✿✿✿✿✿✿
vertical

✿✿✿✿✿
model

✿✿✿✿✿✿
levels

✿✿✿✿✿✿
within

✿✿✿
the

✿✿✿✿✿✿✿
lowest

✿✿✿✿✿✿✿✿✿
kilometer

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
atmosphere.

✿✿✿✿✿✿
These

✿✿✿✿✿✿
model

✿✿✿✿✿✿
levels

✿✿✿
are

✿✿✿✿✿✿✿✿
centered

✿✿
at15

✿✿✿✿✿
929.6,

✿✿✿✿✿✿
970.6,

✿✿✿✿
and

✿✿✿✿✿✿
992.6

✿✿✿
hPa

✿✿✿✿✿
over

✿✿✿✿✿✿✿
regions

✿✿✿✿✿✿
where

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
land/water

✿✿✿✿✿✿✿
surface

✿✿
is

✿✿
at

✿✿✿
sea

✿✿✿✿✿
level.

✿

We save the global model output at 6-hour
✿
6 h time increments. Furthermore, we run the

model for two time periods: January – February
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
January–February

✿
2009 and May – July

✿✿✿✿✿✿✿✿✿
May–July

✿
2009. The first month of each run serves as an initial spin-up for the model-data

assimilation system. The next section describes this assimilation in greater detail.20

2.2 The meteorological model-data assimilation framework

The second component of CAM–LETKF is the data assimilation and model optimization frame-
work. This framework serves two purposes. First, the LETKF optimizes modeled meteorology
(CAM–CLM) to match available observations. Second, the LETKF uses an ensemble of model
forecasts to represent model uncertainties that remain after data assimilation (Hunt et al., 2004,25

2007). We define each ensemble member and the mean of the entire ensemble as follows:

xi = x̄+Xi where i= 1....k
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xi = x̄+Xi where i= 1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. . .
✿✿
k
✿

(1)
5

where xi (m1× 1
✿✿✿✿✿✿
m× 1) is a

✿
single model ensemble member, x̄ (m1× 1

✿✿✿✿✿
m× 1) is the mean

of the model ensemble, and Xi (m1× k
✿✿✿✿✿
m× k) refers to the ith

✿
i
✿✿
th column of the matrix that

defines the ensemble spread. In this paper, the variable m1 ✿✿
m refers to the total number of model

parameters – the model estimate for a
✿
variety of meteorological variables, concatenated across

the globe and across all 6-hourly
✿
6

✿✿✿✿✿
hourly

✿
time steps in a

✿
given model run. Furthermore, we use10

k = 64 total ensemble members in this setup, as was done in Liu et al. (2011) and Liu et al.
(2012).

Using this ensemble, CAM–LETKF steps through time in sequential 6-hour
✿
6 h in-

tervals. First, the model ensemble at time t is optimized to match meteorological data
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Hunt et al., 2007) . To this end, we assimilate the same meteorological observations used in the15

National Centers for Environmental Prediction-Department of Energy reanalysis 2 (Kanamitsu
et al., 2002): temperature (in situ and satellite), zonal wind (in situ and satellite), meridional
wind (in situ and satellite), surface pressure (in situ), and specific humidity (in situ). At each
6-hour

✿
6 h model time step, we assimilate between ∼180,000

✿✿✿✿✿✿✿✿✿
∼ 180000

✿
to 330, 000 observa-

tions globally. At that juncture, the ensemble mean associated with time t, x̄(t), represents the20

model best guess and the ensemble members, x̄(t)+X(t), collectively represent the posterior
variances and covariances

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿
in the modeled meteorology

✿✿✿✿
(i.e.,

✿✿✿✿✿✿✿✿
posterior

✿✿✿✿✿✿✿✿✿
variances

✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿
covariances). For the remainder of this paper, we define the 6-hourly meteorological

uncertainties as the standard deviation (or alternately, the range)of each row in X. Second, we
run 6-hour

✿
6 h CAM–CLM forecasts using these realizations as initial conditions – a total of 6425

model forecasts. This ensemble of global forecasts then becomes the prior (and prior variances
and covariances) for the next LETKF assimilation cycle (Hunt et al., 2007) . The 6–hour

✿✿✿
The

✿
6
✿✿
h cycle of data assimilation and model forecast then begins again.
This model ensemble, by design, is guaranteed to reflect actual uncertainties in modeled

meteorology; at each 6-hour
✿
6 h model time step, we adjust the ensemble variance such that

this variance matches against the model–data residuals (Li et al., 2009; Miyoshi, 2011). The
supplement

✿✿✿✿✿✿✿✿✿✿
Supplement

✿
describes this procedure, known as adaptive covariance inflation. For

8
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✿✿✿✿
The

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿
also

✿✿✿✿✿✿✿✿✿
accounts

✿✿✿
for

✿✿✿✿✿
both

✿✿✿✿✿✿
spatial

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
temporal

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
in

✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties;

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿
errors

✿✿✿✿✿✿
within

✿✿✿✿
one

✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member

✿✿✿✿
can

✿✿✿✿✿✿
easily5

✿✿✿✿✿✿
persist

✿✿✿✿
over

✿✿✿✿✿
many

✿✿✿✿✿
time

✿✿✿✿✿
steps.

✿✿✿✿✿
This

✿✿✿✿✿✿✿✿✿
continuity

✿✿✿✿✿✿✿
occurs

✿✿✿✿✿✿✿
because

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
optimized

✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿✿
members

✿✿✿✿
from

✿✿✿✿
the

✿✿✿
one

✿✿✿✿✿
time

✿✿✿✿
step

✿✿✿✿✿✿✿✿
become

✿✿✿
the

✿✿✿✿✿✿
initial

✿✿✿✿✿✿✿✿✿✿
conditions

✿✿✿
for

✿✿✿
the

✿✿✿✿✿✿✿✿
weather

✿✿✿✿✿✿✿
forecast

✿✿✿
at

✿✿✿
the

✿✿✿✿✿
next

✿✿✿✿
time

✿✿✿✿
step.

✿✿✿✿
For

✿✿✿✿✿✿✿✿✿
example,

✿✿
if

✿✿✿✿
the

✿✿✿✿
PBL

✿✿✿✿✿✿✿
height

✿✿
in

✿✿✿✿
one

✿✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member

✿✿
is

✿✿✿✿✿✿
lower

✿✿✿✿
than

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿
average

✿✿
at

✿
a
✿✿✿✿✿✿
given

✿✿✿✿
time

✿✿✿✿✿
step,

✿
it
✿✿✿✿
will

✿✿✿✿✿✿
likely

✿✿
be

✿✿✿✿✿✿
lower

✿✿✿✿
than

✿✿✿✿✿✿✿
average

✿✿✿
at

✿✿✿
the

✿✿✿✿
next

✿✿✿✿
time

✿✿✿✿✿
step.

✿✿✿✿✿✿✿✿✿
Similarly,

✿
if
✿✿✿
the

✿✿✿✿✿
PBL

✿✿✿✿✿✿
height

✿✿
in

✿✿✿✿
one

✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member

✿✿
is

✿✿✿✿✿
lower

✿✿✿✿✿
than

✿✿✿✿✿✿✿
average

✿✿✿✿
over

✿✿✿✿
one

✿✿✿✿
grid

✿✿✿✿
box,

✿✿
it

✿✿✿✿
will

✿✿✿✿✿
likely10

✿✿✿✿
also

✿✿
be

✿✿✿✿✿✿
lower

✿✿✿✿
than

✿✿✿✿✿✿✿
average

✿✿✿✿✿
over

✿✿✿
the

✿✿✿✿✿✿✿✿
adjacent

✿✿✿✿
grid

✿✿✿✿
box.

✿

✿✿✿✿✿✿✿
Certain

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties,

✿✿✿✿✿✿✿✿✿✿
however,

✿✿✿✿✿
may

✿✿✿✿
not

✿✿✿✿✿✿✿✿
always

✿✿✿
be

✿✿✿✿✿✿✿✿✿
captured

✿✿✿✿
by

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
assimilation

✿✿✿✿✿✿✿
system,

✿✿✿✿✿✿✿✿✿✿
particularly

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
that

✿✿✿
do

✿✿✿
not

✿✿✿✿✿✿✿✿
manifest

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
model-data

✿✿✿✿✿✿✿✿✿
residuals.

✿✿✿
For

✿✿✿✿✿✿✿✿✿
example,

✿✿✿✿✿✿✿✿✿✿✿✿✿
CAM-LETKF

✿✿✿✿✿
will

✿✿✿✿
not

✿✿✿✿✿
fully

✿✿✿✿✿✿✿✿✿✿✿
characterize

✿✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
due

✿✿✿
to

✿✿✿✿✿✿✿✿
different

✿✿✿✿✿
PBL

✿✿✿✿✿✿✿
schemes

✿✿✿✿✿✿
(e.g.,

✿✿✿✿✿✿✿✿
Yonsei

✿✿✿✿✿✿✿
versus

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Mellor-Yamada-Janjic)

✿✿✿✿
or

✿✿✿✿
due

✿✿✿
to

✿✿✿✿✿✿
other

✿✿✿✿✿✿✿✿✿✿
structural

✿✿✿✿✿✿✿
model15

✿✿✿✿✿✿✿✿✿✿
differences.

✿✿✿✿✿✿✿✿✿✿✿✿
Furthermore,

✿✿✿✿✿✿✿✿
LETKF

✿✿✿✿✿✿
cannot

✿✿✿✿✿✿✿✿✿
spatially

✿✿✿✿✿✿
resolve

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
that

✿✿✿✿✿✿
occur

✿✿
at

✿✿✿✿✿✿✿✿
sub-grid

✿✿✿✿
scale

✿✿✿✿✿
(e.g.,

✿✿✿✿✿✿✿✿✿
turbulent

✿✿✿✿✿✿
eddies

✿✿
or

✿✿✿✿✿✿✿✿✿✿
numerical

✿✿✿✿✿✿✿✿✿✿
diffusion).

✿✿✿
For

✿
further technical detail on the LETKF

and adaptive covariance inflation, refer to the supplement
✿✿✿✿✿✿✿✿✿✿✿
Supplement, Hunt et al. (2004), Hunt

et al. (2007), Li et al. (2009), Liu et al. (2011), or Miyoshi (2011).

2.3 CO2 CO2 transport error variances and covariances20

The CAM–LETKF system described above estimates not only meteorological uncertain-
ties but also uncertainties in CO2 CO2 transport. In this study, CO2 CO2 is a pas-
sive tracer and

✿✿✿
that

✿
is not part of the data assimilation. Instead, we use biospheric,

oceanic, biomass burning, and fossil fuel CO2 fluxes from CT (version ‘CT2011oi’, Fig.
1)(Peters et al., 2007, http://carbontracker.noaa.gov) . Furthermore, we use CT as the initial25

condition for global atmospheric CO2 mixing ratios on January 1 and May 1, 2009. Each
CAM ensemble member uses the same initial condition for atmospheric CO2, so any
subsequent differences in CO2 among the model realizations are due entirely to meteorological
uncertainties

✿
,
✿✿✿
so

✿✿✿✿
any

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿
CO2 ✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿✿
are

✿✿✿✿✿✿
solely

✿✿✿✿
due

✿✿
to

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
transport.
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✿✿✿
We

✿✿✿✿✿
drive

✿✿✿
all

✿✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿✿
simulations

✿✿✿✿
with

✿✿
a
✿✿✿✿✿✿✿✿✿✿
published CO2 ✿✿✿✿

flux
✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
CarbonTracker

✿✿✿✿✿
(CT),

✿✿✿✿✿✿✿
version

✿✿✿✿✿✿✿✿
“CT2011

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
SUBSCRIPTNB

✿
o

✿
i”
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Fig. 1, Peters et al., 2007, http://carbontracker.noaa.gov) .
✿✿✿✿✿✿

CT
✿✿✿✿✿

is5

✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

commonly-used
✿✿✿✿✿✿✿

global
✿
CO2 ✿✿✿

flux
✿✿✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿✿✿

created
✿✿✿
by

✿✿✿✿
the

✿✿✿✿
US

✿✿✿✿✿✿✿✿✿
National

✿✿✿✿✿✿✿✿✿
Oceanic

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿
Atmospheric

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Administration

✿✿✿✿✿✿✿✿✿
(NOAA).

✿✿✿✿✿✿
NOAA

✿✿✿✿✿✿✿✿✿✿
scientists

✿✿✿✿✿✿✿✿✿
optimize

✿✿✿✿
CT

✿✿✿✿✿✿✿
fluxes

✿✿✿
to

✿✿✿✿✿✿✿
match

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿

data,
✿✿✿✿

so
✿✿✿✿

the
✿✿✿✿✿

flux
✿✿✿✿✿✿✿✿✿

estimate
✿✿✿✿

is
✿✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿✿✿

with
✿✿✿✿✿✿

actual
✿✿✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Peters et al., 2007) .

✿

We estimate 6-hourly CO2 ✿✿✿✿✿✿✿✿✿✿✿
subsequently

✿✿✿✿✿✿✿✿
estimate

✿✿
6

✿✿✿✿✿
hourly

✿
CO2 transport uncertainties us-10

ing
✿✿✿
this

✿✿✿✿✿✿
setup.

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
are

✿✿✿✿✿✿✿
defined

✿✿✿
as

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
difference

✿✿✿✿✿✿✿✿
between

✿✿✿✿
the

✿✿✿
top

✿✿✿✿
and

✿✿✿✿✿✿✿
bottom

✿✿
of the standard deviation of CO2 concentrations across the

✿✿
95%

✿✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿✿
interval,

✿✿✿✿✿✿✿✿✿
computed

✿✿✿✿
from

✿✿✿✿
the 64 model realizations (e.g., Fig.

✿
2). To make this estimate, we calculate the standard

deviation
✿✿✿✿✿
2.5th

✿✿✿✿
and

✿✿✿✿✿✿
97.5th

✿✿✿✿✿✿✿✿✿✿✿
percentiles

✿
of each row in X[CO2]✿✿✿✿✿✿✿

X[CO2]
, where the subscript

“[CO2] ✿✿✿✿✿
[CO2]” refers to the atmospheric CO2 CO2 concentrations estimated by the ensemble. In15

addition, we characterize temporal covariance or correlation in transport errors (ie, in X[CO2]
).

To estimate an error decorrelation time, we use a variogram analysis. In specific, we fit an
exponential variogram model to afternoon-only model output (1pm – 7pm local time) associated
with a number of existing, global atmospheric CO2 observation sites. Both Kitanidis (1997) and
the supplement describe variograms in greater detail. The remainder of the methods section ap-20

plies this CO2 CO2 and meteorology modeling framework to two case studies.

2.4 Case study 1: How biased would Carbon Tracker fluxes need to be before that bias
were detectable above CO2 ✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿
temporally-

✿✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
spatially-covarying

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric transport uncertainties?

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿
relative

✿✿
to

✿✿
a
✿
CO2 ✿✿✿✿

flux
✿✿✿✿✿✿✿✿
estimate

In this case study , we construct a hypothesis test to determine whether biases in CT25

✿✿✿✿
This

✿✿✿✿✿
case

✿✿✿✿✿✿
study

✿✿✿✿✿✿✿✿
explores

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
importance

✿✿
of

✿✿✿✿✿✿✿✿✿✿
persistent,

✿✿✿✿✿✿✿✿✿✿
covarying

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿
and

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of

✿✿✿✿✿
those

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿✿
relative

✿✿
to

✿✿✿✿
the CO2 fluxeswould be detectable above atmospheric

transport uncertainties. CT is a commonly-used global CO2 flux estimate created by the US
National Oceanic and Atmospheric Administration (NOAA). To create CT, NOAA scientists

10
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use atmospheric CO2 data from observations towers and surface sites around the world and
estimate regional scaling factors that optimize an initial CO2 flux model (Peters et al., 2007) .

We test whether a hypothetical bias in regional scaling factors, like those estimated by
CT, would be detectable at atmospheric CO2 observation sitesacross the globe. We build this5

test using the CO2 sum of squared residuals (SSR) from the CAM–LETKF model ensemble.
A number of previous statistical

✿
.
✿✿
In

✿✿✿✿✿✿✿✿✿✿
particular,

✿✿✿
we

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿✿
mean,

✿✿✿✿✿✿✿✿✿
afternoon,

✿✿✿✿✿✿✿✿
modeled

✿
CO2 ✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿
at

✿✿
a

✿✿✿✿✿✿✿
number

✿✿
of

✿✿✿
in

✿✿✿✿
situ

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿
sites.

✿✿
In

✿✿✿✿
one

✿✿✿✿✿
case,

✿✿✿✿
we

✿✿✿✿✿✿✿
include

✿✿✿✿✿✿✿✿✿
temporal

✿
and/or greenhouse gas studies construct hypothesis tests

using squared residuals (e.g., Sheskin, 2003; Huntzinger et al., 2011) .
✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
in10

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors,

✿✿✿✿
and

✿✿
in

✿✿✿✿✿✿✿✿
another

✿✿✿✿✿
case,

✿✿✿
we

✿✿✿✿✿✿✿
remove

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿✿
covariances.

✿✿✿✿
We

✿✿✿✿
then

✿✿✿✿✿✿✿✿
compare

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿✿
against

✿✿✿✿
the

✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿
afternoon

✿
CO2 ✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿✿
enhancement

✿✿
to

✿✿✿✿✿✿✿✿✿✿
understand

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
of

✿✿✿✿✿
these

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿✿
relative

✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿
fluxes.

In this setup, we construct the test as follows. First, compute the SSR associated with the
transport uncertainties :15

SSR=

n2��
H[CO2]

X[CO2]

�2

This equation interpolates the model residuals (X[CO2]
) to the observation sites, squares these

residuals, and sums them over the entire timeperiod of interest. More specifically, the variable
n2 refers to the number of hourly CO2 observations at an observation site over the time span
of the hypothesis test. In addition, H[CO2]

(n2×m2) is the matrix that interpolates or maps20

the ensemble deviations (X[CO2]
, dimensions m2× k) to the CO2 observations. Lastly, SSR

(1× k) are the sum of squared residuals from each of the k CAM–LETKF model ensemble
members. Note that some of the ensemble members will be closer than others to the ensemble
mean or

✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿
uncertainty

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿
CO2 ✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿✿✿✿✿
serves

✿✿
as

✿
a
✿✿✿✿✿✿✿✿
measure

✿✿✿
of

✿✿✿✿
how

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿✿✿
persist

✿✿✿✿
over

✿✿✿✿✿
time,

✿✿
a
✿✿✿✿✿✿✿✿
measure

✿✿
of

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariance.

✿✿✿✿✿✿✿✿✿✿✿✿
Uncorrelated

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors25

✿✿✿
will

✿✿✿✿✿✿✿✿
average

✿✿✿✿
out,

✿✿
to

✿
a
✿✿✿✿✿
large

✿✿✿✿✿✿✿
degree,

✿✿✿✿✿
over

✿✿✿✿✿
many

✿✿✿✿✿✿
model

✿✿✿✿
time

✿✿✿✿✿✿
steps,

✿✿✿
but

✿✿✿✿✿✿✿✿
temporal

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿
prevent

✿✿✿✿
the

✿✿✿✿✿
errors

✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿
averaging

✿✿✿✿✿
down

✿✿✿✿
over

✿✿✿✿✿
time.

✿✿✿✿✿✿✿✿✿✿✿✿
Furthermore,

✿
CO2✿✿✿✿✿✿✿

budgets
✿✿✿
are

✿✿✿✿✿
often

✿✿✿✿✿✿✿✿
reported

11
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✿✿
in

✿✿✿✿✿✿✿✿✿✿
month-long

✿✿✿✿✿✿✿✿✿✿
increments

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Gourdji et al., 2012, and CT) ,

✿✿✿
so

✿✿✿
this

✿✿✿✿✿
time

✿✿✿✿✿✿✿
window

✿✿
is

✿✿
a

✿✿✿✿✿✿✿
relevant

✿✿✿✿✿✿✿✿✿✿
benchmark

✿✿✿✿
with

✿✿✿✿✿✿✿
respect

✿✿
to

✿✿✿✿✿✿✿
inverse

✿✿✿✿✿✿✿✿✿
modeling

✿✿✿✿✿✿✿
studies.

✿✿✿
We

✿✿✿✿✿✿✿✿✿
calculate

✿✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿
output

✿✿✿✿✿✿✿✿✿✿
(including

✿✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances)

✿✿✿✿
via

✿✿✿✿✿✿✿
several

✿✿✿✿✿✿
steps.

✿✿✿✿✿
First,

✿✿✿✿
we

✿✿✿✿✿✿
select

✿✿✿
out

✿✿✿✿
the

✿✿✿✿✿
rows

✿✿✿
of

✿✿✿✿✿✿✿
X[CO2]✿✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿
correspond

✿✿✿
to

✿✿✿✿✿✿✿✿
afternoon

✿✿✿✿✿✿✿✿✿✿✿✿
observations

✿✿✿✿✿
(1–7 p.m.

✿✿✿
LT)

✿✿✿✿
for

✿✿
a

✿✿✿✿✿
given

✿✿✿✿✿✿✿
month

✿✿
at

✿✿✿
an

✿✿✿
in

✿✿✿✿
situ CO2 ✿✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿
site.5

✿✿✿✿✿✿✿
Second,

✿✿✿
we

✿✿✿✿✿✿✿✿✿
calculate

✿✿✿✿
the

✿✿✿✿✿✿
mean

✿✿
of

✿✿✿✿✿
each

✿✿✿✿✿✿✿✿
column

✿✿
in

✿✿✿✿✿✿✿✿
X[CO2]

.
✿✿✿✿✿✿

Each
✿✿✿✿✿✿✿
column

✿✿✿✿✿✿✿✿✿✿✿✿
corresponds

✿✿
to

✿✿
a

✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿✿
member.

✿✿✿✿
The

✿✿✿✿✿✿✿✿
resulting

✿✿✿✿✿✿✿
vector

✿✿
of

✿✿✿✿✿✿
length

✿✿✿
64

✿✿
is
✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
difference

✿✿✿✿✿✿✿✿
between

✿✿✿✿✿
each

✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member

✿✿✿✿
and

✿✿✿
the best estimate (x̄[CO2]

). Therefore, x̄
✿
),
✿✿✿✿✿✿✿✿✿
averaged

✿✿
at

✿✿✿
the

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
scale.

✿✿✿✿✿✿
Lastly,

✿✿✿
we

✿✿✿✿
use

✿✿✿✿
this

✿✿✿✿✿✿✿
vector

✿✿
to

✿✿✿✿✿✿✿✿✿
compute

✿✿
a

✿✿✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿✿
interval

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged,

✿✿✿✿✿✿✿✿
modeled

✿✿✿✿
CO2✿

(the k SSRs from the k ensemble members will not be identical and will instead form10

a distribution.
✿✿✿✿✿
97.5th

✿✿✿✿✿✿
minus

✿✿✿✿✿
2.5th

✿✿✿✿✿✿✿✿✿✿✿
percentiles).

✿

Second, we compute the SSR associated with a hypothetical bias (λ)in the fluxes:

FSSR =
�

n2(∆CO2)
2

∆CO2 = λH[CO2]

�
x̄[CO2,surface] − x̄[CO2,600 hPa]

�

✿✿✿
We

✿✿✿✿✿✿✿✿✿✿✿✿
subsequently

✿✿✿✿✿✿✿
remove

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿
the

✿
CO2✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿
errors

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿
re-calculate

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties15

✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿✿
CO2 ✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations.
✿✿✿✿

As
✿✿✿✿✿✿✿✿✿
described

✿✿✿
in

✿✿✿✿✿✿✿
section

✿✿✿✿✿
2.2,

✿✿✿✿✿✿
errors

✿✿✿
in

✿✿✿✿
one

✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member

✿✿✿✿
can

✿✿✿✿✿✿
persist

✿✿✿✿
over

✿✿✿✿✿
many

✿✿✿✿✿
steps

✿✿✿✿
and

✿✿✿✿
can

✿✿✿✿✿✿
persist

✿✿✿✿✿✿
across

✿
a
✿✿✿✿✿
large

✿✿✿✿✿✿✿✿✿✿
geographic

✿✿✿✿✿✿✿
region.

✿✿✿✿✿✿✿✿
However,

✿✿✿✿
we

✿✿✿✿
can

✿✿✿✿✿✿✿
remove

✿✿✿✿✿
these

✿✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
by

✿✿✿✿✿✿✿✿✿
randomly

✿✿✿✿✿✿✿✿✿✿✿
re-shuffling

✿✿✿✿
the

✿✿✿✿✿✿✿✿
elements

✿✿✿
of

✿✿✿✿
each

✿✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿
row

✿✿✿
in

✿✿✿✿✿✿✿✿
X[CO2]

.
✿✿✿✿
The

✿✿✿✿✿✿✿✿✿
variance

✿✿
in

✿✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations

✿✿
in

✿✿✿✿
any

✿✿✿✿✿
row

✿✿✿
or

✿✿
at

✿✿✿
any

✿✿✿✿✿✿
given

✿✿✿✿
time

✿✿✿✿✿
step

✿✿✿✿
will

✿✿✿✿✿✿✿
remain

✿✿✿
the

✿✿✿✿✿✿
same.

✿✿✿✿✿✿✿✿✿
However,

✿✿✿✿✿
each

✿✿✿✿✿✿✿
column

✿✿✿✿
will

✿✿✿
no

✿✿✿✿✿✿✿
longer

✿✿✿✿✿✿✿✿
represent

✿✿
a20

✿✿✿✿✿
single

✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member.

✿✿✿✿✿✿✿
Rather,

✿✿✿✿✿
each

✿✿✿✿✿✿✿
column

✿✿✿✿
will

✿✿✿✿✿✿✿✿✿
represent

✿
a
✿✿✿✿✿✿✿
random

✿✿✿✿✿✿✿✿✿✿✿
assortment

✿✿
of

✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿✿
members,

✿✿✿✿
and

✿✿✿
the

✿✿✿✿✿✿
errors

✿✿
in

✿✿✿✿✿
each

✿✿✿✿✿✿✿
column

✿✿✿✿
will

✿✿✿
no

✿✿✿✿✿✿
longer

✿✿✿✿✿✿✿
covary

✿✿✿✿
from

✿✿✿✿
one

✿✿✿✿✿
time

✿✿✿✿
step

✿✿
to

✿✿✿✿✿✿✿
another

✿✿
or

✿✿✿✿
one

✿✿✿✿✿✿✿✿✿✿
geographic

✿✿✿✿✿✿✿✿
location

✿✿
to

✿✿✿✿✿✿✿
another.

✿

The output of this equation, FSSR, is a scalar that estimates the squared residuals
due to a biased flux estimate, summed over all observations at a given CO2 measurement25

site. The variable λ represents a hypothetical bias in CT fluxes. In this study, we
conduct the hypothesis test at each measurement site individually, so the variable λ is
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specific to the site being considered
✿✿✿
We

✿✿✿✿✿✿✿✿
conduct

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿
analysis

✿✿
at

✿✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿✿✿✿✿✿✿✿

selection
✿✿
of

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿✿
sites

✿✿✿
in

✿✿✿✿✿✿✿
North

✿✿✿✿✿✿✿✿✿
America,

✿✿✿✿✿✿
Asia,

✿✿✿✿✿
and

✿✿✿✿✿✿✿✿
Europe.

✿✿✿✿✿✿
This

✿✿✿✿✿✿
setup

✿✿✿✿✿✿✿✿✿
indicates

✿✿✿✿✿
how

✿✿✿✿✿
errors

✿✿✿✿✿✿✿
covary

✿✿✿✿✿
with

✿✿✿✿✿
time

✿✿✿
at

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
scale. In addition, the variables in parentheses

(x̄[CO2,surface] − x̄[CO2,600 hPa]) quantify the contribution of regional-scale fluxes to CO2 at the
atmospheric observation site. Many top-down studies pre-subtract free troposphere or marine5

‘clean air’ concentrations from the CO2 measurements or model output at the observation
sites (e.g., Gerbig et al., 2003; Gourdji et al., 2012) . These top-down studies then optimize
regional fluxes to match the pre-subtracted CO2 observations. In this study, we similarly
subtract modeled

✿✿✿
we

✿✿✿✿
also

✿✿✿✿✿✿✿✿
conduct

✿✿✿
the

✿✿✿✿✿✿✿✿
analysis

✿✿✿✿✿
using

✿✿✿✿✿✿✿✿
multiple

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿✿
sites;

✿✿✿
we

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
at

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
eco-region

✿✿✿✿✿
scale

✿✿✿✿
and

✿✿✿✿✿✿✿
include

✿✿
all

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿
sites

✿✿✿✿
that

✿✿✿
lie10

✿✿✿✿✿✿
within

✿✿✿
the

✿✿✿✿✿
given

✿✿✿✿✿✿✿✿✿✿✿
eco-region.

✿✿✿✿✿
This

✿✿✿✿✿
latter

✿✿✿✿✿✿✿✿✿
approach

✿✿✿✿✿✿✿✿
indicates

✿✿✿✿
how

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿
covary

✿✿✿✿✿✿✿✿
spatially

✿✿✿✿✿✿
across

✿✿✿✿✿✿✿
multiple

✿✿✿✿✿
sites

✿✿
at

✿✿✿
the

✿✿✿✿✿✿✿✿
regional

✿✿✿✿✿
scale.

✿

✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
can

✿✿✿✿✿
then

✿✿
be

✿✿✿✿✿✿✿✿✿
compared

✿✿✿✿✿✿✿
against

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
afternoon,

✿✿✿✿✿✿✿✿
modeled

CO2 ✿✿✿✿✿✿✿✿✿
increment

✿✿✿✿✿
from

✿✿✿✿✿✿✿
regional

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿
fluxes.

✿✿
To

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿
increment,

✿✿✿
we

✿✿✿✿✿✿✿✿
subtract

✿✿✿✿✿✿✿✿
modeled

✿✿✿
free

✿✿✿✿✿✿✿✿✿✿✿✿
troposphere,

✿✿✿✿✿✿
“clean

✿✿✿✿
air”

✿
concentrations at 600hPa in the free troposphere (x̄[CO2,600 hPa])15

from those at the CO2 observation sites (x̄[CO2,surface]) hPa ✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations

✿✿✿✿✿✿✿✿
modeled

✿✿
at

✿✿✿
the

✿✿✿✿✿✿
surface

✿✿✿✿✿✿
using

✿✿✿
CT

✿✿✿✿✿✿
fluxes. The concentrations at 600hPa hPa are not necessarily a

✿
perfect mea-

sure of ‘clean air ’
✿✿✿✿✿
clean

✿✿✿
air concentrations. Rather, this approach is an approximation similar

to that used in the existing literature . This difference in concentrations is then used to estimate
how a regional bias in CT fluxes would manifest at a given observation site (∆CO2, in ppm).20

✿✿
by

✿✿✿✿✿✿✿
inverse

✿✿✿✿✿✿✿✿✿
modeling

✿✿✿✿✿✿
studies

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿
literature

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Gerbig et al., 2003; Gourdji et al., 2012) .

✿

Finally, we test the hypothesis. If the FSSR is larger than most of the k SSR associated
with the meteorological uncertainties, then we can distinguish the flux bias (λ) above the
meteorological noise. This statement can be formalized into a hypothesis test as follows:

A = {SSR | SSR> FSSR}25

p =
|A|
k
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where A is the set of SSR that are greater than FSSR, and the expression |A| indicates
the number of elements in A. If the p-value is less than 0.05, we have disproven the null
hypothesis – that the hypothetical bias (λ) in CO2 fluxes is indistinguishable above the transport
uncertainties.

Note that this hypothesis test accounts for both variance and temporal covariance in the
CO2 transport uncertainties, a concept discussed in detail in the supplement. In addition, note5

that FSSR will almost never be zero due to diurnal or daily changes in NEP, even if the
monthly-averaged NEP at a given site is zero.

We conduct the hypothesis test above for both February and July 2009 at a variety of
different observation sites in North America, Asia, and Europe. We report the results of this
hypothesis test for a representative selection of global CO2 observation sites – different types10

of observation towers located on different continents and in different biomes. Furthermore, we
test this hypothesis using month-long modeled time series corresponding to afternoon data only
(1pm–7pm local time). We use this month-long window because CO2 budgets are often reported
in month-long increments.

In summary, case study 1 quantifies the extent to which atmospheric CO2 transport errors15

can obscure any regional biases in estimated CO2 ✿✿✿✿
one

✿✿✿✿✿✿✿✿
explores

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of

✿✿✿✿✿✿✿✿✿
sustained

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿

errors
✿✿✿

or
✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿✿✿
relative

✿✿
to

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
afternoon

✿
CO2 ✿✿✿✿✿

signal
✿✿✿✿
from

✿✿✿✿✿✿✿
surface

✿
fluxes. The next case study, in contrast, explores the meteorological conditions

under which sustained CO2 ✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
sustained CO2 transport errors may be more likely to occur.

2.5 Case study 2: Which meteorological factors may be associated with sustained,20

month-long CO2 transport biases?

We create arelatively simple,
✿
synthetic experiment to explore the meteorological conditions

under which month-long model biases in atmospheric transport may occur. The spatial patterns
in the CO2 CO2 transport uncertainties are heavily influenced by spatial patterns in the CO2

CO2 fluxes (Fig.
✿
2). In other words, regions with large fluxes or large diurnal flux variability also25

show higher CO2 CO2 transport uncertainties. As a result, it is difficult to disentangle the effect
of different meteorological parameters on CO2 CO2 transport uncertainties. Instead, we create

14
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a synthetic tracer with constant global emissions in both space and time. This experiment serves
as a

✿
lens to explore the possible effects of different meteorological parameters independent of

the spatial variability in CO2 ✿✿✿✿✿✿✿✿✿✿✿✿✿
spatiotemporal

✿✿✿✿✿✿✿✿✿
variability

✿✿✿
in CO2 fluxes.

To this end, we initialize CAM-LETKF runs with zero atmospheric concentration of this syn-
thetic tracer and then run CAM-LETKF forward for one month using constant global emissions5

(e.g., for both February and July 2009). Any uncertainties in the atmospheric distribution of
this tracer are solely due to meteorological parameters, not due to the spatial distribution of the
underlying fluxes.

Next, we calculate the coefficient of variation (CV) associated with the monthly-averaged
surface concentrations. The CV is an inverted signal-to-noise ratio; it measures the uncertainty10

in modeled surface concentrations relative to the average surface concentration (σ
µ

). For exam-
ple, an uncertainty of 1ppm

✿
1 ppm in modeled concentrations is most problematic if the signal

from surface fluxes is weak, and a1ppm
✿✿
1 ppm uncertainty is less problematic if the signal

from surface sources
✿✿✿✿✿
and/or

✿✿✿✿✿
sinks

✿
is strong.

For this setup, the CV equals the standard deviation in the monthly-averaged surface concen-15

trations divided by the monthly surface concentration averaged across all 64-realizations. We
then plot the tracer CV against monthly-averaged meteorological parameters and their associ-
ated uncertainties from CAM–LETKF. These relationships give insight into the meteorological
conditions or meteorological uncertainties that are associated with month-long biases in the
modeled synthetic tracer.20

3 Results and discussion

3.1 Uncertainties in the 6-hourly
✿✿
6

✿✿✿✿✿✿
hourly

✿
modeled CO2 CO2 concentrations

Before examining the two case studies in detail, we first provide context on the CO2 CO2

transport uncertainties estimated with CT fluxes and CAM–LETKF. Figure2a and 2
✿✿✿
2a

✿✿✿✿
and

b visually summarize the average 6-hourly CO2 transport uncertainties (standard deviations)25

✿
6
✿✿✿✿✿✿
hourly

✿
CO2✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties in the model surface layer ; these

✿
–

✿✿✿
the

✿✿✿✿✿✿✿✿✿
difference

✿✿✿✿✿✿✿✿
between

15
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✿✿✿
the

✿✿✿
top

✿✿✿✿
and

✿✿✿✿✿✿
bottom

✿✿
of

✿✿✿✿
the

✿✿
95%

✿✿✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿✿
intervals.

✿✿✿✿✿✿
These

✿
figures show how CO2 CO2 transport

uncertainties vary across the globe – from 0.15 to 9.6 ppm (standard deviation)
✿✿✿
0.6

✿✿
to

✿✿✿
26 ppm,

depending on location. Furthermore, the transport uncertainties in Figs.2a and 2
✿✿✿✿
Fig.

✿✿
2a

✿✿✿✿
and

✿
b

show several distinctive features. The largest uncertainties are localized to regions where either
the magnitude or the diurnal cycle of the CT fluxes is largest (e.g., the US Eastern Seaboard5

and southern Siberia during summertime, the Amazon, the Congo, and eastern China). CO2

CO2 transport uncertainties in the Eastern US and East Asia bleed, to a smaller degree, over the
adjacent ocean where surface fluxes are small.

These transport uncertainties are in the range of the uncertainties estimated in
a number of previous studies. For example, the spatial patterns in the 6-hourly10

uncertainties are similar to those modeled by Liu et al. (2011) using CAM-LETKF
and temperature-scaled CO2 fluxes from TRANSCOM 3. In addition, a number
of previous studies focused on the effects of perturbing individual meteorological
parameters at specific observation sites or for individual aircraft campaigns
(e.g., Gerbig et al., 2003; Lin and Gerbig, 2005; Gerbig et al., 2008; Kretschmer et al., 2012) .15

Our 6-hourly transport uncertainties, though very different in both scope and scale,
are comparable in magnitude to the individual parameter uncertainties estimated by
Gerbig et al. (2003) , Gerbig et al. (2008) , and Kretschmer et al. (2012) but are less
than the uncertainties in (Lin and Gerbig, 2005) . Furthermore, our estimated 6-hourly
transport uncertainties also appear similar to or slightly smaller than the model–data20

mismatch errors estimated at individual observation sites in several inversion studies
(e.g., Peters et al., 2007; Schuh et al., 2010; Gourdji et al., 2012) . Model–data mismatch
includes not only transport errors but also any model or data errors unrelated to an imperfect
initial flux estimate. This result may reflect the fact that atmospheric transport often dominates
model-data mismatch errors.25

Figure
✿✿✿✿✿✿
Figure 3 places these transport uncertainties in context of CO2 CO2 data measured at

two observation sites in the United States. These time series plots validate the model’s capacity
to simulate daily variations in CO2 CO2 concentrations. Furthermore, the comparison illustrates
the magnitude of the CO2 CO2 transport uncertainties relative to the diurnal cycle in CO2

16
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CO2 concentrations. For example, the uncertainties at AMT in July are ∼30
✿✿✿✿✿
∼ 30% of the

diurnal range in the CO2 CO2 measurements. Overall, the model ensemble depicted in these
plots usually encapsulates the hourly-averaged measurements. CT fluxes are estimated using
these CO2 CO2 observations and the TM5 transport model (Tracer Model, version 5) (Peters5

et al., 2007), so one might expect the CAM model to fit the CO2 CO2 observations relatively
well. In the instances when the model ensemble does not encapsulate the hourly-averaged CO2

CO2 measurements, one of the many other non-transport error types could be to blame; the
ensemble spread only encompasses transport error

✿✿✿✿✿
errors

✿
and does not include measurement

error, error
✿✿✿✿✿✿
errors,

✿✿✿✿✿
errors

✿
due to finite model resolution, or errors in the fluxes. The supplement10

✿✿✿✿✿✿✿✿✿✿✿
Furthermore,

✿✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
instances

✿✿✿✿✿
could

✿✿✿
be

✿✿✿✿
due

✿✿
to

✿✿✿✿✿✿✿✿✿
structural

✿✿✿✿✿✿✿✿✿✿✿
differences

✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿
CAM

✿✿✿
and

✿✿✿✿✿✿
TM5,

✿✿✿✿✿✿✿✿
including

✿✿✿✿✿✿✿✿✿✿✿
differences

✿✿
in

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿
resolution.

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿
Supplement

✿
provides more example CO2 CO2

model–data comparisons, meteorology model validation, and data assimilation diagnostics.

3.2 CO2 CO2 transport uncertainties at longer time scales

The uncertainty in monthly-averaged CO2 CO2 concentrations provides one measure of how15

transport errors persist over time. In other words, these uncertainties provide a metric of error
correlations in CO2 transport. Uncorrelated transport errors will average out, to a large degree,
over many model time steps, but temporal correlations prevent the errors from averaging
down over time.As a result, large uncertainties in monthly-averaged concentrations indicate
the potential for persistent bias in CO2 fluxes estimated using atmospheric observations. Such20

bias could lead to under- or over-estimation of regional-scale CO2 budgets.
To this end, Figs. (2c and 2d)

✿
,
✿✿
as

✿✿✿✿✿✿✿✿✿
discussed

✿✿
in

✿✿✿✿✿✿✿
section

✿✿✿✿
2.4.

✿✿✿✿
Fig.

✿✿✿✿
2c-d

✿
displays uncertainties in

the month-long average surface concentrations for February and July , 2009. In contrast to the
6-hourly

✿
6
✿✿✿✿✿✿
hourly

✿
uncertainties, these uncertainties are far more spatially-distributed; the largest

uncertainties are not just associated with regions that have large fluxes. This result implies25

that CO2 transport errors are correlated CO2 ✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿
covary

✿
over longer periods of

time in remote regions, compared to regions with large anthropogenic or biospheric fluxes.
Furthermore,

✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿
fluxes.

✿✿✿✿✿✿✿✿✿✿✿
Observation

✿✿✿✿
sites

✿✿✿✿
that

✿✿✿✿
are

✿✿✿
far

✿✿✿✿
from

✿✿✿✿✿
large

✿✿✿✿✿✿
fluxes

✿✿✿
are

✿✿✿✿✿✿✿✿✿
therefore

✿✿✿✿✿
more

✿✿✿✿✿
likely

✿✿
to

✿✿✿✿✿✿✿✿
produce

✿✿
a

✿✿✿✿✿✿
biased

✿
CO2✿✿✿✿✿✿

budget
✿✿✿✿✿
than

✿✿✿✿
sites

✿✿✿✿✿
near

✿✿
to

✿✿✿✿✿
large

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿
fluxes.

✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿
“remote”

17
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✿✿✿✿
sites

✿✿✿
see

✿✿
a
✿✿✿✿✿✿
lower

✿
CO2 ✿✿✿✿✿

signal
✿✿✿✿✿
from

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿
fluxes,

✿✿✿✿
and

✿✿✿
the

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿
at

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
locations

✿✿✿✿✿✿✿✿
generally

✿✿✿✿✿✿✿
covary

✿✿✿✿
over

✿✿✿✿✿✿
longer

✿✿✿✿✿✿✿
periods

✿✿
of

✿✿✿✿✿
time.

✿

✿✿
A

✿✿✿✿✿✿✿
number

✿✿✿
of

✿✿✿✿✿✿
factors

✿✿✿✿✿
may

✿✿✿✿✿✿✿
explain

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
relatively

✿✿✿✿✿
large

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
in

✿✿✿✿✿✿
remote

✿✿✿✿✿✿✿✿
regions.

CO2 ✿✿✿✿✿✿✿✿
transport

✿✿✿✿
over

✿✿✿✿✿✿✿
remote

✿✿✿
or

✿✿✿✿✿✿✿
oceanic

✿✿✿✿✿✿✿
regions

✿✿✿
is

✿✿✿✿✿
likely

✿✿✿✿✿✿✿✿✿✿
dominated

✿✿✿
by

✿✿✿✿✿✿✿✿✿✿✿✿✿
synoptic-scale

✿✿✿✿✿✿✿✿
weather5

✿✿✿✿✿✿✿
patterns

✿✿✿✿
that

✿✿✿✿✿✿
evolve

✿✿✿✿
over

✿✿✿✿✿✿✿✿✿
multi-day

✿✿✿✿✿
time

✿✿✿✿✿✿✿
periods.

✿✿✿✿✿✿
When

✿
CO2 ✿✿

is
✿✿✿✿✿✿✿✿✿✿
transported

✿✿✿✿✿✿
across

✿✿✿
the

✿✿✿✿✿✿✿
oceans

✿✿
or

✿✿✿✿✿✿
remote

✿✿✿✿✿
areas

✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿
source/sink

✿✿✿✿✿✿✿✿
regions,

✿✿✿✿✿✿✿✿✿✿✿
atmospheric CO2 ✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿
errors

✿✿✿✿✿✿
would

✿✿✿✿✿✿
likely

✿✿✿✿✿✿
covary

✿✿
at

✿✿✿✿✿✿✿✿✿✿
time-scales

✿✿✿✿✿✿✿✿✿✿✿✿
characteristic

✿✿
of

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿✿✿✿
synoptic-scale

✿✿✿
air

✿✿✿✿
flow.

✿✿✿✿✿
Over

✿✿✿✿✿
large CO2 ✿✿✿✿✿✿✿✿✿✿

source/sink
✿✿✿✿✿✿✿
regions,

✿✿✿
by

✿✿✿✿✿✿✿
contrast,

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations

✿✿✿
are

✿✿✿✿✿
likely

✿✿✿✿✿✿✿✿✿✿
influenced

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿
strongly

✿✿
by

✿✿✿✿✿✿✿✿✿
processes

✿✿✿✿
that

✿✿✿✿✿
occur

✿✿✿✿
over

✿✿✿✿✿✿✿
smaller

✿✿✿✿
time

✿✿✿✿✿✿✿✿
periods

✿
–
✿✿✿✿✿✿✿✿✿✿
grid-scale

✿✿✿✿✿✿
winds

✿✿
or

✿✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿
layer

✿✿✿✿✿✿✿
mixing.

✿✿✿
In

✿✿✿✿✿✿✿✿
addition,

✿✿✿✿✿✿✿✿✿
sustained10

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
errors

✿✿✿✿✿
over

✿✿✿✿✿✿✿
regions

✿✿
of

✿✿✿✿✿
large

✿✿✿✿✿✿✿✿✿
biosphere

✿✿✿✿
flux

✿✿✿✿✿
would

✿✿✿
be

✿✿✿✿✿
more

✿✿✿✿✿
likely

✿✿✿
to

✿✿✿✿✿✿
cancel

✿✿✿
out

✿✿
at

✿✿✿✿✿✿
longer

✿✿✿✿
time

✿✿✿✿✿✿
scales

✿
–
✿✿✿✿
due

✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿
diurnal

✿✿✿✿✿
cycle

✿✿✿
of

✿✿✿✿✿✿✿✿✿
biosphere CO2 ✿✿✿✿✿✿

uptake
✿✿✿✿
and

✿✿✿✿✿✿✿
release.

✿✿
In

✿✿✿✿✿✿✿✿
addition

✿✿
to

✿✿✿✿✿✿✿
remote

✿✿✿✿
and

✿✿✿✿✿✿
ocean

✿✿✿✿✿✿✿✿
regions,

✿
month-long transport uncertainties are

✿✿✿✿
also

✿
large

across the entire northern hemisphere during Februaryeven though biospheric fluxes are weak
during that time period. Asubsequent section (3.4 )

✿✿✿✿✿✿✿✿
Northern

✿✿✿✿✿✿✿✿✿✿✿
Hemisphere

✿✿✿✿✿✿✿
during

✿✿✿✿✿✿✿✿✿
February.15

✿✿
A

✿✿✿✿✿✿✿✿✿✿
subsequent

✿✿✿✿✿✿
Sect.

✿✿✿✿
3.4

✿
explores possible reasons why these month-long biases occur. In

particular, the case study discussed in that section provides insight into why the month-long
uncertainties may be large across the northern hemisphere during winter.

A variogram analysis provides an additional measure of the error correlations in CO2

transport (see section 2.3 and the supplement). Based upon this analysis, we estimate CO220

transport error decorrelation times of 2.2 and 2.3 days at global atmospheric CO2 observation
sitesduring February and July, respectively (see Table S1). The error decorrelation times are
generally longer

3.3
✿✿✿✿
Case

✿✿✿✿✿✿
study

✿✿✿
1:

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿
temporally-

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
spatially-covarying

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿✿
relative

✿✿
to

✿✿
a CO2 ✿✿✿

flux
✿✿✿✿✿✿✿✿✿
estimate25

✿✿✿
We

✿✿✿✿✿✿✿✿
construct

✿✿
a

✿✿✿✿
case

✿✿✿✿✿
study

✿✿
to

✿✿✿✿✿✿✿✿✿✿
understand

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
importance

✿✿
of

✿✿✿✿✿✿✿✿
temporal

✿✿✿✿
and

✿✿✿✿✿✿
spatial

✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿
relative

✿✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of CO2 ✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿
fluxes.

✿✿✿✿✿✿
Figure

✿✿
4
✿✿✿✿✿✿✿✿
displays

✿✿✿✿
the

✿✿✿✿✿✿
results

✿✿
of

✿✿✿✿
this

✿✿✿✿✿✿✿✿
analysis

✿✿✿
for

✿
a
✿✿✿✿✿✿✿✿✿
selection

✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿✿
representative

✿✿✿✿✿✿✿
global CO2 ✿✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿
sites

✿✿✿✿✿
from

✿✿✿✿✿✿
Asia,

✿✿✿✿✿✿✿
Europe,

✿✿✿✿
and

✿✿✿✿✿✿
North

✿✿✿✿✿✿✿✿
America.

✿✿✿✿
The

✿✿✿✿✿✿
y-axis

✿✿
of

✿✿✿✿✿
each

✿✿✿
bar

✿✿✿✿
plot

✿✿✿✿✿✿✿✿
indicates

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
difference

✿✿✿✿✿✿✿✿
between

✿✿✿
the

✿✿✿
top

✿✿✿✿
and

✿✿✿✿✿✿✿
bottom

✿✿
of

✿✿✿
the
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✿✿
95%

✿✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿
interval

✿✿
in

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
mean

✿✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations.

✿✿✿✿
We

✿✿✿✿
first

✿✿✿✿✿✿✿✿
consider

✿✿✿
the

✿✿✿✿✿✿
results

✿✿✿✿✿
when

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿
errors

✿✿✿✿
are

✿✿✿✿✿✿✿✿
included

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿
analysis

✿✿✿✿✿✿
(dark

✿✿✿✿
blue

✿✿✿✿
bars)

✿✿✿✿
and

✿✿✿✿✿
then

✿✿✿✿✿✿✿✿
compare

✿✿✿✿✿✿
those

✿✿✿✿✿✿
results

✿✿
to

✿✿
a
✿✿✿✿✿✿
setup

✿✿
in

✿✿✿✿✿✿
which

✿✿✿✿
we

✿✿✿✿✿✿✿
remove

✿✿✿✿✿
these

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances5

✿✿✿✿✿
(light

✿✿✿✿
blue

✿✿✿✿✿✿
bars).

✿✿
At

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿
selection

✿✿
of

✿✿✿✿✿
sites,

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
mean

✿✿✿✿✿✿✿✿✿
afternoon

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations

✿✿✿✿✿
range

✿✿✿✿
from

✿✿✿✿
1.6

✿✿
to

✿✿✿
2.8 ppm

✿✿✿✿✿
(dark

✿✿✿✿
blue

✿✿✿✿✿✿
bars).

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
are

✿✿✿✿✿
lower

✿
at marine sites (average of

2.9 and 2.7 days in February and July, respectively) or at
✿✿✿
like

✿✿✿✿✿
RYO

✿✿✿✿
and

✿✿✿✿✿
TTA

✿✿✿
and

✿✿✿✿
are

✿✿✿✿✿✿
higher

✿✿
at

✿✿✿✿✿✿✿✿✿✿
continental

✿✿✿✿
sites

✿✿✿✿✿✿✿
located

✿✿✿✿✿
near

✿✿✿✿✿
large

✿✿✿✿✿✿✿✿✿✿
biospheric

✿✿✿✿✿✿
fluxes,

✿
sites that are far from large CO2 fluxes.10

For example, the longest error decorrelation times occur at coastal sites in Japan, Korea and the
Canary Islands. In contrast, decorrelation times are usually shorter than average for observation
sites on the European mainland

✿✿✿
like

✿✿✿✿✿
FSD

✿✿✿✿✿
and

✿✿✿✿✿
WBI.

✿✿✿✿✿✿
Note

✿✿✿✿
that

✿✿✿✿
this

✿✿✿✿✿✿✿✿
analysis

✿✿✿✿✿
only

✿✿✿✿✿✿✿✿✿
considers

✿✿✿✿✿✿✿✿
estimated

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
due

✿✿✿
to

✿✿✿✿✿✿✿✿✿✿✿✿
meteorology.

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿
capabilities

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿✿✿✿
observations

✿✿✿✿✿
would

✿✿✿✿✿✿✿✿✿✿
deteriorate

✿✿
if
✿✿✿✿✿✿

other
✿✿✿✿✿
errors

✿✿✿✿✿
were

✿✿✿✿✿✿✿✿✿
included,

✿✿✿✿✿
such

✿✿
as

✿✿✿✿✿✿
those

✿✿✿
due

✿✿✿
to

✿✿✿✿✿✿✿✿✿
imperfect

✿✿✿✿✿✿✿✿✿✿✿✿✿
measurements15

✿✿
or

✿✿✿✿
due

✿✿
to

✿✿✿✿✿
finite

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿
resolution

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Gerbig et al., 2003; Masarie et al., 2011) .

This level of temporal correlation in the
✿✿✿
We

✿✿✿✿✿✿✿✿✿✿✿✿
subsequently

✿✿✿✿✿✿✿
remove

✿✿✿✿✿✿✿✿✿
temporal

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿
the

✿✿✿✿✿✿
errors

✿✿
to

✿✿✿✿✿✿✿✿
identify

✿✿✿✿
the

✿✿✿✿
role

✿✿✿✿
that

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿
play

✿✿✿
in

✿
CO2 ✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
at

✿✿✿
the

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
scale.

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿
results

✿✿✿
are

✿✿✿✿✿✿✿✿✿
displayed

✿✿✿
as

✿✿✿✿✿
light

✿✿✿✿
blue

✿✿✿✿✿
bars

✿✿
in

✿✿✿✿
Fig.

✿✿✿
4.

✿✿✿✿✿✿
When

✿✿✿
we

✿✿✿✿✿✿✿
remove

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
covariances,

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-scale

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
are

✿✿✿✿✿
much

✿✿✿✿✿✿✿
smaller

✿✿
–
✿✿✿
by

✿✿
a

✿✿✿✿✿
factor

✿✿✿
of

✿✿✿✿✿
5-20

✿✿
at

✿✿✿
the20

✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿
sites.

✿✿
If

✿✿✿
the CO2 transport errors implies several large-scale conclusions

for estimating CO2 fluxes. First, observation sites that are far from large fluxes are more likely
to produce a biased CO2 budget than sitesnear to large surface fluxes. These ‘remote’ sites
see a lower CO2 signal from surface fluxes, and

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
errors

✿✿✿✿✿
were

✿✿✿✿✿✿✿✿✿✿
temporally

✿✿✿✿✿✿✿✿✿✿✿✿
independent,

✿✿✿✿
then

✿✿✿✿✿✿
errors

✿✿✿
of

✿✿✿✿✿✿✿✿
opposite

✿✿✿✿✿
sign

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿✿✿✿
would

✿✿✿✿✿✿✿
cancel

✿✿✿✿
out

✿✿
to

✿✿
a
✿✿✿✿✿✿✿

degree
✿✿✿✿✿✿

when25

✿✿✿✿✿✿✿✿
averaged

✿✿✿✿
over

✿✿✿✿
one

✿✿✿✿✿✿✿
month

✿✿✿✿✿
(light

✿✿✿✿✿
blue

✿✿✿✿✿
bars).

✿✿✿✿✿✿✿✿
Instead,

✿
the transport errors at these locations are

generally correlated over longer periods of time. Second, most existing top-down studies will
underestimate the uncertainties in estimated CO2 fluxes. Existing inversions rarely account for
error correlations in CO2 transport and most likely underestimate the posterior uncertainties as a
direct result. The next section (3.3) quantifies the impact of the transport uncertainties discussed
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above on surface flux estimation
✿✿✿✿✿✿
covary

✿✿✿
in

✿✿✿✿✿
time,

✿✿✿✿
and

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿
covariance

✿✿✿✿✿✿✿✿
prevents

✿✿✿
the

✿✿✿✿✿✿
errors

✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿
averaging

✿✿✿✿✿
down

✿✿✿✿✿
(dark

✿✿✿✿
blue

✿✿✿✿✿✿
bars).

✿✿
A

✿✿✿✿✿✿✿✿✿
multi-site

✿✿✿✿✿✿✿✿✿✿✿
comparison

✿✿
in

✿✿✿✿
Fig.

✿
4
✿✿✿✿✿✿✿✿✿✿✿✿
additionally

✿✿✿✿✿✿✿✿
indicates

✿✿✿
the

✿✿✿✿
role

✿✿
of

✿✿✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿
the5

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors;

✿✿✿
the

✿✿✿✿✿✿
figure

✿✿✿✿✿✿
shows

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in CO2 ✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿✿✿
when

✿✿✿✿✿✿✿✿
averaged

✿✿✿✿✿✿
across

✿✿✿✿✿✿✿
multiple

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿
sites

✿✿✿✿✿✿
within

✿✿✿
an

✿✿✿✿✿✿✿✿✿✿✿
eco-region.

✿✿✿
We

✿✿✿✿✿✿✿✿✿
compute

✿✿✿
the

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿✿✿✿
average

✿✿✿✿✿✿✿✿✿
afternoon

✿✿✿✿✿✿✿✿✿✿✿✿
concentration

✿✿✿✿✿✿
across

✿✿✿✿✿✿✿✿
multiple

✿✿✿✿
sites

✿✿✿
for

✿
a
✿✿✿✿✿✿
given

✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿
member.

✿✿✿✿
We

✿✿✿✿
then

✿✿✿✿✿✿✿✿
estimate

✿
a
✿✿✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿
interval

✿✿✿✿✿
based

✿✿✿✿✿
upon

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
distribution

✿✿
of

✿✿✿✿
the

✿✿
64

✿✿✿✿✿✿✿✿✿
ensemble

✿✿✿✿✿✿✿✿✿
members.

3.4 Case study 1: How biased would CT fluxes need to be before that bias were detectable10

above the CO2 transport uncertainties?

We use a case study from CT to understand how transport errors translate into uncertainty in
a top-down,

✿✿✿✿
The

✿✿✿✿✿✿
results

✿✿✿✿✿✿✿✿
indicate

✿
a
✿✿✿✿✿✿

large
✿✿✿✿✿✿
degree

✿✿✿
of

✿✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿✿✿
covariance

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2

flux estimate. In specific, if the flux scaling factors estimated by CT were incorrect, how wrong
would those scaling factors need to be before the problem were detectable above atmospheric15

transport errors?
Figure ?? shows the results of this case study (described in section 2.4) at a selection of

global CO2 observation sites. The y-axis of each bar plot shows the minimum bias that would be
detectable using hourly-averaged CO2 observations collected over an entire month. The mean
minimum detectable bias across all non-marine sites is 29(at a month-long time scale).The20

results are not substantially different at short versus tall non-marine tower sites: 27and 31,
respectively. In other words, the tall towers examined in this analysisare neither more or less
sensitive to biased CO2 fluxes in comparison to the set of short towers in Fig. ??. At marine
sites, in contrast,

✿✿✿✿✿✿
errors.

✿✿
If

✿✿✿✿
the

✿✿✿✿✿✿
errors

✿✿✿
had

✿✿✿✿
no

✿✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿✿✿✿
covariance,

✿✿✿✿✿
those

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿
would

✿✿✿✿✿✿✿
average

✿✿✿✿✿
down

✿✿
as

✿✿✿✿✿✿
more

✿✿✿✿
and

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿
sites

✿✿✿✿✿✿
were

✿✿✿✿✿✿
added

✿✿
to

✿
the minimum detectable bias is far25

larger: 76on average.
✿✿✿✿✿✿✿✿
analysis.

✿✿✿✿✿✿✿✿✿
However,

✿✿✿
the

✿✿✿✿✿
dark

✿✿✿✿
blue

✿✿✿✿
bars

✿✿
in

✿✿✿✿✿
Fig.

✿
4
✿✿✿✿✿
have

✿✿
a

✿✿✿✿✿✿
similar

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿✿✿✿✿✿✿✿
irrespective

✿✿✿
of

✿✿✿✿✿✿✿
whether

✿✿✿✿
the

✿✿✿✿✿✿✿✿
analysis

✿✿✿✿
was

✿✿✿✿✿✿✿✿✿
conducted

✿✿✿
on

✿✿✿
an

✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿
site

✿✿✿
or

✿✿✿
on

✿
a
✿✿✿✿✿✿✿✿✿✿
collection

✿✿
of

✿✿✿✿✿
many

✿✿✿✿
sites

✿✿✿✿✿
from

✿✿✿
an

✿✿✿✿✿✿✿✿✿✿
ecoregion;

✿✿✿
the

✿✿✿✿✿✿
errors

✿✿✿✿✿
must

✿✿✿✿✿✿✿✿
therefore

✿✿✿✿✿✿✿
covary

✿✿
in

✿✿✿✿✿✿
space.

✿✿✿
In

✿✿✿✿✿✿✿✿
contrast,

✿✿✿
the

✿✿✿✿✿
light

✿✿✿✿
blue

✿✿✿✿
bars

✿✿✿✿✿
(i.e.,

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿✿✿✿
removed)

✿✿✿
do

✿✿✿✿✿✿✿✿
decrease

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
at

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
eco-region

✿✿✿✿✿
scale

20



D
iscussion

Paper
|

D
iscussion

Paper
|

D
iscussion

Paper
|

D
iscussion

Paper
|

✿✿✿✿✿✿
relative

✿✿✿
to

✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿
sites.

✿✿✿
In

✿✿✿✿
that

✿✿✿✿✿
case,

✿✿✿
the

✿✿✿✿✿✿
errors

✿✿✿
do

✿✿✿✿✿✿✿
average

✿✿✿✿
out

✿✿✿✿✿
when

✿✿✿✿✿
more

✿✿✿✿
and

✿✿✿✿✿
more

✿✿✿✿
sites

✿✿✿
are

✿✿✿✿✿✿✿✿
included

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿
analysis.

These results show
✿✿✿✿✿✿
Figure

✿✿
5

✿✿✿✿✿✿
places

✿✿✿
the

✿✿✿✿✿✿
results

✿✿✿
of

✿✿✿✿
case

✿✿✿✿✿
study

✿✿✿✿
one

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿
context

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿
fluxes.

✿✿✿✿
This

✿✿✿✿✿✿
figure

✿✿✿✿✿✿✿
displays

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿

transport
✿✿✿✿
(the

✿✿✿✿✿
dark

✿✿✿✿
blue

✿✿✿✿
bars

✿✿
in

✿✿✿
Fig.

✿✿✿
4)

✿✿
as

✿✿
a
✿✿✿✿✿✿✿
fraction

✿✿✿
of

✿✿✿
the

✿✿✿✿✿
mean

✿✿✿✿✿✿✿✿✿
afternoon

✿
CO2 ✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿✿✿
enhancement.

✿✿✿
As

✿✿✿✿✿✿✿✿✿
discussed

✿✿
in5

✿✿✿✿
Sect.

✿✿✿✿
2.4,

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿✿✿✿
enhancement

✿✿✿✿✿✿✿✿✿✿✿✿
approximates

✿✿✿✿
the CO2 ✿✿✿✿✿✿✿✿✿

increment
✿✿✿✿
due

✿✿✿
to

✿✿✿✿✿✿✿
regional

✿✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿
fluxes,

✿✿✿
and

✿✿
a
✿✿✿✿✿✿✿
similar

✿✿✿✿✿
CO2✿✿✿✿✿✿✿✿✿

increment
✿✿✿

is
✿✿✿✿✿
used

✿✿✿
by

✿
a number of additional trends across the different

observation sites. In general, towers that are near large sources are better able to detect bias in
the modeled fluxes. These include observation sitesin the central and eastern US or in Germany
and Eastern Europe – sites that are strongly influence by terrestrial (versus marine) airflow10

relative to other locations. Most of these towers see large signals from biospheric fluxes during
summer (Figs.S9–S14).Other towers, in contrast, are less sensitive to detecting bias during the
summertime (e. g., the marine towers and towers in

✿✿✿✿✿✿✿✿
top-down

✿✿✿✿✿✿✿
studies

✿✿✿
to

✿✿✿✿✿✿✿✿
estimate

✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿
fluxes.

✿✿✿
At

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿✿
sites,

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
uncertainty

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿✿✿✿✿

constitutes
✿✿✿✿✿✿
13-150%

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿
average

✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿
layer

✿
CO2✿✿✿✿✿✿✿✿✿✿✿✿

enhancement.
✿✿✿✿✿
This

✿✿✿✿✿✿✿✿✿✿
percentage

✿✿
is

✿✿✿✿✿✿
highest

✿✿✿
at

✿✿✿✿✿✿
marine15

✿✿✿✿
sites

✿✿✿✿
like

✿✿✿✿✿✿
RYO

✿✿✿✿
and

✿✿✿✿✿
TTA

✿✿✿✿
that

✿✿✿✿
see

✿✿
a

✿✿✿✿✿✿✿✿✿
relatively

✿✿✿✿✿✿
small

✿✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿✿✿
enhancement,

✿✿✿✿
and

✿✿✿✿
the

✿✿✿✿✿✿
relative

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
is

✿✿✿✿✿✿✿✿
smallest

✿✿
at

✿✿✿✿✿
sites

✿✿✿✿
that

✿✿✿
see

✿✿
a
✿✿✿✿✿
very

✿✿✿✿✿
large

✿✿✿✿✿✿✿✿✿✿✿✿
enhancement

✿✿✿
due

✿✿✿
to

✿✿✿✿✿
large

✿✿✿✿✿✿✿✿✿✿✿✿
summertime

✿✿✿✿✿✿✿✿✿✿
vegetation

✿✿✿✿✿✿
fluxes

✿✿✿✿✿
(e.g.,

✿✿
at
✿✿✿✿

the
✿✿✿✿✿
WBI

✿✿✿✿✿
site).

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
due

✿✿
to

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿
are

✿✿✿✿✿✿✿✿✿✿
substantial

✿✿✿✿✿✿✿
relative

✿✿
to

✿
the western US). The western US towers

✿✿✿✿✿✿
fluxes,

✿✿✿
but

✿✿✿✿
only

✿✿✿✿✿
when

✿✿✿
we

✿✿✿✿✿✿✿
include

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
error.

✿✿✿✿✿✿
When

✿✿✿
we

✿✿✿✿✿✿✿
remove

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿
covariances,

✿✿✿
the20

✿✿✿✿✿✿✿✿✿✿
uncertainty

✿✿
in

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿✿✿
average

✿✿✿✿✿✿✿✿✿
afternoon

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations

✿✿✿✿✿
drops

✿✿✿
to

✿✿✿✿
only

✿✿✿✿✿
2-22%

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿
boundary

✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿✿✿
enhancement.

✿

✿✿✿✿
The

✿✿✿✿✿✿
results

✿✿
of

✿✿✿✿
this

✿✿✿✿✿✿✿
analysis

✿✿✿✿✿
hold

✿✿✿✿✿✿
several

✿✿✿✿✿✿✿✿✿✿✿✿
implications

✿✿✿
for

✿✿✿✿✿
future

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
inversions

✿✿✿✿✿✿
and/or

✿✿✿✿✿✿✿✿
top-down

✿✿✿✿✿✿✿
studies

✿✿✿✿
that

✿✿✿✿✿✿✿✿
optimize

✿
CO2 ✿✿✿✿✿✿

fluxes.
✿✿✿✿✿
Most

✿✿✿✿✿✿✿
existing

✿✿✿✿✿✿✿✿✿✿
inversions

✿✿✿✿✿✿✿
account

✿✿✿✿
for

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

CO2 ✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿
errors

✿✿✿
in

✿✿✿✿✿
their

✿✿✿✿✿✿✿✿✿
statistical

✿✿✿✿✿✿✿
setup.

✿✿✿
In

✿✿
a
✿✿✿✿✿✿✿✿✿
Bayesian

✿✿✿✿✿✿✿✿✿
synthesis

✿✿✿
or

✿✿✿✿✿✿✿✿✿✿✿✿✿
geostatistical25

✿✿✿✿✿✿✿✿
inversion, for example, are surrounded by weak biosphere uptake that is diluted into a larger
mixed layer during summer. But during summer, transport uncertainties increase due to
large seasonal fluxes in adjacent regions. The sensitivity of the marine Japanese and Korean
sites also declines in the summer. At these sites,

✿✿✿
this

✿✿✿✿✿✿✿✿✿✿✿✿
information

✿✿
is
✿✿✿✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿✿✿
into

✿✿
a
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✿✿✿✿✿✿✿✿✿
covariance

✿✿✿✿✿✿✿
matrix,

✿✿✿✿
and

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿✿
covariance

✿✿✿✿✿✿
matrix

✿✿
is

✿✿✿✿✿
used

✿✿
as

✿✿✿
an

✿✿✿✿✿
input

✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿✿
equation

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿
optimizes

✿✿✿
the

✿
CO2 ✿✿✿✿✿✿

fluxes
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Enting, 2002; Michalak et al., 2004; Ciais et al., 2011) .

✿✿✿✿✿✿✿✿✿
However,

✿✿✿✿
the

✿✿✿✿✿✿✿
majority

✿✿✿
of

✿✿✿✿✿✿✿✿
existing

✿✿✿✿✿✿✿
studies

✿✿✿✿✿✿✿✿
assume

✿✿✿✿
that

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿✿
covariance

✿✿✿✿✿✿✿
matrix

✿✿
is

✿✿✿✿✿✿✿✿✿
diagonal

✿✿✿✿✿
(i.e.,

✿✿✿
no

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿✿
covariances),

✿✿
in

✿✿✿✿
part,

✿✿✿✿✿✿✿✿
because

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿
temporal

✿✿✿
and

✿✿✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
are

✿✿✿✿✿✿✿✿✿✿✿
challenging

✿✿
to

✿✿✿✿✿✿✿✿
estimate5

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Lin and Gerbig, 2005; Lauvaux et al., 2009) .

✿✿✿✿
The

✿✿✿✿✿✿
present

✿✿✿✿✿✿
study,

✿✿
in

✿✿✿✿✿✿✿✿
contrast,

✿✿✿✿✿✿✿✿
indicates

✿✿✿✿
that

✿✿✿✿
both

✿✿✿✿✿✿✿✿
temporal

✿✿✿✿
and

✿✿✿✿✿✿✿
spatial

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿
play

✿✿✿
an

✿✿✿✿✿✿✿✿✿
important

✿✿✿✿
role

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-scale

✿✿✿✿✿✿
errors

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
transport.

✿✿✿✿✿✿✿✿
Ignoring

✿✿✿✿✿
these

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿
could

✿✿✿✿
lead

✿✿
to

✿✿✿✿✿✿✿✿✿
numerous

✿✿✿✿✿✿✿✿✿✿
challenges.

✿✿✿✿✿✿
When

✿✿✿
we

✿✿✿✿
add

✿✿✿✿✿
more

✿✿✿✿
data

✿✿
at

✿✿
an

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿
site

✿✿✿
or

✿✿✿✿
add

✿✿✿✿✿
more

✿✿✿✿✿
sites

✿✿✿
the

✿✿✿✿✿✿✿✿✿
analysis,

✿✿✿
the

✿✿✿✿✿✿
actual

✿✿✿✿✿✿
errors

✿✿✿
do

✿✿✿✿
not

✿✿✿✿✿✿✿
average

✿✿✿✿✿✿
down10

✿✿
to

✿✿✿
the

✿✿✿✿✿✿
extent

✿✿✿✿✿
that

✿✿✿✿✿✿✿✿✿✿✿
uncorrelated

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿
would.

✿✿✿✿✿✿✿
Rather,

✿✿✿✿✿✿✿
adding

✿✿✿✿✿✿
more

✿✿✿✿
data

✿✿✿
or

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿
sites

✿✿✿✿✿✿✿✿
provides

✿✿✿✿✿✿
more

✿✿✿✿✿✿✿
limited

✿✿✿✿✿
gains

✿✿✿
in

✿✿✿✿✿✿✿✿✿
accuracy.

✿✿✿✿
As

✿
a
✿✿✿✿✿✿✿

result,
✿✿✿
an

✿✿✿✿✿✿✿✿✿
inversion

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿
overlooks

✿✿✿✿
the

✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿
will

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿
the signal from surface fluxes is largest in

winter. During summer, biosphere uptake somewhat cancels the signal from large anthropogenic
emissions in China. CO2 ✿✿✿✿✿✿

fluxes
✿✿✿✿
that

✿✿✿✿
are

✿✿✿
too

✿✿✿✿✿✿✿
small,

✿✿✿✿✿✿
and/or

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
inversion

✿✿✿✿✿
may

✿✿✿✿✿✿✿✿✿✿✿
erroneously15

✿✿✿✿
map

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿
onto

✿✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿
fluxes

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Stephens et al., 2007) .

✿✿✿✿✿✿
Future

✿✿✿✿✿✿✿✿
inversion

✿✿✿✿✿✿✿
studies

✿✿✿✿✿
could

✿✿✿✿✿✿
better

✿✿✿✿✿✿✿
account

✿✿✿
for

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
by

✿✿✿✿✿✿✿✿✿
including

✿✿✿✿✿✿✿✿✿✿✿
off-diagonal

✿✿✿✿✿✿
terms

✿✿
in

✿✿✿
one

✿✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿✿✿✿✿
matrices

✿✿✿✿
used

✿✿✿
by

✿✿✿
the

✿✿✿✿✿✿✿✿✿
inversion.

✿

✿✿✿✿
The

✿✿✿✿
next

✿✿✿✿
case

✿✿✿✿✿✿
study

✿✿✿✿✿✿✿
(section

✿✿✿✿
3.4)

✿✿✿✿✿✿✿✿
explores

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿
factors

✿✿✿
that

✿✿✿✿✿
may

✿✿
be

✿✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿
with

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
persistent

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿
errors.20

Note that this analysis only considers uncertainties due to meteorology. The capabilities of
the atmospheric observations would deteriorate if other errorswere included (e. g., measurement
errors or errors due to model resolution).

3.4 Case study 2: Which meteorological factors are associated with sustained, month-
long atmospheric transport biases?25

We now examine the results of the
✿
In

✿✿✿✿
this

✿✿✿✿✿
case

✿✿✿✿✿✿
study,

✿✿✿
we

✿✿✿✿
use

✿✿
a
✿
synthetic tracer experiment

(section
✿✿✿✿
Sect.

✿
2.5) to uncover possible drivers of atmospheric transport biases .

✿
at

✿✿✿✿✿✿✿✿✿✿✿
month-long

✿✿✿✿
time

✿✿✿✿✿✿
scales.

✿✿✿✿
The

✿✿✿✿✿✿✿✿
previous

✿✿✿✿✿✿✿
section

✿✿✿✿✿
(3.3)

✿✿✿✿✿✿✿✿
explored

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
importance

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric
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CO2 ✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿
errors,

✿✿✿
and

✿✿✿✿
this

✿✿✿✿✿✿
section

✿✿✿✿✿✿✿✿✿✿✿
investigates

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
conditions

✿✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿
with

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿
persistent

✿✿✿✿✿✿✿
errors.

Figure
✿
6 displays the coefficient of variation (CV) for monthly-averaged surface concentra-

tions of the synthetic tracer. The CV, a unitless quantity, does not just indicate where the uncer-5

tainties are largest. Rather, the CV indicates the magnitude of these uncertainties relative to the
mean modeled tracer concentration. Arguably, this noise-to-signal ratio measures the influence
of transport uncertainties more effectively than a

✿
simple standard deviation. The remainder of

this section focuses only on land regions because most existing top-down studies focus on land
fluxes.10

This coefficient shows a
✿
number of distinctive seasonal and spatial patterns. Like the uncer-

tainties in monthly-averaged CO2 (Figs.CO2 ✿✿✿✿
(Fig.

✿
2c and 2d), the CV in Fig. 6 is highest in

✿✿✿✿✿✿✿✿
terrestrial

✿
boreal and arctic regions of the northern hemisphere

✿✿✿✿✿✿✿✿
Northern

✿✿✿✿✿✿✿✿✿✿✿✿
Hemisphere during

winter. The CV is lowest over Europe, Australia, and the Amazon during all seasons.
✿✿✿✿
The

✿✿✿
CV

✿✿✿
in

✿✿✿✿
Fig.

✿✿
6

✿✿✿✿✿✿✿
exhibits

✿✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿
patterns

✿✿✿✿
over

✿✿✿✿✿
land

✿✿✿✿
and

✿✿✿✿✿
ocean

✿✿✿✿✿✿✿✿
regions,

✿✿✿✿
and

✿✿✿✿✿
these15

✿✿✿✿✿✿✿✿✿
respective

✿✿✿✿✿✿✿
patterns

✿✿✿✿✿✿✿✿✿
correlate

✿✿✿✿
with

✿✿✿✿✿✿✿✿✿
different

✿✿✿✿
sets

✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
variables.

✿✿✿✿✿
Over

✿✿✿✿
the

✿✿✿✿✿✿✿
oceans,

✿✿✿
for

✿✿✿✿✿✿✿✿
example,

✿✿✿✿✿
high

✿✿✿✿
CV

✿✿✿✿✿✿
values

✿✿
in

✿✿✿✿✿
Fig.

✿✿
6a

✿✿✿✿
are

✿✿✿✿✿✿✿✿
clustered

✿✿✿
in

✿✿✿✿✿
zonal

✿✿✿✿✿✿
bands

✿✿
–
✿✿✿✿✿
along

✿✿✿✿
the

✿✿✿✿✿✿✿
equator

✿✿✿✿
and

✿✿✿✿✿
along

✿✿✿✿✿✿
40◦S.

✿✿
In

✿✿✿✿✿✿✿✿
contrast,

✿✿✿✿✿
high

✿✿✿✿
CV

✿✿✿✿✿✿
values

✿✿✿
do

✿✿✿✿
not

✿✿✿✿✿✿✿
cluster

✿✿✿✿
into

✿✿✿✿✿
zonal

✿✿✿✿✿✿
bands

✿✿✿
to

✿✿✿
the

✿✿✿✿✿
same

✿✿✿✿✿✿✿
degree

✿✿✿✿
over

✿✿✿✿✿✿✿✿✿
terrestrial

✿✿✿✿✿✿✿
regions.

✿✿✿✿✿✿✿
Rather,

✿✿✿✿
CV

✿✿✿✿✿✿
values

✿✿✿
are

✿✿✿✿✿
often

✿✿✿✿✿
high

✿✿✿✿✿
when

✿✿✿✿✿✿✿✿✿✿✿✿
temperatures

✿✿✿
are

✿✿✿✿
low

✿✿✿✿✿
(e.g.,

✿✿✿✿
over

✿✿✿✿✿✿✿
Canada

✿✿
or

✿✿✿✿✿✿✿
Russian

✿✿✿
in

✿✿✿✿✿✿✿✿✿
February).

✿
20

We plot the synthetic tracer CV against numerous modeled meteorological parameters to
✿✿✿✿✿✿
further

✿
understand the possible drivers behind the transport uncertainties . Of the

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿✿✿✿✿
averaged

✿✿✿✿✿
over

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
time

✿✿✿✿✿✿✿
scales.

✿✿✿
To

✿✿✿✿
this

✿✿✿✿✿
end,

✿✿✿✿
we

✿✿✿✿✿✿✿✿
examine

✿✿✿✿✿✿✿✿✿✿
correlations

✿✿✿✿✿✿✿✿
between

✿✿✿✿
the

✿✿✿✿✿
tracer

✿✿✿✿
CV

✿✿✿✿
and

✿
60 variables tested (Table S2), seven of the variables

showed correlations (R2)
✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿✿
parameters,

✿✿✿✿✿✿✿✿✿
including

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿
the25

✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
variables.

✿✿✿✿✿✿✿
Figure

✿
7
✿✿✿✿✿✿✿✿
displays

✿✿✿
the

✿✿✿✿
two

✿✿✿✿✿✿✿✿✿
variables

✿✿✿✿
that

✿✿✿✿✿✿✿✿
correlate

✿✿✿✿✿
most

✿✿✿✿✿✿✿✿
strongly with

the tracer CV that are greater or equal to 0.3 (Fig. 7). Meteorological
✿✿✿✿
over

✿✿✿✿
land

✿✿✿✿✿✿✿
regions

✿✿✿✿
and

✿✿✿✿
over

✿✿✿✿✿
ocean

✿✿✿✿✿✿✿✿
regions,

✿✿✿✿✿✿✿✿✿✿✿
respectively.

✿

✿✿✿✿✿
Over

✿✿✿✿
land

✿✿✿✿✿✿✿
regions,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿
conditions that lead to high atmospheric stability and low

energy are most closely associated with persistent tracer uncertainties(relative to mean surface
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concentrations). For example, a
✿
high tracer CV is associated with low temperatures , low net

radiative flux,
✿✿✿✿✿✿✿✿✿✿✿
(R2 = 0.45)

✿✿✿✿
and

✿✿✿
low

✿✿✿✿✿✿✿
specific

✿✿✿✿✿✿✿✿✿
humidity

✿✿✿✿✿✿✿✿✿✿✿
(R2 = 0.40).

✿✿✿✿✿✿✿✿✿
Similarly,

✿✿
a
✿✿✿✿
high

✿✿✿✿✿✿
tracer

✿✿✿
CV

✿✿
is

✿✿✿✿✿✿✿✿✿
correlated

✿✿✿✿
with

✿
low net solar flux

✿✿✿✿✿✿✿✿✿✿
(R2 = 0.35), low planetary boundary layer height

✿✿✿✿✿✿✿✿✿✿✿
(R2 = 0.33),5

and low vertical diffusion diffusivity . Furthermore, many of the
✿✿✿✿✿✿✿✿✿✿✿
(R2 = 0.31).

✿✿✿✿✿
Note

✿✿✿✿
that

✿✿✿✿✿
many

✿✿
of

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
variables

✿✿✿
are

✿✿✿✿✿✿✿
closely

✿✿✿✿✿✿✿✿✿
correlated

✿✿✿✿✿
with

✿✿✿✿
one

✿✿✿✿✿✿✿
another,

✿✿✿
so

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿✿✿✿✿✿✿✿
correlations

✿✿✿✿✿
listed

✿✿✿✿✿
above

✿✿✿
are

✿✿✿
all

✿✿✿✿✿✿✿✿✿✿✿
interrelated.

✿

✿✿
In

✿✿✿✿✿✿✿✿
addition,

✿✿✿✿✿✿✿
several

✿✿✿
of

✿✿✿
the meteorological variables exhibit a

✿
nonlinear relationship with the

tracer CV; the ,
✿✿✿✿

and
✿✿✿✿
the

✿✿✿✿✿✿✿✿
potential

✿✿✿✿
for

✿✿✿✿
bias

✿✿
in

✿✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿✿✿
increases

✿✿✿✿✿
more10

✿✿✿✿✿✿✿
quickly

✿✿
in

✿✿✿✿✿✿
stable

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿✿✿✿
conditions.

✿✿✿
For

✿✿✿✿✿✿✿✿✿
example,

✿✿✿✿
the CV increases more quickly when

net radiation and planetary boundary heights are low.
✿✿
In

✿✿✿✿✿✿✿
contrast

✿✿✿
to

✿✿✿✿
land

✿✿✿✿✿✿✿✿
regions,

✿✿✿
the

✿✿✿✿✿
tracer

✿✿✿✿
CV

✿✿✿✿
over

✿✿✿
the

✿✿✿✿✿✿✿
oceans

✿✿
is

✿✿✿✿✿
most

✿✿✿✿✿✿
closely

✿✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿
with

✿✿✿✿
low

✿✿✿✿✿
zonal

✿✿✿✿✿
wind

✿✿✿✿✿✿
speeds

✿✿✿✿✿✿✿✿✿✿✿
(R2 = 0.29,

✿✿✿✿
Fig.

✿✿✿
7).

✿✿✿✿✿
Over

✿✿✿✿
land

✿✿✿✿✿✿✿
regions,

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿✿
correlation

✿✿
is

✿✿✿✿✿
zero.

✿✿✿✿✿✿✿✿✿✿✿✿
Uncertainties

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
over

✿✿✿
the

✿✿✿✿✿✿
oceans

✿✿✿
are

✿✿✿✿✿
also

✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿
with

✿✿✿✿
low

✿✿✿✿✿
PBL

✿✿✿✿✿✿✿
heights

✿✿✿✿✿✿✿✿✿✿✿
(R2 = 0.25).15

✿✿✿✿✿
These

✿✿✿✿
two

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿
variables

✿✿✿✿✿✿✿
explain

✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿
patterns

✿✿
in

✿✿✿✿
the

✿✿✿✿✿
tracer

✿✿✿✿
CV;

✿✿✿✿✿
PBL

✿✿✿✿✿✿
heights

✿✿✿✿
and

✿✿✿✿✿
zonal

✿✿✿✿✿
wind

✿✿✿✿✿✿
speeds

✿✿✿✿✿
over

✿✿✿
the

✿✿✿✿✿✿
ocean

✿✿✿✿
are

✿✿✿
not

✿✿✿✿✿✿✿✿✿✿
correlated

✿✿✿✿
with

✿✿✿✿
one

✿✿✿✿✿✿✿
another

✿✿✿✿✿✿✿✿✿
(R2 = 0),

✿✿✿
so

✿✿✿✿✿
these

✿✿✿✿
two

✿✿✿✿✿✿✿✿✿✿
parameters

✿✿✿✿
may

✿✿✿✿✿✿✿
indicate

✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿✿✿
processes

✿✿✿✿✿✿✿✿✿✿
underlying

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors.

✿

✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿
differences

✿✿✿✿✿✿✿✿
between

✿✿✿✿
land

✿✿✿✿
and

✿✿✿✿✿✿
ocean

✿✿✿✿✿✿✿
regions

✿✿✿✿
may

✿✿✿✿✿✿
reflect

✿✿✿✿✿✿✿✿✿✿✿
differences

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿
synoptic-scale

✿✿✿✿✿✿✿✿✿✿
circulation.

✿✿✿✿✿
Over

✿✿✿
the

✿✿✿✿✿✿✿✿
oceans,

✿✿✿✿
high

✿✿✿✿
CV

✿✿✿✿✿✿
values

✿✿✿✿
are

✿✿✿✿✿✿✿✿
clustered

✿✿✿
in

✿✿✿✿✿
zonal

✿✿✿✿✿✿✿
bands,

✿✿✿
and

✿✿✿✿✿✿
these

✿✿✿✿✿✿✿
clusters20

✿✿✿✿✿
often

✿✿✿✿✿
occur

✿✿
at

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
transition

✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿✿✿
distinctive

✿✿✿✿✿✿✿✿✿
synoptic

✿✿✿✿
flow

✿✿✿✿✿✿✿✿
patterns.

✿✿✿✿✿✿✿✿✿
Modeled

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿
tracer

✿✿✿✿✿✿✿✿
transport

✿✿
is

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿✿
uncertain

✿✿
in

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
transition

✿✿✿✿✿✿✿
regions

✿
–
✿✿
at

✿✿✿✿
the

✿✿✿✿✿✿✿✿
transition

✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿✿
southern

✿✿✿✿✿✿✿✿✿
westerlies

✿✿✿
and

✿✿✿✿✿✿✿✿
southern

✿✿✿✿✿
trade

✿✿✿✿✿✿
winds

✿✿✿✿
and

✿✿
at

✿✿✿
the

✿✿✿✿✿✿✿✿✿
transition

✿✿✿✿✿✿✿
between

✿✿✿
the

✿✿✿✿✿✿
North

✿✿✿✿✿✿✿✿
Atlantic

✿✿✿✿
trade

✿✿✿✿✿✿
winds

✿✿✿
and

✿✿✿✿✿
Gulf

✿✿✿✿✿✿✿
Stream.

✿✿✿✿✿✿
Zonal

✿✿✿✿✿✿
winds

✿✿✿✿
over

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
continents

✿✿✿
are

✿✿✿✿✿
often

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿
variable

✿✿✿✿
than

✿✿✿✿
over

✿✿✿✿
the

✿✿✿✿✿✿
oceans

✿✿✿✿
(Fig.

✿✿✿✿✿
S17),

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
do

✿✿✿
not

✿✿✿✿✿✿
cluster

✿✿✿✿
into

✿✿✿
the

✿✿✿✿✿
same

✿✿✿✿✿✿✿✿✿✿
distinctive,

✿✿✿✿✿
zonal25

✿✿✿✿✿✿
bands.

The results of this synthetic tracer experiment hold a
✿

number of potential applications
to top-down CO2 CO2 flux estimation. The danger of obtaining abiased CO2 ✿✿✿✿✿✿✿

biased
CO2 budget is likely higher in regions with consistent low energy ,

✿✿✿
and

✿
limited vertical

mixing, and /or high albedo. These biases are unlikely to be represented by most existing
inversion uncertainty calculations, as explained in the previous sections. Furthermore, the
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✿
.
✿✿
A

✿✿✿✿✿✿✿✿
number

✿✿
of

✿✿✿✿✿✿✿✿
existing

✿✿✿✿✿✿✿
studies

✿✿✿✿✿✿✿✿
indicate

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿
PBLH

✿✿✿✿
and

✿✿✿✿✿✿✿
vertical

✿✿✿✿✿✿✿✿
mixing

✿✿✿
are

✿✿✿✿✿✿
closely

✿✿✿✿
tied

✿✿✿
to

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿✿✿✿
estimated

✿✿✿✿✿
trace

✿✿✿
gas

✿✿✿✿✿✿✿✿✿
transport

✿✿✿
or

✿✿
in

✿✿✿✿✿✿✿✿✿
estimated

✿✿✿✿✿
trace

✿✿✿✿
gas

✿✿✿✿✿✿
fluxes

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Stephens et al., 2007; Williams et al., 2011; Miller et al., 2012; Pino et al., 2012; Kretschmer et al., 2012) .5

✿✿✿✿
This

✿✿✿✿✿✿
study

✿✿✿✿✿✿
further

✿✿✿✿✿✿✿✿✿
suggests

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿
sustained

✿✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿
due

✿✿
to

✿✿✿✿✿✿✿
PBLH

✿✿✿
are

✿✿✿✿✿✿
more

✿✿✿✿✿
likely

✿✿✿
in

✿✿✿✿✿✿
regions

✿✿✿
or

✿✿
at
✿✿✿✿✿✿

times
✿✿✿✿✿✿
when

✿✿✿✿
PBL

✿✿✿✿✿✿✿✿
heights

✿✿✿✿
and

✿✿✿✿✿✿✿
mixing

✿✿✿
are

✿✿✿✿✿✿✿✿✿✿✿
consistently

✿✿✿✿✿
low.

✿✿✿✿
The

✿
meteorological

model ensemble is not necessarily more uncertain
✿
in

✿
these regions (see Fig.S16-17). Note that

month-long CO2 transport biases did not correlate as strongly with meteorology uncertainties.
✿✿✿✿
Figs.

✿✿✿✿✿✿✿✿✿✿
S15-S16).

✿
Rather, the extent to which meteorological uncertainties translate into tracer10

transport uncertainties appears to depend, at least in part, on the stability and net energy input
associated with the boundary layer

✿✿✿✿
later.

✿✿
In

✿✿✿✿✿✿✿✿✿
summary,

✿✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿
layer

✿✿✿✿✿✿
energy

✿✿✿✿
and

✿✿✿✿✿✿
height

✿✿✿✿✿✿✿
explain

✿✿✿✿✿
some

✿✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿
patterns

✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿
estimated

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors,

✿✿✿
but

✿✿✿✿✿
other

✿✿✿✿✿✿✿✿
patterns

✿✿✿
are

✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿✿✿
synoptic

✿✿✿✿
flow

✿✿✿✿
and

✿✿✿
are

✿✿✿
not

✿✿✿✿✿✿
related

✿✿
to

✿✿
a
✿✿✿✿✿✿
single

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
parameter.

✿✿✿
In

✿✿✿✿
fact,

✿✿✿✿✿
over

✿✿✿✿
both

✿✿✿✿✿✿✿✿✿
terrestrial

✿✿✿✿
and

✿✿✿✿✿✿✿
oceanic

✿✿✿✿✿✿✿✿
regions,15

✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿
parameters

✿✿✿✿
only

✿✿✿✿✿✿✿
explain

✿✿
a
✿✿✿✿✿✿✿✿✿
maximum

✿✿✿
of

✿✿✿✿✿✿
29-45%

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
variability

✿✿
in

✿✿✿
the

✿✿✿✿✿
tracer

✿✿✿✿
CV.

✿✿✿✿
This

✿✿✿✿✿✿
result

✿✿✿✿✿✿✿
stresses

✿✿✿
the

✿✿✿✿✿✿
utility

✿✿
of

✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿
model

✿✿
to

✿✿✿✿✿✿✿✿
calculate

✿✿✿
the

✿✿✿✿✿✿✿✿✿
variances

✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿✿
rather

✿✿✿✿✿
than

✿✿✿✿✿✿✿
relying

✿✿
on

✿✿
a
✿✿✿✿✿✿
single,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿
proxy.

✿✿✿✿
Note

✿✿✿✿✿
that

✿✿✿
this

✿✿✿✿✿✿
study

✿✿✿✿✿
does

✿✿✿
not

✿✿✿✿✿✿✿✿
account

✿✿✿
for

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿
bottom-up,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
biogeochemical

✿✿✿✿
flux20

✿✿✿✿✿✿
models

✿✿✿✿
due

✿✿✿
to

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿
driving

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
variables.

✿✿✿✿
For

✿✿✿✿✿✿✿✿✿
example,

✿✿✿✿✿✿✿✿✿✿✿✿✿
process-based,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
biogeochemical

✿✿✿✿✿✿✿
models

✿✿✿
of

✿
CO2 ✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿

require
✿✿✿✿✿✿✿✿✿✿

estimates
✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
variables

✿✿✿✿
like

✿✿✿✿✿✿✿✿
humidity,

✿✿✿✿✿✿✿✿✿✿✿✿
temperature,

✿✿✿
or

✿✿✿✿✿✿✿✿✿✿✿✿
precipitation

✿✿
to

✿✿✿✿✿✿✿✿✿
compute

✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿
fluxes.

✿✿
A

✿✿✿✿✿✿✿✿
number

✿✿
of

✿✿✿✿✿✿✿✿
existing

✿✿✿✿✿✿
studies

✿✿✿✿✿
have

✿✿✿✿✿
used

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿
data

✿✿✿✿✿✿✿
and/or

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿
models

✿✿✿
to

✿✿✿✿✿✿✿
explore

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿
variables

✿✿✿✿
that

✿✿✿✿✿
drive CO2 ✿✿✿

flux
✿✿✿✿✿✿✿
models.

✿✿✿✿
For

✿✿✿✿✿✿✿✿
example,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Lin et al. (2011) explored

✿✿✿✿
how

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties25

✿✿
in

✿✿✿✿
flux

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿
drivers

✿✿✿✿✿✿✿✿
affected

✿✿✿✿✿✿
fluxes

✿✿✿✿✿✿✿✿✿
estimated

✿✿✿
for

✿✿✿✿✿✿✿✿✿
Canadian

✿✿✿✿✿✿✿
boreal

✿✿✿✿✿✿✿
forests.

✿✿✿✿✿
They

✿✿✿✿✿✿
found

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿
downward

✿✿✿✿✿✿✿✿✿
shortwave

✿✿✿✿✿✿✿✿✿
radiation

✿✿✿✿✿✿✿✿✿✿✿
contributed

✿✿
to

✿✿✿✿
the

✿✿✿✿✿✿
largest

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿
simulated

✿✿✿✿✿✿
fluxes.

✿✿✿✿✿✿✿✿✿
Similarly,

✿✿✿✿✿✿✿✿✿✿
numerous

✿✿✿✿✿✿
studies

✿✿✿✿✿✿✿✿
indicate

✿✿✿✿
that

✿✿✿✿
both

✿✿✿
air

✿✿✿✿✿✿✿✿✿✿✿✿
temperature

✿✿✿
and

✿✿✿✿✿✿✿✿✿
humidity

✿✿✿
are

✿✿✿✿✿✿
drivers

✿✿✿
of

✿
CO2 ✿✿✿✿✿

fluxes
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(e.g., Law et al., 2002; Gourdji et al., 2012) .

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿
variables

✿✿✿✿✿
(e.g.,

✿✿✿✿✿✿✿✿✿✿
downward

✿✿✿✿✿✿✿✿✿✿
shortwave

✿✿✿✿✿✿✿✿✿
radiation,

✿✿✿✿✿✿✿✿✿✿✿✿
temperature,

✿✿✿✿
and

✿✿✿✿✿✿✿
specific

✿✿✿✿✿✿✿✿✿✿
humidity)

✿✿✿✿✿✿✿✿
correlate

✿✿✿✿
with

✿✿✿
the

✿✿✿✿✿✿✿✿✿
persistent

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿✿✿✿✿
discussed

✿✿✿✿✿✿
earlier

✿✿
in

✿✿✿✿
this

✿✿✿✿✿✿✿
section.

✿✿
A

✿✿✿✿✿✿
future

25
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✿✿✿✿✿
study

✿✿✿✿✿✿
could

✿✿✿✿✿✿✿
connect

✿✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿
(in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
biogeochemical

✿✿✿✿✿✿✿
model

✿✿✿✿
and

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric5

✿✿✿✿✿✿✿✿✿
transport)

✿✿
to

✿✿✿✿
gain

✿✿✿
an

✿✿✿✿
even

✿✿✿✿✿✿✿✿
broader

✿✿✿✿✿✿
picture

✿✿✿
of

✿✿✿✿
how

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿
affect

✿
CO2 ✿✿✿

flux
✿✿✿✿✿✿✿✿
modeling

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
ultimately

✿✿✿✿✿✿✿✿✿
top-down

✿
CO2 ✿✿✿

flux
✿✿✿✿✿✿✿✿✿
estimates.

✿

In this paper, we use two case studies to investigate the potential for bias in top-down

4 Conclusions

✿✿✿
We

✿✿✿
use

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
CAM-LETKF

✿✿
to

✿✿✿✿✿✿✿
explore

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
characteristics

✿✿
of

✿✿✿✿✿✿✿✿✿✿
persistent,

✿✿✿✿✿✿✿✿✿
covarying

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO210

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿
errors

✿✿✿✿
and

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
implications

✿✿✿
of

✿✿✿✿✿
those

✿✿✿✿✿✿
errors

✿✿✿✿
for

✿
CO2 flux estimatesdue to errors in

modeled atmospheric CO2 transport
✿✿✿
flux

✿✿✿✿✿✿✿✿✿
estimates. The first case study examines the ability of

in situ atmospheric observations to detect bias in estimated
✿✿✿✿✿✿✿
explores

✿✿✿✿
the

✿✿✿✿✿✿✿
relative

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
of

✿✿✿✿✿
these

✿✿✿✿✿
errors

✿✿✿
at

✿✿✿
the

✿✿✿✿✿✿✿✿
monthly

✿✿✿✿✿
time

✿✿✿✿✿
scale

✿✿✿
and

✿✿✿✿
the

✿✿✿✿✿✿
effects

✿✿✿
of

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances.

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿✿
play

✿
a
✿✿✿✿✿✿✿
critical

✿✿✿✿
role

✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2fluxes. Among other results,15

✿
; we find that CT would need to be biased by 29

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿✿✿✿
increase

✿✿✿
by

✿✿
a
✿✿✿✿✿✿

factor
✿✿✿
of

✿✿✿✿✿
5–20

✿✿
at

✿✿✿✿✿✿✿✿✿
individual

✿✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿✿
sites

✿✿✿✿✿
when

✿✿✿✿
we

✿✿✿✿✿✿✿
include

✿✿✿✿
the

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿✿
covariances

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿
analysis.

✿✿✿✿✿✿
These

✿✿✿✿✿✿✿✿✿✿✿✿
monthly-scale

✿✿✿✿✿✿
errors

✿✿✿✿✿✿✿✿✿✿✿
correspond

✿✿✿
to

✿✿✿✿✿✿✿
13-150% , on average, before that bias were detectable

above CO2 transport uncertainties at terrestrial, atmospheric observation sites . These results
are strongly influenced by temporal correlations in the transport uncertainties. In other words,20

atmospheric CO2 ✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿
afternoon CO2 ✿✿✿✿✿✿✿✿✿✿✿✿

enhancement,
✿✿✿✿✿✿✿✿✿✿
depending

✿✿✿
on

✿✿✿
the

✿✿✿
site

✿✿✿
in

✿✿✿✿✿✿✿✿
question.

✿

✿✿✿✿✿✿✿
Existing

✿✿✿✿✿✿✿✿✿✿
top-down

✿✿✿✿✿✿✿
studies

✿✿✿✿✿
often

✿✿✿✿✿✿✿✿✿
overlook

✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿✿✿
covariances,

✿✿✿✿
and

✿✿✿✿✿
these

✿✿✿✿✿✿✿
results

✿✿✿✿✿✿
imply

✿✿✿✿
that

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 measurements contain less information about the fluxes than is usually

assumedby top-down studies that ignore transport error covariances
✿✿✿✿
often

✿✿✿✿✿✿✿✿
assumed. As aresult,

most existing inversions are likely to
✿✿✿✿✿✿
result,

✿✿✿✿✿✿✿✿
existing

✿✿✿✿✿✿✿✿✿
inversions

✿✿✿✿✿
may underestimate the uncer-25

tainties in estimated CO2 CO2 fluxes and/or may be vulnerable to unforeseen biases in the es-
timated fluxes. Accounting for these correlated errors can be as simple as modifying one of the
covariance matrix inputs in a

✿
Bayesian inversion. Accordingly, this study provides information

to improve the setup of future top-down inverse modeling studies – an improvement that will
widen the confidence interval on the estimated fluxes.
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In a subsequent case study, we investigate the factors associated with month-long biases in
atmospheric transport. The largest short-term CO2 CO2 transport errors correlate strongly with5

the location of the largest surface fluxes, but month-long biases in atmospheric transport are not
only localized to regions with large fluxes. Rather, these biases may be more likely to occur at
observation sites that are far from large fluxes and in regions with high atmospheric stability and
low net radiation.

✿✿✿✿
Over

✿✿✿
the

✿✿✿✿✿✿✿
oceans,

✿✿✿✿✿✿
biases

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿
are

✿✿✿✿
also

✿✿✿✿✿✿✿✿✿✿
associated

✿✿✿✿
with

✿✿✿✿✿
weak

✿✿✿✿✿
zonal

✿✿✿✿✿✿
winds.

✿
Existing top-down flux studies may be more likely to estimate inaccurate regional10

fluxes under those conditions.
✿✿✿✿✿✿✿✿
However,

✿✿
a

✿✿✿✿✿
large

✿✿✿✿✿✿✿
fraction

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿
estimated

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
errors

✿✿✿✿✿✿
cannot

✿✿✿
be

✿✿✿✿✿✿✿✿✿
described

✿✿✿
by

✿
a
✿✿✿✿✿✿
single

✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿✿
parameter.

✿✿✿✿✿
This

✿✿✿✿✿
result

✿✿✿✿✿✿✿✿
indicates

✿✿✿
the

✿✿✿✿✿✿
utility

✿✿
of

✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
meteorological

✿✿✿✿✿✿✿✿✿
modeling

✿✿✿✿✿✿✿
system,

✿✿✿
like

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
CAM-LETKF,

✿✿
to

✿✿✿✿✿✿✿✿
estimate

✿✿✿✿✿
errors

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2

✿✿✿✿✿✿✿✿
transport.

✿✿✿✿✿✿✿✿
Through

✿✿✿✿
this

✿✿✿✿✿✿✿✿✿✿✿
framework,

✿✿✿
we

✿✿✿
can

✿✿✿✿✿✿
better

✿✿✿✿✿✿✿✿✿✿
understand

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
connections

✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿✿✿
uncertain

✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿
in

✿✿✿✿
CO2✿✿✿✿✿✿✿✿

budgets
✿✿✿✿✿✿✿✿✿
estimated

✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿
data.

✿
15
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Figure 1. Average CT CO2✿✿✿✿✿✿✿✿✿✿✿✿
CarbonTracker

✿
CO2 fluxes (version 2011oi) for (a)

✿✿
(a) Feburary and (b)

✿✿
(b)

July 2009. The fluxes include biosphere, ocean, fossil fuel, and biomass burning fluxes (http://www.esrl.
noaa.gov/gmd/ccgg/carbontracker/CT2011_oi).
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Figure 2. The top panels display average 6-hourly CO2✿
6

✿✿✿✿✿
hourly

✿
CO2 transport uncertainties estimated

by CAM–LETKF. The uncertainties (standard deviations
✿✿
95%

✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿✿
intervals) are for the surface

model layer for (a)
✿✿
(a) February and (b)

✿✿✿
(b) July 2009. To create these plots

✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿✿
bottom-panels

✿✿
(
✿
c

✿✿✿
and

✿
d
✿
), we calculate

✿
in

✿✿✿✿✿✿✿✿
contrast,

✿✿✿✿✿✿
display

✿
the ensemble variance at each time step and subsequently average

the variances across all time steps
✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿✿✿✿
month-long

✿✿✿✿✿✿✿✿
averaged

✿✿✿✿✿✿
surface

✿
CO2 ✿✿✿✿✿✿✿✿✿✿✿✿

concentrations.
These standard deviations are the square root

✿✿✿✿
Note

✿✿✿✿
that these meaned 6-hourly variances. Furthermore,

these plots include model output from all 24hours h of each day. The supplement
✿✿✿✿✿✿✿✿✿✿
Supplement provides

analogous figures for daytime- or nighttime-only model output.The bottom-panels (c and d), in contrast,
display the standard deviation in month-long averaged surface CO2 concentrations.
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Figure 3. Hourly averaged measured CO2 CO2 ✿✿✿✿✿✿✿✿✿✿✿
measurements

✿
at (a)

✿✿
(a) Moody, Texas, and (b)

✿✿✿
(b) Ar-

gyle, Maine, compared against the CAM–LETKF model ensemble. The
✿✿✿✿✿✿✿✿✿✿✿✿
Measurements

✿✿✿
are

✿✿✿✿
from

✿✿✿
the

✿✿✿
top

✿✿✿✿
inlet

✿✿✿✿✿
height

✿✿
at
✿✿✿✿✿

each
✿✿✿✿✿✿✿
location.

✿✿✿
In

✿✿✿
this

✿✿✿✿✿✿
figure,

✿✿✿
the

✿✿✿✿✿✿
model

✿
ensemble represents uncertainties due to atmo-

spheric transport but not other errors (e.g., due to the fluxes, model resolution, etc.).
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95% confidence interval: monthly mean modeled concentrations (1pm-7pm local time)
a) February                        b) July
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Figure 4.
✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged,

✿✿✿✿✿✿✿✿
afternoon

✿✿✿✿✿✿✿✿✿✿
atmospheric

✿
CO2 ✿✿✿✿✿

(Sects.
✿✿✿
2.4

✿✿✿✿
and

✿✿✿✿
3.3)

✿✿
at

✿
a
✿✿✿✿✿✿✿✿
selection

✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿
representative,

✿✿✿✿✿✿
global CO2 ✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿
sites.

✿✿✿✿✿✿
Panels

✿✿✿
(a)

✿✿✿
and

✿✿✿
(b)

✿✿✿✿
show

✿✿✿
the

✿✿✿✿✿✿
results

✿✿
at

✿✿✿✿
each

✿✿✿
site

✿✿✿
for

✿✿✿✿✿✿✿
February

✿✿✿✿
and

✿✿✿✿
July

✿✿✿✿✿
2009,

✿✿✿✿✿✿✿✿✿✿
respectively.

✿✿✿✿
Dark

✿✿✿✿
blue

✿✿✿✿
bars

✿✿✿✿✿✿✿
indicate

✿✿✿
the

✿✿✿✿✿✿✿✿✿
difference

✿✿✿✿✿✿✿
between

✿✿✿
the

✿✿✿
top

✿✿✿
and

✿✿✿✿✿✿
bottom

✿✿
of

✿✿✿
the

✿✿✿
95%

✿✿✿✿✿✿✿✿
confidence

✿✿✿✿✿✿✿
interval

✿✿✿✿✿
when

✿✿✿
we

✿✿✿✿✿✿
include

✿✿✿✿✿
error

✿✿✿✿✿✿✿✿✿✿
covariances.

✿✿✿✿
The

✿✿✿✿
light

✿✿✿✿
blue

✿✿✿✿
bars

✿✿✿✿✿✿✿
indicate

✿✿
the

✿✿✿✿✿✿
results

✿✿✿✿✿
when

✿✿✿
we

✿✿✿✿✿✿✿
remove

✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿
covariances

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿
errors.

✿✿✿✿✿✿✿✿✿✿✿
Observation

✿✿✿✿
sites

✿✿
in

✿✿✿
the

✿✿✿✿✿
figure

✿✿✿✿✿✿
include

✿✿✿✿✿✿
Ryori,

✿✿✿✿✿
Japan

✿✿✿✿✿✿
(RYO);

✿✿✿✿✿✿✿✿✿✿✿
Ochsenkopf,

✿✿✿✿✿✿✿✿
Germany

✿✿✿✿✿✿✿
(OXK);

✿✿✿✿
Talk

✿✿✿✿✿
Tower

✿✿✿✿✿✿✿
Angus,

✿✿✿
UK

✿✿✿✿✿✿
(TTA);

✿✿✿✿
East

✿✿✿✿
Trout

✿✿✿✿✿
Lake,

✿✿✿✿✿✿✿✿✿✿✿✿✿
Saskatchewan,

✿✿✿✿✿✿
Canada

✿✿✿✿✿✿
(ETL),

✿✿✿✿✿✿✿✿✿✿
Fraserdale,

✿✿✿✿✿✿✿
Ontario,

✿✿✿✿✿✿
Canada

✿✿✿✿✿✿
(FSD);

✿✿✿✿
and

✿✿✿✿
West

✿✿✿✿✿✿✿
Branch,

✿✿✿✿✿
Iowa,

✿✿✿✿
USA

✿✿✿✿✿✿
(WBI).

✿✿✿
For

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿✿✿
information

✿✿✿
on

✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿
observation

✿✿✿✿
sites,

✿✿✿✿✿
refer

✿✿
to

✿✿✿✿✿
Table

✿✿✿
S1.
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Uncertainty in monthly mean modeled concentrations as a percentage of the increment from surface fluxes
a) February                        b) July
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Figure 5. Results of the hypothesis test (sections 2.4 and 3.3) at
✿✿✿✿✿✿✿✿✿
Uncertainty

✿✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monthly-averaged

✿✿✿✿✿✿✿✿
afternoon CO2 ✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿
as

✿
a selection

✿✿✿✿✿✿✿✿
percentage

✿
of global CO2 observation sites

✿✿
the

✿✿✿✿✿✿✿
average

✿✿✿✿✿✿✿✿
afternoon CO2 ✿✿✿✿✿✿✿

boundary
✿✿✿✿✿
layer

✿✿✿✿✿✿✿✿✿✿✿
enhancement. Panel (a) shows

✿✿✿
This

✿✿✿✿✿
figure

✿✿✿✿✿✿
places the location, name, and

type of each observation site examined in the hypothesis test
✿✿✿✿✿✿✿✿✿✿
uncertainties

✿✿✿✿✿
from

✿✿✿
Fig. Panels

✿
4
✿
(b

✿✿✿
dark

✿✿✿✿
blue

✿✿✿
bars) and (c) show

✿✿
in

✿✿✿✿✿✿
context

✿✿✿
of the test results for February and July 2009. The test asks the following

question: how biased would CT fluxes need to be before
✿✿✿✿✿✿✿✿
afternoon CO2 observation sites would detect

that
✿✿✿✿✿✿✿✿
increment

✿✿✿✿
from

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿
fluxes.

✿✿✿✿✿✿
Larger

✿✿✿✿✿✿✿✿✿✿
percentages

✿✿✿✿✿✿✿
indicate

✿✿✿✿✿✿
greater

✿✿✿✿✿✿✿
potential

✿✿✿
for

✿
bias above the

✿
in

✿✿✿✿✿✿✿
monthly CO2 ✿✿✿✿✿✿

budgets estimated CO2 transport uncertainties?
✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿
atmospheric

✿✿✿✿
data.
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Figure 6. The coefficient of variation (CV, unitless) for the monthly-averaged model surface layer. The
results plotted here are for the synthetic tracer simulation (sections

✿✿✿✿✿
Sects. 2.5 and 3.4). In that simulation,

the synthetic fluxes have a constant spatial distribution. The resulting CV (σ/µ) shows the distribution of
month-long, surface-level transport uncertainties independent of the spatial distribution in the fluxes.Note
that this plot displays the results from land regions only.
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Tracer 
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Figure 7. Each panel shows the correlation
✿✿✿✿✿✿✿✿✿✿
relationship between the synthetic tracer CV (Fig.

✿
6) and

various monthly-averaged meteorological parameters estimated by CAM-LETKF.
✿✿✿✿
The

✿✿✿
top

✿✿✿
row

✿
(
✿
a
✿
)
✿✿✿✿✿
shows

✿✿
the

✿✿✿✿✿✿
results

✿✿✿
for

✿✿✿✿✿✿✿✿
terrestrial

✿✿✿✿✿✿✿
regions

✿✿✿✿✿
while

✿✿✿
the

✿✿✿✿✿✿
bottom

✿✿✿
row

✿
(
✿✿
b)

✿✿✿✿✿✿✿
displays

✿✿✿
the

✿✿✿✿✿✿
results

✿✿✿
for

✿✿✿✿✿✿✿✿✿✿✿
ocean/marine

✿✿✿✿✿✿✿
regions.

✿✿✿✿✿✿
Darker

✿✿✿✿✿
colors

✿✿
in

✿✿✿✿
each

✿✿✿✿✿
panel

✿✿✿✿✿✿✿
indicate

✿
a
✿✿✿✿✿✿
higher

✿✿✿✿✿✿
density

✿✿✿
of

✿✿✿✿✿
points.

✿
We test the correlation with 60 different

parameters (Table S2
✿✿
S2) and plot the relationships for which R2 ≥ 0.3

✿✿✿
two

✿✿✿✿✿✿✿✿✿✿
parameters

✿✿✿
that

✿✿✿✿✿✿✿✿
correlate

✿✿✿✿
most

✿✿✿✿✿✿
closely

✿✿✿✿
with

✿✿✿
the

✿✿✿✿✿
tracer

✿✿✿
CV

✿✿✿✿
over

✿✿✿✿✿✿✿✿
terrestrial

✿✿✿✿
and

✿✿✿✿✿✿
marine

✿✿✿✿✿✿✿
regions,

✿✿✿✿✿✿✿✿✿✿
respectively. In all cases, we fit both

a standard major axis regression and nonlinear least squares ( 1
[β1×parameter+β2] ✿✿✿✿✿✿✿✿✿✿✿✿✿

1
[β1×parameter+β2]

) and plot
the regression with the higher correlation coefficient.
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