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Abstract

Previous studies showed that, over the global ocean, there is hemispheric asymmetry
in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study,
we focus on the tropical Atlantic (30◦ N–30◦ S) which is characterized by significant
amounts of Saharan dust dominating other aerosol species over the North Atlantic.5

Over a limited area such as the tropical Atlantic, our study showed that strong merid-
ional asymmetry in dust aerosols was accompanied by meridional CF asymmetry, by
contrast to the global ocean. During the 10 yr study period (July 2002–June 2012),
NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asym-
metry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in10

July), dust AOT averaged separately over the tropical North Atlantic was one order of
magnitude higher than dust AOT averaged over the tropical South Atlantic. In the pres-
ence of such strong meridional asymmetry in dust AOT in July, CF averaged separately
over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic
by 20 %. In July, along the Saharan Air Layer, Moderate Resolution Imaging Spectro-15

radiometer (MODIS) CF data showed significant cloud cover (up to 0.8–0.9), which
contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging
SpectroRadiometer (MISR) measurements and MERRAero data were in agreement
on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total
AOT over the Atlantic was the most pronounced between March and July, when dust20

presence over the North Atlantic was maximal. In September and October, there was
no noticeable meridional asymmetry in total AOT over the tropical Atlantic.

1 Introduction

Satellite observations have been widely used in the study of atmospheric turbidity and
aerosol radiative properties because of their capability of providing global coverage25

on a regular basis. Previous studies, using different space-borne aerosol sensors, dis-
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cussed the idea that the hemispheres are asymmetric in aerosol distribution (Remer
et al., 2008; Kaufman et al., 2005a; Remer and Kaufman, 2006; Mishchenko and Ge-
ogdzhayev, 2007; Chou et al., 2002; Zhang and Reid, 2010; Hsu et al., 2012; Kishcha
et al., 2007, 2009). The Advanced Very High Resolution Radiometer (AVHRR) satellite
data over the ocean were used by Mishchenko and Geogdzhayev (2007) to compare5

monthly averaged aerosol optical thickness (AOT) over the Northern and Southern
Hemispheres. They found a difference in AOT averaged over the two hemispheres.
Chou et al. (2002) obtained meridional distribution of AOT over the ocean by using
the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) satellite data for the year 1998.
Hsu et al. (2012) displayed the asymmetric spatial distribution of seasonally-averaged10

SeaWiFS AOT from 1997 to 2010. Several studies based on the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer
(MISR) data showed that aerosol parameters are distributed asymmetrically on the two
hemispheres (Remer et al., 2008; Kaufman et al., 2005a; Remer and Kaufman, 2006,
Zhang and Reid, 2010, Kishcha et al., 2007, 2009). In our previous study (Kishcha15

et al., 2009), AOT data from three satellite sensors (MISR, MODIS-Terra, and MODIS-
Aqua) were used in order to analyze seasonal variations of meridional AOT asymmetry
over the global ocean. The asymmetry was pronounced in the April–July months, while
there was no noticeable asymmetry during the season from September to December.
Kishcha et al. (2009) mentioned that not only the Northern Hemisphere but also the20

Southern Hemisphere contributed to the formation of noticeable meridional aerosol
asymmetry. During the season of pronounced hemispheric aerosol asymmetry, an in-
crease in AOT was observed over the Northern Hemisphere, while a decrease in AOT
was observed over the Southern Hemisphere. It was found that, over the global ocean,
there was no noticeable asymmetry in meridional distribution of cloud fraction.25

Note that the aforementioned studies of AOT asymmetry were based on space-
borne remote sensing aerosol measurements. Satellite aerosol data cannot usually
distinguish among various aerosol species in the atmosphere. Although some satellite
retrievals provide dust fraction of total AOT, there is a discrepancy between satellite

23311

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/23309/2014/acpd-14-23309-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/23309/2014/acpd-14-23309-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 23309–23339, 2014

Meridional
distribution of
aerosol optical

thickness

P. Kishcha et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

datasets due to differences in their assumptions about aerosol and surface proper-
ties (Carboni et al., 2012). Consequently, the relative contribution of different aerosol
species to hemispheric AOT asymmetry and their effects on meteorological parameters
are not well understood.

The Sahara desert emits dust in large quantities over the tropical Atlantic (Prospero5

and Lamb, 2013). Previous studies have shown that desert dust particles can influence
the Earth’s atmosphere in the following ways: directly by scattering and absorbing so-
lar and thermal radiation, and indirectly by acting as cloud and ice condensation nu-
clei (Choobari et al., 2013 and references therein, Pey et al., 2013). It was shown by
Wilcox et al. (2010) that the radiative effect of Saharan dust tends to draw the Atlantic10

Intertropical Convergence Zone (ITCZ) northward toward the Saharan Air Layer (SAL).
Alpert et al. (1998) discussed the response of the atmospheric temperature field to the
radiative forcing of Saharan dust over the North Atlantic Ocean. Dust particles over
the Atlantic Ocean may essentially influence tropical cloud systems and precipitation
(Kaufman et al., 2005b; Min et al., 2009; Ben-Ami et al., 2009; Feingold et al., 2009;15

Rosenfeld et al., 2001).
To our knowledge, over a limited ocean area, meridional asymmetry of aerosols and

cloud fraction relative to the equator has not been investigated so far. It was our pur-
pose in the current study to compare meridional asymmetry of aerosols and cloud
fraction over the tropical Atlantic (30◦ N–30◦ S) which is characterized by significant20

amounts of Saharan dust. We determined and compared the contribution of desert
dust and that of other aerosol species to aerosol asymmetry between the tropical North
and South Atlantic Oceans. Analyzing the meridional distribution of various aerosol
species over the tropical Atlantic Ocean was carried out using the NASA Aerosol Re-
analysis (aka MERRAero). This reanalysis has been recently developed at NASA’s25

Global Modeling Assimilation Office (GMAO) using a version of the NASA Goddard
Earth Observing System-5 (GEOS-5) model radiatively coupled with Goddard Chem-
istry, Aerosol, Radiation, and Transport (GOCART) aerosols. An important property of
GEOS-5 is data assimilation inclusion of bias-corrected aerosol optical thickness from
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the MODIS sensor on both Terra and Aqua satellites. Of course, AOT assimilation is
effective only for two short periods of MODIS’s appearance over the study area. All
other time (18 h day−1) the GEOS-5 model works independently of MODIS (Kishcha
et al., 2014).

2 GEOS-5 and the MERRA Aerosol Reanalysis (MERRAero)5

GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office
(GMAO) Earth system model, which was used to extend the NASA Modern Era-
Retrospective Analysis for Research and Applications (MERRA) with five atmospheric
aerosol components (sulfates, organic carbon, black carbon, desert dust, and sea-salt).
GEOS-5 includes aerosols based on a version of the Goddard Chemistry, Aerosol,10

Radiation, and Transport (GOCART) model (Colarco et al., 2010; Chin et al., 2002).
Both dust and sea salt have wind-speed dependent emission functions (Colarco et al.,
2010), while sulfate and carbonaceous species have emissions principally from fossil
fuel combustion, biomass burning, and bio-fuel consumption, with additional biogenic
sources of organic carbon. Sulfate has additional chemical production from oxidation of15

SO2 and dimethylsulfide (DMS), as well as volcanic SO2 emissions. Aerosol emissions
for sulfate and carbonaceous species are based on the AeroCom version 2 hindcast
inventories (http://aerocom.met.no/emissions.html). Daily biomass burning emissions
are from the Quick Fire Emission Dataset (QFED) and are derived from MODIS fire
radiative power retrievals (Darmenov and da Silva, 2013). GEOS-5 also includes as-20

similation of AOT observations from the MODIS sensor on both Terra and Aqua satel-
lites. The obtained ten yr (July 2002–June 2012) MERRA-driven aerosol reanalysis
(MERRAero) dataset was applied to the analysis of meridional aerosol asymmetry in
the current study. In order to verify the obtained meridional aerosol distribution based
on MERRAero, we used the Multi-angle Imaging SpectroRadiometer (MISR) monthly25

global 0.5◦ ×0.5◦ AOT dataset available over the study period.
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3 Method

Over the tropical Atlantic Ocean (30◦ N–30◦ S), variations of zonal-averaged AOT as
a function of latitude were used to analyze meridional aerosol distribution, following
our previous study (Kishcha et al., 2009). This included total AOT and AOT of various
aerosol species. To quantify meridional AOT asymmetry, the hemispheric ratio (R) of5

AOT averaged separately over the tropical North Atlantic (XN) to that over the tropical
South Atlantic (XS) was estimated. The hemispheric ratio is equal to 1 in the case of
the two parts of the tropical Atlantic holding approximately the same averaged AOT,
while the ratio is greater (less) than 1 if the North (South) Atlantic dominates the other
one. Standard deviation of the reported hemispheric ratio (Table 1) was estimated in10

accordance with the following formula by Ku (1966), NIST/SEMATECH (2006):

CR =
1

√
N

·
XN

XS
·

√√√√C2
N

X 2
N

+
C2

S

X 2
S

−2 ·
C2

NS

XN ·XS

where CN, CS are standard deviations of zonal averaged AOTs in the tropical North
and South Atlantic Oceans respectively, CNS is their covariance, and N = 120 stands
for the number of months in the MISR/MERRAero AOT monthly data set used.15

Variations of meridional aerosol distributions were analyzed by using MISR measure-
ments and MERRAero data during the 10 yr period, from July 2002 to June 2012. The
MISR swath width is about 380 km and global coverage is obtained every 9 days. MISR
AOT has been extensively validated against Aerosol Robotic Network (AERONET) Sun
photometer measurements over different regions (Martonchik et al., 2004; Christo-20

pher and Wang, 2004; Kalashnikova and Kahn, 2008; Liu et al., 2004). For the pur-
pose of comparing meridional distributions of cloud cover with those of AOT during
the same 10 yr period (July 2002–June 2012), Collection 5 of MODIS-Terra Level 3
monthly daytime cloud fraction (CF) data, with horizontal resolution 1◦ ×1◦ was used
(King et al., 2003). Furthermore, to analyze meridional rainfall distribution, the Tropical25
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Rainfall Measuring Mission (TRMM) monthly 0.25◦ ×0.25◦ Rainfall Data Product (3B43
Version 7) was used (Huffman et al., 2007). MODIS CF data and TRMM data were
acquired using the GES-DISC Interactive Online Visualization and Analysis Infrastruc-
ture (Giovanni) as part of NASA Goddard Earth Sciences (GES) Data and Information
Services Center (DISC) (Acker and Leptoukh, 2007).5

4 Results

4.1 Ocean zone with the predominance of desert dust aerosols

MERRAero showed that the Sahara desert emits a significant amount of dust into
the atmosphere over the Atlantic Ocean (Fig. 1a, c, and e). With respect to different
oceans, MERRAero demonstrated that desert dust dominates all other aerosol species10

only over the Atlantic Ocean. Figure 1b, d, and f represents spatial distribution of the
ratio of dust AOT to AOT of all other aerosol species. The red contour lines represent
the boundary of the zone where dust AOT is equal to AOT of all other aerosol species.
One can see that, through the 10 yr period under consideration, over the Atlantic Ocean
within the latitudinal zone between 7 and 30◦ N, Saharan dust dominates other aerosol15

species (Fig. 1b). The longitudinal dimension of this zone is subject to seasonal vari-
ability. During the dusty season from March to July, the zone of dust predominance
occupies a significant part of the tropical Atlantic between North Africa and Central
America. Specifically, as shown in Fig. 1d, in July, the zone of dust predominance is
extremely extensive. By contrast, from October to February, this zone is observed only20

over some limited territory close to North Africa.
Desert dust can be seen not only over the Atlantic Ocean, but also over the Pacific

and Indian Oceans (Fig. 1a, c, and e). However, outside the Atlantic Ocean, one can
see only limited zones of desert dust predominance over the Mediterranean Sea and
over the Arabian Sea (Fig. 1b, d, and f). Therefore, the tropical North Atlantic Ocean25
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is the largest ocean area where dust particles determine the atmospheric aerosol con-
tent, based on MERRAero data.

4.2 Meridional distribution of total AOT over the tropical Atlantic Ocean

Figure 2a represents meridional distribution of ten yr mean AOT (July 2002–June
2012), zonal averaged over the tropical Atlantic Ocean. One can see that MERRAero5

showed similarity to the meridional AOT distribution, based on MISR data (Fig. 2a).
Specifically, MERRAero was able to reproduce the meridional asymmetry in the AOT
distribution, including a monomodal maximum in the tropical North Atlantic and a min-
imum in the tropical South Atlantic. This monomodal AOT maximum was discussed in
our previous study (Kishcha et al., 2009). Both MISR and MERRAero showed that, in10

the minimum, the AOT values were three times lower than those in the maximum. We
quantified meridional AOT asymmetry in the tropical Atlantic Ocean (30◦ N–30◦ S) by
obtaining the hemispheric ratio (RAOT) of AOT averaged separately over the tropical
North Atlantic to AOT averaged over the tropical South Atlantic: RAOT was estimated
to be about 1.7 (Table 1). This means that, over the 10 yr period under consideration,15

there were much more aerosol particles over the tropical North Atlantic than over the
tropical South Atlantic.

4.3 Seasonal variations of meridional distribution of AOT

For each month of the year, we analyzed variations of meridional distribution of AOT
over the tropical Atlantic Ocean (Fig. 3). It was found that the meridional AOT distri-20

bution is seasonal dependent. In particular, both MISR and MERRAero were in agree-
ment that the monomodal AOT maximum, a characteristic feature of meridional asym-
metry in AOT, exists but not in each month. In the months from September to October,
two AOT maxima can be observed: one maximum in the North Atlantic, and another
one in the South Atlantic.25
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Figure 4 represents month-to-month variations of the hemispheric ratio RAOT over the
tropical Atlantic for each month of the year. Both MISR and MERRAero showed that
meridional AOT asymmetry was most pronounced during the season from March to
July. One can see that, from month to month during the year, RAOT ranges from 1–2.4,
while during the season of pronounced meridional aerosol asymmetry (March–July)5

RAOT ranges from 2.0–2.4. In September and October, RAOT was close to 1, indicating
no noticeable asymmetry (Fig. 4).

4.4 Meridional distribution of AOT of various aerosol species

Figure 2c represents meridional distribution of ten-year mean MERRAero AOT for to-
tal AOT (Total), dust AOT (DU), organic and black carbon aerosol AOT (OC and BC),10

and AOT of other aerosol species (Other), zonal averaged over the tropical Atlantic
Ocean. One can see that meridional dust distribution is much more asymmetric rela-
tive to the equator than meridional distribution of OC and BC and other aerosol species.
The meridional asymmetry of DU, characterized by the hemispheric ratio (RDU) of
dust AOT was about 11 (Table 2). Such strong asymmetry in meridional distribution15

of desert dust over the ocean can be explained by its transport by winds from the
Sahara desert to the ocean in the North Atlantic. Being the major contributor to the
AOT maximum in the North Atlantic, Saharan dust was responsible for the pronounced
meridional AOT asymmetry in total AOT over the tropical Atlantic Ocean. Carbon
aerosols also displayed some meridional asymmetry characterized by the hemispheric20

ratio ROC and BC =0.7, although this asymmetry was much less pronounced than that
of desert dust (Fig. 2c and Table 2). Meridional distribution of AOT of other aerosol
species was almost symmetrical (ROther is 1.1) (Table 2). Therefore, aerosols over the
tropical Atlantic can be divided into two groups with different meridional distribution rel-
ative to the equator: dust and carbonaceous aerosols were distributed asymmetrically,25

while other aerosol species were distributed almost symmetrically.
MERRAero showed that seasonal variations of transatlantic Saharan dust transport

determined the seasonal variations of meridional dust asymmetry. In May–July, when
23317
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meridional asymmetry in dust AOT over the tropical North Atlantic was the most pro-
nounced, dust AOT averaged separately over the tropical North Atlantic was one order
of magnitude higher than dust AOT averaged over the tropical South Atlantic (Table 2).
In July, the most pronounced meridional asymmetry of dust AOT was characterized by
the hemispheric ratio RDU of about 30 (Table 2).5

When dust presence over the North Atlantic was minimal, the contribution of other
aerosol species to the meridional distribution of total AOT could be significant. In par-
ticular, in December, the maximum in OC and BC at low-latitudes (due to the transport
of bio-mass burning smoke) contributed significantly to the maximum in total AOT in
the tropical North Atlantic (Fig. 5a). Note that the reason for the aforementioned trans-10

port of bio-mass burning aerosols is the burning of agricultural waste in the Sahelian
region of northern Africa. This burning activity is maximal during December–February
(Haywood et al., 2008). MERRAero showed that no noticeable meridional asymmetry
of total AOT was observed in September and October (Fig. 4). This is because the con-
tribution of carbonaceous aerosols (OC and BC) to total AOT over the South Atlantic15

is comparable to the contribution of Saharan dust to total AOT in the North Atlantic
(Fig. 5). The reason for the observed increase in OC and BC over the South Atlantic
in September and October is that these months fall within the burning period in Cen-
tral Africa, where slash-and-burn agriculture is prevalent (Tereszchuk et al., 2011). In
September and October, AOT of carbonaceous aerosols over the tropical South At-20

lantic was five times higher than that over the tropical North Atlantic (ROC and BC =0.2)
(Table 2).

Meridional distribution of AOT of other aerosol species remains more symmetrical
than dust and carbonaceous aerosols throughout all months (the hemispheric ratio
ROther ranged from 0.8–1.3) (Table 2). This group includes marine aerosols, such as25

sea-salt and dimethylsulfide (DMS) aerosols, which are produced everywhere in the
tropical Atlantic Ocean.
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4.5 Meridional distribution of cloud fraction

We analyzed meridional distribution of cloud cover over the tropical (30◦ N–30◦ S) At-
lantic Ocean, which includes the area of transatlantic Saharan dust transport within
SAL. Figure 2b represents the meridional distribution of 10 yr mean cloud fraction,
zonal averaged over the Atlantic Ocean. One can see the local maximum near the5

equator due to clouds concentrated over the Intertropical Convergence Zone: this max-
imum shifts to the north from the equator. Despite this CF maximum, the hemispheric
CF ratio (RCF), characterized by the ratio of CF averaged separately over the tropical
North and over the South Atlantic, did not exceed 1.1 (Table 1).

As mentioned in Sect. 4.4, MERRAero showed that dust and carbonaceous aerosols10

were distributed asymmetrically in relation to the equator, while other aerosol species
were distributed almost symmetrically. During the period of pronounced meridional
AOT asymmetry over the tropical Atlantic from May–July, dust AOT averaged sepa-
rately over the tropical North Atlantic was about one order of magnitude higher than
dust AOT averaged over the tropical South Atlantic (Table 2). In July, the hemispheric15

ratio RDU was roughly 30. In the presence of such strong meridional dust asymmetry,
in July, RCF reached 1.2 (Table 2). As shown in previous study (Kishcha et al., 2009),
over the global ocean, RAOT was about 1.5, while RCF was 1. Therefore, by contrast
to the global ocean (where meridional CF distribution was symmetrical over the two
hemispheres), over the tropical Atlantic in July, CF averaged separately over the trop-20

ical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20 %. In
September–October, when there was no meridional asymmetry in total AOT over the
tropical Atlantic (RAOT was close to 1), meridional CF distribution was almost symmet-
rical (RCF was close to 1, Table 2).

Figure 6 represents meridional distribution of MODIS CF and TRMM accumulated25

rainfall, zonal averaged over the tropical Atlantic Ocean, for all months of the year. One
can see some changes in CF from month to month on the high background level of
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approximately 0.6. This background level of CF is almost the same over the tropical
North and South Atlantic Oceans.

In each month, the main CF maximum coincides with the Atlantic Ocean inter-tropical
convergence zone, which is characterized by intensive rainfall (Fig. 6). In the summer
months (when pronounced meridional dust asymmetry was observed), MODIS CF data5

showed significant CF to the north from the main CF maximum, over the latitudes of
transatlantic dust transport within the Saharan Air Layer (SAL) (Fig. 6g–i). Saharan dust
travels across the Atlantic Ocean within the hot and dry Saharan Air Layer (Dunion and
Velden, 2004). The SAL’s base is at ∼900–1800 m and the top is usually below 5500 m
(Diaz et al., 1976). The significant cloud fraction along SAL, together with the Atlantic10

Inter-tropical Convergence Zone (centered over the tropical North Atlantic) contributed
to the above-mentioned meridional CF asymmetry. Following is our analysis of cloud
fraction in the area of the Saharan Air Layer in July, when the most pronounced merid-
ional dust asymmetry was observed.

4.5.1 Cloud fraction in the area of the Saharan Air Layer in July15

Figure 7 represents meridional distribution of the 10 yr mean of MERRAero dust AOT,
MODIS-Terra cloud fraction, and TRMM accumulated rainfall, zonal averaged over the
Atlantic Ocean (60◦ W–0◦ E). The near-equatorial maximum in meridional distribution
of TRMM accumulated rainfall indicates the position of the North Atlantic Ocean inter-
tropical convergence zone (ITCZ) (Fig. 7). One can see that, in July, when dust pres-20

ence over the Atlantic is maximal, the meridional distribution of CF becomes essentially
asymmetric with respect to the center of ITCZ. In particular, significant CF up to 0.8 is
seen northward from ITCZ, over the latitudes with SAL presence (12–24◦ N) (Fig. 7).
These values are higher than the 10 yr mean MODIS CF over the tropical North Atlantic
(0.66) (Table 1). One can consider that, in the North Atlantic, the wide maximum in the25

meridional distribution of CF consists of two different partly-overlapping maxima: one
CF maximum located within ITCZ, and the other CF maximum located over the ocean
area where Saharan dust is transported within the SAL across the Atlantic (Fig. 7).
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More detailed information about the aforementioned two partly-overlapping maxima
in the meridional distribution of CF in July can be obtained from a comparison between
spatial distribution of ten yr mean MERRAero dust AOT and MODIS CF over the tropical
North Atlantic (Fig. 8a and b). It is clearly seen that the ocean area with Saharan dust
transported across the Atlantic is covered by cloudiness characterized by significant5

values of MODIS CF up to 0.8–0.9. This CF is higher than the 10 yr mean MODIS CF
over the tropical North Atlantic (0.66) (Table 1). Note that there is a strong difference
between the two zones of significant CF in the North Atlantic. High values of CF within
ITCZ are accompanied by intensive rainfall (Fig. 8b and c). By contrast, the area of
SAL with significant CF (12◦ N–24◦ N) is characterized by essentially lower precipitation10

(Fig. 8b and c).
We analyzed the 10 yr mean (July 2002–June 2012) of dust and cloudiness over six

zones, each 6◦ ×6◦, located along the area of transatlantic dust transport (Fig. 8a). In
July, there was a decline of approximately 300 % in dust AOT from zone 1 to zone 6
(Fig. 9a). The reason for the decline in dust AOT with increasing distance from dust15

sources in the Sahara is gravitational settling of dust particles (mainly coarse fraction).
Zone-to-zone variations of MODIS CF were considerably less pronounced: CF over
zones 1 and 2 ranged from 0.8–0.9, while CF over zones from 3 to 6 was about 0.7
(Fig. 9b). Zone-to-zone variations of 10 yr mean TRMM accumulated rainfall revealed
a significant increase over zones remote from the Sahara: there were higher values20

(70–110 mm) over zones 5 and 6 than over zones 1–4 (20–30 mm) (Fig. 9b). This
increase in rainfall over zones 5 and 6 indicated an increase in the precipitation ability
of clouds over these zones.

Temperature inversion at the base of the Saharan Air Layer prevents deep cloud de-
velopment and precipitation (Prospero and Carlson, 1972). We analyzed temperature25

inversion over zones 1–6. Figure 10 represents vertical profiles of atmospheric temper-
ature averaged over the specified zones, in July during the 10 yr period under consid-
eration. The observed temperature inversion over zones 1–4 (Fig. 10) prevented con-
vective activity and precipitation, which explains the observed low accumulated rainfall
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(Fig. 9b). There was no temperature inversion over zones 5 and 6 (Fig. 10). In the ab-
sence of temperature inversion there is no suppression of deep cloud formation and
precipitation. This explains the increase in TRMM accumulated rainfall over zones 5
and 6.

5 Conclusions5

Meridional distribution of aerosol optical thickness and cloud fraction were analyzed
using 10 yr satellite measurements from MISR and MODIS, together with MERRAero
data (July 2002–June 2012).

In accordance with our previous study (Kishcha et al., 2009), over the global ocean,
there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud10

fraction. In the current study, we focus on the tropical Atlantic (30◦ N–30◦ S) which is
characterized by significant amounts of Saharan dust. Over a limited area such as
the tropical Atlantic, we found that strong meridional asymmetry in dust aerosols was
accompanied by meridional CF asymmetry, by contrast to the global ocean.

When meridional AOT asymmetry over the tropical North Atlantic was the most pro-15

nounced, dust AOT averaged separately over the tropical North Atlantic was one or-
der of magnitude higher than dust AOT averaged over the tropical South Atlantic. In
July, the most pronounced meridional asymmetry of dust AOT was characterized by
the hemispheric ratio RDU of approximately 30. In the presence of such strong merid-
ional asymmetry in dust AOT in the summer months, CF averaged separately over20

the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by
20 %. In July, along the Saharan Air Layer, MODIS CF data showed significant cloud
cover (up to 0.8–0.9) with limited precipitation ability (TRMM accumulated rainfall 20–
30 mm month−1). These CF values are higher than the 10 yr mean MODIS CF over
the tropical North Atlantic (0.66) (Table 1). This significant cloud fraction along SAL25

together with the Atlantic Inter-tropical Convergence Zone (centered over the tropical
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North Atlantic and characterized by significant cloud cover) contribute to the above-
mentioned meridional CF asymmetry.

With respect to different oceans, only over the Atlantic Ocean did MERRAero demon-
strate that desert dust dominated all other aerosol species and was responsible for
meridional aerosol asymmetry there. MERRAero showed that, over the tropical At-5

lantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the
equator, while other aerosol species were distributed more symmetrically.

Both MISR measurements and MERRAero data were in agreement on seasonal
variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the
Atlantic was the most pronounced between March and July, when dust presence over10

the North Atlantic was maximal. In September and October, there was no noticeable
meridional aerosol asymmetry in total AOT (RAOT was close to 1). During these two
months, the contribution of carbonaceous aerosols to total AOT in the South Atlantic
was comparable to the contribution of dust aerosols to total AOT in the North Atlantic.
Our study showed that, in September and October, meridional CF distribution over the15

tropical Atlantic was almost symmetrical (RCF was close to 1).
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Table 1. Average AOT and CF over the tropical North (XN) and South (XS) Atlantic and their
hemispheric ratio (R)∗. 10 yr MERRAero AOT, MISR AOT, and MODIS CF data were used.

Data set XN ±σN XS ±σS R ±σR

MISR AOT 0.25±0.06 0.15±0.05 1.70±0.06
MERRAero AOT 0.19±0.05 0.12±0.05 1.61±0.06
MODIS CF 0.66±0.09 0.61±0.06 1.08±0.01

∗ Standard deviations of XN, XS, and R are designated by σN, σS, σR
respectively.
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Table 2. The hemispheric ratio (± standard deviation) of dust AOT (DU), organic and black
carbon AOT (OC and BC), other aerosol species AOT (Other), and MODIS CF over the tropical
Atlantic Ocean (30◦ N–30◦ S). 10 yr MERRAero data and MODIS CF data were used.

Month DU OC and BC Other MODIS CF

All months 11.50±1.20 0.70±0.10 1.10±0.10 1.08±0.01
Jan 6.10±2.30 1.30±0.50 1.10±0.10 1.10±0.07
Feb 4.20±1.80 1.20±0.40 1.20±0.10 1.15±0.09
Mar 6.90±3.20 2.00±0.40 1.20±0.10 1.14±0.10
Apr 8.80±4.10 2.70±0.40 1.20±0.10 1.07±0.09
May 21.00±10.10 1.70±0.30 1.20±0.10 1.14±0.07
Jun 23.50±10.80 0.90±0.30 1.30±0.10 1.20±0.09
Jul 29.30±10.30 0.70±0.30 1.30±0.20 1.21±0.08
Aug 25.00±8.50 0.40±0.10 1.10±0.10 1.04±0.07
Sep 23.80±6.70 0.20±0.10 0.90±0.10 0.98±0.05
Oct 17.00±4.30 0.20±0.10 0.80±0.10 0.97±0.05
Nov 9.70±2.30 0.70±0.20 0.80±0.10 0.98±0.05
Dec 6.80±1.90 1.00±0.30 0.90±0.10 1.05±0.05
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Figure 1. Spatial distributions of (a, c and e) dust AOT (DU) and (b, d and f) the ratio of DU
to AOT of all other aerosol species, based on the 10 yr MERRAero data. In the right panel, the
red contour line represents the boundary of the zone where dust AOT is equal to AOT of all
other aerosol species.
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Figure 2. The meridional distribution of 10 yr mean AOT/CF, zonal averaged over the At-
lantic Ocean (60◦ W–0◦ E): (a) total AOT based on MERRAero and MISR data; (b) MODIS
CF, (c) MERRAero total AOT, dust AOT (DU), organic and black carbon AOT (OC and BC), and
other aerosol species AOT (Other). The vertical lines designate the position of the equator.
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Figure 3. Meridional distribution of MISR and MERRAero total AOT, zonal averaged over the
Atlantic Ocean, for all months of the year. The vertical lines designate the position of the equa-
tor.
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Figure 4. Month-to-month variations of the hemispheric ratio (R) of MISR AOT, MERRAero
AOT and MODIS cloud fraction (CF) over the tropical Atlantic Ocean (30◦ N–30◦ S). The error
bars show the standard deviation of R.
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Figure 5. Meridional distribution of dust AOT (DU), organic and black carbon aerosol AOT (OC
and BC), and other aerosol species AOT (Other), zonal averaged over the Atlantic Ocean, for
all months of the year, based on 10 yr MERRAero data. The vertical lines designate the position
of the equator.
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Figure 6. Meridional distribution of MODIS-Terra CF and TRMM accumulated rainfall, zonal
averaged over the tropical Atlantic Ocean, for all months of the year. The vertical lines designate
the position of the equator.
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Figure 7. Meridional distribution of 10 yr mean MODIS-Terra cloud fraction (CF), TRMM ac-
cumulated rainfall and MERRAero dust AOT (DU), zonal averaged over the Atlantic Ocean
(60◦ W–0◦ E), in July. The near-equatorial maximum in meridional distribution of TRMM accu-
mulated rainfall indicates the position of the North Atlantic Ocean inter-tropical convergence
zone (ITCZ). The vertical line designates the position of the equator.
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Figure 8. Spatial distributions of 10 yr mean (a) MERRAero dust AOT (DU), (b) MODIS-Terra
CF, and (c) TRMM accumulated rainfall over the North Atlantic in July. The geographic coordi-
nates of the specified zones are as follows: zone 1 (12◦ N–18◦ N; 30◦ W–24◦ W), zone 2 (12◦ N–
18◦ N; 37◦ W–31◦ W), zone 3 (12◦ N–18◦ N; 44◦ W–38◦ W), zone 4 (12◦ N–18◦ N; 51◦ W–45◦ W),
zone 5 (12◦ N–18◦ N; 58◦ W–52◦ W), zone 6 (12◦ N–18◦ N; 65◦ W–59◦ W).
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Figure 9. Zone-to-zone variations of (a) MERRAero dust AOT (DU); (b) MODIS-Terra CF and
TRMM accumulated rainfall over the specified zones in July, averaged over the ten yr study
period (2002–2012). The error bars show the standard error of mean.
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Figure 10. Vertical profiles of 10 yr mean MERRA atmospheric temperature (◦C) in July, aver-
aged over the specified zones along the route of transatlantic dust transport. The error bars
show the standard deviation of temperature.
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