Supplement of Atmos. Chem. Phys. Discuss., 14, 22639–22676, 2014 http://www.atmos-chem-phys-discuss.net/14/22639/2014/doi:10.5194/acpd-14-22639-2014-supplement © Author(s) 2014. CC Attribution 3.0 License.

Supplement of

Sensitivity of tropospheric loads and lifetimes of short lived pollutants to fire emissions

N. Daskalakis et al.

Correspondence to: M. Kanakidou (mariak@chemistry.uoc.gr)

S1 List of non methane volatile organic carbon compounds

As NMVOC's in anthropogenic emissions we assume to be:

- Acetone (C₃H₆O)
- Etyne (C₂H₂)
- Ethene (C₂H₄)
- Ethane (C₂H₆)
- Propane (C₃H₈)
- Formaldehyde (CH₂O)
- Acetaldehyde (CH₃CHO)
- Benzene (C₆H₆)
- Toluene (C₇H₈)
- Xylene (C₈H₁₀)
- Propene (C₃H₆)
- Butane (C₄H₁₀)
- Methanol (CH₃OH)
- Methyl-ethyl-ketone (CH₃C(O)CH₂CH₃)
- Formic acid (HCOOH)
- Acetic acid (CH₃COOH)

NMVOC's in biomass burning emissions we assume to be:

- Acetone (C₃H₆O)
- Etyne (C₂H₂)
- Ethene (C₂H₄)
- Ethane (C₂H₆)
- Propane (C₃H₈)
- Formaldehyde (CH₂O)
- Acetaldehyde (CH₃CHO)
- Dimethyl sulfide ((CH₃)₂S)
- Glyoxal (CHOCHO)
- Propene (C₃H₆)
- Butane (C₄H₁₀)
- Methanol (CH₃OH)
- Methyl-ethyl-ketone (CH₃C(O)CH₂CH₃)
- Toluene (C₇H₈)
- Xylene (C₈H₁₀)
- Benzene (C₆H₆)
- Formic acid (HCOOH)
- Acetic acid (CH₃COOH)

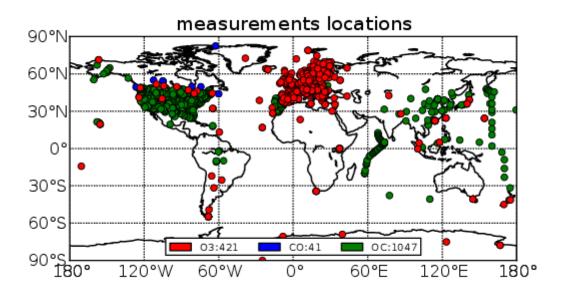


Fig. S 1 Locations of measurements used for comparison with model results

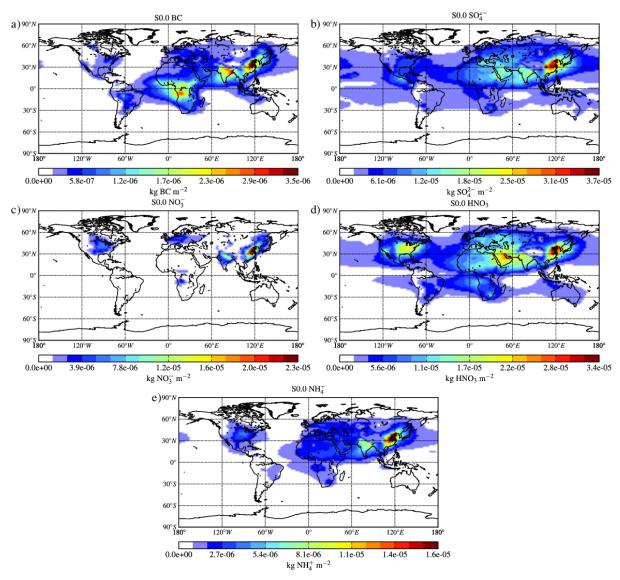
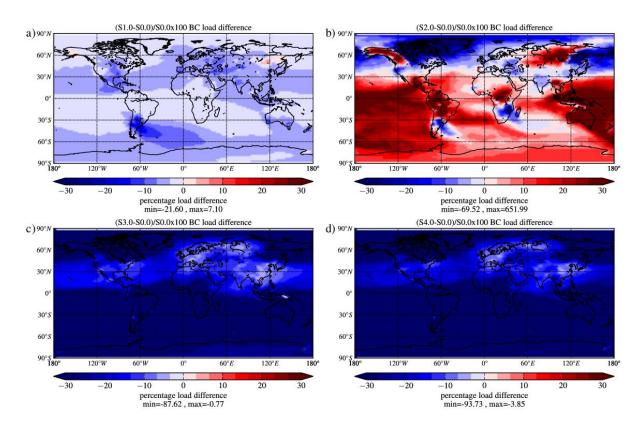
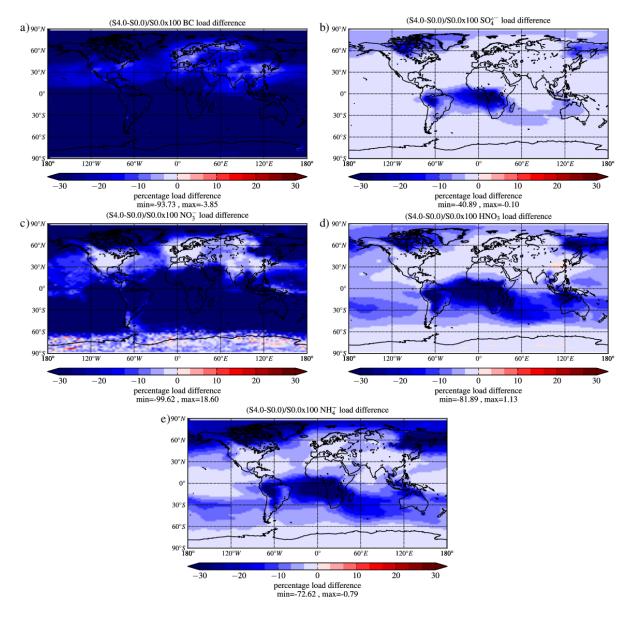
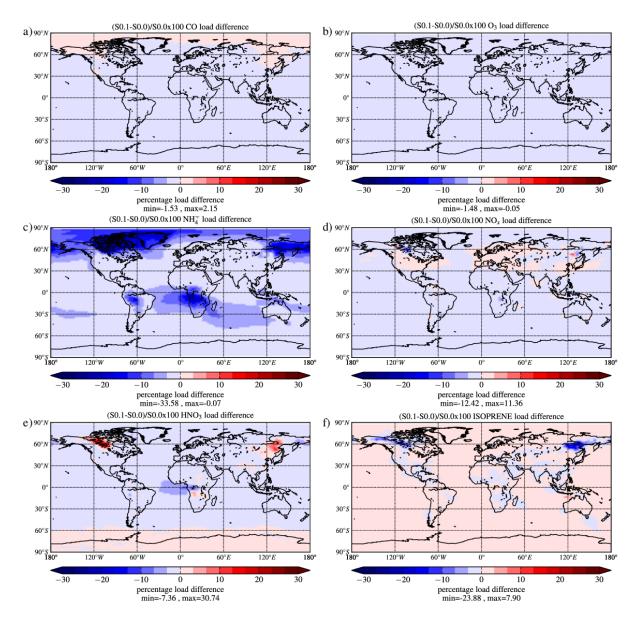


Fig. S 2 Calculated tropospheric load of selected species for the base case scenario of the model. Areas with black exceed the maximum value of the colorbar

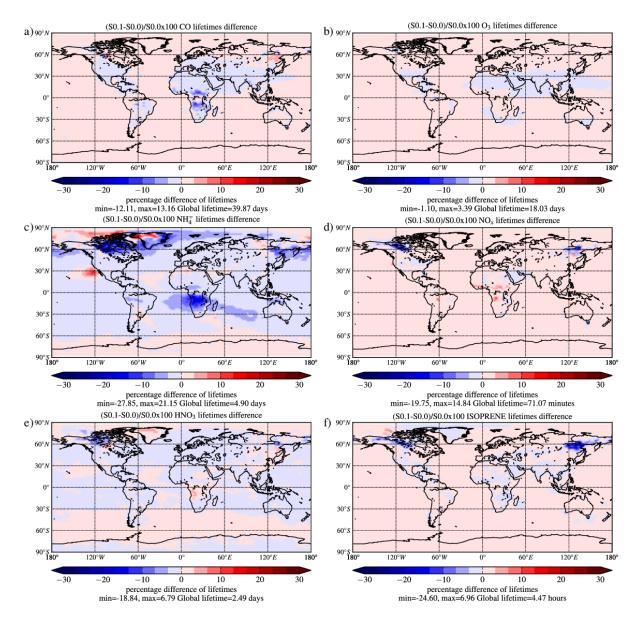

Fig. S 3 Percentage difference of computed tropospheric load of BC for the different emission databases from the base case.

Fig. S 4 Percentage difference on computed loads of BC (a), SO_4^{2-} (b), NO_3^- (c), HNO_3 (d), NH_4^+ (e) attributed to wild fire emissions. The scale is from -30% to 30%; minimum and maximum difference are printed under each panel.

Fig. S 5 Percentage difference of computed tropospheric load of CO (a), O₃ (b), NH₄⁺ (c), NO₃⁻ (d), HNO₃ (e), and isoprene (f) attributed to wild fire emission height injection. The scale is from -30% to 30%; minimum and maximum difference are printed under each panel.

Fig. S 6 Percentage difference of computed tropospheric lifetime of CO (a), O₃ (b), NH₄⁺ (c), NO₃⁻ (d), HNO₃ (e), and isoprene (f) attributed to wild fire emission height injection. The scale is from -30% to 30%;minimum and maximum difference are printed under each panel.

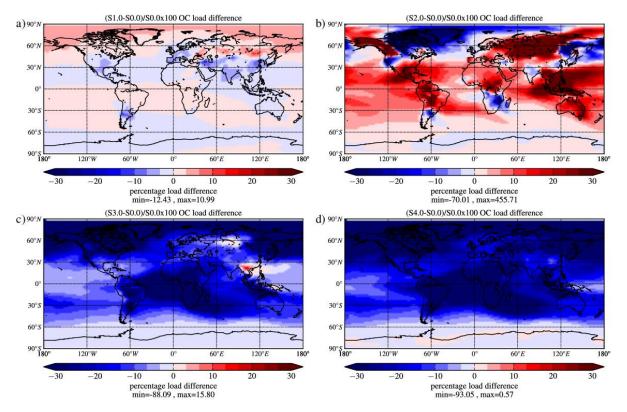


Fig. S 7 Percentage difference of computed tropospheric load of OC for the different emission databases from the base case.