Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing

Y. H. Wang^{1,2}, Z. R. Liu¹, J. K. Zhang¹, B. Hu¹, D. S. Ji¹, Y. C. Yu¹ and Y. S. Wang^{1,2}

 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2 College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China

*Corresponding Author: Y. S. Wang

Email: wys@mail.iap.ac.cn

1 Abstract

2	The evolution of physical, chemical and optical properties of urban aerosol particles
3	was characterized during an extreme haze episode in Beijing, PRC, from January 24
4	through January 31, 2013 based on in-situ measurements. The average mass
5	concentrations of PM ₁ , PM _{2.5} and PM ₁₀ were 99 \pm 67µg m ⁻³ (average \pm stdev),
6	$188\pm128 \ \mu g \ m^{-3}$ and $265\pm157 \ \mu g \ m^{-3}$, respectively. A significant increase in PM _{1-2.5}
7	fraction was observed during the most heavily polluted period. The average scattering
8	coefficient at 550 nm was 877 Mm ⁻¹ ±624 Mm ⁻¹ . An increasing relative amount of
9	coarse particles can be deduced from the variations of backscattering ratios,
10	asymmetry parameter and scattering Ångström exponent. Particle number size
11	distributions between 14 nm-2500 nm diameter showed high number concentrations,
12	particularly in the nucleation mode and accumulation mode. Size-resolved chemical
13	composition of submicron aerosol from a High Resolution-ToF-Aerosol Mass
14	Spectrometer showed that the mass concentrations of organic, sulfate, nitrate,
15	ammonium and chlorine mainly resided on 500nm to 800nm (vacuum diameter)
16	particles, and nitrate and ammonium contributed greatly to particle growth during the
17	heavily polluted day (January 28).
18	Increasing relative humidity and stable synoptic conditions on January 28 combined
19	with heavy pollution on 28 January, lead to enhanced water uptake by the hygroscopic
20	submicron particles and formation of secondary aerosol, which might be the main
21	reasons for the severity of the haze episode. Light scattering apportionment showed
22	that organic, sulfate, ammonium nitrate and ammonium chloride compounds

contributed to light scattering fractions of 54%, 24%, 12% and 10%, respectively.

24 This study indicated that the organic component in submicron aerosol played an

25 important role in visibility degradation during the haze episode in Beijing.

26 1. Introduction

Atmospheric aerosol particles play a significant role in radiation balance and climate 27 28 forcing through direct scattering and absorption of solar radiation (Anderson et al., 2003; Poschl, 2005; Ramanathan et al., 2001). In addition, they can act as cloud 29 30 condensation nuclei (CCN) and thereby change the cloud albedo and lifetime (Twomey, 31 1977). Accordingly, the radiative properties of clouds are indirectly influenced by aerosol (Kaufman et al., 2005; Koren et al., 2005; Lohmann and Feichter, 2005). 32 Furthermore, the general public has to pay special attention to atmospheric aerosol due 33 to its deleterious effect on human health and degradation of visibility (Nel, 2005; 34 Watson, 2002), which are closely related to the chemical components, morphology, 35 mixing state, size distribution and hygroscopic properties of aerosol particles. 36 37 Along with the rapid economic growth in China, its capital city Beijing has suffered 38 substantially from air quality deterioration and visibility degradation, though the mass 39 concentration of PM_{10} has decreased in Beijing in the last ten years (Liu et al., 2015). Accompanied by frequent fog-haze days, the visibility in Beijing has decreased 40 dramatically to an unacceptable level. The frequency of visibility between 2km and 41 10km has increased from 37% in 1999 to 43% in 2007. (Zhang et al., 2010; Zhang et 42 al., 2012). The mass loading of fine aerosol particles and their precursors (e.g. NH₃, 43

44	volatil	e organic compounds (VOCs), SO ₂ and NO _x), can accumulate to high levels
45	within	the planetary boundary layer, especially during periods of persistent synoptic
46	scale s	tagnation and strong temperature inversions (Zhang et al., 2013). In the past
47	decade	e, many research projects have been done to characterize the chemical and
48	physic	al properties of aerosol particles in Beijing and its surrounding regions. These
49	studies	s mainly focused on the following aspects:
50	i)	Chemical composition, evaluation and sources apportionment based on filter
51		sampling and Aerosol Mass Spectrometry (AMS) (Huang et al., 2010b; Sun et
52		al., 2006; Zhang et al., 2014).
53	ii)	Mass concentration and optical properties of aerosol particles using in-situ
54		measurements or combined with MODIS (Moderate Resolution Imaging
55		Spectroradiometer) satellite remote sensing optical depth products (He et al.,
56		2009; Huang et al., 2010a; Li et al., 2010; Qu et al., 2010; Wang et al., 2012a;
57		Yang et al., 2009).
58	iii)	Aerosol hygroscopic properties, number size distributions, mixing state and
59		implications for CCN activity, visibility, new particle formation, air pollution
60		and radiative forcing (Chen et al., 2012; Cheng et al., 2012; Deng et al., 2013;
61		Liu et al., 2013; Ma et al., 2012; Meier et al., 2009; Pan et al., 2009; Quan et al.,
62		2011; Wehner et al., 2008; Wu et al., 2007; Zhang et al., 2011; Zhang et al.,
63		2010).
64	The ab	ove mentioned studies, based on either long-term or short-term observations

65 provide us with comprehensive knowledge of aerosol properties on days with near

66	average aerosol concentration levels. However, only a few studies were carried out on
67	highly polluted days, and these studies mainly focus on variations of chemical
68	composition with the evaluation of synoptic conditions and planetary boundary layer
69	dynamics. (Huang et al., 2010a; Wang et al., 2012b; Zhao et al., 2013). The interaction
70	between chemical and physical properties of aerosols was seldom investigated during
71	haze episodes. Therefore, comprehensive studies of physical, optical and chemical
72	properties using high resolution measurements are necessary for a better knowledge of
73	aerosol evolution processes and related visibility degradation during pollution episodes
74	in Beijing.
75	An intense pollution episode occurred in central and eastern China from January 24
76	through 31, 2013. The hourly average PM_{10} exceeded 600 µg m ⁻³ and non-refractory
77	submicron particle (NR-PM ₁) exceeded 400 μ g m ⁻³ (Wang et al., 2013), which was the
78	most extreme haze episode in Beijing in the last decades as far as we know. In this

79 study, we investigated the evolution of physical, chemical, and optical properties of

80 urban aerosol particle during the haze episode by using the in-situ measurements.

81 2. Methodology

82 **2.1 Site information and instrumentation**

The aerosol sampling site was situated on the roof (about 15m height above the
surface) of a laboratory building in the yard of the Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences, which was located between the 3rd and 4th ring
roads of northeast Beijing (Zhang et al., 2014).

87	An integrating nephelometer (Model 3563, TSI inc., Minnesota, USA) was used to
88	measure the total light scattering and hemispheric back scattering coefficients (for
89	angles of 7 ° to 170 ° and 90 ° to 170 °, respectively) of low RH aerosol at wavelengths
90	of 450, 550 and 700nm, no size-selective inlets were used. The nephelometer was
91	operated at 5L min ⁻¹ with data resolution of one minute. A calibration was conducted
92	every month with filtered air and CO_2 as prescribed by the manufacturer. Subsequently,
93	the data were corrected for truncation errors and the non-lambertian light source based
94	on the measured Ångström exponents (Anderson and Ogren, 1998). On average, the
95	corrected values were within 10% of the measured values. The mass concentration of
96	PM_{10} and $PM_{2.5}$ were measured by a Thermo TEOM 1400AB/8500 FDMS (Filter
97	Dynamic Measurement System). The mass concentration of PM ₁ was determined using
98	a Thermo TEOM 1400.
99	The particle number-size distribution between 14nm and 2500nm diameter was
100	measured by a Scanning Mobility Particle Sizer (SMPS, TSI inc., Minnesota, USA),
101	comprising of a model TSI 3080 electrostatic classifier and a model TSI 3775
102	condensation particle counter (CPC), and an Aerodynamic Particle Sizer (APS, Model
103	3321, TSI inc., Minnesota, USA). The SMPS data covered the particle size range from
104	14nm to 533nm, and the APS covered from 542 nm to 2500nm. The size-dependent
105	diffusional and gravitational losses for the inlet line have been corrected by using the
106	empirical functions given by Willeke and Baron (1993). The data collected from these
107	two instruments were merged into one particle size spectrum matrix (14nm to 2500nm)
108	according to the methods of Liu et al. (2014) and Beddows et al. (2010).

109	The aerosol chemical composition was acquired using an Aerodyne High-Resolution
110	Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, or AMS, Aerodyne
111	Research Inc., Billerica, MA, USA). The organic matter, sulfate, nitrate, ammonium
112	and chlorine in non-refractory submicron particle mass-size distributions (NR-PM $_1$)
113	were determined under V and W ion optical modes alternatively every 7.5 minutes.
114	Detailed information of data analysis, collection efficiency (CE) and relative ionization
115	efficiency of the instrument were introduced by Zhang et al. (2014). Simultaneously,
116	the gaseous pollutants (e.g., NO, NO_x , CO, O_3 and SO_2) were measured using Thermo
117	instruments (series of 42i, 48i, 49i and 43i, respectively, Thermo Fisher Scientific,
118	Franklin, Massachusetts, USA). Detailed introduction and calibrations were given by
119	(Tang et al., 2012; Wang et al., 2014).
120	An automatic meteorological observation instrument (Milos520, Vaisala, Finland) was
121	used to obtain meteorological parameters (relative humidity, air temperature, wind
122	speed and direction). The time base for all data in the study was Beijing zone time
123	(UTC+8).

124 **3. Results and discussion**

125 **3.1** Aerosol mass concentration and meteorological parameters

126 Figure 1 shows the mass concentrations of PM₁, PM_{1-2.5}, PM_{2.5-10} and mass

127 concentration ratios of $PM_1/PM_{2.5}$, $PM_{2.5}/PM_{10}$ during the period. The average mass

128 concentrations of PM₁, PM_{2.5} and PM₁₀ are 99.1 \pm 67.1µg m⁻³, 188.3 \pm 128.8 µg m⁻³ and

129 $265.2\pm157.1\mu g m^{-3}$, indicative of the high level of aerosol pollution. The average

130	mass ratios of $PM_1/PM_{2.5}$ and $PM_{2.5}/PM_{10}$ are 0.56 ±0.16 and 0.64±0.15, respectively.
131	As we can see in Figure 1(b), the mass ratio of $PM_1/PM_{2.5}$ is higher than that of
132	$PM_{2.5}/PM_{10}$ before January 28, indicating that PM_1 dominated the total mass. The
133	aerosol concentration increased gradually and reached the maximum values at12:00 of
134	January 29, with PM_1 , $PM_{2.5}$ and PM_{10} values of 243.1µg m ⁻³ , 504.6µg m ⁻³ and
135	$620.8\mu g m^{-3}$. The detailed interpretations of the high values will be presented in
136	following section. Thereafter, the aerosol concentrations decreased rapidly to a lower
137	level. The mass ratios of $PM_1/PM_{2.5}$ and $PM_{2.5}/PM_{10}$ showed opposite pattern with
138	time variation during the period, indicating a decreasing fraction of PM_1 compared
139	with $PM_{2.5}$ and an increasing fraction of $PM_{2.5}$ compared with PM_{10} with increasing
140	aerosol pollution. It is worth noting that the increase of $PM_{1-2.5}$ was greatest during the
141	period January 28 to 29, as showed in Figure 1(a). Figure S1 displays meteorological
142	parameters during the episode. During this period, the average wind speed was 2.5
143	m/s. Figure S2 shows an overview of wind rose of the local wind and the wind is
144	mainly in the southerly and northerly quadrant, which can bring relative dirty or clean
145	air masses, respectively. Figure 2 exhibits 72 hours backward trajectories of air
146	parcels every 3hours using Hysplit model from a height of 100m, with a total of six
147	clusters yielded (http://ready.arl.noaa.gov/HYSPLIT.php). We should clarify that the
148	southern area of Beijing often suffers more polluted atmosphere than that in the
149	northern area due to more cities and population. The clusters of 1 to 5 are from the
150	northerly direction, with clean air and high transport height. Furthermore, a long
151	transport pathway within 72 hours implies that those air parcels have a higher

transport speed compared with cluster 6. The cluster 6, from southern and local 152 directions with a fraction of 47%, has the highest frequency. The cluster has a short 153 154 transport distance of nearly 400 km, low transport height and speed, resulting in a sufficient loading of surface air pollutions compared with other clusters. We also 155 156 present sounding data in Beijing from University of Wyoming twice a day (http://weather.uwyo.edu/upperair/), as shown in Figure 3. These lines with different colors 157 represent soundings during the observation period. It is worth noting that an inversion 158 layer between 1000m to 1500m exists after January 27th. Particularly at 08:00 of 28th 159 (Beijing time), the lapse rate of temperature is nearly 0.6° C/100m, which indicates a 160 very stable synoptic condition. Combined with low wind speed shown in figure S1, 161 the horizontal motion is also limited during the pollution episode. 162

163 **3.2 Aerosol optical properties**

The aerosol scattering coefficient (σ_{sp}) and backscattering coefficient (σ_{bsp}) can be 164 directly measured by the nephelometer and then aerosol backscattering fraction (b_{1}) , 165 scattering Ångström exponent (Å_{sp}) and asymmetry parameter (g_{λ}) can be calculated 166 from the scattering coefficients, which have rarely been reported in Beijing using 167 168 in-situ measurements. The aerosol light scattering coefficients show the same pattern as mass concentration of PM, as shown in Figure 4. Table 1 shows the statistics of the 169 aerosol optical properties during this haze episode, and the average aerosol scattering 170 coefficients σ_{sp}^{450} , σ_{sp}^{550} and σ_{sp}^{700} are 1088.5 ±748.1 Mm⁻¹, 877.2 Mm⁻¹ ±624.2 Mm⁻¹ 171 and 718.4 Mm⁻¹±530.8 Mm⁻¹, respectively. After converting the aerosol light 172 scattering coefficients at 550nm to that of 525nm, the average σ_{sp} at 525nm are 3.2 173

times greater than the yearly average values at another site in Beijing, reported by He et al. (2009). The average aerosol backscattering coefficients σ_{bsp}^{450} , σ_{bsp}^{550} and σ_{bsp}^{700} are 134.4 Mm⁻¹±87.1 Mm⁻¹, 108.1 Mm⁻¹±71.1 Mm⁻¹ and 98.7 Mm⁻¹±66.5 Mm⁻¹, respectively, as presented in Figure 4 (b). During the whole campaign, σ_{sp} and σ_{bsp} at three wavelengths were highly correlated. Both σ_{sp} and σ_{bsp} increase gradually from 24 to 29 January and decrease sharply to lower levels, which are consistent with

180 the variations of aerosol mass concentrations.

181 The backscattering ratio, which is also called the hemispheric backscatter fraction, is 182 the ratio of light scattered in the backward hemisphere to the total light scattered by

183 particles. It is related to particle size distribution and can be calculated as following;

184
$$b_{\lambda} = \frac{\sigma_{bsp}^{\lambda}}{\sigma_{sp}^{\lambda}}$$
 (1)

185 The average b_{λ} at three wavelengths are 0.13 ±0.02, 0.14 ±0.02 and 0.15 ±0.02,

respectively. A higher value of b_{λ} at 700nm indicates relatively more small size particles that scatter light in the backward hemisphere. The scattering Ångström exponent (Å_{sp}) represents the wavelength dependence of scattering coefficient and is related to the slope of the number-size distribution or the mean size and relative concentrations of the accumulation and coarse mode aerosol. It is calculated using any two of three channels as following;

193 The average $\stackrel{0}{A}_{450/550}$ and $\stackrel{0}{A}_{550/700}$ are 1.2±0.3 and 0.94±0.3, respectively. The average 194 $\stackrel{0}{A}_{450/700}$ is 1.1±0.3, which is smaller than that of 1.46 in Guangzhou (Garland et al.,

195	2008) and 1.7 in Spain reported by (Titos et al., 2012), which indicates a more
196	dominant coarse mode particle compared with the other locations.
197	The asymmetry parameter g is a fundamental parameter for radiative transfer
198	calculation, and is defined as the intensity-weighted averaged cosine of the scattering
199	angle:
200	$g_{\lambda} = \frac{1}{2} \int_0^{\pi} \cos \theta P(\theta) \sin \theta d\theta \tag{3}$
201	Where θ is the angle between incident light and scattering direction and P (θ) is the
202	angular distribution of scattered light (the phase function). The value of g_{λ} ranges
203	between -1 for completely backscattered light to +1 for completely forward scattered
204	light. Because there is no measurements method that can directly obtain the values of
205	g, a fit equation applied by Andrews et al. (2006) was used as in equation 4.
206	$g_{\lambda} = -7.143889 * b_{\lambda}^{3} + 7.464439 * b_{\lambda}^{2} - 3.9356 * b_{\lambda} + 0.9893 $ (4)
207	The average value of g_{λ} at 450nm, 550nm and 700nm are 0.58±0.04, 0.59±0.05 and
208	0.54±0.05, respectively. The three parameters of b_{λ} , A_{sp} and g_{λ} can show a relative
209	contribution of particle size to light scattering. During 24 and 25 January, b_{λ} and \AA_{sp}
210	shows higher values, which shows lower ones, as showed in Figure 4. However, the
211	opposite feature occurs when the haze developed. Especially during the highest
212	pollution periods (from 28 to 30 January), higher values of b_{λ} , $Å_{sp}$ and lower values of
213	g_{λ} appear, which indicates an increasing fraction of relative coarse aerosol, consistent
214	with the variation pattern of $PM_1/PM_{2.5}$ showed in Figure 1(b).
215	3.3 particle number size distribution

216 The particle number-size distribution from January 25 to 31 is shown in Figure 5(a).

217	The particle number concentration peaks at a diameter of around 100 nm. These
218	particles are mainly from direct emissions of vehicles, cooking and new particle
219	formation (Shi et al., 2001). Particle volume concentration and mass concentration are
220	shown in figure 5(b) and (c), respectively, assuming an average aerosol bulk density
221	of 1.5 g.cm ³ and that all particles are regular spheres based on the research by (Zhang
222	et al., 2004) in Pittsburgh PA, USA. The coarse mode particles between diameters of
223	1000nm to 2500nm increased significantly during the most heavily pollution periods
224	(28 and 29 January), as shown in Figure 5 (b) and 5 (c), which is consistent with
225	interpretations of variation ratio of $PM_1/PM_{2.5}$. The time series of calculated mass
226	concentration of $PM_{2.5}$, number concentrations of nucleation mode (14nm-25nm),
227	Aitken mode (25nm-100nm), accumulation mode (100nm-1000nm) and coarse mode
228	(1000 nm-2500nm) are presented in Figure 6. The calculated mass concentration of
229	$PM_{2.5}$ matches well with measured values, with R^2 values of 0.97, as shown in Figure
230	S3. The nucleation mode particles show the highest number concentration during the
231	period, with an average value greater than 1.5×10^6 cm ⁻³ , indicating large emission of
232	reactive or low volatility, aerosol precursor gases (e.g. sulfur dioxide and organic
233	vapors). The lowest particle number concentration is in coarse mode (D _m >1000nm),
234	with an average value of 3.18×10^3 cm ⁻³ . The Aitken mode and accumulation mode
235	also show high number concentrations, with the average values of 1.90×10^5 cm ⁻³ and
236	1.01×10^6 cm ⁻³ . Compared with three years of measurements of particle number
237	concentration at another urban site in Beijing, the number concentrations of
238	nucleation, Aitken and accumulation mode during this haze episode are more than 170

times, 10 times and 120 times, respectively (Hu et al., 2009). The nucleation mode 239 and Aitken mode particle show a significant increase at mid-day on 28 January, while 240 241 the accumulation mode is not significant. This may be ascribed to the emissions from vehicle and cooking nearby our sampling site. It is worth noting that the concentration 242 243 of coarse mode particle was highest on the 28th and 29th of January, which is consistent with the pattern of $PM_{2.5}/PM_{10}$. After the coagulation, condensation and 244 hygroscopic growth, the number concentrations of nucleation mode and Aitken mode 245 particle decrease on 12:00 of 30 January, as shown in Figure 6. 246 247 **3.4** aerosol chemical properties The time series of chemical compositions, mass fractions, O:C ratio and m/z 44 of 248 NR-PM₁ are presented in Figure7(a), (b) and (c). The average mass concentrations of 249 organic, sulfate, nitrate, ammonium and chloride are $62.1 \pm 46.1 \mu \text{g m}^{-3}$, 250 $28.4 \pm 22.1 \mu g m^{-3}$, $37.2 \pm 30.6 \mu g m^{-3}$, $17.4 \pm 12.7 \mu g m^{-3}$ and $5.5 \pm 4.2 \mu g m^{-3}$, respectively. 251 The organic component is dominant in NR- PM₁, with an average mass fraction of 252 253 $44.9\% \pm 11.7\%$. Sulfate and nitrate species concentrations are also very high during the

heavy haze event.

AMS enables the real time determination of size-resolved chemical compositions of

different modes of particles as a function of time. Figure 8 shows the temporal

257 variations of the size distributions of the organic (a), sulfate (b), nitrate (c),

ammonium (d) and chloride (e). The organic and chloride containing particles display

a slightly broader distribution than the other three species. All the aerosol components

260 mainly reside in the accumulation mode with vacuum aerodynamic diameters around

261	700nm. Note that the AMS size distributions here are shown as a function of vacuum
262	aerodynamic diameter, D_{va} , which is the aerodynamic diameter measured under
263	free-molecular regime flow conditions. To a first approximation, 700nm in D_{va}
264	corresponds roughly to 470 nm in physical diameter for spherical particles. It is worth
265	noting that particles with optical diameters between 100nm and 1000nm have the
266	highest scattering efficiency in the visible range (Liou, 2002), so a high concentration
267	at this optimum aerosol size will lead to strong light scattering and reduced visibility
268	during the period.
269	These five aerosol components all show high concentrations from the afternoon of
270	28 January to noon of 29 January, corresponding with the highest mass loading and
271	light scattering of the whole pollution period. The detailed behaviors of particle
272	number concentration, size-resolved organic, sulfate, nitrate, ammonium and particle
273	mass concentration on January 28 are presented in Figure S5 and S6. The particle
274	number concentrations show a burst at nearly 12:00, with D_m less than 100nm.
275	Observations by Sakurai et al. (2005) in Atlanta, GA, USA recognized this as a plume
276	related to a new particle formation event, which was accompanied by advection of
277	local emissions. However, an increasing concentration of aerosol chemical
278	components at about 11:00 on 28 January is observed by the AMS as shown in Figure
279	S5. The mass concentrations mainly reside on between 300nm and 1000nm in
280	vacuum diameter. This may be due to the accumulation of air pollutants in the
281	stagnant boundary layer. As we can see in figure S1, the meteorological parameters
282	are characterized by calm wind, low RH and increasing temperature in the morning,

283	which leads to a stable boundary layer. Then, with increasing surface temperature and
284	PBL height, the dilution causes the aerosol concentration decreasing in the afternoon.
285	The concentrations of sulfate, ammonium and nitrate show an increasing trend from
286	18:00. The major reasons are: (1) Increasing RH may enhance the heterogeneous
287	reaction of SO_2 and NH_3 to produce sulfate and nitrate. (2) Decreased PBL height at
288	night leads to accumulation of air pollutant. (3) Conversion of N_2O_5 to nitrate via
289	heterogonous or homogenous ways and reaction of OH and NO ₂ (Kim et al., 2014).
290	All of the above aspects result in the mass concentrations of nitrate and ammonium
291	having a distinct growth of particles with diameters between 100nm and 500nm on 28
292	January.
293	3.5 Increased formation of Secondary Organic Aerosol (SOA) during haze
294	pollution episode
294 295	pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic
294 295 296	pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency
294 295 296 297	 pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency distributions of organic mass and m/z 44 during the period are presented as well.
294 295 296 297 298	pollution episodeFigure 10 shows the variations of signal of m/z 44 as a function of organicaerosol mass concentration and the influence of relative humidity. The frequencydistributions of organic mass and m/z 44 during the period are presented as well.The greatest frequency of occurrence of organic aerosol concentration appears
294 295 296 297 298 299	 pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency distributions of organic mass and m/z 44 during the period are presented as well. The greatest frequency of occurrence of organic aerosol concentration appears nearly between mass concentrations of 20 to 35µg m⁻³, corresponding with
294 295 296 297 298 299 300	 pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency distributions of organic mass and m/z 44 during the period are presented as well. The greatest frequency of occurrence of organic aerosol concentration appears nearly between mass concentrations of 20 to 35µg m⁻³, corresponding with signal fraction of m/z 44 less than 2. The signal of m/z 44 shows an increasing
 294 295 296 297 298 299 300 301 	 pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency distributions of organic mass and m/z 44 during the period are presented as well. The greatest frequency of occurrence of organic aerosol concentration appears nearly between mass concentrations of 20 to 35µg m⁻³, corresponding with signal fraction of m/z 44 less than 2. The signal of m/z 44 shows an increasing trend with increasing organic mass. The lower concentration of organic
 294 295 296 297 298 299 300 301 302 	 pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency distributions of organic mass and m/z 44 during the period are presented as well. The greatest frequency of occurrence of organic aerosol concentration appears nearly between mass concentrations of 20 to 35µg m⁻³, corresponding with signal fraction of m/z 44 less than 2. The signal of m/z 44 shows an increasing trend with increasing organic mass. The lower concentration of organic component mainly exists at RH below 40%, which is indicative of a relatively
 294 295 296 297 298 299 300 301 302 303 	 pollution episode Figure 10 shows the variations of signal of m/z 44 as a function of organic aerosol mass concentration and the influence of relative humidity. The frequency distributions of organic mass and m/z 44 during the period are presented as well. The greatest frequency of occurrence of organic aerosol concentration appears nearly between mass concentrations of 20 to 35µg m⁻³, corresponding with signal fraction of m/z 44 less than 2. The signal of m/z 44 shows an increasing trend with increasing organic mass. The lower concentration of organic component mainly exists at RH below 40%, which is indicative of a relatively clean atmosphere in urban Beijing. It is notable that the higher levels of the

uptake ability is enhanced and the more highly hydrated particles are able to
capture more water-soluble volatile organic compounds (VOCs). In this way, the
dry mass concentration of organic aerosol increases after the water evaporated in
the AMS. The studies of Ge et al. (2012) in central valley of California and
Dall'Osto et al. (2009) in London also showed that aqueous-phase processes are
responsible for the production of secondary organic aerosol species, most

311 significantly during fog events.

312 **3.6 Light scattering apportionment**

Light scattering by atmospheric aerosols is highly dependent on their size,

morphology and compositions (Liou, 2002). Sulfate, nitrate, ammonium and organic

315 components in aerosol contribute most to light scattering, and particularly for

diameters ranging from 100nm to 1000nm, they have the greatest light extinction

317 efficiency (Seinfeld and Pandis, 1998). Here, a modified IMPROVE algorithm was

employed to apportion light scattering coefficients at λ =550nm (Pitchford et al., 2007).

319 The IMPROVE algorithm was based on a multiple liner regression method (Chan et

al., 1999), which considers the degree to which aerosol light scattering is related to

321 the mass concentration of each component combined with water uptake of inorganic

322 component. The detailed introduction of the method can be can be found in

Lowenthal et al. (1995). The f(RH) curve obtained by Chen et al. (2014) during

324 January in Northern China Plain is used here.

In our light apportionment calculation, the mass concentrations of ammonium sulfate,

326 ammonium bisulfate, ammonium nitrate, ammonium chloride and organic were

327	required. However, the AMS can only provide us with mass concentrations of sulfate,
328	nitrate, ammonium chloride and organic compounds. Here, a commonly accepted ion
329	pairing scheme of calculating the neutral aerosol from the molar number of all ions
330	simplified by Gysel et al. (2007) is applied. In this scheme, by setting the fraction of
331	nitric acid to zero, the molar fraction of ammonium nitrate is equal to the molar
332	fraction of nitrate ions. The rest of ammonium ions are assigned to ammonium
333	bisulfate, ammonium sulfate and ammonium chloride according to ammonium molar
334	fraction.
335	In the IMPROVE algorithm, the light scattering growth due to inorganic components
336	were considered, while the contribution from organic aerosol did not take into account.
337	Then, using the highly resolution mass concentrations of sulfate containing aerosol,
338	ammonium nitrate, ammonium chloride and organic in submicron aerosol and aerosol
339	scattering growth curve, we calculated a relationship of scattering coefficient and
340	aerosol components and light scattering growth factor as showed in formula 9 . The
341	fitting was computed with MATLAB software (MATLAB R2010a). Figure 11 (a)
342	shows the time series of apportioned light scattering coefficients of each of the
343	aerosol components compared with measured values during observation period. At the
344	beginning of the periods, organic components dominated light scattering. With the
345	development of the haze, the contribution of inorganic components increased as
346	shown in Figure 11 (b). The total average light scattering contribution of each aerosol
347	component is presented in Figure 12. The apportionment contributions from organic,
348	sulfate, ammonium nitrate and ammonium chloride were 54%, 24%, 12% and 10%,

349	respectively, which indicated the dominant contribution of organic and sulfate
350	compounds to light scattering during this haze episode in Beijing. One should note
351	that the apportioned light scattering coefficient using the IMPROVE method is highly
352	related with its mass concentration, and organic aerosol is a large fraction of the mass
353	Yao et al. (2010) showed that the organic components contributed greatly to the light
354	extinction (about 45% contribution) by using AMS data during winter in Shenzhen,
355	PRC. Watson (2002) also found the organic aerosol dominated light extinction in
356	some cities, with fractions of 9% \sim 50% in east USA.
357	$\sigma_{\rm sp}^{550} = 6.5 f(RH)[(NH_4)_2 SO_4] + 6.5 f(RH)[NH_4HSO_4] + 2.2 f(RH)[NH_4NO_3] $ (9)
551	+4.3f(RH)[NH4Cl]+5.7[organic]+57.3
358	4. Summary and Conclusion

Based on in-situ measurements, the physical and chemical properties of aerosol 359 360 particles were characterized during a severe haze episode in Beijing from 24 January to 31January during, 2013. The average mass concentrations of PM₁, PM_{2.5} and PM₁₀ 361 were 99.1 \pm 67.1µg m⁻³, 188.3 \pm 128.8 µg m⁻³ and 265.2 \pm 157.1µg m⁻³, respectively, and 362 363 an increasing fraction of PM_{1-2.5} was significant during the most heavy pollution periods. The averaged scattering coefficient at 550 nm was 877.2 Mm⁻¹ ±624.2 Mm⁻¹, 364 and an increasing amount of relative coarse particle also can be seen from the 365 variations of backscattering ratios, asymmetry parameter and scattering Ångström 366 exponent. Particle number size distribution (14 nm to 2500nm) showed high number 367 concentrations in the nucleation and accumulation modes. Size-resolved chemical 368 composition of submicron aerosol from a HR-ToF-AMS showed that the mass 369 concentration of organic, sulfate, nitrate, ammonium and chlorine mainly resided on 370

371	500nm-800nm in vacuum diameter, and sulfate and ammonium contributed to the
372	growth of particle during the most heavily polluted day on January 28.
373	High emissions of regional background pollutants combined with stable synoptic
374	conditions and increasing of relative humidity, which lead to enhanced water uptake
375	ability of submicron aerosol and formation of secondary aerosol, may be the main
376	reasons for the heavy haze episode. Light scattering apportionment showed that
377	organic, sulfate containing components, ammonium nitrate and ammonium chloride
378	contributed to light scattering fractions of 54%, 24%, 12% and 10%, respectively.
379	Considering their dominant fractional contribution to light scattering and light
380	extinction, our study indicated that organic components also played an important role
381	in visibility degradation during the winter haze episode in Beijing.
382	Acknowledgment
383	We acknowledge Professor Zhang Wu of Lanzhou University for help in nephelometer
384	maintenance. We also acknowledge NOAA and University of Wyoming for backward
385	trajectory calculations and meteorological upper air data analysis, respectively. This
386	work was supported by National Natural Science Foundation of China (41230642), the
387	CAS Strategic Priority Research Program grant XDA05100100 and XDB05020402.
388	Reference
389 390	Anderson, T.L. et al., 2003. Atmospheric science. Climate forcing by aerosola hazy picture. Science, 300(5622): 1103-4.
391	Anderson, T. L., and Ogren, J. A.: Determining Aerosol Radiative Properties Using
392	the Tsi 3563 Integrating Nephelometer, Aerosol Science and Technology, 29, 57-
393	69, 10.1080/02786829808965551, 1998

- Andrews, E. et al., 2006. Comparison of methods for deriving aerosol asymmetry parameter. Journal of
 Geophysical Research, 111(D5).
- Beddows, D.C.S., Dall'osto, M. and Harrison, R.M., 2010. An Enhanced Procedure for the Merging of
 Atmospheric Particle Size Distribution Data Measured Using Electrical Mobility and
 Time-of-Flight Analysers. Aerosol Science and Technology, 44(11): 930-938.
- Chan, Y.C. et al., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia)
 using the multiple linear regression techniques. Atmospheric Environment, 33(19):
 3237-3250.
- 402 Chen, J. et al., 2012. A parameterization of low visibilities for hazy days in the North China Plain.
 403 Atmospheric Chemistry and Physics, 12(11): 4935-4950.
- Chen, J., Zhao, C.S., Ma, N. and Yan, P., 2014. Aerosol hygroscopicity parameter derived from the
 light scattering enhancement factor measurements in the North China Plain. Atmos. Chem.
 Phys., 14(15): 8105-8118.
- 407 Cheng, Y.F. et al., 2012. Size-resolved measurement of the mixing state of soot in the megacity Beijing,
 408 China: diurnal cycle, aging and parameterization. Atmospheric Chemistry and Physics, 12(10):
 409 4477-4491.
- 410 Dall'Osto, M., Harrison, R.M., Coe, H. and Williams, P., 2009. Real-time secondary aerosol formation
 411 during a fog event in London. Atmos. Chem. Phys., 9(7): 2459-2469.
- 412 Deng, Z.Z. et al., 2013. Examination of parameterizations for CCN number concentrations based on
 413 in-situ aerosol activation property measurements in the North China Plain. Atmospheric
 414 Chemistry and Physics Discussions, 13(1): 145-176.
- Garland, R.M. et al., 2008. Aerosol optical properties in a rural environment near the mega-city
 Guangzhou, China: implications for regional air pollution, radiative forcing and remote
 sensing. Atmos. Chem. Phys., 8(17): 5161-5186.
- Ge, X., Zhang, Q., Sun, Y., Ruehl, C.R. and Setyan, A., 2012. Effect of aqueous-phase processing on
 aerosol chemistry and size distributions in Fresno, California, during wintertime.
 Environmental Chemistry, 9(3): 221.
- Gysel, M. et al., 2007. Closure study between chemical composition and hygroscopic growth of aerosol
 particles during TORCH2. Atmos. Chem. Phys., 7(24): 6131-6144.
- He, X. et al., 2009. An intensive study of aerosol optical properties in Beijing urban area. Atmos. Chem.
 Phys., 9: 8903–8915
- 425 Hu, M., He, L., Huang, X. and Wu, Z,: Chmeical and physical properties, source and
- 426 formation of fine and ultrafine particle in Beijing, Science Press, 2009.
- Huang, K. et al., 2010a. Relation between optical and chemical properties of dust aerosol over Beijing,
 China. Journal of Geophysical Research, 115.
- Huang, X.F. et al., 2010b. Highly time-resolved chemical characterization of atmospheric submicron
 particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol
 Mass Spectrometer. Atmospheric Chemistry and Physics, 10(18): 8933-8945.
- Kaufman, Y.J., Koren, I., Remer, L.A., Rosenfeld, D. and Rudich, Y., 2005. The effect of smoke, dust,
 and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad
 Sci U S A, 102(32): 11207-12.
- 435 Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N. and Stanier, C. O., 2014. Modeled aerosol

436	nitrate formation pathways during wintertime in the Great Lakes region of North America.
437	Journal of Geophysical Research: Atmospheres, DOI: 10.1002/2014JD022320
438	
439	Koren, I., Kaufman, Y.J., Rosenfeld, D., Remer, L.A. and Rudich, Y., 2005. Aerosol invigoration and
440	restructuring of Atlantic convective clouds. Geophysical Research Letters, 32(14): n/a-n/a.
441	Li, W.J., Shao, L.Y. and Buseck, P.R., 2010. Haze types in Beijing and the influence of agricultural
442	biomass burning. Atmospheric Chemistry and Physics, 10(17): 8119-8130.
443	Liu, X.G. et al., 2013. Formation and evolution mechanism of regional haze: a case study in the
444	megacity Beijing, China. Atmospheric Chemistry and Physics, 13(9): 4501-4514.
445	Liu, Z. et al., 2015. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban
446	site of Beijing: analyses from a 9-year study. Environmental Science and Pollution Research,
447	22(1): 627-642.
448	Liu, Z.R., Hu, B., Liu, Q., Sun, Y. and Wang, Y.S., 2014. Source apportionment of urban fine particle
449	number concentration during summertime in Beijing. Atmospheric Environment(0).
450	Lohmann, U. and Feichter, a.J., 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phy.
451	, 5: 715-737.
452	Liou, K.N.: An introduction to atmospheric radiation (second edition), Elsevier
453	Science, 2002.
454	Lowenthal, D.H., Rogers, C.F., Saxena, P., Watson, J.G. and Chow, J.C., 1995. Sensitivity of estimated
455	light extinction coefficients to model assumptions and measurement errors. Atmospheric
456	Environment, 29(7): 751-766.
457	Ma, N. et al., 2012. A new method to determine the mixing state of light absorbing carbonaceous using
458	the measured aerosol optical properties and number size distributions. Atmospheric Chemistry
459	and Physics, 12(5): 2381-2397.
460	Meier, J. et al., 2009. Hygroscopic growth of urban aerosol particles in Beijing (China)
461	during wintertime: a comparison of three experimental methods. Atmos. Chem. Phys., , 9: 6865-6880
462	
463	Nel, A., 2005. Atmosphere. Air pollution-related illness: effects of particles. Science, 308(5723): 804-6.
464	Pan, X.L. et al., 2009. Observational study of influence of aerosol hygroscopic growth on scattering
465	coefficient over rural area near Beijing mega-city. Atmos. Chem. Phys.
466	, 9: 7519–7530.
467	Pitchford, M. et al., 2007. Revised Algorithm for Estimating Light Extinction from IMPROVE Particle
468	Speciation Data. Journal of the Air & Waste Management Association, 57(11): 1326-1336.
469	Poschl, U., 2005. Atmospheric aerosols: composition, transformation, climate and health effects.
470	Angew Chem Int Ed Engl, 44(46): 7520-40.
471	Qu, W.J. et al., 2010. Spatial distribution and interannual variation of surface PM ₁₀
472	concentrations over eighty-six Chinese cities. Atmospheric Chemistry and Physics, 10(12):
473	5641-5662.
474	Quan, J. et al., 2011. Analysis of the formation of fog and haze in North China Plain (NCP).
475	Atmospheric Chemistry and Physics, 11(15): 8205-8214.
476	Ramanathan, V., Crutzen, P.J., Kiehl, J.T. and Rosenfeld, D., 2001. Aerosols, climate, and the
477	hydrological cycle. Science, 294(5549): 2119-24.

- 478 Sakurai, H. et al., 2005. Hygroscopicity and volatility of 4–10 nm particles during summertime
 479 atmospheric nucleation events in urban Atlanta. Journal of Geophysical Research:
 480 Atmospheres, 110(D22): D22S04.
- 481 Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and physics, From Air
- 482 Pollution to Climate Changes, Wiley, New York, USA, 1998.
- Shi, J.P., Evans, D.E., Khan, A.A. and Harrison, R.M., 2001. Sources and concentration of
 nanoparticles (<10 nm diameter) in the urban atmosphere. Atmospheric Environment,
 35(7): 1193-1202.
- Sun, Y.L., Zhuang, G.S., T ang , A., Wang, Y. and And An, Z., 2006. Chemical Characteristics of
 PM2.5 and PM10 in Haze-fog Episodes in Beijing. Environ. Sci. Technol., 40: 3148-3155.
- 488 Tang, G. et al., 2012. Spatial-temporal variations in surface ozone in Northern China as observed
 489 during 2009–2010 and possible implications for future air quality control strategies. Atmos.
 490 Chem. Phys., 12(5): 2757-2776.
- 491 Titos, G. et al., 2012. Optical properties and chemical composition of aerosol particles at an urban
 492 location: An estimation of the aerosol mass scattering and absorption efficiencies. Journal of
 493 Geophysical Research: Atmospheres, 117(D4): D04206.
- 494 Twomey, S., 1977. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of the
 495 Atmospheric Sciences, 34: 1149-1152.
- Wang, K.C., Dickinson, R.E., Su, L. and Trenberth, K.E., 2012a. Contrasting trends of mass and optical
 properties of aerosols over the Northern Hemisphere from 1992 to 2011. Atmospheric
 Chemistry and Physics, 12(19): 9387-9398.
- Wang, L. et al., 2012b. Understanding haze pollution over the southern Hebei area of China using the
 CMAQ model. Atmospheric Environment, 56: 69-79.
- Wang, Y. et al., 2013. Mechanism for the formation of the January 2013 heavy haze pollution episode
 over central and eastern China. Science China Earth Sciences.
- Wang, Y.H. et al., 2014. Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China.
 Atmos. Chem. Phys., 14(5): 2419-2429.
- Watson, J.G., 2002. Visibility: Science and Regulation. Journal of the Air & Waste Management
 Association, 52(6): 628-713.
- 507 Wehner, B. et al., 2008. Relationships between submicrometer particulate air pollution and
- air mass history in Beijing, China, 2004–2006. Atmos. Chem. Phys., 8: 6155–6168.
- 509 Wu, Z. et al., 2007. New particle formation in Beijing, China: Statistical analysis of a 1-year data set.
 510 Journal of Geophysical Research, 112(D9).
- Yang, M., Howell, S.G., Zhuang, J. and Huebert, a.B.J., 2009. Attribution of aerosol light absorption to
 black carbon, brown
- 513 carbon, and dust in China interpretations of atmospheric
- 514 measurements during EAST-AIRE. Atmos. Chem. Phys.,, 9: 2035–2050.
- Yao, T. et al., 2010. High time resolution observation and statistical analysis of atmospheric light
 extinction properties and the chemical speciation of fine particulates. SCIENCE CHINA
 Chemistry, 53(8): 1801-1808.
- Zhang, J.K. et al., 2014. Characterization of submicron aerosols during a month of serious pollution in
 Beijing, 2013. Atmos. Chem. Phys., 14(6): 2887-2903.

520	Zhang, Q., Quan, J., Tie, X., Huang, M. and Ma, X., 2011. Impact of aerosol particles on cloud
521	formation: Aircraft measurements in China. Atmospheric Environment, 45(3): 665-672.
522	Zhang, Q. et al., 2004. Insights into the Chemistry of New Particle Formation and Growth Events in
523	Pittsburgh Based on Aerosol Mass Spectrometry. Environmental Science & Technology,
524	38(18): 4797-4809.
525	Zhang, Q.H., Zhang, J.P. and Xue, H.W., 2010. The challenge of improving visibility in Beijing.
526	Atmospheric Chemistry and Physics, 10(16): 7821-7827.
527	Zhang, X. et al., 2013. Factors contributing to haze and fog in China. Chinese Science Bulletin
528	(Chinese Version), 58(13): 1178.
529	Zhang, X.Y. et al., 2012. Atmospheric aerosol compositions in China: spatial/temporal variability,
530	chemical signature, regional haze distribution and comparisons with global aerosols.
531	Atmospheric Chemistry and Physics, 12(2): 779-799.
532	Zhao, X.J. et al., 2013. Analysis of a winter regional haze event and its formation mechanism in the
533	North China Plain. Atmospheric Chemistry and Physics, 13(11): 5685-5696.
534	
535	
555	
536	
000	
537	
538	
539	
540	
541	
542	
543	
544	
545	
- 4 -	
546	
517	
347	
5/18	
540	
549	
~ • /	

553 Table 1 The statistic of aerosol optical properties during observation period.

Parameter	mean	median	Standard	5%	95%
			derivation	quantile	quantile
$\sigma^{450}_{_{sp}}$ (Mm ⁻¹)	1088.5	924.4	748.1	48.1	2386.3
σ_{sp}^{550} (Mm ⁻¹)	877.2	748.4	624.2	36.6	1993.4
σ_{sp}^{700} (Mm ⁻¹)	718.4	628.2	530.9	28.7	1703.3
σ^{450}_{bsp} (Mm ⁻¹)	134.4	122.8	87.1	7.6	281.4
$\sigma^{^{550}}_{^{bsp}}$ (Mm ⁻¹)	108.1	96.4	71	6.1	228.5
σ^{700}_{bsp} (Mm ⁻¹)	98.7	89.3	66.5	7.3	214.4
b_{450}	0.13	0.13	0.02	0.11	0.16
b_{550}	0.14	0.12	0.02	0.11	0.17
b_{700}	0.15	0.14	0.02	0.13	0.19
0 A450/550	1.2	1.3	0.3	0.74	1.7
0 A550/700	0.94	1.0	0.3	0.41	1.4
g_{450}	0.58	0.6	0.04	0.52	0.62
<i>8</i> 550	0.57	0.6	0.05	0.50	0.63
<i>g</i> ₇₀₀	0.54	0.56	0.05	0.46	0.60

Table 2 The statistic of particle number concentration during observation period.

	Parameter	Mean	median	Standard	5%	95%
				derivation	quantile	quantile
_	Nucleation(cm ⁻³)	1.90×10 ⁵	1.8×10 ⁵	8.3×10 ⁴	6.3×10 ⁴	3.4×10 ⁵
	Aitken(cm ⁻³)	1.5×10 ⁶	1.4×10^{6}	6.4×10 ⁵	5.7×10 ⁵	2.7×10 ⁶
	Accumulation(cm ⁻³)	1×10 ⁶	9.9×10 ⁶	3.9×10 ⁵	4.7×10 ⁵	1.6×10 ⁶
	Coarse (cm ⁻³)	3.1×10 ³	2.9×10 ³	2.3×10 ³	2.5×10 ²	7.0×10 ³
557						
558						
559						
560						
561						
562						
563						
564						
565						
566						
567						
568						
569						

Figure 1 Time series of (a) mass concentrations of PM_1 , $PM_{1-2.5}$ and $PM_{2.5-10}$, (b) mass ratios of $PM_1/PM_{2.5}$ and $PM_{2.5}/PM_{10}$

Figure 2 The three days backward trajectory of air parcels during the observation

period; the colors of air trajectories represent height during transport.

Figure 3 The temperature profiles during observation period. The legend stands for

UTC time. For example, 012400 means 0:00 on January 24th.

Figure 4 Time series of (a) scattering coefficients σ_{sp} , (b) backscattering coefficients σ_{bsp} , (c) backscattering ratios b_{λ} , (e) asymmetry parameter g_{λ} at wavelengths of 450nm (blue), 550nm (green) and 700nm (red) (d) scattering Ångström exponent (Å_{sp}) from 450nm-550nm (black) and 550nm-700nm(brown).

Figure 5Time series of (a) particle number size distribution (b) particle volume size distribution (c) particle mass size distribution between 14.1nm-2458nm using SMPS combined with APS from January 25 to 31.The x-axis represents the data of January

and y-axis represents particle diameter (nm). The color in the figure 3 represents particle concentration ($dN/d\log D_p$).

Figure 6 Time series of (a) particle mass concentration calculated from number size distribution and number concentrations of (b) nucleation mode (14.1nm-25nm), (c) Aitken mode (25nm-100nm), (d) accumulation mode (100nm-1000nm) and (e) coarse mode (1000nm-2458nm) from January 25 to January 31.

Figure 7 Time series of (a) mass concentrations of organic, sulfate, nitrate, ammonium and chloride in submicron aerosol (b) mass fractions of organic, sulfate, nitrate, and ammonium and chloride (c) O: C ratio and m/z 44 during the haze episode.

Figure 8 Size-resolved chemical compositions of (a) organic (b) sulfate (c) nitrate (d) ammonium and (e) chlorine

Figure 9 Mixing ratios of (a) NO and CO (b) NO_x and SO_2 (c) O_x and O_3

Figure 10 (left panel) the frequency distribution of m/z 44, (top panel) the frequency distribution of organic mass, (center panel) abundance of m/z 44 as a function of organic aerosol mass concentration and the influence of RH (left, color scale).

Figure 11 Time series of (a) apportioned light scattering coefficients of each aerosol components compared with measured (b) light scattering fractions of each aerosol components.

Figure 12 Averaged light scattering contribution of each aerosol components during

the haze episode