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Abstract

Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology
model to simulate atmospheric transport. These models provide a quantitative link between the
surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can there-
fore cause errors the estimated CO2 fluxes. Meteorology errors that correlate or covary across5

time and/or space are particularly worrisome; they can cause biases in modeled atmospheric
CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to
characterize. In this paper, we leverage an ensemble of global meteorology model outputs com-
bined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In
one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 bound-10

ary layer enhancements and quantify how that answer changes if we either include or remove
error correlations or covariances. In a second case study, we investigate which meteorological
conditions are associated with these CO2 biases.

In the first case study, we estimate uncertainties of 0.5 to 7 ppm in monthly averaged CO2

concentrations, depending upon location (95% confidence interval). These uncertainties cor-15

respond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual
observation sites. When we remove error covariances, however, this range drops to 2-22%.
Top-down studies that ignore these covariances could therefore underestimate the uncertainties
and/or propagate transport errors into the flux estimate.

In the second case study, we find that these month-long errors in modeled CO2 are anti-20

correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions.
In marine environments, by contrast, these errors are more strongly associated with weak zonal
winds. Many errors, however, are not correlated with a single meteorological parameter, sug-
gesting that a single meteorological proxy is not sufficient to characterize uncertainties in at-
mospheric CO2. Together, these two case studies provide information to improve the setup25

of future top-down inverse modeling studies, preventing unforeseen biases in estimated CO2

fluxes.
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1 Introduction

Scientists increasingly use atmospheric CO2 observations to estimate CO2 fluxes at the Earth’s
surface (e.g., Gurney et al., 2002; Michalak et al., 2004; Peters et al., 2007; Gourdji et al.,
2012). This “top-down” approach contrasts with “bottom-up” studies that rely primarily on
expert knowledge of biological processes (e.g., Huntzinger et al., 2012; Raczka et al., 2013).5

In order to estimate the fluxes, top-down studies typically require a meteorology model to link
fluxes at the surface with measurements taken downwind. Using this link, one can estimate the
fluxes even if the atmospheric measurements do not themselves directly measure the fluxes.

However, both the accuracy and effective resolution of the flux estimate hinge upon the ac-
curacy of the meteorological model. Errors in the meteorological model may (or may not) bias10

estimated CO2 fluxes depending upon the error characteristics and the space/time scales of
interest.

More specifically, the effect of CO2 transport errors on the estimated fluxes depends upon
two important factors. First, the flux estimate becomes more uncertain as the CO2 transport
error variance (or standard deviation) increases. Top-down studies that use Bayesian statistics15

will explicitly account for these variances when estimating fluxes (e.g., Enting, 2002; Tarantola,
2005); before estimating the fluxes, the modeler first estimates the total variance due to an array
of model or data errors – due to imperfect atmospheric transport or imperfect measurements,
among many other sources of error (e.g. Gerbig et al., 2003; Michalak et al., 2005; Ciais et al.,
2011).20

Second, the flux estimate becomes more uncertain as the temporal and/or spatial error covari-
ances increase. As the covariances increase, each CO2 measurement effectively provides less
and less independent information to constrain the surface fluxes. Furthermore, these temporally-
and/or spatially-correlated errors can bias the flux estimate over a region or over the entire geo-
graphic area of interest (e.g., Stephens et al., 2007).25

Quantification of this complex cause-and-effect between meteorological errors and errors in
estimated CO2 fluxes represents an ongoing research challenge, and a number of existing stud-
ies have characterized different aspects of these uncertainties. For example, a series of studies
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known as “TRANSCOM” represents one of the first coordinated projects on CO2 transport un-
certainties (Gurney et al., 2002; Baker et al., 2006). These early studies used 13 different global
atmospheric models and compared differences in top-down CO2 budgets due to atmospheric
model differences. Subsequent to the TRANSCOM project, a number of studies have focused
on the effects of changing vertical mixing and/or planetary boundary layer height (PBLH) (Ger-5

big et al., 2008; Williams et al., 2011; Kretschmer et al., 2012, 2014; Parazoo et al., 2012; Pino
et al., 2012). In general, those papers found that uncertainties in PBLH can lead to biases of
∼ 3 ppm in modeled daytime CO2. Another paper examined the effect of uncertain horizon-
tal winds (Lin and Gerbig, 2005). The authors applied a particle-trajectory model at a mea-
surement site in Wisconsin and found that uncertainties in the horizontal winds contributed10

∼ 6 ppm (standard deviation) to the overall CO2 transport uncertainty. In summary, a number
of previous studies have either perturbed individual meteorological parameters or, in the case of
TRANSCOM, sampled transport uncertainties using 13 pre-selected atmospheric models.

The present study is particularly concerned with temporal and/or spatial error covariances
in atmospheric CO2 transport. To what extent do CO2 transport errors covary in space and15

time? How large are these covariances relative to the magnitude of the surface CO2 fluxes,
and which meteorological factors drive large error covariances? These covariances are often
difficult to characterize (e.g. Lin and Gerbig, 2005; Lauvaux et al., 2009) and are omitted from
most existing top-down efforts.

We explore several facets of these questions using a global meteorology model ensemble20

and a meteorology data assimilation system – the Community Atmosphere Model (CAM) and
a Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007). Efforts by Liu et al.
(2011) and Liu et al. (2012) extended this meteorological framework to model uncertainties in
atmospheric CO2.

This framework systematically estimates meteorology and CO2 transport uncertainties to an25

extent not previously possible; CAM–LEKTF explicitly represents the CO2 transport uncer-
tainties that remain after assimilating several hundred thousand meteorology observations at
each 6h model time step. To accomplish this task, CAM–LETKF uses an ensemble of weather
forecasts and optimizes the ensemble to match available meteorological observations. Further-
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more, CAM-LETKF adjusts the variance of the weather ensemble at each time step to match
the modeling uncertainties implied by the meteorological observations.

Using this toolkit, we construct several case studies to understand both the possible magni-
tude and drivers of CO2 transport error covariances – errors that persist over many time steps
and/or across large regions. The next section describes CAM-LETKF and these case studies in5

greater detail.

2 Methods

2.1 The meteorology and CO2 model

The first component of CAM–LETKF is the meteorological model. We simulate global meteo-
rology using the Community Atmosphere Model (CAM) and Community Land Model (CLM,10

version 3.5), run in weather forecast mode (not climate mode) (Collins et al., 2006; Oleson
et al., 2008; Chen et al., 2010). Model simulations in this study have a spatial resolution of 2.5◦

longitude by 1.9◦ latitude with 26 vertical model levels. In most regions, there are three vertical
model levels within the lowest kilometer of the atmosphere. These model levels are centered at
929.6, 970.6, and 992.6 hPa over regions where the land/water surface is at sea level.15

We save the global model output at 6 h time increments. Furthermore, we run the model for
two time periods: January–February 2009 and May–July 2009. The first month of each run
serves as an initial spin-up for the model-data assimilation system. The next section describes
this assimilation in greater detail.

2.2 The meteorological model-data assimilation framework20

The second component of CAM–LETKF is the data assimilation and model optimization frame-
work. This framework serves two purposes. First, the LETKF optimizes modeled meteorology
(CAM–CLM) to match available observations. Second, the LETKF uses an ensemble of model
forecasts to represent model uncertainties that remain after data assimilation (Hunt et al., 2004,
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2007). We define each ensemble member and the mean of the entire ensemble as follows:

xi = x̄+Xi where i= 1. . .k (1)

where xi (m× 1) is a single model ensemble member, x̄ (m× 1) is the mean of the model
ensemble, and Xi (m× k) refers to the ith column of the matrix that defines the ensemble5

spread. In this paper, the variable m refers to the total number of model parameters – the model
estimate for a variety of meteorological variables, concatenated across the globe and across all
6 hourly time steps in a given model run. Furthermore, we use k = 64 total ensemble members
in this setup, as was done in Liu et al. (2011) and Liu et al. (2012).

Using this ensemble, CAM–LETKF steps through time in sequential 6h intervals. First, the10

model ensemble at time t is optimized to match meteorological data (Hunt et al., 2007). To this
end, we assimilate the same meteorological observations used in the National Centers for Envi-
ronmental Prediction-Department of Energy reanalysis 2 (Kanamitsu et al., 2002): temperature
(in situ and satellite), zonal wind (in situ and satellite), meridional wind (in situ and satellite),
surface pressure (in situ), and specific humidity (in situ). At each 6 h model time step, we as-15

similate between ∼ 180000 to 330 000 observations globally. At that juncture, the ensemble
mean associated with time t, x̄(t), represents the model best guess and the ensemble members,
x̄(t)+X(t), collectively represent the uncertainties in the modeled meteorology (i.e., posterior
variances and covariances). Second, we run 6 h CAM–CLM forecasts using these realizations
as initial conditions – a total of 64 model forecasts. The 6 h cycle of data assimilation and model20

forecast then begins again.
This model ensemble, by design, is guaranteed to reflect actual uncertainties in modeled me-

teorology; at each 6h model time step, we adjust the ensemble variance such that this variance
matches against the model–data residuals (Li et al., 2009; Miyoshi, 2011). The Supplement
describes this procedure, known as adaptive covariance inflation.25

The model ensemble also accounts for both spatial and temporal covariances in modeled
meteorological uncertainties; meteorological errors within one ensemble member can easily
persist over many time steps. This continuity occurs because the optimized ensemble members
from the one time step become the initial conditions for the weather forecast at the next time
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step. For example, if the PBL height in one ensemble member is lower than the ensemble
average at a given time step, it will likely be lower than average at the next time step. Similarly,
if the PBL height in one ensemble member is lower than average over one grid box, it will likely
also be lower than average over an adjacent grid box.

Certain meteorological uncertainties, however, may not always be captured by the assimi-5

lation system, particularly uncertainties that do not manifest in the model-data residuals. For
example, CAM-LETKF will not fully characterize uncertainties due to different PBL schemes
(e.g., Yonsei versus Mellor-Yamada-Janjic) or due to other structural model differences. Fur-
thermore, LETKF cannot spatially resolve uncertainties that occur at sub-grid scale (e.g., tur-
bulent eddies or numerical diffusion). For further technical detail on the LETKF and adaptive10

covariance inflation, refer to the Supplement, Hunt et al. (2004), Hunt et al. (2007), Li et al.
(2009), Liu et al. (2011), or Miyoshi (2011).

2.3 CO2 transport error variances and covariances

The CAM–LETKF system described above estimates not only meteorological uncertainties but
also uncertainties in CO2 transport. In this study, CO2 is a passive tracer that is not part of the15

data assimilation, so any uncertainties in CO2 concentrations are solely due to uncertainties in
atmospheric transport.

We drive all model simulations with a published CO2 flux estimate from CarbonTracker
(CT), version “CT2011_oi” (Fig. 1, Peters et al., 2007, http://carbontracker.noaa.gov). CT is
a commonly-used global CO2 flux estimate created by the US National Oceanic and Atmo-20

spheric Administration (NOAA). NOAA scientists optimize CT fluxes to match atmospheric
CO2 data, so the flux estimate is consistent with actual observations (Peters et al., 2007).

We subsequently estimate 6 hourly CO2 transport uncertainties using this setup. These uncer-
tainties are defined as the difference between the top and bottom of the 95% confidence interval,
computed from the 64 model realizations (e.g., Fig. 2). To make this estimate, we calculate the25

2.5th and 97.5th percentiles of each row in X[CO2], where the subscript “[CO2]” refers to the
atmospheric CO2 concentrations estimated by the ensemble. The remainder of the methods
section applies this CO2 and meteorology modeling framework to two case studies.
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2.4 Case study 1: The magnitude of temporally- and spatially-covarying atmospheric
transport errors relative to a CO2 flux estimate

This case study explores the importance of persistent, covarying transport errors and the magni-
tude of those errors relative to the CO2 fluxes. In particular, we estimate uncertainties in monthly
mean, afternoon, modeled CO2 concentrations at a number of in situ atmospheric observation5

sites. In one case, we include temporal and/or spatial covariances in the atmospheric transport
errors, and in another case, we remove these covariances. We then compare these uncertainties
against the modeled afternoon CO2 boundary layer enhancement to understand the magnitude
of these errors relative to the surface fluxes.

The uncertainty in monthly-averaged CO2 concentrations serves as a measure of how trans-10

port errors persist over time, a measure of error covariance. Uncorrelated transport errors will
average out, to a large degree, over many model time steps, but temporal error covariances pre-
vent the errors from averaging down over time. Furthermore, CO2 budgets are often reported
in month-long increments (e.g., Gourdji et al., 2012, and CT), so this time window is a relevant
benchmark with respect to inverse modeling studies.15

We calculate uncertainties in the monthly-averaged model output (including error covari-
ances) via several steps. First, we select out the rows of X[CO2] that correspond to afternoon
observations (1–7p.m.LT) for a given month at an in situ CO2 observation site. Second, we
calculate the mean of each column in X[CO2]. Each column corresponds to a different ensemble
member. The resulting vector of length 64 is the difference between each ensemble member20

and the best estimate (x̄), averaged at the monthly scale. Lastly, we use this vector to compute
a confidence interval in monthly-averaged, modeled CO2 (the 97.5th minus 2.5th percentiles).

We subsequently remove covariances in the CO2 transport errors and re-calculate uncertain-
ties in the monthly-averaged CO2 concentrations. As described in section 2.2, errors in one
ensemble member can persist over many steps and can persist across a large geographic region.25

However, we can remove these error covariances by randomly re-shuffling the elements of each
individual row in X[CO2]. The variance in modeled concentrations in any row or at any given
time step will remain the same. However, each column will no longer represent a single en-
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semble member. Rather, each column will represent a random assortment of different ensemble
members, and the errors in each column will no longer covary from one time step to another or
one geographic location to another.

We conduct this analysis at a representative selection of observation sites in North America,
Asia, and Europe. This setup indicates how errors covary with time at the monthly scale. In5

addition, we also conduct the analysis using multiple observation sites; we estimate monthly-
averaged uncertainties at the eco-region scale and include all observation sites that lie within
the given eco-region. This latter approach indicates how errors covary spatially across multiple
sites at the regional scale.

These monthly-averaged uncertainties can then be compared against the afternoon, modeled10

CO2 increment from regional surface fluxes. To estimate this increment, we subtract modeled
free troposphere, “clean air” concentrations at 600hPa from concentrations modeled at the
surface using CT fluxes. The concentrations at 600hPa are not necessarily a perfect measure
of clean air concentrations. Rather, this approach is an approximation similar to that used by
inverse modeling studies in the literature (e.g., Gerbig et al., 2003; Gourdji et al., 2012).15

In summary, case study one explores the magnitude of persistent atmospheric CO2 transport
errors or error covariances relative to the afternoon CO2 signal from surface fluxes. The next
case study, in contrast, explores the meteorological conditions under which these persistent CO2

transport errors may be more likely to occur.

2.5 Case study 2: Which meteorological factors may be associated with month-long20

transport biases?

We create a synthetic experiment to explore the meteorological conditions under which month-
long model biases in atmospheric transport may occur. The spatial patterns in the CO2 transport
uncertainties are heavily influenced by spatial patterns in the CO2 fluxes (Fig. 2). In other
words, regions with large fluxes or large diurnal flux variability also show higher CO2 transport25

uncertainties. As a result, it is difficult to disentangle the effect of different meteorological
parameters on CO2 transport uncertainties. Instead, we create a synthetic tracer with constant
global emissions in both space and time. This experiment serves as a lens to explore the possible

9



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

effects of different meteorological parameters independent of the spatiotemporal variability in
CO2 fluxes.

To this end, we initialize CAM-LETKF runs with zero atmospheric concentration of this syn-
thetic tracer and then run CAM-LETKF forward for one month using constant global emissions
(e.g., for both February and July 2009). Any uncertainties in the atmospheric distribution of5

this tracer are solely due to meteorological parameters, not due to the spatial distribution of the
underlying fluxes.

Next, we calculate the coefficient of variation (CV) associated with the monthly-averaged
surface concentrations. The CV is an inverted signal-to-noise ratio; it measures the uncertainty
in modeled surface concentrations relative to the average surface concentration (σµ ). For exam-10

ple, an uncertainty of 1 ppm in modeled concentrations is most problematic if the signal from
surface fluxes is weak, and a 1ppm uncertainty is less problematic if the signal from surface
sources and/or sinks is strong.

For this setup, the CV equals the standard deviation in the monthly-averaged surface concen-
trations divided by the monthly surface concentration averaged across all 64-realizations. We15

then plot the tracer CV against monthly-averaged meteorological parameters and their associ-
ated uncertainties from CAM–LETKF. These relationships give insight into the meteorological
conditions or meteorological uncertainties that are associated with month-long biases in the
modeled synthetic tracer.

3 Results and discussion20

3.1 Uncertainties in the 6 hourly modeled CO2 concentrations

Before examining the two case studies in detail, we first provide context on the CO2 transport
uncertainties estimated with CT fluxes and CAM–LETKF. Figure 2a and b visually summarize
the average 6 hourly CO2 transport uncertainties in the model surface layer – the difference
between the top and bottom of the 95% confidence intervals. These figures show how CO225

transport uncertainties vary across the globe – from 0.6 to 26ppm, depending on location.

10
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Furthermore, the transport uncertainties in Fig. 2a and b show several distinctive features. The
largest uncertainties are localized to regions where either the magnitude or the diurnal cycle of
the CT fluxes is largest (e.g., the US Eastern Seaboard and southern Siberia during summertime,
the Amazon, the Congo, and eastern China). CO2 transport uncertainties in the Eastern US and
East Asia bleed, to a smaller degree, over the adjacent ocean where surface fluxes are small.5

Figure 3 places these transport uncertainties in context of CO2 data measured at two ob-
servation sites in the United States. These time series plots validate the model’s capacity to
simulate daily variations in CO2 concentrations. Furthermore, the comparison illustrates the
magnitude of the CO2 transport uncertainties relative to the diurnal cycle in CO2 concentra-
tions. For example, the uncertainties at AMT in July are ∼ 30% of the diurnal range in the10

CO2 measurements. Overall, the model ensemble depicted in these plots usually encapsulates
the hourly-averaged measurements. CT fluxes are estimated using these CO2 observations and
the TM5 transport model (Tracer Model, version 5) (Peters et al., 2007), so one might expect
the CAM model to fit the CO2 observations relatively well. In the instances when the model
ensemble does not encapsulate the hourly-averaged CO2 measurements, one of the many other15

non-transport error types could be to blame; the ensemble spread only encompasses transport
errors and does not include measurement errors, errors due to finite model resolution, or errors
in the fluxes. Furthermore, these instances could be due to structural differences between CAM
and TM5, including differences in model resolution. The Supplement provides more example
CO2 model–data comparisons, meteorology model validation, and data assimilation diagnos-20

tics.

3.2 CO2 transport uncertainties at longer time scales

The uncertainty in monthly-averaged CO2 concentrations provides one measure of how trans-
port errors persist over time, as discussed in section 2.4. Fig. 2c-d displays uncertainties in
the month-long average surface concentrations for February and July 2009. In contrast to the25

6 hourly uncertainties, these uncertainties are far more spatially-distributed. This result implies
that CO2 transport errors covary over longer periods of time in remote regions, compared to
regions with large surface fluxes. Observation sites that are far from large fluxes are there-
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fore more likely to produce a biased CO2 budget than sites near to large surface fluxes. These
“remote” sites see a lower CO2 signal from surface fluxes, and the transport errors at these
locations generally covary over longer periods of time.

A number of factors may explain these relatively large error covariances in remote regions.
CO2 transport over remote or oceanic regions is likely dominated by synoptic-scale weather5

patterns that evolve over multi-day time periods. When CO2 is transported across the oceans or
remote areas from source/sink regions, atmospheric CO2 transport errors would likely covary at
time-scales characteristic of this synoptic-scale air flow. Over large CO2 source/sink regions, by
contrast, atmospheric concentrations are likely influenced more strongly by processes that occur
over smaller time periods – grid-scale winds or boundary layer mixing. In addition, sustained10

transport errors over regions of large biosphere flux would be more likely to cancel out at longer
time scales – due to the diurnal cycle of biosphere CO2 uptake and release.

In addition to remote and ocean regions, month-long transport uncertainties are also large
across the entire Northern Hemisphere during February. A subsequent Sect. 3.4 explores possi-
ble reasons why these month-long biases occur.15

3.3 Case study 1: The magnitude of temporally- and spatially-covarying atmospheric
transport errors relative to a CO2 flux estimate

We construct a case study to understand the importance of temporal and spatial error covariances
relative to the magnitude of CO2 surface fluxes. Figure 4 displays the results of this analysis
for a selection of representative global CO2 observation sites from Asia, Europe, and North20

America. The y-axis of each bar plot indicates the difference between the top and bottom of the
95% confidence interval in monthly mean modeled concentrations. We first consider the results
when covariances in atmospheric CO2 transport errors are included in the analysis (dark blue
bars) and then compare those results to a setup in which we remove these error covariances
(light blue bars).25

At this selection of sites, uncertainties in the monthly mean afternoon concentrations range
from 1.6 to 2.8ppm (dark blue bars). These uncertainties are lower at marine sites like RYO and
TTA and are higher at continental sites located near large biospheric fluxes, sites like FSD and
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WBI. Note that this analysis only considers estimated uncertainties due to meteorology. The
capabilities of the atmospheric observations would deteriorate if other errors were included,
such as those due to imperfect measurements or due to finite model resolution (e.g., Gerbig
et al., 2003; Masarie et al., 2011).

We subsequently remove temporal covariances in the errors to identify the role that these5

covariances play in CO2 transport uncertainties at the monthly scale. These results are displayed
as light blue bars in Fig. 4. When we remove the covariances, the monthly-scale uncertainties
are much smaller – by a factor of 5-20 at the individual observation sites. If CO2 transport
errors were temporally independent, then errors of opposite sign and different magnitude would
cancel out to a degree when averaged over one month (light blue bars). Instead, the transport10

errors estimated by CAM-LETKF covary in time, and this covariance prevents the errors from
averaging down (dark blue bars).

A multi-site comparison in Fig. 4 additionally indicates the role of spatial covariances in the
transport errors; the figure shows the uncertainties in CO2 concentrations when averaged across
multiple observation sites within an eco-region. We compute the monthly average afternoon15

concentration across multiple sites for a given ensemble member. We then estimate a confidence
interval based upon the distribution of the 64 ensemble members.

The results indicate a large degree of spatial covariance in the atmospheric CO2 errors. If the
errors had no spatial covariance, these errors would average down as more and more observation
sites were added to the analysis. However, the dark blue bars in Fig. 4 have a similar magnitude20

irrespective of whether the analysis was conducted on an individual site or on a collection of
many sites from an ecoregion; the errors must therefore covary in space. In contrast, the light
blue bars (i.e., error covariances removed) do decrease in magnitude at the eco-region scale
relative to individual observation sites. In that case, the errors do average out when more and
more sites are included in the analysis.25

Figure 5 places the results of case study one in the context of the surface fluxes. This fig-
ure displays the uncertainties in atmospheric CO2 transport (the dark blue bars in Fig. 4) as a
fraction of the mean afternoon CO2 boundary layer enhancement. As discussed in Sect. 2.4,
this enhancement approximates the CO2 increment due to regional surface fluxes, and a similar
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CO2 increment is used by a number of top-down studies to estimate the surface fluxes. At the
individual observation sites, the uncertainty in atmospheric CO2 constitutes 13-150% of the
average boundary layer CO2 enhancement. This percentage is highest at marine sites like RYO
and TTA that see a relatively small boundary layer enhancement, and the relative magnitude of
the uncertainties is smallest at sites that see a very large enhancement due to large summertime5

vegetation fluxes (e.g., at the WBI site). The uncertainties due to atmospheric transport are sub-
stantial relative to the fluxes, but only when we include covariances in transport error. When we
remove these covariances, the uncertainty in monthly average afternoon concentrations drops
to only 2-22% of the boundary layer enhancement.

The results of this analysis hold several implications for future atmospheric inverse models10

and/or top-down studies that optimize CO2 fluxes. Most existing inverse models account for
atmospheric CO2 transport errors in their statistical setup. In a Bayesian synthesis or geostatis-
tical inverse model, for example, this information is incorporated into a covariance matrix, and
that covariance matrix is used as an input to the equation that optimizes the CO2 fluxes (e.g.,
Enting, 2002; Michalak et al., 2004; Ciais et al., 2011). However, the majority of existing stud-15

ies assume that this covariance matrix is diagonal (i.e., no error covariances), in part, because
these temporal and spatial covariances are challenging to estimate (e.g., Lin and Gerbig, 2005;
Lauvaux et al., 2009). The present study, in contrast, indicates that both temporal and spatial
error covariances play an important role in monthly-scale errors in atmospheric transport.

Ignoring these error covariances could lead to numerous challenges. When we add more data20

at an observation site or add more sites the analysis, the actual errors do not average down to
the extent that uncorrelated errors would. Rather, adding more data or more observation sites
provides more limited gains in accuracy. As a result, an inverse model that overlooks the error
covariances will estimate uncertainties in the CO2 fluxes that are too small, and/or the inverse
model may erroneously map atmospheric transport errors onto the surface fluxes (e.g., Stephens25

et al., 2007). Future inverse modeling studies could better account for these uncertainties by
including off-diagonal terms in one of the covariances matrices used by the inverse model.

The next case study (section 3.4) explores the meteorological factors that may be associated
with these persistent atmospheric transport errors.
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3.4 Case study 2: Which meteorological factors are associated with month-long atmo-
spheric transport biases?

In this case study, we use a synthetic tracer experiment (Sect. 2.5) to uncover possible drivers
of atmospheric transport biases at month-long time scales. The previous section (3.3) explored
the importance of covariances in atmospheric CO2 transport errors, and this section investigates5

the meteorological conditions associated with these persistent errors.
Figure 6 displays the coefficient of variation (CV) for monthly-averaged surface concentra-

tions of the synthetic tracer. The CV, a unitless quantity, does not just indicate where the uncer-
tainties are largest. Rather, the CV indicates the magnitude of these uncertainties relative to the
mean modeled tracer concentration. Arguably, this noise-to-signal ratio measures the influence10

of transport uncertainties more effectively than a simple standard deviation.
This coefficient shows a number of distinctive seasonal and spatial patterns. Like the uncer-

tainties in monthly-averaged CO2 (Fig. 2c and d), the CV in Fig. 6 is highest in terrestrial boreal
and arctic regions of the Northern Hemisphere during winter. The CV is lowest over Europe,
Australia, and the Amazon during all seasons.15

The CV in Fig. 6 exhibits different spatial patterns over land and ocean regions, and these
respective patterns correlate with different sets of meteorological variables. Over the oceans,
for example, high CV values in Fig. 6a are clustered in zonal bands – along the equator and
along 40◦S. In contrast, high CV values do not cluster into zonal bands to the same degree
over terrestrial regions. Rather, CV values are often high when temperatures are low (e.g., over20

Canada or Russian in February).
We plot the synthetic tracer CV against numerous modeled meteorological parameters to

further understand the possible drivers behind atmospheric transport uncertainties averaged over
these monthly time scales. To this end, we examine correlations between the tracer CV and 60
different meteorological parameters, including the uncertainties in the meteorological variables.25

Figure 7 displays the two variables that correlate most strongly with the tracer CV over land
regions and over ocean regions, respectively.
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Over land regions, meteorological conditions that lead to high atmospheric stability and low
energy are most closely associated with persistent tracer uncertainties. For example, a high
tracer CV is associated with low temperatures (R2 = 0.45) and low specific humidity (R2 =
0.40). Similarly, a high tracer CV is correlated with low net solar flux (R2 = 0.35), low planetary
boundary layer height (R2 = 0.33), and low vertical diffusion diffusivity (R2 = 0.31). Note that5

many of these meteorological variables are closely related to one another, so the individual
correlations listed above are all interrelated.

In addition, several of the meteorological variables exhibit a nonlinear relationship with the
tracer CV, and the potential for bias in modeled atmospheric transport increases more quickly
in stable atmospheric conditions. For example, the CV increases more quickly when planetary10

boundary heights are low.
In contrast to land regions, the tracer CV over the oceans is most closely associated with low

zonal wind speeds (R2 = 0.29, Fig. 7). Over land regions, that correlation is zero. Uncertainties
in atmospheric transport over the oceans are also associated with low PBL heights (R2 = 0.25).
These two meteorological variables explain different patterns in the tracer CV; PBL heights and15

zonal wind speeds over the ocean are not correlated with one another (R2 = 0), so these two
parameters may indicate different processes underlying the atmospheric transport errors.

These differences between land and ocean regions may reflect differences in synoptic-scale
circulation. Over the oceans, high CV values are clustered in zonal bands, and these clusters
often occur at the transition between distinctive synoptic flow patterns. Modeled atmospheric20

tracer transport is more uncertain in these transition regions – at the transition between southern
westerlies and southern trade winds and at the transition between the North Atlantic trade winds
and the westerlies. Zonal winds over the continents are often more variable than over the oceans
(Fig. S17), and atmospheric transport uncertainties do not cluster into the same distinctive, zonal
bands.25

The results of this synthetic tracer experiment hold a number of potential applications to top-
down CO2 flux estimation. The danger of obtaining a biased CO2 budget is likely higher in
regions with consistent low energy and limited vertical mixing. A number of existing studies
indicate that uncertainties in PBLH and vertical mixing are closely tied to uncertainties in esti-
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mated trace gas transport or in estimated trace gas fluxes (e.g., Stephens et al., 2007; Williams
et al., 2011; Miller et al., 2012; Pino et al., 2012; Kretschmer et al., 2012). This study further
suggests that sustained transport errors due to PBLH are more likely in regions or at times
when PBL heights and mixing are consistently low. The meteorological model ensemble is not
necessarily more uncertain in these regions (see Figs. S15-S16). Rather, the extent to which5

meteorological uncertainties translate into tracer transport uncertainties appears to depend, at
least in part, on the stability and net energy input associated with the boundary layer.

In summary, boundary layer energy and height explain some of the patterns in the estimated
transport errors, but other patterns are associated with uncertainties in synoptic flow and are not
related to a single meteorological parameter. In fact, over both terrestrial and oceanic regions,10

individual meteorological parameters only explain a maximum of 29-45% of the variability in
the tracer CV. This result stresses the utility of a meteorological model to calculate the variances
and covariances in atmospheric transport errors rather than relying on a single, meteorological
proxy.

Note that this study does not account for uncertainties in bottom-up, biogeochemical flux15

models due to uncertainties in driving meteorological variables. For example, process-based,
biogeochemical models of CO2 typically require estimates of meteorological variables like hu-
midity, temperature, or precipitation to compute the surface fluxes. A number of existing studies
have used atmospheric data and/or atmospheric models to explore the meteorological variables
that drive CO2 flux models. For example, Lin et al. (2011) explored how uncertainties in flux20

model drivers affected fluxes estimated for Canadian boreal forests. They found that uncertain-
ties in downward shortwave radiation contributed to the largest uncertainties in the simulated
fluxes. Similarly, numerous studies indicate that both air temperature and humidity are drivers
of CO2 fluxes (e.g., Law et al., 2002; Gourdji et al., 2012). These meteorological variables
(e.g., downward shortwave radiation, temperature, and specific humidity) correlate with the25

persistent atmospheric transport uncertainties discussed earlier in this section. A future study
could connect these uncertainties (in the biogeochemical model and in atmospheric transport)
to gain an even broader picture of how meteorological uncertainties affect CO2 flux modeling
and ultimately top-down CO2 flux estimates.
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4 Conclusions

We use CAM-LETKF to explore the characteristics of persistent, covarying atmospheric CO2

transport errors and the implications of those errors for CO2 flux estimates. The first case study
examines the relative magnitude of these errors at the monthly time scale. At this scale, error
covariances play a critical role in the uncertainties in modeled atmospheric CO2; we find that5

uncertainties increase by a factor of 5–20 at individual CO2 observation sites when we include
the error covariances in the analysis. These monthly-scale errors correspond to 13-150% of the
afternoon CO2 boundary layer enhancement, depending on the site in question.

Existing top-down studies often overlook these covariances, and these results imply that at-
mospheric CO2 measurements contain less information about the fluxes than is often assumed.10

As a result, existing inverse models may underestimate the uncertainties in estimated CO2

fluxes and/or may be vulnerable to unforeseen biases in the estimated fluxes. Accounting for
these correlated errors can be as simple as modifying one of the covariance matrix inputs in
a Bayesian inverse model.

In a subsequent case study, we investigate the meteorological factors associated with month-15

long biases in atmospheric transport. The largest short-term CO2 transport errors correlate
strongly with the location of the largest surface fluxes, but month-long biases in atmospheric
transport are not only localized to regions with large fluxes. Rather, these biases may be more
likely to occur at observation sites that are far from large fluxes and in regions with high at-
mospheric stability and low net radiation. Over the oceans, biases in atmospheric transport are20

also associated with weak zonal winds. Existing top-down flux studies may be more likely to
estimate inaccurate regional fluxes under those conditions. However, a large fraction of the es-
timated atmospheric transport errors cannot be described by a single meteorological parameter.
This result indicates the utility of a meteorological modeling system, like CAM-LETKF, to es-
timate errors in atmospheric CO2 transport. Through this framework, we can better understand25

the connections between uncertain atmospheric transport and uncertainties in CO2 budgets es-
timated from atmospheric data.
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The Supplement related to this article is available online at
doi:10.5194/acpd-0-1-2015-supplement.
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Figure 1. Average CarbonTracker CO2 fluxes (version 2011oi) for (a) Feburary and (b) July 2009. The
fluxes include biosphere, ocean, fossil fuel, and biomass burning fluxes (http://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/CT2011_oi).
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Figure 2. The top panels display average 6 hourly CO2 transport uncertainties estimated by CAM–
LETKF. The uncertainties (95% confidence intervals) are for the surface model layer for (a) February
and (b) July 2009. The bottom-panels (c and d), in contrast, display the uncertainties in month-long
averaged surface CO2 concentrations. Note that these plots include model output from all 24 h of each
day. The Supplement provides analogous figures for daytime- or nighttime-only model output.
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Figure 3. Hourly averaged CO2 measurements at (a) Moody, Texas, and (b) Argyle, Maine, compared
against the CAM–LETKF model ensemble. Measurements are from the top inlet height at each location.
In this figure, the model ensemble represents uncertainties due to atmospheric transport but not other
errors (e.g., due to the fluxes, model resolution, etc.).
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95% confidence interval: monthly mean modeled concentrations (1pm-7pm local time)
a) February                        b) July
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Figure 4. The uncertainties in monthly-averaged, afternoon atmospheric CO2 (Sects. 2.4 and 3.3) at
a selection of representative, global CO2 observation sites. Panels (a) and (b) show the results at each
site for February and July 2009, respectively. Dark blue bars indicate the difference between the top and
bottom of the 95% confidence interval when we include error covariances. The light blue bars indicate
the results when we remove these covariances in atmospheric transport errors. Observation sites in the
figure include Ryori, Japan (RYO); Ochsenkopf, Germany (OXK); Talk Tower Angus, UK (TTA); East
Trout Lake, Saskatchewan, Canada (ETL), Fraserdale, Ontario, Canada (FSD); and West Branch, Iowa,
USA (WBI). For more information on these observation sites, refer to Table S1.
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Uncertainty in monthly mean modeled concentrations as a percentage of the CO2 increment from surface fluxes
a) February                        b) July
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Figure 5. Uncertainty in monthly-averaged afternoon CO2 concentrations as a percentage of the average
afternoon CO2 boundary layer enhancement. This figure places the uncertainties from Fig. 4 (dark blue
bars) in context of the afternoon CO2 increment from surface fluxes. Larger percentages indicate greater
potential for bias in monthly CO2 budgets estimated from atmospheric data.
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Figure 6. The coefficient of variation (CV, unitless) for the monthly-averaged model surface layer. The
results plotted here are for the synthetic tracer simulation (Sects. 2.5 and 3.4). In that simulation, the
synthetic fluxes have a constant spatial distribution. The resulting CV (σ/µ) shows the distribution of
month-long, surface-level transport uncertainties independent of the spatial distribution in the fluxes.
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Figure 7. Each panel shows the relationship between the synthetic tracer CV (Fig. 6) and various
monthly-averaged meteorological parameters estimated by CAM-LETKF. The top row (a) shows the
results for terrestrial regions while the bottom row (b) displays the results for ocean/marine regions.
Darker colors in each panel indicate a higher density of points. We test the correlation with 60 different
parameters (Table S2) and plot the two parameters that correlate most closely with the tracer CV over
terrestrial and marine regions, respectively. In all cases, we fit both a standard major axis regression and
nonlinear least squares ( 1

[β1×parameter+β2]
) and plot the regression with the higher correlation coefficient.
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