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Abstract 24 

We assessed the sensitivity of regional CO source estimates to the modeled vertical CO 25 

distribution by assimilating multi-spectral MOPITT V5J CO retrievals with the GEOS-Chem 26 

model. We compared the source estimates obtained by assimilating the CO profiles and the 27 

surface layer retrievals from June 2004 to May 2005. Because the surface layer retrievals are less 28 

sensitive to CO in the free troposphere, it is expected that they should provide constraints in the 29 

CO source estimates that are less sensitive to the vertical structure of CO in the free troposphere. 30 

The inferred source estimates all suggest a reduction in CO emissions in the tropics and 31 

subtropics and an increase in the extratropics over the a priori estimates. The tropical decreases 32 

were particularly pronounced for regions where the biogenic source of CO was dominant, 33 

suggesting an overestimate of the a priori isoprene source of CO in the model. We found that the 34 

differences between the regional source estimates inferred from the profile and surface layer 35 

retrievals for 2004-2005 were small, generally less than 10% for the main continental regions, 36 

except for estimates for South Asia, North America, and Europe. Because of discrepancies in 37 

convective transport in the model, the CO source estimates for India and Southeast Asia inferred 38 

from the CO profiles were significantly higher than those estimated from the surface layer 39 

retrievals during June-August 2004. On the other hand, the profile inversion underestimated the 40 

CO emissions from North America and Europe compared to the assimilation of the surface layer 41 

retrievals. We showed that vertical transport of air from the North American and European 42 

boundary layer is slower than from other continental regions and thus air in the free troposphere 43 

from North America and Europe in the model is more chemically aged, which could explain the 44 

discrepancy between the source estimates inferred from the profile and surface layer retrievals. 45 

We also examined the impact of the OH distribution on the source estimates and found that the 46 
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discrepancies between the source estimates obtained with two OH fields were larger when using 47 

the profile data, which is consistent with greater sensitivity to the more chemically aged air in the 48 

free troposphere. Our findings indicate that regional CO source estimates are sensitive to the 49 

vertical CO structure. They suggest that diagnostics to assess the age of air from the continental 50 

source regions should help interpret the results from CO source inversions. Our results also 51 

suggest that assimilating a broader range of composition measurements to provide better 52 

constraint on tropospheric OH and the biogenic sources of CO is essential for reliable 53 

quantification of the regional CO budget. 54 

1. Introduction 55 

The emissions of greenhouse gases and other atmospheric pollutants have been 56 

significantly increased since the industrial revolution. Their influences on atmospheric chemical 57 

composition, local air quality and climate are the subject of increasing numbers of studies. In this 58 

context, inverse modeling has been widely used to provide better understanding of the emissions 59 

of these atmospheric constituents. In particular, in the past decade there has been expanded use 60 

of inverse modeling to better quantify the emissions of atmospheric CO (e.g., Pétron et al., 2004; 61 

Heald et al., 2004; Arellano et al., 2006; Jones et al., 2009; Kopacz et al., 2010; Fortems-Cheiney 62 

et al., 2011; Gonzi et al., 2011). Tropospheric CO is produced from incomplete combustion and 63 

is a byproduct of oxidation of hydrocarbons. As the primary sink of OH, tropospheric CO has 64 

significant influence on the oxidative capacity of the atmosphere. The lifetime of tropospheric 65 

CO is a few months, which is long enough to track within intercontinental scale pollution plumes 66 

but short enough to provide strong signals over background distribution (Jiang et al., 2010). 67 

Previous studies (Palmer et al., 2006; Wang et al., 2009) have demonstrated that CO can be 68 

included in the inverse analyses of CO2 sources and sinks to reduce the influence of model 69 
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transport errors. 70 

Remote sensing from space-based instruments provide valuable global observational 71 

coverage to enable us to better constrain CO emissions. There are now several satellite sensors 72 

from which abundances of CO in the troposphere have been retrieved using measurement of 73 

thermal infrared (TIR) radiation near 4.7 µm: MOPITT (Measurements of Pollution In The 74 

Troposphere), on EOS-Terra, launched December 1999 (Deeter et al., 2003); AIRS 75 

(Atmospheric InfraRed Sounder), on EOS-Aqua, launched May, 2002 (Warner et al., 2007); TES, 76 

(Tropospheric Emission Spectrometer) on EOS-Aura, launched July, 2004 (Luo et al., 2007); and 77 

IASI (Infrared Atmospheric Sounding Interferometer), on METOP-A, launched October, 2006 78 

(George et al., 2009). The TIR radiances are sensitive to CO concentrations from the middle to 79 

the upper troposphere. The lack of global observations of CO near the surface has implications 80 

for the use of inverse modeling to quantify CO emissions because the modeled CO distribution 81 

in the free troposphere is affected by discrepancies in the parameterization of convective 82 

transport in models (e.g. Ott et al., 2009), the simulated chemical sink of CO (e.g. Jiang et al. 83 

2011), and long-range transport (e.g. Arellano et al. 2006b; Jiang et al., 2013). 84 

The multispectral MOPITT version 5 CO product (V5J, where J indicates joint retrievals) 85 

are the first retrievals to exploit simultaneous near infrared (NIR) and TIR measurement to 86 

provide greater sensitivity to CO in the lower troposphere over land (Deeter et al., 2011). 87 

Recently, Jiang et al. (2013) showed that lower tropospheric MOPITT V5J CO retrievals can be 88 

used to study the influence of convective transport error on CO source estimates. They compared 89 

the CO source estimates in June-August 2006, inferred from MOPITT surface layer retrievals, 90 

the profile retrievals, and the column amounts. They found that there were large discrepancies in 91 

the inferred source estimates obtained with the surface layer and profile retrievals in Asian 92 
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monsoon regions where strong emissions are co-located with significant vertical mass flux due to 93 

convection. The discrepancies in the CO source estimates were also used to assess the impact of 94 

vertical transport error on the CH4 emission estimates from Indonesian peat fires in fall 2006, 95 

estimated from TES CH4 observations (Worden et al., 2013).  96 

The study by Jiang et al. (2013) was carried only for summer 2006 and focused mainly 97 

on discrepancies in convective transport. The work presented here complements and extends that 98 

analysis. Reflecting its long lifetime, CO is destroyed mainly in the free troposphere rather than 99 

in the boundary layer. Thus, free tropospheric CO will be more susceptible to discrepancies in 100 

OH, and in long-range transport. One way to mitigate the potential impact of discrepancies in 101 

transport and OH on CO inversion analyses is to use surface observations, near the CO source 102 

regions. However, the current surface-observing network is sparse, whereas MOPITT provides 103 

significantly greater observational coverage. Therefore, we focus here on the use of the surface 104 

layer retrievals from MOPITT for inverse modeling CO sources. We expect that the source 105 

estimates inferred from the surface layer retrievals will be less sensitive to errors in OH and 106 

model transport. We estimate and compare monthly CO source estimates for June 2004 to May 107 

2005 using MOPITT tropospheric profiles and surface layer retrievals to observe the influence of 108 

the OH distribution and the vertical structure in CO, as observed by MOPITT, on the inferred 109 

source estimates. The updated global CO distributions will be used as boundary conditions in our 110 

companion paper to constrain the North America CO emission at a horizontal resolution of 111 

0.5°x0.67° (Jiang et al., 2014). The objective of that study is to assess the extent to which we can 112 

further reduce the impact of model transport and chemistry errors on CO source estimates in a 113 

regional inverse modeling context. 114 

This paper is organized as follows: in Section 2 we describe the MOPITT instruments 115 
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and the GEOS-Chem model used in this work. In Section 3 we outline the inverse method. We 116 

then discuss the annual and seasonal variations of the estimated CO emissions in Section 4. The 117 

discrepancies in the CO source estimates are interpreted in the context of the CO vertical 118 

structure and the OH distribution. Our conclusions follow in Section 5. In Appendix A we 119 

present the results of an indirect validation of the MOPITT data that was conducted to guide the 120 

filtering of the data used in the assimilation, and in Appendix B we have included a discussion of 121 

the optimization scheme used in the assimilation.  122 

2. Observations and Model 123 

2.1. MOPITT 124 

The MOPITT instrument was launched on the Terra spacecraft on December 18, 1999. 125 

The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator at 10:30 local 126 

time. With a footprint of 22 km x 22 km, the instrument makes measurements in a 612 km cross-127 

track scan that provides global coverage every three days. The MOPITT data used here were 128 

obtained from the joint retrieval of CO from TIR (4.7µm) and NIR (2.3µm) radiances using an 129 

optimal estimation approach (Worden et al., 2010; Deeter et al., 2011). The retrieved volume 130 

mixing ratios (VMR) are reported as layer averages 10 pressure levels (surface, 900, 800, 700, 131 

600, 500, 400, 300, 200 and 100 hPa) and the relationship between the retrieved CO profile and 132 

the true atmospheric state can be expressed as:  133 

 ẑ = za +A(z− za )+Gε  (1) 134 

where za is the MOPITT a priori CO profile (expressed as log(VMR)), z  is the true atmospheric 135 

state averaged at MOPITT grid levels (also as log(VMR)), Gε  describes the retrieval error, and 136 

A = ∂ẑ ∂z  is the MOPITT averaging kernel matrix, which gives the sensitivity of the retrieval to 137 
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the actual CO in the atmosphere. The MOPITT V5 data have been evaluated by Deeter et al. 138 

(2012, 2013) using aircraft measurements from the National Oceanic and Atmospheric 139 

Administration (NOAA). For the V5J multi-spectral retrievals, they found a small positive bias 140 

of 2.7% at the surface and a much larger positive bias of 14% at 200 hPa. As a result of the high 141 

bias in the upper troposphere, in our analysis we do not use the retrievals at altitudes above 200 142 

hPa. We conduced an indirect validation of the MOPITT V5J data (see Appendix A) using 143 

NOAA Global Monitoring Division (GMD) in situ observations, which suggested that there is a 144 

high-latitude positive bias in the MOPITT data, possibly associated with the lower degrees-of-145 

freedom-for-signal (DFS) at higher latitudes. Consequently, in this work, we omitted MOPITT 146 

data that are polarward of 40° over oceans and 52° over land. 147 

2.2. GEOS-Chem 148 

The GEOS-Chem global chemical transport model (CTM) [www.geos-chem.org] is 149 

driven by assimilated meteorological fields from the NASA Goddard Earth Observing System 150 

(GEOS-5) at the Global Modeling and data Assimilation Office. We use version v34 of the 151 

GEOS-Chem adjoint, which is based on v8-02-01 of the forward GEOS-Chem model, with 152 

relevant updates through v9-01-01. Our analysis is conducted at a horizontal resolution of 4°x5° 153 

and employs the CO-only simulation in GEOS-Chem, which uses archived monthly OH fields 154 

from the full chemistry simulation. The standard OH fields used in this work are from GEOS-155 

Chem version v5-07-08, with a global annual mean OH concentration of 0.99x106 molec/cm3 156 

(Evans et al. 2005). We use this as our standard OH field to facilitate comparison of our results 157 

with those of Kopacz et al. (2010). We also conduct a sensitivity analysis using OH fields from 158 

the full chemistry simulation of v34 of the adjoint model, run in forward mode. This simulation 159 

produces a global annual mean OH concentration of 1.24x106 molec/cm3.  160 
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The anthropogenic emission inventories are identical to those used in Jiang et al. (2013). 161 

Anthropogenic emissions are from EDGAR 3.2FT2000 (Olivier et al., 2001), but are replaced by 162 

the following regional emission inventories: the US Environmental Protection Agency National 163 

Emission Inventory (NEI) for 2005 in North America, the Criteria Air Contaminants (CAC) 164 

inventory for Canada, the Big Bend Regional Aerosol and Visibility Observational (BRAVO) 165 

Study Emissions Inventory for Mexico (Kuhns et al., 2003), the Cooperative Program for 166 

Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) 167 

inventory for Europe in 2000 (Vestreng et al., 2002) and the INTEX-B Asia emissions inventory 168 

for 2006 (Zhang et al., 2009). Biomass burning emissions are based on the Global Fire Emission 169 

Database (GFED3), with a three-hour temporal resolution (van der Werf et al., 2010). Additional 170 

CO sources come from oxidation of methane and biogenic volatile organic compounds (VOCs,) 171 

as described in previous studies (Kopacz et al., 2010; Jiang et al., 2013). The biogenic emissions 172 

are simulated using the Model of Emissions of Gases and Aerosols from Nature, version 2.0 173 

(MEGANv2.0) (Guenther et al., 2006). The distribution of the annual mean CO emissions for 174 

June 2004 to May 2005 is shown in Figure 1. The annual global sources are 928 Tg CO from 175 

fossil fuel, biofuel and biomass burning, 661 Tg CO from the oxidation of biogenic NMVOCs, 176 

and 884 Tg CO from the oxidation of CH4.  177 

3. Inversion Approach 178 

We use the 4-dimensional variational (4D-var) data assimilation system in GEOS-Chem 179 

(e.g., Henze et al., 2007; Kopacz et al., 2009, 2010; Singh et al. 2011; Jiang et al., 2011, 2013; 180 

Parrington et al., 2012) to estimate the CO sources. Details of the 4D-var scheme are given in 181 

Henze et al. (2007) and Kopacz et al. (2009, 2010). In this approach, we minimize the cost 182 

function of the form,   183 
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J(x) = (Fi(x)− zi )
TSΣ

−1(Fi(x)− zi )
i=1

N

∑ + (x− xa )
TSa

−1(x− xa )                                   (2) 184 

where x is the state vector of CO emissions, N is the number of MOPITT observations that are 185 

distributed in time over the assimilation period, 𝐳! is a given MOPITT profile (or surface level 186 

retrieval), and F(x) is the forward model which represents the transport and chemistry of CO in 187 

the GEOS-Chem model and accounts for the vertical smoothing of the MOPITT retrieval,  188 

Fi (x) = za +A(Hi (x)− za )                                              (3) 189 

Here za and A are the MOPITT a priori profile and averaging kernel, respectively, introduced in 190 

Equation (1), and Hi(x) is the GEOS-Chem profile of CO at the MOPITT observation location 191 

and time. The definition of the cost function assumes that the distribution of the errors for both 192 

the state vector x and the a priori constraint on the CO emissions xa  are Gaussian, and these 193 

errors are given by SΣ , the observational error covariance matrix, and Sa , the a priori error 194 

covariance matrix, respectively. Minimization of the cost function provides the a posteriori CO 195 

emissions x̂ , corresponding to the maximum of the conditional probability density function 196 

( P(x | y) ), with the a posteriori error covariance matrix Ŝ . However, because the 4D-var 197 

optimization scheme does not store the full Hessian matrix, it is difficult to construct the a 198 

posteriori error covariance matrix, which is the inverse of the Hessian. Details of the 199 

optimization approach are given in Appendix B. 200 

We employ a similar procedure for data processing and quality control as in our previous 201 

study, Jiang et al. (2013). Since MOPITT V5J CO retrievals have a positive bias at high altitudes 202 

(Deeter et al. 2013), our analysis is restricted to CO retrievals below 200 hPa. Following Jiang et 203 

al. (2013), we also reject MOPITT data with CO column amounts less than 5x1017 molec/cm2 204 
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and use only daytime data. The threshold of 5x1017 molec/cm2 was selected to prevent 205 

unrealistically low CO columns from adversely impacting the inversion analyses.  206 

The observation error SΣ represents a sum of the retrieval errors, representativeness errors, 207 

and random model errors. Using the Relative Residual Error (RRE) approach (Palmer et al., 208 

2003; Heald et al., 2004), which assumes that the mean differences between the model and 209 

observations are due to discrepancies in the emissions while the residual reflects the observation 210 

error, Kopacz et al. (2010) estimated that the observation errors for the MOPITT columns are 10% 211 

- 30%. Although the RRE approach does not account for systematic model errors, it provides a 212 

possible estimate of the random component of the observation errors. Accurately characterizing 213 

the systematic errors (in the model and observations) is a challenge. Keller et al. (Quantifying 214 

Model Biases in CO Emission Estimation Using Weak Constraint 4D-var, manuscript in 215 

preparation) have assimilated MOPITT V5J data using a weak-constraint 4D-var scheme to 216 

characterize the systematic component of the observation error. Their results suggest that the 217 

weak-constraint 4D-var is a promising approach for accounting for systematic errors, but it is 218 

still challenging. In the absence of meaningful information about the systematic errors in the 219 

model for the period considered here, we do not account for systematic errors in minimizing the 220 

cost function. Following Jiang et al. (2011, 2013), we assume a uniform observation error of 221 

20%. Our assumed 20% error likely overestimates the observation error in the upper troposphere 222 

and underestimates it near the surface.  223 

As described in Jiang et al. (2013), we combine the combustion CO sources (fossil fuel, 224 

biofuel and biomass burning) with the CO from the oxidation of biogenic NMVOCs and solve 225 

for the total CO emissions in each grid box, assuming a 50% uniform a priori error and that the 226 

errors are uncorrelated. We optimize the source of CO from the oxidation of methane separately 227 



 

 11 

as an aggregated global source, assuming an a priori uncertainty of 25%. As in Jiang et al. (2013), 228 

we produce initial conditions at the beginning of each monthly assimilation window by 229 

assimilating MOPITT V5J data using a sequential sub-optimal Kalman filter (Parrington et al. 230 

2008). For the results presented here, the Kalman filter assimilation was carried out from January 231 

1, 2004, to May 1, 2005, and to optimize the CO distribution, which was archived at the 232 

beginning of each month. In the monthly inversion using the 4D-var system, the optimized CO 233 

distribution from the Kalman filter was read at the beginning of each month to obtain initial 234 

conditions. Consequently, the initial conditions for the model simulation are independent of the 235 

inverse analyses. Although we use a one-month assimilation window, it is possible that a longer 236 

window of two or three months would lead to greater constraints on the CO source estimates. 237 

However, as we will show below, the inversion is sensitive to the specified OH distribution and 238 

thus with a longer assimilation window would be more susceptible to discrepancies in the CO 239 

chemical sink. 240 

4. Results and Discussion 241 

4.1. CO Source Estimates for June 2004 – May 2005 242 

Figures 2a and 2f show the annual mean emission scaling factors for June 2004 to May 243 

2005, obtained using the MOPITT surface layer and profile retrievals, respectively. Both 244 

analyses suggest that CO emissions in the tropics should be reduced, whereas the emissions in 245 

middle and high latitudes should be increased. However, as shown in Figure 2k, the a posteriori 246 

scaling factors from profile inversion is higher in India and Southeast Asia. As discussed in Jiang 247 

et al. (2013), these descrepancies over India and Southeast Asia are likely due to model errors in 248 

convection transport. The profile inversion also produces larger emissions in parts of tropical 249 

Africa and northern South America. In general, however, the a posteriori emissions from the 250 
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profile inversion are lower than those obtained from the surface layer inversion, particularly at 251 

middle and high latitudes.  252 

Table 1 shows the annual mean regional CO emissions from June 2004 to May 2005, 253 

inferred from the surface layer and profile retrievals. In this work, only the total CO emission is 254 

optimized in each grid box, but because the different CO source types have different spatial and 255 

temporal distributions, we apply the scaling factors in each grid box to each source type, which 256 

can provide useful information on the individual source types. As shown in Table 1, the emission 257 

reductions in the tropics and subtropics reflect large reductions in the biogenic source of CO, 258 

suggesting that our a priori biogenic emissions are too high. For example, in South America, 259 

with the profile inversion the biogenic source was reduced by 32%, whereas the combustion 260 

source was reduced by 13%. In northern Africa the biogenic source was reduced by 26% and the 261 

combustion source was reduced by 20% with the profile inversion. In the 48 contiguous United 262 

States the biogenic source was reduced by 31%, whereas the combustion source was increased 263 

by 5%. The reductions in the biogenic emissions were smaller in the surface layer inversion, but 264 

were still large for South America and northern Africa, 27% and 28%, respectively. We note that 265 

although there are large differences between the regional source estimates inferred from the 266 

profile and surface layer retrievals, the global total a posteriori CO emissions estimated from the 267 

two sets of retrievals are similar, 1513 Tg CO and 1555 Tg CO, respectively. 268 

The seasonal mean scaling factors are shown in Figure 2. The main seasonal feature in 269 

the figure is that the inversions tend to decrease CO emission in the summer hemisphere and 270 

increase them in the winter hemisphere, with the profile inversion producing larger reductions 271 

(2b and 2g) and smaller increases (Figures 2d and 2i). Consequently, the differences between the 272 

scaling factors from the surface and profile inversions are smaller in winter. This pattern is 273 
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consistent with an overestimate of isoprene emissions and a possible underestimate of wintertime 274 

fossil fuel combustion (Stein et al. 2014). The overestimate of biogenic emissions in GEOS-275 

Chem by MEGANv2.0 has been reproted by previous studies (Barkley et al., 2008; Millet et al., 276 

2008; Liu et al., 2010). Millet et al., (2008) found that North American isoprene emissions 277 

estimated by MEGAN were greater than those inferred from observations of formaldehyde 278 

(HCHO) from the Ozone Monitoring Instrument (OMI) by as much as 23%. Liu et al. (2010) 279 

used a newer version of MEGAN, version 2.1, which simulates lower isoprene emissions than 280 

version 2.0 (which is emloyed in our analysis), and found that it also produced an overestimate 281 

of CO from isoprene oxidation, particulalry in eastern South America. Marais et al. (2014) found 282 

that MEGANv2.1 ovestimated African isoprene emissions for 2005 – 2009 by 26% relative to 283 

those inferred from OMI data, primarily over the equatorial forests and the northern savannas.  284 

Figure 3 shows the timeseries of the monthly mean source estimates for the 48 285 

contiguous United States, Europe, East Asia, and India/Southeast Asia. For India/Southeast Asia, 286 

the dominant source of CO is biomass burning from Indonesia, which peaks in August - October, 287 

and from southeast Asia, which peaks in February - April. For the other regions, combustion of 288 

fossil fuels and biofuels provides the main annual source of CO. As we noted above, the 289 

tendency is for the inverse model to reduce the emissions in summer and increase them in winter, 290 

particularly in the United States and East Asia. In the profile inversion, the North American 291 

combustion emissions were reduced by about a factor of two in July and August 2004, whereas 292 

they were increased by 48% in January – March 2005. The summertime reduction of the North 293 

American combustion emissions was smaller than that obtained with the surface layer retrievals, 294 

whereas the wintertime increase was similar in both inversions. In Asia, both inversions 295 

produced comparable summertime reductions and wintertime increases in the combustion 296 
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emissions, with the emission estimates from the profile inversion being slightly lower in summer 297 

and higher in winter. The seasonality of the European source estimates obatined from the surface 298 

layer retrievals was much less pronounced than that obtained for North America and Asia, and 299 

was consistently higher than those obatined from the profile inversion. 300 

The seasonal variation of the a posteriori combustion emissions shown in Figure 3 is 301 

consistent with the results of Kopacz et al. (2010). Using data from MOPITT, SCIAMACHY 302 

(SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), and AIRS, 303 

Kopacz et al. (2010) showed that the CO emissions from North America, Europe and East Asia 304 

should be significantly increased in winter. There is also good agreement between the two 305 

studies in the aggregated emissions in the extratropical northern hemisphere. The total combined 306 

a posteriori combustion source from the United States, Alaska, Canada, Europe, and East Asia 307 

was 515 Tg and 548 Tg from the profile and surface inversions, respectively. The corresponding 308 

a posteriori estimate from Kopacz et al. (2010), was 520 Tg. 309 

However, there are large differences in the region source estimates between our analysis 310 

and that of Kopacz et al. (2010). For example, our annual combustion emission estimate for the 311 

contiguous United States was 100 Tg from the profile inversion, whereas Kopacz et al. (2010) 312 

inferred 50 Tg. We note that our total a posteriori combustion source estimates for North 313 

America of 173 Tg CO and 156 Tg CO for the surface layer and profile inversions, respectively, 314 

is comparable to the a posteriori estimate of 206 Tg CO obtained by Fortems-Cheiney et al. 315 

(2012) from their inversion analysis of the MOPITT data for 2005. A significant difference 316 

between our inverson and that of Kopacz et al. (2010) is that their a priori combustion source for 317 

the United States was 40 Tg, whereas ours was 112 Tg. Their low a priori estimate was based on 318 

the results of Hudman et al. (2008), who suggested a 60% reduction in anthropogenic emissions 319 
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in the United States as a result of an analysis of aircraft data in July – August 2004. The 320 

discrepancies in the regional source estimates between the results here and those of Kopacz et al. 321 

(2010) could also be related to differences in the configuration of the inversion analyses, such as 322 

the treatment of the initial conditions or vertical transport in the models. Our inversion analyses 323 

employed the GEOS-5 meteorological fields, whereas Kopacz et al. (2010) used GEOS-4. A 324 

significant factor could be the treatment of the biogenic source of CO. Here the biogenic sources 325 

are combined with the combustion sources and optimized at the resolution of the model. In 326 

contrast, Kopacz et al. (2010) aggregated the biogenic source with the methane source and 327 

optimized the global mean source from methane and VOC oxidation. As shown in Jiang et al. 328 

(2011), optimizing the VOC source at a lower resolution than the combustion emissions could 329 

result in an overadjustment of the combustion sources.   330 

In general, we find that the regional source estimates inferred from the surface layer and 331 

profile retrievals are consistent, with relative differences of less than 10%, except for source 332 

estimates for North America (the United States, Alaska and Canada), Europe, and 333 

India/southeast Asia (see Table 1). The discrepancy between the source estimates for 334 

India/southeast Asia from the two inversions is linked to vertical transport by the Asian monsoon 335 

and was discussed by Jiang et al. (2013). In the next section, we present a passive tracer analysis 336 

to provide insight into the discrepancies between the source estimates from North America and 337 

Euope.  338 

4.2. Ideal Tracer Experiments 339 

It is surprising that Europe and North America (the United States and Canada) are the 340 

two regions, after India/southeast Asia, with the largest discrepancies between the source 341 

estimates inferred from the profile and surface layer inversions. To better understand how the 342 
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vertical transport of CO from these region could impact the inversions, we conducted an analysis 343 

using an idealized CO-like tracer. We performed a tagged-CO simulation for the period June 344 

2004 – May 2005 in which we imposed a constant source of CO of 3.33 Tg CO/day from each of 345 

the continental source regions shown in Figure 4, with a constant and uniform timescale for loss 346 

of 30 days (i.e., the lost rate was given as [CO]/30 molec cm-3 day-1, where [CO] is the CO 347 

concentration). We ran separate tracers for each of the continental regions, with each tracer 348 

emitted only in that region but chemically destroyed everywhere.  349 

The tracers were initialized to a uniformly low abundance of 1 pptv and the model was 350 

run for 17 months prior to June 2004 to spinup the tracer distributions. Shown in Figure 5 are the 351 

boundary layer (defined here as the surface – 700 hPa) and free tropospheric (700 – 250 hPa) 352 

partial columns of the continental tracers for June 2004. In the extratropical northern hemisphere, 353 

a larger fraction of the Asian surface emissions are exported to the free troposphere, compared to 354 

the North American and European emissions. We find that transport of the Asian emissions to 355 

the free troposphere is faster even in winter. In the tropics, transport of surface emissions to the 356 

free troposphere is slowest for South America (not shown), most likley due to the fact that in 357 

boreal summer the ITCZ is located in northern South America (in the northern hemisphere) and 358 

hence transport of south American emissions to the southern subtropics and extratropics is 359 

facilated instead by the influence of mid-latitude cyclones (Staudt et al., 2002). In fall, the ITCZ 360 

moves south and convection over South America intensifies (Liu et al., 2010); as a result, we 361 

find that, in December, the fraction of South American emissions in the free troposphere is 362 

greater, and is comparable to that from northern Africa (not shown). 363 

The monthly mean fraction of the global mass of each continental tracer that is in the 364 

boundary layer and the free troposphere is listed in Table 2. North America and Europe have the 365 
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smallest mass fraction in the free troposphere, 26% and 21%, respectively. This suggests that, 366 

relative to the other continental regions, the air in the free troposphere from Europe and North 367 

America is older and more chemically aged. This is consistent with the results of Stohl et al. 368 

(2002), who examined the transport of idealized tracers from continental source regions using a 369 

Lagrangian particle dispersion model. They found that the European tracer was more confined to 370 

the lower troposphere, relative to the North American and Asian tracers. They also noted that “in 371 

terms of vertical transport, the North America tracer… behaves intermediately between the Asia 372 

and Europe tracers.” This suggests that the surface layer and profile inversions are sampling 373 

sufficiently different air masses that they obtain different constraints on the North American and 374 

European source estimates. The surface layer inversion is sampling air that is less aged and 375 

should, therefore, be less susceptible to discrepancies in the OH abundance.  376 

4.3. Influence of the OH distribution 377 

In this section we compare the impact on the source estimates of the OH distribution 378 

from v8-02-01 of GEOS-Chem with that from our standard inversion (which is based on v5-07-379 

08 of GEOS-Chem). As shown in Figure 6, v8-02-01 OH is significantly higher than on v5-07-380 

08 in the Northern hemisphere, while it is much lower over South America and Indonesia.  381 

Using the v8-02-01 OH fields, we repeated the profile and surface inversions for June – 382 

August 2004. Shown in Figure 7 are the scaling factors and their differences, based on the two 383 

versions of the OH fields. With v8-02-01 OH, the a posteriori emissions in the tropics changed 384 

only slightly, while the inferred emission estimates in the extratropics, mainly for North America 385 

and Europe, were much greater that those obtained with v5-07-08 OH. The regional source 386 

estimates are given in Table 3. For the contiguous United States, with v5-07-08 OH we inferred a 387 

June-August source of 25.4 Tg CO using the profile retrievals, whereas with v8-02-01 OH we 388 
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estimated a source of 49.2 Tg CO. Similarly, for Europe the source estimates inferred from the 389 

profile inversion with v5-07-08 OH was 47.3 Tg, whereas with v8-02-01 OH it with was 68.3 Tg.  390 

To help understand the differences in the regional source estimates shown in Table 3, the 391 

mean CO lifetime in the tropics and in the northern midlatitudes, for August 2004, are plotted in 392 

Figure 8. Throughout the lower and middle troposphere in the northern midlatitudes, the CO 393 

lifetime is about 30% shorter with v8-02-01 OH, decreasing to less than 30 days between 900 – 394 

400 hPa.. The shorter lifetime resulted in a reduction of the CO burden in the midlatitude free 395 

troposphere. Consequently, greater extratropical a posteriori source estimates, relative to the v5-396 

07-08 OH inversions (see Table 3), were required to bring the model into agreement with the 397 

MOPITT data. In Jiang et al. (2014), this change in the free tropospheric distribution of CO is 398 

discussed further in the context of a regional inversion analysis for North American source 399 

estimates. In the tropics, the CO lifetime increased by about 15% with v8-02-01 OH. However, 400 

as shown in Figure 6, this reflects reductions in OH over source regions such as South America 401 

and Indonesia, which are partially offset by increases in OH over northern tropical Africa and the 402 

remote tropics. In general, we find that the relative differences between the source estimates 403 

from the v8-02-01 and v5-07-08 OH inversions are smaller for the surface inversion compared to 404 

the profile inversion, reflecting the fact the surface layer inversion is more strongly influenced by 405 

fresh emissions and less by background CO in the free troposphere. 406 

5. Summary 407 

We presented a global inversion analysis to quantify monthly mean CO source estimates 408 

during the period of June 2004 – May 2005 using the version 5 MOPITT retrievals. Building on 409 

the work of Jiang et al. (2013), we conducted a comparative analysis of the influence of the 410 

MOPITT profile and surface layer retrievals on the inferred CO source estimates. The inversions 411 
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suggest a reduction in CO emission in the tropics, possible due to an overestimate of the biogenic 412 

source of CO, and an increase in emissions at middle and high latitudes. In the northern 413 

extratropics, we found that the inferred source estimates are typically much greater in winter than 414 

in summer, consistent with the seasonality in CO emissions inferred by Kopacz et al. (2010). 415 

With our standard OH distribution, we inferred source estimates of 148 Tg, 180 Tg, and 284 Tg 416 

for the contiguous United States, Europe, and East Asia, respectively, using the surface layer 417 

retrievals. Using the profile retrievals, the inferred source estimates were lower, 131 Tg, 158, and 418 

282 Tg, respectively.  419 

In general, we find that the annual mean, regional source estimates inferred from the 420 

surface layer retrievals and those from the profile retrievals are in agreement to better than 10%, 421 

with the exception of the North American (United States and Canada), European, and 422 

Indian/southeast Asian estimates. The difference in the Indian/southeast Asian estimates is due to 423 

discrepancies in vertical transport associated with the strong convective transport over the 424 

Southeast Asian region (Jiang et al., 2013). For Europe and North America, we argue that the 425 

differences in the source estimates from the profile and surface inversion are due to model 426 

discrepancies in the free tropospheric abundance of CO from these regions. We conducted an 427 

ideal tracer experiment and showed that transport of surface emissions from Europe and North 428 

America to the free troposphere is slower than from other continental regions. Consequently, 429 

compared to the inversion using the surface layer retrievals, the profile inversion is sampling 430 

older, more chemically age air from North America and Europe in our simulation, and is, 431 

therefore, more susceptible to discrepancies in long-range transport and in the chemical sink of 432 

CO. This suggests that diagnostics to assess the age of air from the continental source regions 433 

should be useful for interpreting the results from CO source inversions. 434 
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We examined the impact of the OH distribution on the inferred CO source estimates, 435 

using OH fields from versions v5-07-08 and v8-02-01 of GEOS-Chem. We found that changing 436 

OH from v5-07-08 (used in our standard inversions) to v8-02-01 produced large differences in 437 

the extratropical source estimates. The relative differences in the source estimates from the 438 

profile inversion using v5-07-08 and v8-02-01 OH were 64%, 33%, and 36% for source 439 

estimates from the contiguous United States, East Asia, and Europe for June – August 2004, 440 

when the CO lifetime is short. In the inversions using the surface layer data we found that the 441 

impact of the OH fields was reduced, but was still large: 40%, 20%, and 24%, respectively. The 442 

smaller impact of the OH fields in the surface layer inversion is due to the fact that the OH sink 443 

is at a maximum in the middle troposphere, while the surface layer retrievals have maximum 444 

sensitivity near the boundary layer.  445 

The results presented here clearly demonstrate the challenge of inverse modeling of CO 446 

emissions. Although the CO chemistry is relatively simple, the sensitivity to tropospheric OH is 447 

a major issue. Accurate OH fields are essential for constraining CO reliably. In recent studies, 448 

Fortems‐Cheiney et al. (2011) introduced Methyl Chloroform (MCF) in their CO inversion to 449 

provide a constaint on the OH abundnace. However, MCF is observed at only a few surface sites, 450 

hence, although a MCF inversion might give a good global mean OH constraint, it will not help 451 

mitigate discrepancies in the regional distribution of OH. A better method to improve the OH 452 

would be to assimilate tropospheric ozone and it precursors, together with CO, as was done by 453 

Miyazaki et al. (2012). They showed that in such a multispecies assimilation, the adjustment in 454 

the monthly mean, zonal OH abundance could be as large as 20%. 455 

Our inversion results also highlight the need to better quantify the isoprene source of CO. 456 

Previous studies (e.g., Abbot et al., 2003; Shim et al., 2005; Millet et al., 2008) have used space-457 
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based observatios of HCHO to inferred isoprene emissions. Since isoprene impacts the 458 

tropopsheric abundance of OH and ozone, it may be that the most reliable constraint on the 459 

isoprene source will be obtained by jointly assimilating HCHO data together with observations 460 

of CO and other ozone precursors. In that context, Fortems-Cheiney et al. (2012) conducted a 461 

joint inversion analysis using CO, HCHO, methane (CH4), and MCF, and found that the biogenic 462 

a priori source of CO was overestimated, whereas the a priori combustion source was 463 

underestimated. Our results and those of  Fortems-Cheiney et al. (2012) suggest that the way 464 

forward will require exploiting a broader range of composition measurements, besides just that 465 

of atmospheric CO, to better quantify the regional CO budget. 466 

Appendix A: Indirect Validation of the MOPITT V5J Data 467 

Although Deeter et al. (2012, 2013) showed that the bias in the V5 MOPITT data relative 468 

to aircraft observation is small in the lower troposphere, we note that the aircraft data are limited 469 

in space and time. Therefore, we conducted an indirect validation of the MOPITT data by 470 

assimilating the data to optimize the modeled CO distribution and compared it with independent 471 

data. A better understanding of potential bias in the data is critical for properly quantifying the 472 

source estimates. Comparison of the CO distribution obtained with the a posteriori source 473 

estimates can reveal potential bias in the inversion, but in that approach it is difficult to 474 

determine whether the bias is in the data or the model. By constraining the modeled CO to match 475 

the observations, we can more easily identify potential biases in the data. For example, recent 476 

inversion studies (Arellano et al., 2006; Jones et al., 2009; Hooghiemstra et al. 2012) have shown 477 

that the a posteriori CO emissions, inferred from MOPITT data, resulted in an overestimate of 478 

CO abundances relative to surface in situ measurements. Hooghiemstra et al. (2012) suggested 479 

that the overestimate of surface CO was due to a bias in the V4 MOPITT data that they 480 
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employed. However, Arellano et al. (2006) and Jones et al. (2009) used the V3 MOPITT product 481 

in their inversion analyses. Jiang et al. (2013) suggested that the bias seen by Hooghiemstra et al. 482 

(2012) could be due to discrepancies in vertical transport. We also note that MOPITT validation 483 

comparisons (Deeter et al., 2010; 2013) over land rely on NOAA aircraft in situ CO profiles that 484 

are concentrated in North America with only two out of 15 locations at latitudes higher than 485 

50°N. 486 

To assess potential bias in the MOPITT data set, we assimilated the MOPITT V5J CO 487 

profile data into the GEOS-Chem model using the sequential sub-optimal Kalman filter and 488 

compared the resulting CO field with GMD in situ surface CO observations. Figure A1 shows 489 

the comparison of the assimilated CO with monthly mean CO concentrations at selected GMD 490 

sites. We first compared the free model simulation (the standard GEOS-Chem simulation 491 

without Kalman filter assimilation) with GMD data. The initial condition for the free model run 492 

is the model original initial condition on June 1 2004, without optimization. In the northern 493 

hemisphere, the CO concentration of the free run model is higher than that of GMD in summer 494 

and fall, and significantly lower than that of GMD in winter and spring. In the southern 495 

hemisphere, the free run model generally overestimates the observed CO, which is consistent 496 

with previous studies (Shindell et al. 2006; Kopacz et al. 2010). In our assimilation, we first 497 

assimilated the MOPITT profile data between 60°S to 60°N. The result shows that the 498 

assimilated MOPITT data (dark blue dotted line) are highly consistent with the GMD data 499 

between 0°N to 30°N. However, the analysis has a positive bias in the mid-latitudes of the 500 

southern hemisphere and in the high latitudes of the north hemisphere, such as at Cold Bay 501 

(CBA), Alaska, and Mace Head (MHD), Ireland. In the southern hemisphere, at Crozet Island 502 

(CGO), the a priori is biased high and the assimilation exacerbated the bias. Although 503 
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Hooghiemstra et al. (2012) used V4 MOPITT data, our results suggests that the V5J data may 504 

also be biased high in the southern hemisphere. To reduce the potential impact of this high 505 

latitude bias in both hemispheres, we omitted MOPITT data in the assimilation that are 506 

polarward of 40° over oceans and 52° over land. As shown in Figure A1, this improved the 507 

agreement between the assimilated CO and the GMD data, but it did not completely remove the 508 

positive high-latitude bias at MHD and CGO.  The results in Figure A1 show the value in the 509 

optimized initial conditions prior to the source estimation. The initial condition biases are much 510 

smaller than using original initial conditions from the free running model, particularly in winter 511 

and spring. 512 

Appendix B: Optimization of the Cost Function 513 

For the results presented here, the state vector in Equation (2) is not the CO emissions, 514 

but is a set scaling factors σ  such that x̂ =σxa . Consequently, the optimization is conducted by 515 

minimizing the gradient of the cost function with respect to the scaling factors, with errors in the 516 

emission inventories assumed on a relative basis rather than on an absolute basis. In this 517 

approach, the gradient of the cost function as described in Equation (2) is usually scaled as 518 

follows: 519 

∂J
∂(x / xa )

=
∂J
∂x
⋅ xa  .                                                           (B1) 520 

This method is referred to as the linear scaling factor optimization. It assumes that the 521 

uncertainty in the emissions is normally distributed about scaling factor one. Henze et al. (2009) 522 

indicated that the normal distribution about one is nonphysical because it allows for negative 523 

emissions. An alternative method is the logarithm (LOG) scaling factor optimization (Henze et 524 

al., 2009): 525 
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∂J
∂ ln(x / xa )

=
∂J
∂x
⋅ xa ⋅

x
xa

                                                        (B2) 526 

It represents a log-normal distribution of scaling factors about zero. One advantage of LOG 527 

scaling factor optimization is that it can prevent negative scaling factors (Henze et al. 2009). 528 

However, it does not reduce negative gradients effectively because the increase in the factor 529 

x / xa  will partially offset the decrease of ∂J ∂x . For example, assuming a negative gradient due 530 

to the model being lower than measurements (for example, ∂J ∂x = −100 ), the inversion will 531 

increase emission (for example, x / xa =1.5 ) to reduce the negative gradient (for example, to 532 

∂J ∂x = −66.7 ). Using linear scaling factor optimization, we will see 33% improvement 533 

(reduction) of the gradient. However, using LOG scaling factor optimization, there is no 534 

improvement of the gradient because ∂J ∂x× x xa = −66.7×1.5= −100 . 535 

         Figure B1 shows the results of the linear scaling optimization and the LOG optimization in 536 

a simulation experiment for April 2006. In the experiment, we created pseudo-observations by 537 

archiving the model output with the CO emissions unchanged (the default CO emission 538 

inventory). In the inversion analysis of the pseudo-data, we then reduce the CO emission by 50% 539 

so that the objective of the experiment is to produce scaling factors that can return the source 540 

estimate to the default emissions (i.e., scaling factors of 1.0). According to Equation (B1-B3), 541 

grids with strong CO emissions, such as those in East Asia, India, equatorial Africa and South 542 

America, will have a large initial gradient. Because the cost function is minimized in regions 543 

where the gradients are the largest, these strong emission regions will be optimized preferentially. 544 

After 30 iterations, the a posteriori estimate with linear method (Figure B1a) converges to the 545 

true state in all major emission regions. The results with LOG method are clearly worse (Figure 546 

B1b).  547 
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To better reduce the negative gradient, and avoid negative scaling factors, we developed 548 

the following modification to the LOG method: 549 

 ∂J
∂ ln(x / xa )

=
∂J
∂x
⋅ xa ⋅

x
xa

   when :   x
xa
≤1  

∂J

∂
1
2

[(x / xa )2 −1]
=
∂J
∂x
⋅ xa / x

xa
   when :   x

xa
>1  

                            (B3) 550 

This new method is referred to as “LOGX2”. It can minimize the positive and negative gradients 551 

with comparable efficiency. As shown in Figure B1c, the optimization effect of the LOGX2 552 

method is slightly better than that of the linear method. However, it should be noted that 553 

although the LOGX2 approach improves the optimization efficiency and minimizes the potential 554 

systematic errors, it impacts the statistics of the solution. With the linear or LOG approaches the 555 

errors are Gaussian or log-normal, respectively, but with the LOGX2 scheme they are neither. 556 
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Tables and Figures 763 

Table 1. Annual total CO emission in different regions, from June 2004 to May 2005, 764 
constrained by MOPITT surface level and tropospheric profile retrievals. The relative difference 765 
on total (combustion + oxidation from biogenic VOCs) CO emission estimates is calculated by 2 766 
* (CO_surface – CO_profile) / (CO_surface + CO_profile). The region defition is shown in 767 
Figure 1. 768 
 769 
Table 2. Monthly mean mass of continental CO tracers (Tg) in the boundary layer (lower 770 
column) and the free troposphere (upper column). The upper fraction is calculated by 771 
Mass_upper / Mass_total. The region defition is shown in Figure 4. 772 
 773 
Table 3. Total CO emission in different regions, in Jun-Aug 2004, constrained by MOPITT 774 
surface level and tropospheric profile retrievals. The region definition is shown in Figure 1. 775 
 776 
Figure 1. Annual mean CO emissions from combustion sources and the oxidation of biogenic 777 
NMVOC and CH4, averaged from June 2004 to May 2005. The unit is 1012 molec/cm2/sec. The 778 
continental domains are defined with black boxes. The sub-continental domains in North 779 
America (US, Mexico, Alaska and Canada) are seperated based on the country boundaries. 780 
 781 
Figure 2. (a) – (e) Annual/Seasonal mean scaling factors, using MOPITT V5J surface level data; 782 
(f) – (j) Annual/Seasonal mean scaling factors, using MOPITT V5J tropospheric profile data; (k) 783 
– (o) Difference between two scaling factors, calculated by middle panel (e, f, g, h) minus left 784 
panel (a, b, c, d).   785 
 786 
Figure 3. Monthly variation of regional combustion CO emission estimates. 787 
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 788 
Figure 4. Distribution of emissions used for the idealized 30-day tracer. The unit is 1013 789 
molec/cm2/sec. 790 
 791 
Figure 5. 30-day tracer partial columns in the extratropics for June 2004. The unit is 1018 792 
molec/cm2. Note the difference in scales between the lower and upper tropospheric columns. 793 
 794 
Figure 6. (a, b): Mean tropospheric OH column (1012 molec/cm2) in July 2004; (c,d): Meridional 795 
mean OH concentration (106 molec/cm3) between 20°N-40°N in July 2004.   796 
 797 
Figure 7. Scaling factors with MOPITT surface level retrievals and their difference. (a) – (c) 798 
Scaling factors, using v5-07-08 OH; (d) – (f) Scaling factors, using v8-02-01 OH; (i) – (l) 799 
Difference between two scaling factors.    800 
 801 
Figure 8. Atmospheric CO lifetime averaged zonally at 30°N-50°N and 10°S-10°N for August 802 
2004, estimated using v5-07-08 (black solid line) and v8-02-01 (red dash line) OH fields. 803 
 804 
Figure A1. Annual variation of monthly mean CO concentration at selected GMD sites and 805 
surface level CO in GEOS-Chem, sampled at the GMD sites. Black solid line shows the GMD 806 
monthly mean CO. Red solid line shows the free model simulation with original initial condition. 807 
The blue dash line is the assimilation result using MOPITT from 60°S to 60°N. The green dash 808 
line is the assimilation result from excluding the high latitude data. 809 
 810 
Figure B1. OSSE scaling factors for April 2006. The scaling factors represent the ratio of the 811 
estimated to true emissions. The ratio for the first guess is 0.5. The actual value is 1.0. Shown are 812 
the scaling factors obtained with: (a) the linear scaling factor optimization, (b) the LOG scaling 813 
factor optimization, (c) the LOGX2 scaling factor optimization. 814 
 815 



 
 
 

 
Table 1. Annual total CO emission in different regions, from June 2004 to May 2005, 
constrained by MOPITT surface level and tropospheric profile retrievals. The relative 
difference on total (combustion + oxidation from biogenic VOCs) CO emission estimates is 
calculated by 2 * (CO_surface – CO_profile) / (CO_surface + CO_profile). The region 
defition is shown in Figure 1. 
 

 
 
 

 
Table 2. Monthly mean mass of continental CO tracers (Tg) in the boundary layer (lower 
column) and the free troposphere (upper column). The upper fraction is calculated by 
Mass_upper / Mass_total. The region defition is shown in Figure 4. 
 
 
 
 

 
 



 
 
 

 
Table 3. Total CO emission in different regions, in Jun-Aug 2004, constrained by MOPITT 
surface level and tropospheric profile retrievals. The region definition is shown in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 1. Annual mean CO emissions from combustion sources and the oxidation of biogenic 
NMVOC and CH4, averaged from June 2004 to May 2005. The unit is 1012 molec/cm2/sec. 
The continental domains are defined with black boxes. The sub-continental domains in North 
America (US, Mexico, Alaska and Canada) are seperated based on the country boundaries. 
 

 
Figure 2. (a) – (e) Annual/Seasonal mean scaling factors, using MOPITT V5J surface level 
data; (f) – (j) Annual/Seasonal mean scaling factors, using MOPITT V5J tropospheric profile 
data; (k) – (o) Difference between two scaling factors, calculated by middle panel (e, f, g, h) 
minus left panel (a, b, c, d).   



 
 
 

 
Figure 3. Monthly variation of regional combustion CO emission estimates. 
 

 

 

 

 

 

Figure 4. Distribution of emissions used for the idealized 30-day tracer. The unit is 1013 
molec/cm2/sec. 
 
 
 
 
 
 



 
 

 
Figure 5. 30-day tracer partial columns in the extratropics for June 2004. The unit is 1018 
molec/cm2. Note the difference in scales between the lower and upper tropospheric columns. 
 
 
 
 

 
Figure 6. (a, b): Mean tropospheric OH column (1012 molec/cm2) in July 2004; (c,d): 
Meridional mean OH concentration (106 molec/cm3) between 20°N-40°N in July 2004.   
 
 
 
 



 
 

 
Figure 7. Scaling factors with MOPITT surface level retrievals and their difference. (a) – (c) 
Scaling factors, using v5-07-08 OH; (d) – (f) Scaling factors, using v8-02-01 OH; (i) – (l) 
Difference between two scaling factors.    
 
 
 
 
 

 
Figure 8. Atmospheric CO lifetime averaged zonally at 30°N-50°N and 10°S-10°N for 
August 2004, estimated using v5-07-08 (black solid line) and v8-02-01 (red dash line) OH 
fields. 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure A1. Annual variation of monthly mean CO concentration at selected GMD sites and 
surface level CO in GEOS-Chem, sampled at the GMD sites. Black solid line shows the 
GMD monthly mean CO. Red solid line shows the free model simulation with original initial 
condition. The blue dash line is the assimilation result using MOPITT from 60°S to 60°N. 
The green dash line is the assimilation result from excluding the high latitude data. 



 
 
 
 
 

 
Figure B1. OSSE scaling factors for April 2006. The scaling factors represent the ratio of the 
estimated to true emissions. The ratio for the first guess is 0.5. The actual value is 1.0. Shown 
are the scaling factors obtained with: (a) the linear scaling factor optimization, (b) the LOG 
scaling factor optimization, (c) the LOGX2 scaling factor optimization. 
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