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Abstract 8 

Atmospheric particles containing organic species and inorganic salts may undergo liquid-liquid 9 

phase separation when the relative humidity varies between high and low values. To better 10 

understand the parameters that affect liquid-liquid phase separation in atmospheric particles, we 11 

studied the effects of molecular weight and temperature on liquid-liquid phase separation in 12 

particles containing one organic species mixed with either ammonium sulfate or ammonium 13 

bisulfate. In the molecular weight dependent studies, we measured liquid-liquid phase separation 14 

relative humidity (SRH) in particles containing ammonium sulfate and organic species with large 15 

molecular weights (up to 1153 Da). These results were combined with recent studies of liquid-16 

liquid phase separation in the literature to assess if molecular weight is a useful parameter for 17 

predicting SRH. The combined results, which include results from 33 different particle types, 18 

illustrate that SRH does not depend strongly on molecular weight (i.e. a clear relationship 19 

between molecular weight and SRH was not observed). In the temperature dependent studies, we 20 

measured liquid-liquid phase separation in particles containing ammonium sulfate mixed with 20 21 

different organic species at 244 ± 1 K, 263 ± 1 K, and 278 ± 1 K, as well as 290 ± 1 K for a few 22 

of these particle types. These new results were combined with previous measurements of the 23 

same particle types at 290 ± 1 K. The combined SRH data illustrate that for the organic-24 

ammonium sulfate particles studied the SRH does not depend strongly on temperature. At most 25 

the SRH varied by 9.7 % as the temperature varied from 290 to 244 K. The high SRH values (> 26 

65%) in these experiments may explain the lack of temperature dependence. Since water is a 27 

plasticizer, high relative humidities can lead to high water contents, low viscosities and high 28 

diffusion rates in the particles. For these cases, unless the temperature is very low, liquid-liquid 29 

phase separation is not expected to be kinetically inhibited. The occurrence of liquid-liquid phase 30 

separation and SRH did depend strongly on temperature over the range of 290-244 K for 31 

particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium 32 

bisulfate. For this particle type, a combination of low temperatures and low water content likely 33 

favored kinetic inhabitation of the liquid-liquid phase separation by slow diffusion rates in highly 34 

viscous particles. The combined results suggest that liquid-liquid phase separation is likely a 35 

common occurrence in atmospheric particles at temperatures from 244-290 K, although particles 36 

that do not undergo liquid-liquid phase separation are also likely common.    37 



2 

 

1 Introduction  38 

A large fraction of particles in the atmosphere contains both organic species and inorganic salts 39 

(Murphy and Thomson, 1997; Murphy et al., 1998; Middlebrook et al., 1998; Buzorius et al., 40 

2002; Murphy, 2005; Murphy et al., 2006; Tolocka et al., 2005; Chen et al., 2009; Pratt and 41 

Prather, 2010). Ammonium sulfate and ammonium bisulfate are both common inorganic salts in 42 

these particles (Dibb et al., 1996; Huebert et al., 1998; Talbot et al., 1998; Dibb et al., 2000; Lee 43 

et al., 2003). The types of organic species in these particles are numerous with only around 10% 44 

by mass of these organic species identified at the molecular level (Hamilton et al., 2004; 45 

Goldstein and Galbally, 2007; Decesari et al., 2006; Hallquist et al., 2009). Organic functional 46 

groups found in mixed organic-inorganic salt particles include carboxylic acids, alcohols, 47 

oxidized aromatic compounds, ethers, and esters (Finlayson-Pitts and Pitts, 2000; Seinfeld and 48 

Pandis, 2006; Decesari et al., 2006; Hallquist et al., 2009; Takahama et al., 2011; Rogge et al., 49 

1993; Saxena and Hildemann, 1996; Finlayson-Pitts and Pitts, 1997; Day et al., 2009; Gilardoni 50 

et al., 2009; Liu et al., 2009; Russell et al., 2009; Russell et al., 2011; Fu et al., 2011; Fuzzi et al., 51 

2001). The molecular weight of organic molecules in these mixed particles is thought to range 52 

from less than 100 Da to as high as 1000 Da (Gao et al., 2004; Tolocka et al., 2004; Kalberer et 53 

al., 2004; Nguyen et al., 2010). In addition, the average oxygen-to-carbon elemental ratios (O:C) 54 

of the organic material in ambient particles generally range from 0.1 to 1.0 (Chen et al., 2009; 55 

Aiken et al., 2008; DeCarlo et al., 2008; Jimenez et al., 2009; Hawkins et al., 2010; Heald et al., 56 

2010; Ng et al., 2010; Takahama et al., 2011), while the average organic-to-inorganic mass ratios 57 

(OIR) of atmospheric particles generally range from 0.2 to 3.5 (Chen et al., 2009; Zhang et al., 58 

2007; Jimenez et al., 2009).  59 

When the relative humidity varies in the atmosphere, mixed organic-inorganic salt particles can 60 

undergo different phase transitions, including efflorescence and deliquescence (Martin, 2000; 61 

Brooks et al., 2002; Choi and Chan, 2002; Brooks et al., 2003; Chan and Chan, 2003; Wise et al., 62 

2003; Braban and Abbatt, 2004; Pant et al., 2004; Parsons et al., 2004a; Badger et al., 2006; 63 

Chang and Pankow, 2006; Erdakos et al., 2006; Parsons et al., 2006; Salcedo, 2006; Ling and 64 

Chan, 2008; Treuel et al., 2009; Bodsworth et al., 2010). More recent laboratory measurements 65 

and calculations have focused on liquid-liquid phase separation (Clegg et al., 2001; Pankow, 66 

2003; Marcolli and Krieger, 2006; Anttila et al., 2007; Buajarern et al., 2007; Zuend et al., 2008; 67 

Ciobanu et al., 2009; Kwamena et al., 2010; Prisle et al., 2010; Zuend et al., 2010; Bertram et al., 68 

2011; Reid et al., 2011; Smith et al., 2011; Zuend et al., 2011; Krieger et al., 2012; Pöhlker et al., 69 

2012; Smith et al., 2012; Song et al., 2012a, b; You et al., 2012; Zuend and Seinfeld, 2012; 70 

Drozd et al., 2013; Shiraiwa et al., 2013; Song et al., 2013; Veghte et al., 2013; You et al., 2013; 71 

Zuend and Seinfeld, 2013; Veghte et al., 2014). Liquid-liquid phase separation in the 72 

atmospheric particles can influence the partitioning of organic molecules between the gas and the 73 

particle phase (Seinfeld et al., 2001; Chang and Pankow, 2006; Zuend et al., 2010; Shiraiwa et 74 

al., 2013) and influence the reactive uptake of important gas-phase molecules, such as N2O5, into 75 

atmospheric particles (Anttila et al., 2006; Folkers et al., 2003; Escoreia et al., 2010; Cosman and 76 
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Bertram, 2008; Park et al., 2007; Thornton and Abbatt, 2005; McNeill et al., 2006; Gaston et al., 77 

2014). Liquid-liquid phase separation can also influence the deliquescence and efflorescence 78 

relative humidity in mixed organic-inorganic salt particles (Bertram et al., 2011; Smith et al., 79 

2012; Song et al., 2013). In addition, liquid-liquid phase separation can alter the ice nucleation 80 

properties of particles (Schill and Tolbert, 2013).   81 

Recent work has investigated different parameters that influence liquid-liquid phase separation in 82 

particles containing mixtures of organic species and inorganic salts (You et al., 2014). 83 

Understanding the parameters that affect these transitions is necessary for predicting these phase 84 

transitions in atmospheric particles. Studies have shown that O:C is an important parameter for 85 

predicting liquid-liquid phase separation in these particles, with this phase transition always 86 

observed for O:C less than 0.5, frequently observed for O:C values between 0.5 and 0.8, and 87 

never observed for O:C values greater than 0.8 (Bertram et al., 2011; Song et al., 2012a, b; You 88 

et al., 2013). Measurements have also illustrated that the type of functional groups can also 89 

influence the relative humidity required for liquid-liquid phase separation when the O:C of the 90 

organic material is in the range of approximately 0.5 to 0.8 (Song et al., 2012b). On the other 91 

hand, the occurrence of liquid-liquid phase separation is not a strong function of the OIR or the 92 

number of organic species (Marcolli and Krieger, 2006; Ciobanu et al., 2009; Bertram et al., 93 

2011; Song et al., 2012a, b; Schill and Tolbert, 2013). In addition, the occurrence of liquid-liquid 94 

phase separation may not be a strong function of the type of inorganic salt for O:C ≥ 0.8 and ≤ 95 

0.5, but, in the range of 0.5 to 0.8, the occurrence of liquid-liquid phase separation can depend on 96 

the salt type (You et al. 2013). 97 

In the following paper, we investigate if molecular weight of the organic material and 98 

temperature of the particles influence liquid-liquid phase separation in particles containing 99 

organic species and inorganic salts. Molecular weight of the organic molecules is of interest 100 

because viscosity of organic-inorganic salt mixtures can depend roughly on the molecular weight 101 

of the organic species, and at high molecular weights, liquid-liquid phase separation may become 102 

kinetically inhibited in highly viscous solutions. The effect of molecular weight of the organic 103 

material on the occurrence of liquid-liquid phase separation in mixed organic-inorganic salt 104 

particles has not been explored. 105 

Temperature is of interest since temperature ranges from approximately 220 to 300 K in the 106 

troposphere, and temperature can influence the thermodynamics and kinetics of liquid-liquid 107 

phase separation. As an example of the effect of temperature on the thermodynamics of liquid-108 

liquid phase transitions consider the binary mixture of water and butanol. At room temperature 109 

the binary mixture is partially immiscible. But as the temperature increases the region of 110 

immiscibility decreases until the upper critical solution temperature is reached. At higher 111 

temperatures the binary mixture is completely miscible. Certain mixtures can also have lower 112 

critical solution temperatures due to an increase in hydrogen bonding as the solution temperature 113 

decreases (Levine. 2009). Temperature may also influence the kinetics of liquid-liquid phase 114 

transitions. Some mixtures of organic species and inorganic salts can become highly viscous at 115 



4 

 

lower temperatures and low relative humidities (Tong et al., 2011; Zobrist et al., 2008; Koop et 116 

al., 2011; Zobrist et al., 2011; Murray, 2008; Mikhailov et al., 2009; Saukko et al., 2012). At 117 

these low temperatures and relative humidities, liquid-liquid phase separation may be kinetically 118 

inhibited due to diffusion limitations. Only two studies have investigated liquid-liquid phase 119 

separation in mixed organic-inorganic salt particles at temperatures below 290 K. Bertram et al. 120 

reported that SRH results were similar at 273 K and 290 K for particles containing ammonium 121 

sulfate and 1,2,6-hexanetriol (Bertram et al., 2011). Schill and Tolbert reported that SRH results 122 

were similar for temperatures from 240 to 265 K for particles containing ammonium sulfate 123 

mixed with 1,2,6-hexanetriol and particles containing ammonium sulfate, 1,2,6-hexanetriol, and 124 

2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol (Schill and Tolbert, 2013). 125 

Here we carried out a systematic study of the effect of molecular weight of the organic material 126 

on liquid-liquid phase separation at 290 ± 1 K. We first studied liquid-liquid phase separation in 127 

particles containing ammonium sulfate mixed with one of ten organic species, with molecular 128 

weights up to 1153 Da. The data from these studies were then combined with recent studies of 129 

liquid-liquid phase separation in particles reported in the literature (You et al., 2013) to assess if 130 

molecular weight is a useful parameter to predict the occurrence of liquid-liquid phase separation 131 

and the liquid-liquid phase separation relative humidity (SRH).   132 

To gain a better understanding of the effect of temperature on liquid-liquid phase separation in 133 

mixed organic-inorganic salt particles, we investigated liquid-liquid phase separation in particles 134 

containing ammonium sulfate mixed with one of twenty organic species at 244 ± 1 K, 263 ± 1 K, 135 

and 278 ± 1 K, respectively. Some of these particle types were also studied at 290 ± 1 K. These 136 

new data were combined with previous measurements of liquid-liquid phase separation at 290 ± 137 

1 K by You et al. (You et al., 2013) to assess the effect of temperature on liquid-liquid phase 138 

separation in mixed organic-ammonium sulfate particles. 139 

We also investigated liquid-liquid phase separation in particles containing ammonium bisulfate 140 

mixed with α,4-dihydroxy-3-methoxybenzeneacetic acid at temperatures of 244 ± 1 K, 263 ± 1 141 

K, and 278 ± 1 K. This system was studied since it has a relatively low SRH-value (38%) at 290 142 

± 1 K and, hence, has relatively low water content at the onset of liquid-liquid phase separation. 143 

In addition to temperature and molecular weight, water content is likely important for the 144 

kinetics of liquid-liquid phase separations, as the viscosity and diffusion rates within the particles 145 

are expected to be sensitive to water content (Koop et al. 2011; Renbaum-Wolff et al. 2013; 146 

Power et al. 2013; Kidd et al. 2014).    147 

2 Experimental 148 

2.1 Sample preparation and apparatus.   149 

Solutions of ammonium sulfate or ammonium bisulfate and one organic species were prepared in 150 

high purity water (Millipore, 18.2 MΩ cm) with OIR of 2.0 ± 0.1. The solutions were then 151 

nebulized to produce submicron particles, which impacted onto a hydrophobic glass slide 152 



5 

 

(Hampton Research) and coagulated into super-micron droplets. Water was then evaporated to 153 

generate mixed organic-inorganic salt particles with lateral dimensions ranging from 10 to 35 154 

µm. 155 

The glass slide supporting the mixed organic-inorganic salt particles was mounted to a 156 

temperature and relative humidity controlled flow cell, which was coupled to an optical 157 

reflectance microscope (Zeiss Axiotech; 50× objective) (Koop et al., 2000; Parsons et al., 2004b; 158 

Pant et al., 2006; Bodsworth et al., 2010). To control the relative humidity in the flow cell, dry 159 

and humidified nitrogen gas flows were combined and continuously passed through the cell. The 160 

total flow rate was approximately 1.5 L min
-1

. While the RH was decreased, liquid-liquid phase 161 

separation was identified by monitoring the change in morphology of the particles. The relative 162 

humidity of the gas was determined with a chilled mirror hygrometer (General Eastern, Model 163 

1311DR). The hygrometer was calibrated prior to experiments at each temperature (244 ± 1 K, 164 

263 ± 1 K, 278 ± 1 K, and 290 ± 1 K) by measuring the deliquescence relative humidity (DRH) 165 

of ammonium sulfate particles, and comparing the measured DRH value to the DRH valued 166 

predicted with the Extended Aerosol Inorganic Model (E-AIM model) (Clegg et al. 1998). The 167 

uncertainty (2σ) of the hygrometer was ± 2.5 % RH after calibration based on reproducibility of 168 

the DRH measurements. 169 

2.2 Molecular weight dependent studies. 170 

Particles containing ammonium sulfate mixed with one of ten organic species were studied at 171 

290 ± 1 K (see Table 1). Most of previous laboratory studies of liquid-liquid phase separation in 172 

particles containing organic species mixed with ammonium sulfate used organic species with 173 

molecular weight less than 200 Da (Bertram et al., 2011; Song et al., 2012a, b; You et al., 2013). 174 

To complement these previous studies, in the current study we investigated particles containing 175 

ammonium sulfate and organic species with molecular weight ranging from 180 to 1153 Da (see 176 

Table 1). The specific organic species selected for these studies (Table 1) also had a relatively 177 

wide range of O:C values. The glass transition temperatures of the organics studied covered at 178 

least the range of 223 K to 412 K (see Table 1). In all the studies, the organic-to-inorganic mass 179 

ratio (OIR) was 2.0 ± 0.1. This value was chosen so that the current studies could be compared 180 

with the previous studies by You et al. (2013), who also used an OIR = 2.0 ± 0.1. In addition, 181 

this OIR value is in the range of OIR values observed in many field studies (Zhang et al., 2007; 182 

Jimenez et al., 2009). 183 

 184 

In a typical experiment, the RH in the cell was ramped down at a rate of 0.4-0.6% RH min
-1

, 185 

while the temperature of the cell was held at 290 ± 1 K. At the same time, images of the particles 186 

were captured continuously until one of the following conditions occurred: liquid-liquid phase 187 

separation was observed, the particles effloresced, or the RH reached ≤ 0.5%. For each type of 188 

particle, experiments were repeated at least three times. All of the organic species were 189 

purchased from Sigma-Aldrich and had purities ≥ 95%, except for maltoheptaose, which had a 190 

purity ≥ 90%.  191 



6 

 

 192 

2.3 Temperature dependent studies.   193 

Particles consisting of ammonium sulfate mixed with one of twenty organic species were studied 194 

(see Table 2) at 244 ± 1 K, 263 ± 1 K, and 278 ± 1 K, as well as 290 ± 1 K for a few of these 195 

particle types. For these studies, we chose the same particle types previously studied by You et 196 

al. (2013) at 290 ± 1 K. These particle types cover a wide range of O:C values and included 197 

functional groups found in atmospheric particles. Also, ammonium sulfate is one of the most 198 

common inorganic salts found in the atmosphere. In addition to picking the particles types 199 

previously studied by You et al. (2013), we also studied two additional organic species mixed 200 

with ammonium sulfate. These two organic species were raffinose and poly(ethylene glycol) 201 

diacrylate. These two species were chosen since they had relatively high molecular weights. An 202 

OIR value of 2.0 ± 0.1 was used in all the studies, consistent with You et al. (2013). The glass 203 

transition temperatures of the organic species studied cover the range of at least 192 K to 396 K.  204 

In addition to studying particles consisting of ammonium sulfate mixed with one of twenty 205 

organic species, we also studied particles containing ammonium bisulfate mixed with α,4-206 

dihydroxy-3-methoxybenzeneacetic acid at temperatures of 244 ± 1 K, 263 ± 1 K, and 278 ± 1 207 

K. As mentioned in the introduction, this system was studied since it has a low SRH-value (38%) 208 

at 290 ± 1 K and hence has relatively low water content at the onset of liquid-liquid phase 209 

separation.  210 

The organic species studied were purchased from Sigma-Aldrich with purities ≥ 98%. All 211 

organics were used without further purification. In a typical temperature dependent experiment, 212 

the RH was ramped down at a rate of around 0.1- 0.5 % RH min
-1

. Images were recorded in the 213 

same way as the molecular weight dependent studies. 214 

3 Results and Discussion 215 

3.1 Effect of molecular weight on liquid-liquid phase separation 216 

Particles containing ammonium sulfate mixed with one of ten organic species were studied at 217 

290 ± 1 K. In these studies organic species with large molecular weights (180 to 1153 Da) were 218 

used. The organic-to-inorganic mass ratio (OIR) was 2.0 ± 0.1 in all the studies. The results from 219 

these studies are listed in Table 3 as well as the data from You et al., who also studied particles 220 

with an OIR of 2.0 ± 0.1 at 290 ± 1 K (You et al., 2013). The combined data set in Table 3, 221 

which includes results of liquid-liquid phase separation for 33 different particle types, was used 222 

to determine the importance of molecular weight of the organic species on liquid-liquid phase 223 

separation.     224 

In Figure 1, the data from Table 3 were plotted as a function of O:C and molecular weight. Open 225 

circles indicate liquid-liquid phase separation was observed and stars indicate liquid-liquid phase 226 

separation was not observed. No clear relationship between molecular weight and the occurrence 227 
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of liquid-liquid phase separation was observed, however a relationship between occurrence of 228 

liquid-liquid phase separation and O:C was clear: liquid-liquid phase separation was always 229 

observed when O:C < 0.57 (orange hatched region), was never observed when O:C > 0.83 (green 230 

hatched region), and was frequently observed when O:C ranged from 0.57 to 0.83. This range is 231 

slightly different than the range previously measured (0.5 to 0.8) (Bertram et al. 2011; Song et al. 232 

2012a, b; You et al. 2013), which is not surprising since this range is expected to change slightly 233 

with the type of organic molecules studied. As such, there is a small uncertainty in this range. In 234 

Figure 2, the SRH data from Table 3 were plotted as a function of molecular weight of the 235 

organic species. The colors of the symbols indicate the O:C of organic species in the mixed 236 

particles. Data at SRH = 0 % indicate liquid-liquid phase separation was not observed even at the 237 

lowest relative humidity studied. Similar to Figure 1, no correlation with molecular weight was 238 

apparent. For contrast, in Figure 3, we show the same SRH data plotted as a function of O:C of 239 

organic species with the color of the symbols representing the molecular weight of organic 240 

species. Consistent with previous results (Bertram et al., 2011; Song et al., 2012b), a correlation 241 

between SRH and O:C is apparent. These results suggest that O:C is more important for 242 

predicting the occurrence of liquid-liquid phase separation in atmospherically relevant mixed 243 

organic-ammonium sulfate particles compared with molecular weight. 244 

3.2 Effect of temperature on liquid-liquid phase separation 245 

In the temperature dependent experiments, particles containing ammonium sulfate mixed with 246 

one of twenty organic species were studied at 244 ± 1 K, 263 ± 1 K, and 278 ± 1 K. Some of the 247 

particle types were also studied at 290 ± 1 K. The temperature dependent results are included in 248 

Table 4 as well as results from You et al., who studied most of the same types of particles but 249 

only at 290 ± 1 K (You et al., 2013). The combined SRH data from Table 4, which cover the 250 

temperature range of 290-244 K, were plotted in Figure 4A as a function of O:C of the organic 251 

species. The temperature dependent results show that for all the particle types studied and at all 252 

the temperatures studied liquid-liquid phase separation was always observed when O:C < 0.57, 253 

frequently observed when 0.57 ≤ O:C < 0.8, and never observed when O:C ≥ 0.8. We conclude 254 

that the O:C range at which liquid-liquid phase separation was observed at 290-293 K in 255 

previous studies (Ciobanu et al., 2009; Bertram et al., 2011; Song et al., 2012b; You et al., 2013), 256 

is reasonably consistent with the range observed at temperatures down to 244 ± 1 K.   257 

Figure 5 shows the same data as in Figure 4A, but displayed in a slightly different way. The SRH 258 

results for the twelve types of mixed organic-ammonium sulfate particles that underwent liquid-259 

liquid phase separation in Figure 4A, are shown as a function of temperature, with the colors of 260 

the symbols representing the O:C values of the organic species in the particles. For all the 261 

particle types included in Figure 5, the SRH varied by less than 9.7 % RH as the temperature 262 

varied from 244 to 290 K. Figure 4A and 5 illustrate that SRH is not a strong function of 263 

temperature for the particle types investigated. These results are consistent with earlier studies by 264 

Bertram et al. and Schill and Tolbert discussed in the Introduction. In the Supplementary 265 

Material we carried out a linear regression analysis to determine the level of significance of the 266 
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temperature dependent trends observed in Figure 5. In short, five out of the twelve systems 267 

studied had a high correlation coefficient (r ≥ 0.94) between temperature and SRH and an 268 

associated low p-value (≤ 0.06). A decrease in SRH with a decrease in temperature may be 269 

expected if there is a closed loop miscibility gap and the measurements are probing the lower 270 

temperature region of the closed loop.  271 

Based on our results, particles containing poly(propylene glycol) and ammonium sulfate had 272 

SRH values ranging from 87.7 to 94.1 % as the temperature ranged from 244 to 290 K. Solutions 273 

of water and poly(propylene glycol) show a lower critical solution temperature of approximately 274 

50 
o
C (Malcom and Rowlinson, 1957). A comparison between this result and our current results 275 

indicate that the lower critical solution temperature is decreased significantly when ammonium 276 

sulfate is added to mixtures of poly(propylene glycol) and water.  277 

As mentioned in the introduction, some mixtures of organic species and inorganic salts can 278 

become highly viscous at lower temperatures and low relative humidities, and at these low 279 

temperatures and relative humidities, liquid-liquid phase separation may be kinetically inhibited 280 

due to diffusion limitations. A possible reason that a stronger dependence on temperature was 281 

not observed in the studies discussed above may be because for the systems studied the particles 282 

either didn’t undergo liquid-liquid phase separation or the SRH was relatively high (> 65% RH). 283 

For the cases where liquid-liquid phase separation did not occur, an increase in viscosity from a 284 

decrease in temperature is not expected to change the results. For cases where the SRH was 285 

relatively high (> 65% RH), the water content in the particles was also likely relatively high. 286 

Since water is a plasticizer, high water contents can lead to low viscosities and high diffusion 287 

rates. In this case, unless the temperature is very low, liquid-liquid phase separation is not 288 

expected to be kinetically inhibited. 289 

Although SRH does not appear to be a strong function of the temperature for the organic-290 

ammonium sulfate particle types studied over the temperature range of 244 to 290 K, SRH may 291 

be a strong function of temperature for these particles at temperatures lower than 244 K due to 292 

kinetic limitations or thermodynamic reasons. Additional studies of SRH at temperatures lower 293 

than 244 K are still needed for these particle types. 294 

In Figure 6, SRH as a function of temperature is plotted for particles containing α,4-dihydroxy-3-295 

methoxybenzeneacetic acid mixed with ammonium bisulfate. At 263 ± 1 K and warmer no 296 

strong dependence on temperature is observed, with an average SRH value of approximately 297 

37.6 %. At 244 K, however, liquid-liquid phase separation was not observed. A likely 298 

explanation for this drastic decrease in the SRH is likely kinetic inhabitation of the liquid-liquid 299 

phase separation. Related, previous research has shown that efflorescence is inhibited in particles 300 

containing organic species and inorganic salts at low temperatures and low relative humidities 301 

likely due to diffusion limitations (Bodsworth et al., 2010). The studies with particles containing 302 

ammonium bisulfate and α,4-dihydroxy-3-methoxybenzeneacetic acid suggests that a 303 
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combination of low temperatures (e.g. 244 K) and low relative humidities (e.g. approximately 304 

38% RH) can lead to kinetic inhibition of liquid-liquid phase separation.   305 

The average O:C of organic material in atmospheric particles has been measured at many 306 

locations in the Northern Hemisphere and in the Amazon and has been shown to range from 0.1 307 

to 1.0 (Chen et al., 2009; Aiken et al., 2008; DeCarlo et al., 2008; Jimenez et al., 2009; Hawkins 308 

et al., 2010; Heald et al., 2010; Ng et al., 2010; Takahama et al., 2011). This range of O:C values 309 

is indicated in Figure 4B. The range of average O:C values measured in the atmosphere overlaps 310 

with the range of O:C values where liquid-liquid phase separation was observed at temperatures 311 

ranging from 244 to 290 K (Figure 4 B). This overlap suggests that liquid-liquid phase separation 312 

is likely a common occurrence in the atmosphere over this temperature range. Particles that do 313 

not undergo liquid-liquid phase separation are also expected to be common based on a 314 

comparison between our data and the range of O:C values found in the atmosphere. 315 

4 Conclusions  316 

The occurrence of liquid-liquid phase separation and SRH did not depend strongly on the 317 

molecular weight of the organic species at 290 ± 1 K, at least for the particle types studied. The 318 

occurrence of liquid-liquid phase separation and SRH also did not depend strongly on 319 

temperature over the range of 290- 244 K for particles containing ammonium sulfate mixed with 320 

one organic species. The SRH varied by at most 9.7 % RH as the temperature varied from 290 ± 321 

1 K to 244 ± 1 K for the particle types studied. The high SRH values (> 65%) in these 322 

experiments may explain the lack of temperature dependence. Since water is a plasticizer, high 323 

relative humidities can lead to high water contents, low viscosities and high diffusion rates. For 324 

these cases, unless the temperature is very low, liquid-liquid phase separation is not expected to 325 

be kinetically inhibited. The occurrence of liquid-liquid phase separation and SRH did depend 326 

strongly on temperature over the range of 290-244 K for particles containing α,4-dihydroxy-3-327 

methoxybenzeneacetic acid mixed with ammonium bisulfate. For this particle type, a 328 

combination of low temperatures and low water content likely favored kinetic inhabitation of the 329 

liquid-liquid phase separation by slow diffusion rates in highly viscous particles.  330 

The combined results suggest that liquid-liquid phase separation is likely a common occurrence 331 

in the atmospheric particles at 290-244 K, although particles that do not undergo liquid-liquid 332 

phase separation are also likely common.   333 

  334 
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Tables 695 

Table 1. List of the ten organic species used in molecular weight dependent measurements. Each 696 

organic species was separately mixed with ammonium sulfate to make particles, and liquid-697 

liquid phase separation was studied in these particles at 290 ± 1 K.   698 

Compounds Formula 
Molecular 

weight 

(Da) 
O:C Functional 

group(s) 

Glass transition 

temperature, Tg 

(K) 

References for Tg 

Glucose C6H12O6 180.2 1 alcohol, ether 296.1±3.1 Zobrist et al. 2008 

Poly(ethylene 

glycol) 

bis(carboxymethyl) 

ether 

C2n+4H4n+6On+5 250 0.83 alcohol, ether - - 

Sucrose C12H22O11 342.3 0.92 alcohol, ether 335.7±3.6 Zobrist et al. 2008 

Poly(ethylene 

glycol) 
C2nH4n+2On+1 400 0.56 alcohol, ether 223 Faucher et al. 1966 

Ouabain  C29H44O12  584 0.41 

alcohol, ether, 

ester, C-C 

double bonds 

373
a
 Koop et al. 2011 

Raffinose  C18H32O16 594.5 0.89 alcohol, ether 395.7±21.6 Zobrist et al. 2008 

Poly(ethylene 

glycol) 
C2nH4n+2On+1 600 0.54 alcohol, ether 231 Faucher et al. 1966 

Maltopentaose C30H52O26 829 0.87 alcohol, ether 398 
Slade and Levine 

1994 

Poly(ethylene 

glycol) 
C2nH4n+2On+1 900 0.53 alcohol, ether 231-245 Faucher et al. 1966 

Maltoheptaose C42H72O36 1153 0.86 alcohol, ether 412 
Slade and Levine 

1994 

 
699 

a
 Tg  values are estimates based on the melting points of those organic compounds using the results from 700 

Koop et al. 2011. 701 

-  Literature data not available 702 

  703 
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Table 2. Summary of the twenty organic species used in temperature dependent experiments. 704 

Each organic species was separately mixed with ammonium sulfate to make particles, and liquid-705 

liquid phase separation was studied in these particles at 244 ± 1 K, 263 ± 1 K and 278 ± 1 K. 706 

Two of the organic species (poly(ethylene glycol) diacrylate and raffinose) mixed with 707 

ammonium sulfate were also studied at 290 ± 1 K. 708 

Compounds Formula O:C 

Molecular 

weight 

(Da) 

Functional 

group(s) 

Glass transition 

temperature Tg 

(K) 

References for Tg 

2,5-hexanediol C6H14O2 0.33 118.2 alcohol 192.4 ± 1.3 Zobrist et al. 2008 

Poly(propylene 

glycol) 
C3nH6n+2On+1 0.38 425 alcohol, ether - - 

Poly(ethylene 

glycol) diacrylate 
C2n+6H4n+6On+3 0.5 575 

ester, ether, C-

C double bond 
- - 

Poly(ethylene 

glycol) 900 
C2nH4n+2On+1 0.53 900 alcohol, ether 231-245

a 
Faucher et al. 1966 

α,4-dihydroxy-3-

methoxybenzenea

cetic acid 

C9H10O5 0.56 198.2 

alcohol, 

aromatic, 

carboxylic 

acid, ether 

293.6 ± 6.6 Zobrist et al. 2008 

Diethylmalonic 

acid 
C7H12O4 0.57 160.2 

carboxylic 

acid 
282

b
 Koop et al. 2011 

3,3-

dimethylglutaric 

acid 

C7H12O4 0.57 160.2 
carboxylic 

acid 
261

b
 Koop et al. 2011 

2,5-

hydroxybenzoic 

acid 

C7H6O4 0.57 154.2 
carboxylic 

acid, aromatic 
225

b
 Koop et al. 2011 

Poly(ethylene 

glycol) 300 
C2nH4n+2On+1 0.58 300 alcohol, ether 203-223 Faucher et al. 1966 

Poly(ethylene 

glycol) 200 
C2nH4n+2On+1 0.63 200 alcohol, ether 203 Faucher et al. 1966 

Poly(ethylene 

glycol) 

bis(carboxymethyl

) ether 

C2n+4H4n+6On+5 0.63 600 alcohol, ether - - 

2-methylglutaric 

acid 
C6H10O4 0.67 146.1 

carboxylic 

acid 
247

b
 Koop et al. 2011 

2,2-

dimethylsuccinic 

acid 

C6H10O4 0.67 146.2 
carboxylic 

acid 
289

b
 Koop et al. 2011 

Diethyl-L-tartrate C8H14O6 0.75 206.2 alcohol, ether - - 

Glycerol C3H8O3 1.00 92.1 alcohol 193.3 ± 1.1 Zobrist et al. 2008 

Glutaric acid C5H8O4 0.8 132.1 carboxylic acid 258
b
 Koop et al. 2011 
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Levoglucosan C6H10O5 0.83 162.1 alcohol, ester 319
b
 Koop et al. 2011 

Raffinose C18H32O16 0.89 594.5 alcohol, ester 395.7 ± 21.6 Zobrist et al. 2008 

Citric acid C6H8O7 1.17 192.1 

alcohol, 

carboxylic 

acid 

280.1 Bodsworth et al. 2010 

Malonic acid C3H4O4 1.33 104.1 
carboxylic 

acid 
286

b
 Koop et al. 2011 

 709 

a
 Tg value is an estimate based on the molecular weight of the ploy (ethylene glycol 900) from Faucher et 710 

al. 1966.  711 
b
  Tg  values are estimates based on the melting points of those organic compounds using the results from 712 

Koop et al. 2011. 713 

-  Literature data not available 714 

  715 
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Table 3. Combined data set used to assess the effect of molecular weight on SRH in mixed 716 

organic-ammonium sulfate particles.  This data set includes the ten types of particles studied here 717 

(see Table 1) and the SRH results of twenty-three types of particles containing single organic 718 

species and ammonium sulfate studied by You et al. (2013). OIR = 2.0 ± 0.1 in all the 719 

experiments. Uncertainties are 95% confidence intervals considering  of multiple SRH 720 

measurements and the uncertainty from the calibration.  721 

Compounds Formula 
Molecular 

weight (Da) 
O:C SRH (%) Reference 

Glycerol C3H8O3 92.1 1 Not observed You et al. (2013) 

Malonic acid C3H4O4 104.1 1.33 Not observed You et al. (2013) 

Maleic acid C4H4O4 116.1 1 Not observed You et al. (2013) 

2,5-hexanediol C6H14O2 118.2 0.33 88.8 ± 7.1 You et al. (2013) 

Glutaric acid C5H8O4 132.1 0.8 Not observed You et al. (2013) 

Malic acid C4H6O5 134.1 1.25 Not observed You et al. (2013) 

1,2,6-hexanetriol C6H14O3 134.2 0.5 76.7 ± 6.2 You et al. (2013) 

2-methylglutaric acid C6H10O4 146.1 0.67 75.3 ± 6.4 You et al. (2013) 

2,2-dimethylsuccinic 

acid 
C6H10O4 146.2 0.67 Not observed You et al. (2013) 

2,5-hydroxybenzoic 

acid 
C7H6O4 154.2 0.57 Not observed You et al. (2013) 

Diethylmalonic acid C7H12O4 160.2 0.57 89.2 ± 4.2 You et al. (2013) 

3,3-dimethylglutaric 

acid 
C7H12O4 160.2 0.57 89.1 ± 6.9 You et al. (2013) 

Levoglucosan C6H10O5 162.1 0.83 Not observed You et al. (2013) 

Glucose C6H12O6 180.2 1 Not observed Current study 

Suberic acid 

monomethyl ester 
C9H16O4 188.2 0.44 100 ± 6.2 You et al. (2013) 

Citric acid C6H8O7 192.1 1.17 Not observed You et al. (2013) 

α,4-dihydroxy-3-

methoxybenzeneacetic 

acid 

C9H10O5 198.2 0.56 72.6 ± 6.3 You et al. (2013) 

Poly(ethylene glycol) C2nH4n+2On+1 200 0.63 79.8 ± 7.4 You et al. (2013) 

Diethyl-L-tartrate C8H14O6 206.2 0.75 90.2 ± 6.6 You et al. (2013) 

Poly(ethylene glycol) 

bis(carboxymethyl) 

ether 

C2n+4H4n+6On+5 250 0.83 67.6 ± 6.2 Current study 

Diethyl sabacate C14H26O4 258.4 0.29 100 ± 6.2 You et al. (2013) 

Poly(ethylene glycol) C2nH4n+2On+1 300 0.58 86.7 ± 6.4 You et al. (2013) 
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Sucrose C12H22O11 342.3 0.92 Not observed Current study 

Poly(ethylene glycol) C2nH4n+2On+1 400 0.56 88.3 ± 6.6 Current study 

Poly(propylene glycol) C3nH6n+2On+1 425 0.38 94.1 ± 6.7 You et al. (2013) 

Poly(ethylene glycol) 

diacrylate 
C2n+6H4n+6On+3 575 0.5 94.7 ± 6.2 You et al. (2013) 

Ouabain  C29H44O12  584 0.41 90.1 ± 6.8 Current study 

Raffinose  C18H32O16 594.5 0.89 Not observed Current study 

Poly(ethylene glycol) C2nH4n+2On+1 600 0.54 89.5 ± 6.3 Current study 

Poly(ethylene glycol) 

bis(carboxymethyl) 

ether 

C2n+4H4n+6On+5 600 0.63 92.0 ± 6.3 You et al. (2013) 

Maltopentaose C30H52O26 829 0.87 Not observed Current study 

Poly(ethylene glycol) C2nH4n+2On+1 900 0.53 92.9 ± 6.4 Current study 

Maltoheptaose C42H72O36 1153 0.86 Not observed Current study 

 722 

  723 
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Table 4. Combined data set used to determine the effect of temperature on SRH. This includes 724 

the measurements at 244 ± 1 K, 263 ± 1 K and 278 ± 1 K in the current studies (Table 2) and 725 

results from You et al. (2013) at 290 ± 1 K. OIR = 2.0 ± 0.1 in all the experiments. Uncertainties 726 

are 95% confidence intervals considering  of multiple SRH measurements and the uncertainty 727 

from the calibration.  728 

Compound O:C 
SRH (%) at different temperatures 

244 ± 1 K 263 ± 1 K 278 ± 1 K 290 ± 1 K
 

2,5-hexanediol 0.33 84.0 ± 8.3 84.6 ± 6.5 88.0 ± 6.2 88.8 ± 7.1
a
 

Poly(propylene glycol) 0.38 87.7 ± 6.5 89.4 ± 6.7 92.5 ± 6.2 94.1 ± 6.7
a
 

Poly(ethylene glycol) 

diacrylate 
0.5 88.5 ± 7.0 90.4 ± 7.2 95.0 ± 6.2 94.7 ± 6.2 

Poly(ethylene glycol) 900 0.53 89.2 ± 9.2 88.7 ± 6.2 91.8 ± 6.3 92.9 ± 6.4
a
 

α,4-dihydroxy-3-

methoxybenzeneacetic acid 
0.56 76.0 ± 6.3 67.3 ± 8.7 72.3 ± 6.4 72.6 ± 6.3

a
 

Diethylmalonic acid 0.57 89.8 ± 5.6 87.0 ± 6.7 88.6 ± 6.3 89.2 ± 4.2
a
 

3,3-dimethylglutaric acid 0.57 98.2 ± 4.3 88.5 ± 6.3 88.5 ± 6.3 89.1 ± 6.9
a
 

2,5-hydroxybenzoic acid 0.57 Not observed Not observed Not observed Not observed
a
 

Poly(ethylene glycol) 300 0.58 85.6 ± 9.7 83.6 ± 6.5 85.6 ± 6.4 87.6 ± 6.4
a
 

Poly(ethylene glycol) 200 0.63 71.3 ± 6.2 77.2 ± 6.3 79.7 ± 6.2 79.8 ± 7.4
a
 

Poly(ethylene glycol) 

bis(carboxymethyl) ether 

600 

0.63 87.8 ± 7.1 90.4 ± 6.2 90.4 ± 6.6 92.0 ± 6.3
a 

2-methylglutaric acid 0.67 76.7 ± 6.6 76.2 ± 6.3 76.6 ± 6.2 75.3 ± 6.4
a
 

2,2-dimethylsuccinic acid 0.67 Not observed Not observed Not observed Not observed
a
 

Diethyl-L-tartrate 0.75 86.9 ± 7.3 85.0 ± 6.5 87.4 ± 4.1 90.2 ± 6.6
a
 

Glutaric acid 0.8 Not observed Not observed Not observed Not observed
a
 

Levoglucosan 0.83 Not observed Not observed Not observed Not observed
a
 

Raffinose  0.89 Not observed Not observed Not observed Not observed 

Glycerol 1 Not observed Not observed Not observed Not observed
a
 

Citric acid 1.17 Not observed Not observed Not observed Not observed
a
 

Malonic acid 1.33 Not observed Not observed Not observed Not observed
a
 

 729 
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a
 Data taken from You et al. (2013).  All other data are from this study 730 
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Figures 732 

 733 

 734 

Figure 1 The effect of molecular weight and O:C of the organic species on the occurrence of 735 

liquid-liquid phase separation in  mixed organic-ammonium sulfate particles (OIR = 2.0 ± 0.1).  736 

Data plotted are from the current study and You et al. (2013), and are summarized in Table 3. 737 

Open circles indicate liquid-liquid phase separation was observed, while stars indicate liquid-738 

liquid phase separation was not observed. The orange hatched region corresponds to the 739 

molecular weight and O:C of the organic species when liquid-liquid phase separation was always 740 

observed, and the green hatched region corresponds to the molecular weight and O:C of the 741 

organic species when liquid-liquid phase separation was never observed. 742 

  743 
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 744 

 745 
Figure 2. SRH as a function of molecular weight of organic species in the particles at 290 ± 1 K. 746 

The SRH results are from the current study and You et al. (2013) (see Table 3). The colors 747 

represent the O:C of different organic species. Squares represent SRH of particles in which 748 

liquid-liquid phase separation was observed. Bars for the squares are 95% confidence intervals 749 

considering  of multiple SRH measurements and the uncertainty from the calibration. Stars 750 

indicate that liquid-liquid phase separation was not observed. OIR = 2.0 ± 0.1in all the 751 

experiments. 752 
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 754 
 755 

Figure 3. SRH as a function of O:C of the organic species at 290 ± 1 K. The SRH results are 756 

from the current study and You et al. (2013) (see Table 3). The colors represent the molecular 757 

weight of the different organic species. Squares represent the SRH of particles in which liquid-758 

liquid phase separation was observed. Bars for the squares are 95% confidence intervals 759 

considering  of multiple SRH measurements and the uncertainty from the calibration. Stars 760 

indicate liquid-liquid phase separation was not observed. OIR = 2.0 ± 0.1in all the experiments.  761 

 762 

  763 
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 764 
Figure 4. A SRH of mixed organic-ammonium sulfate particles as a function of O:C measured at 765 

four different temperatures. Different symbols represent the different temperatures. Bars for the 766 

data are 95% confidence intervals considering  of multiple SRH measurements and the 767 

uncertainty from the calibration. Data at SRH= 0% indicate liquid-liquid phase separation was 768 

not observed. Data plotted are summarized in Table 4. The OIR = 2.0 ± 0.1 in all the 769 

experiments. B Range of the average O:C of organic material in particles from measurements at 770 

many locations in the Northern Hemisphere and the Amazon. 771 
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 773 
Figure 5. Summary of SRH as a function of temperature for twelve types of mixed organic-774 

ammonium sulfate particles which underwent liquid-liquid phase separation. Data plotted were 775 

taken from Table 4. Bars for the data are 95% confidence intervals considering  of multiple 776 

SRH measurements and the uncertainty from the calibration. Colors represent the O:C values of 777 

different organic species in the particles. OIR = 2.0 ± 0.1 in all the experiments.  778 
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 780 

Figure 6 SRH as a function of temperature for particles containing α,4-dihydroxy-3-781 

methoxybenzeneacetic acid mixed with ammonium bisulfate. Bars for the data are 95% 782 

confidence intervals considering  of multiple SRH measurements and the uncertainty from the 783 

calibration. Data at 290 ± 1 K was taken from You et al. 2013. 784 
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