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Abstract.

We use observations of active fire area and fire radiative power (FRP) from the NASA Moderate-

Resolution Imaging Spectroradiometers (MODIS), together with a parameterized plume rise model,

to estimate biomass burning injection heights during 2006. We use these injection heights in the

GEOS-Chem atmospheric chemistry transport model to vertically distribute biomass burning emis-5

sions of carbon monoxide (CO) and to study the resulting atmospheric distribution. For 2006, we use

over half a million FRP and fire area observations as input to the plume rise model. We find that con-

vective heat fluxes and active fire area typically lie in the range of 1–100 kWm−2 and 0.001–100 ha,

respectively, although in rare circumstances the convective heat flux can exceed 500 kWm−2. The

resulting injection heights have a skewed probability distribution with approximately 80% of injec-10

tions remaining within the local boundary layer (BL), with occasional injection height exceeding

8 km. We do not find a strong correlation between the FRP-inferred surface convective heat flux

and the resulting injection height, with environmental conditions often acting as a barrier to rapid

vertical mixing even where the convective heat flux and active fire area are large. We also do not find

a robust relationship between the underlying burnt vegetation type and the injection height. We find15

that CO columns calculated using the MODIS-inferred injection height (MODIS-inj) are typically

−9% to +6% different to the control calculation in which emissions are emitted into the BL, with

differences typically largest over the point of emission. After applying MOPITT v5 scene-dependent

averaging kernels we find that we are much less sensitive to our choice of injection height profile.

The differences between the MOPITT and the model CO columns (max bias ≈ 50%), due largely to20

uncertainties in emission inventories, are much larger than those introduced by the injection heights.
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We show that including a realistic diurnal variation in FRP (peaking in the afternoon) or accounting

for subgrid-scale emission errors does not alter our main conclusions. Finally, we use a Bayesian

maximum a posteriori approach constrained by MOPITT CO profiles to estimate the CO emissions

but because of the inherent bias between model and MOPITT we find little impact on the resulting25

emission estimates. Studying the role of pyroconvection in distributing gases and particles in the

atmosphere using global MOPITT CO observations (or any current space-borne measurement of the

atmosphere) is still associated with large errors, with the exception of a small subset of large fires

and favourable environmental conditions, which will consequently lead to a bias in any analysis on

a global scale.30

1 Introduction

Fire plays an important role in the evolution of the Earth system (Bowman et al., 2009). We focus

on the influence of fires on determining the atmospheric distribution of carbon monoxide (CO),

a chemical tracer of incomplete combustion. In particular, we use space-borne measurements of fire

radiative power (FRP) and estimates of the fires active fire area over which this radiative output is35

produced, to describe the enhanced vertical mixing due to intense surface heating to (a) understand

the resulting atmospheric variation in CO, and (b) quantify the impact on surface flux estimates

inferred from atmospheric measurements of CO.

Satellite observations have played a central role in understanding the spatial extent and seasonality

of fires across different ecosystems (e.g., Cahoon Jr. et al., 1992; Barbosa et al., 1999; Carmona-40

Moreno et al., 2005; Csiszar et al., 2006; van der Werf et al., 2006; Giglio, 2007; Boschetti et al.,

2010; Ichoku et al., 2012). There is a substantial body of previous work on estimating biomass burn-

ing emissions of gases and particles using space-borne instruments with varying levels of success

(e.g., Duncan et al., 2003; Martin et al., 2003; Ito and Penner, 2004; Kasischke and Penner, 2004;

Freitas et al., 2005; Edwards et al., 2006; Hodzic et al., 2007; Jordan et al., 2008; Kopacz et al., 2009;45

Liousse et al., 2010; Gonzi et al., 2011b; Fleming et al., 2012; Ross et al., 2013), largely reflecting

heterogeneous sampling due to cloud and aerosol contaminated observed scenes.

Recent studies have studied how injection heights can modify emitted gases and aerosols and

downwind chemical composition (e.g., Palmer et al. (2013) and articles therein). Strictly speaking,

pure pyroconvection is rare with most events triggered by storm systems that can result in unstable50

atmospheric conditions and enhance the vertical extent of the mixing due to the fire (e.g. Dirksen

et al., 2009; Fromm et al., 2010). The importance of vertical mixing due to some extent by surface

heating from fire has been shown by a number of previous studies that have used models with and

without a description of pyroconvection to interpret aircraft and satellite data (e.g., Freitas et al.,

2010; Fisher et al., 2010; Sessions et al., 2011; Zhang et al., 2011; Pfister et al., 2011). Within55

these studies, pyroconvection is typically treated in an ad hoc manner using a formulaic method of
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vertically redistributing surface emissions (e.g., Val Martin et al., 2012). The uncertain nature and

availability of input parameters and their relation to the prognostic model description often prohibits

a better method for redistributing mass. FRP has been shown in small scale experiments to be

related to rates of fuel combustion (Wooster et al., 2005) and to rates of key trace gas and aerosol60

emission (Freeborn et al., 2008). At the landscape scale previous work has shown that MODIS

FRP measurements were related to the release rate of smoke aerosols (Ichoku and Kaufman, 2005;

Vermote et al., 2009), and recently MODIS FRP has been used to map daily landscape-scale fuel

consumption rates (Kaiser et al., 2012) and via the application of biome-specific emissions factors,

the rates of release of various chemical species present in the smoke.65

In the following section, we describe the FRP and active fire area estimates derived from the

MODIS measurements, and the CO data from the MOPITT satellite instrument. In Sect. 3 we

describe the plume rise model and how we incorporate the resulting injection height inferred from

the MODIS data into the GEOS-Chem atmospheric chemistry transport model. In Sect. 4, we report

our results. We conclude in Sect. 5.70

2 Data

2.1 MODIS Fire Observations

To calculate active fire properties we use data collected by the MODIS instruments on the Aqua and

Terra satellites (Wooster et al., 2005; Ichoku et al., 2008). Both satellites are in a sun-synchronous,

near-polar orbit. Terra and Aqua have an equatorial crossing time of 10:30 a.m. (10:30 p.m.) and75

1:30 p.m. (1:30 a.m.) for their descending (ascending) nodes, respectively.

MODIS pixels containing active fires are selected using the MOD14/MYD14 active fire masks

(Giglio et al., 2003) or the Sentinel-3 SLSTR Active Fire Detection Algorithm (Wooster et al., 2012).

Detected active fire pixels immediately neighbouring one another are then grouped into discrete

fire clusters, which is the same approach as previously applied to data from the BIRD Hot spot80

Recognition Sensor (Wooster et al., 2003; Zhukov et al., 2005). The middle infrared (MIR) and

long wave infrared (LWIR) radiance data are adjusted for the transmittance of the atmosphere in

order to better estimate the fire-emitted radiances. The atmospheric transmittances are estimated

from precompiled lookup tables derived from MODTRAN runs and based on the total column water

vapour [kg m−2] (taken from ECMWF reanalysis) and the sensor view zenith angle (Govaerts et al.,85

2010). The fire radiative power (FRP) of the active fire pixels that comprise each fire cluster are

computed from the MODIS MIR band radiances using the MIR method of Wooster et al. (2005),

and the FRP for each fire cluster obtained by simple summation of the individual pixel-level values.

The Active Fire (AF) area (calculated as the area of a blackbody having the same thermal emission

signatures in the MIR and LWIR as does the observed active fire) was computed using the dual-90

band/bispectral approach of Dozier (1981), with the specific method of Zhukov et al. (2005) applied
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to the mean MIR and LWIR radiances of each fire cluster. A similar approach was already used

by previous studies (Val Martin et al., 2012; Peterson et al., 2013), and calculating AF area on

a cluster basis rather than a per-pixel basis helps to minimize some of the problems of the dual

band method, specifically those related to inter-channel spatial misregistration effects (Shephard and95

Edward, 2003; Zhukov et al., 2005; Giglio and Schroeder, 2014).

Figure 1 shows the MODIS derived distribution of half a million colocated FRP and active fire

area data during 2006. The measurement density is highest over equatorial regions, with higher

latitudes having less observations that reflect their seasonal cycle.

2.2 Relation between FRP and Heat Flux100

Here, we use flux estimates inferred from FRP observations, assuming an underlying relationship

between the two variables. Fire energy can broadly speaking be separated into three components:

conduction, radiation and convection. The contribution from these sources to the total fire energy

is uncertain, but it can be assumed that convection is as important as radiative energy (Anderson

et al., 2010; Butler, 2010; Finney et al., 2012; Frankman et al., 2012). The maximum radiative105

heat yield that is typically measured by MODIS is about 20% (Wooster et al., 2005) of the total heat,

whereas the maximum heat yield that can theoretically be liberated by a fire is between 20% and 60%

(Ferguson et al., 2000). We assume that heat loss by conduction is relatively small compared to losses

by the combined effect of radiation and convection. We assume an average heat loss of 15% for

radiation, 10% for conduction, and 75% due to convection (HF , kWm−2). The loss by convection110

is then given as HF =5× FRP
AF

, where AF (m2) denotes the active fire area. We acknowledge here

that this relation is probably the upper limit and will not hold true for every location and fire type

around the globe, but it is a reasonable mean estimate based on current knowledge.

2.3 MOPITT Profile Observations of CO

We use MOPITT v5 CO profile retrievals and the corresponding retrieval error covariances and scene115

dependent averaging kernels for 2006 (Deeter, 2011). CO concentrations are retrieved for ten pres-

sure levels (surface, 900, 800,. . . 100 hPa) in the multispectral thermal-IR/near-IR (TIR/IR) regions

based on log-normal statistics and an optimal estimation method. We do not consider the TIR- and

NIR-only products here. The a priori CO information in the MOPITT retrieval algorithm is calcu-

lated with the global chemistry transport model MOZART (Horowitz et al., 2003) and meteorology120

in the retrieval algorithm is based on NCEP reanalysis data (Kalnay et al., 1996). A typical value

for the degrees of freedom (DOF) of a single CO profile, based on the combined TIR/NIR retrieval

scheme, is between 1.0–2.2. In comparison, the DOFs for the NIR- and TIR- only products range

from 0.1–1.0 and 0.5–1.5, respectively (Deeter et al., 2012).

Past analyses showed that these MOPITT CO profiles have a bias when compared against North125

American in-situ tall tower measurements (2000−2011) of typically −20% to +20% with a pro-
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nounced seasonal cycle (Deeter et al., 2013). To facililate ease of analysis we thin the MOPITT

data and use a maximum of three observations in a 1◦×1◦ grid cell for each day. We use the first

three profiles in a given time step that satisfy the following criteria: a) DOF >1.3, and b) CO profile

concentrations at the 500 hPa pressure level >40 ppb (Gonzi et al., 2011a). This reduces the number130

of profiles considerably to approximately five million observations during 2006. We find that using a

more relaxed DOF criteria (DOF>0.8), allowing more observations (N=30) to be collected per grid

box, does not signficantly affect our final analysis (see Figure 8 and 11).

3 Models

3.1 Plume rise model135

Pyroconvection is currently a sub-grid scale model process; resolving this process in a global model

would involve prohibitive computational costs. Consequently, models tend to parameterize this pro-

cess if they include it at all. We use an established 1-D plume rise model (Freitas et al., 2006, 2010),

embedded within the GEOS-Chem atmospheric chemistry transport model described below, to de-

scribe the vertical mixing due to surface heating and consequently to redistribute surface emissions140

from the fire. The plume rise model estimates the injection height, defined as the level of neutral

buoyancy, by solving equations for the vertical plume velocity, plume temperature, condensation and

evaporation (latent heat), accounting for wind shear. We use a parameterization to conserve mass

(Appendix A), which is an extension to the original code first published by Freitas et al. (2006).

Initial surface boundary conditions in the plume rise model include MODIS derived convective145

heat flux (kWm−2, defined above) and active fire area (m2), respectively, environmental temperature

(K), relative humidity profile (%) and horizonal wind fields (ms−1). We drive the plume model using

meteorological data from version 5 of the NASA Goddard Earth Observing System Model (GEOS-5)

(Rienecker et al., 2008), ensuring consistency with the GEOS-Chem meteorology. For each MODIS

derived heat flux and active fire area, an injection height value is calculated by the plume rise model.150

The role of atmospheric water vapour versus water released from fuel combustion is still subject

to debate (e.g., Penner et al., 1986; Potter, 2005; Trentmann et al., 2006, 2009; Cunningham and

Reeder, 2009). We assume a fuel moisture of 10%, which we add to the existing atmospheric levels

of calculated colocated GEOS-5 relative humidity profiles (see Appendix equ. (A2)). We further

assume that the initial plume temperature equals the environmental temperature. The biggest source155

of moisture variation is from the atmosphere, which is updated with each time step during the fire as

the plume temperature changes. Estimates of convective heat flux are also uncertain.

3.2 The GEOS-Chem Atmospheric Chemistry Model

We use GEOS-Chem version 9-01-01 (www.geos-chem.org) as the forward model that relates sur-

face emissions of CO to atmospheric concentrations of CO. The model is driven by meteorological160
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analyses from the Goddard Earth Observing System v5 model maintained by the Global Modeling

and Assimilation Office at NASA Goddard. We use a horizontal resolution of 2◦ × 2.5◦, with 47

sigma levels that span the surface to 0.01 hPa of which 30 levels are within the troposphere. The 3-D

meteorological data are updated every six hours, and heights of the BL and tropopause are updated

every three hours.165

We use monthly mean emission inventories for fossil fuel (Olivier and Berdowski, 2001; Streets

et al., 2006), biofuel (Yevich and Logan, 2003), and biomass burning (van der Werf et al., 2010),

and from the oxidation of volatile organic compounds (Duncan et al., 2007). Atmospheric oxidation

by OH is the main atmospheric loss of CO, resulting in a lifetime of weeks to months depend-

ing on latitude and season. We use monthly 3-D fields of the OH sink precomputed from a full

chemistry version of the model. Fixing the OH sink effectively allows us to linearly decompose

the contributions of CO from source types and/or geographical regions. Figure 1 shows the eight

geographical regions we study, reflecting the location of burning. For each region we track emis-

sions from biomass burning and combined emissions from fossil fuel and biofuel combustion. We

also track the combined contribution of CO from the oxidation of methane, isoprene, monoterpenes,

methanol, and acetone. A more detailed description of this model can be found elsewhere (Duncan

et al., 2007; Gonzi et al., 2011a). We sample the model at the time and location of MODIS and

MOPITT measurements. Below, where we discuss model bias we define percentage bias as

Bias=100×
COM −COX

max(COM ,COX)
, (1)

where COM denotes the model and COX denotes either the sensitivity model run COS or the

observed atmospheric measurement COO.

For the control model run (and the default setting of GEOS-Chem) we distribute biomass burning

emissions within the BL, which is described approximately by 15 levels from the surface to 2.5 km.

We take care to conserve mass and each model level within the BL receives the same fractional170

amount of emission. For the sensitivity runs using FRP to define the injection height we distribute

surface emissions in the atmosphere using the plume rise model described above, driven by GEOS-5

meteorological analyses (Rienecker et al., 2008). The MODIS derived FRP data that falls into a

specific model grid box during a three hour window, determined by the GEOS-5 analyses, deter-

mines the surface convective heat flux boundary conditions. In the typical case of more than one175

FRP observation falling in a grid square during this time window, we create an injection height pro-

file for each associated convective heat flux: equally distributing emitted mass from the surface to

the injection height or from the local BL to the injection height whenever the injection height is

larger than the BL. We then calculate an effective injection height by calculating a sum of individual

profiles weighted by their respective fractional active fire area burnt within that grid box. This frac-180

tional scaling ensures that the final effective profile conserves mass. Note that while emissions are

distributed uniformly this approach will not always result in an uniformly scaled profile. At least not

for the example case where there are two profiles in a grid box with one having an injection height in

6



the BL and the other one in the free troposphere. We discuss in section 4.2 the sensitivity of injection

height profiles by using a parabolic distribution method. If there are no FRP observations in a model185

grid box for a particular time but emissions are non-zero we distribute emissions within the local

BL.

We also consider the sensitivity of our results to imposing a diurnal cycle on FRP, following anal-

ysis of similar data as a function of land cover type over Africa using the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) (Roberts et al., 2009). Figure 2 shows that the mean diurnal cycle190

peaks during early afternoon, consistent with previous analysis of data from the GOES WF ABBA

(Geostationary Operational Environment Satellite Wildfire Automated Biomass Burning Algorithm)

active fire observations that show early afternoon peaks valid for the entire globe (Mu et al., 2011;

Giglio, 2007). We use this mean diurnal profile to relate observations taken at discrete times to the

rest of the day, acknowledging this is a crude but reasonable assumption.195

3.3 The Maximum A Posteriori (MAP) Inverse Model

We briefly describe our inverse model approach here that has been discussed at length elsewhere

(Gonzi et al., 2011a). We sample the model along the MOPITT orbit by applying scene-dependent

averaging kernels from MOPITT and follow an optimal estimation method in order to fit the model

3-D CO concentrations to the observations.200

We apply MOPITT averaging kernels and use the following relation (Gonzi et al., 2011a):

y′

M
=ya+A(yM−ya), (2)

where yM is the GEOS-Chem model profile in model space interpolated onto the vertical MOPITT

pressure grid, ya denotes the a priori profile from MOPITT in MOPITT space, A is the MOPITT

averaging kernel matrix (the sum of the diagonal is the degree of freedom, DOF), and y′

M
is the

model profile in MOPITT space. The profile concentrations and averaging kernels are in log-space.

Figure 1 shows the eight geographical regions for which we estimate CO emissions: North Amer-205

ica (NAM), EU (Europe), SIB (Siberia), INDO (Indonesia), AF (Africa), SAM (South America),

AS (Asia) and CHEM (rest of the world including chemistry). We estimate lumped emissions from

biomass burning, fossil fuel and biofuel emissions on a quarterly basis (JFM, AMJ, JAS, and OND).

We assume a priori uncertainties of 50% for incomplete combustion emissions and 25% for the

chemical oxidation source, following previous work (Gonzi and Palmer, 2010). For measurement210

errors, we include the local scene-dependent retrieval error from MOPITT to the final total error in

log-space. We also include a 25% uncertainty associated with the combined forward model and rep-

resentation errors. The MAP algorithm described in a log-measurement space typically converges

after a few iterations (Gonzi et al., 2011b).
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4 Results215

4.1 Convective heat fluxes, active fire area, and injection heights for 2006

Figure 1 shows for 2006 the annual mean values for convection heat flux (kWm−2) inferred from

MODIS FRP measurements, and the corresponding active fire areas (hectares) used to determine

the local pyroconvection injection height. The geographical variation of measurements available

to calculate injection height reflects the frequency of fires and the magnitude of associated FRP220

derived heat flux, which is related to the fire regime of an area, and to the intensity of the energy

emission from those fires. In general, the mean (not shown) and median values of the fire products

are similar, suggesting there is little skewness in the distribution of FRP, although we acknowledge

that the highest values are typically a factor of 5–10 higher than the mean value and that the median

is in general the more robust statistic for this parameter. Figure 3 shows the corresponding global225

monthly box-and-whisker plots for convective heat flux and active fire area, respectively. The bulk of

convective heat flux values are typically in the range 1–100 kWm−2 and active fire areas typically

lie in the range 0.1–10 ha. On occasion, active fire area estimates can exceed 500 ha but these

represent only a small percentage of the data.

Figure 1 shows the corresponding injection heights determined by the plume rise model. These230

data shows that the FRP-derived estimates of convective heat flux and active fire area are insufficient

by themselves to determine the injection height. This disagrees with field experiment data (Lavoué

et al., 2000), but these were small-scale experiments with final injection heights that did not consider

atmospheric stability constraints.

4.1.1 Sensitivity of injection heights to environmental parameters235

Figure 4 shows two examples where values for MODIS FRP and/or active fire area are similar but

the analyzed meteorology for atmospheric temperature and specific humidity are different, resulting

in different injection heights. Figure 4 A) and B) show two instances where HF and AF have similar

values but the lower injection height (0.1 km vs. 3.3 km) is associated with a more stable atmosphere

as determined by the positive gradient in potential temperature and higher specific humidity. This240

serves as an example where even modest changes in potential temperature can result in large changes

to the model injection height. Figure 4 C) and D) shows a contrasting example where there is clearly

a positive gradient in potential temperature, indicative of a stable, stratified atmosphere, but the

injection heights are much larger than the corresponding local BL heights. For these two cases

values of HF and AF are very large with the only difference being that the higher injection height245

(10 km vs. 6.9 km) having almost twice the HF. These two examples highlight the two limits that

determine injection height: (1) small fires that rely on unstable environmental conditions to penetrate

the free troposphere and (2) large fires (defined here as having high FRP and large active fire area)

that can overcome locally stable environmental conditions to penetrate into the free troposphere.
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There are of course a continuum of possible combinations of variables between these two limits that250

determine the final injection height.

Figure 5 shows a statistical analysis of all the data analysed in 2006 to highlight the relationships

between the injection height, convective heat flux and the active fire area. We find an approxi-

mately linear relationship between the injection height and active fire area until we reach areas > 80

hectares. We also find a similar relationship between the injection height and heat flux (threshold255

> 50 kWm−2). Above a certain threshold of fire energy release rate and consumed active fire area,

the buoyancy induced by the fire can overcome locally stable meteorological conditions, with re-

sulting injection heights typically > 3.5 km. Figure 5 also shows that the meteorological stability

conditions play a progressively important role as the active fire area and heat flux increases.

Previous work derived a plume height climatology based on a compilation of derived MISR stereo260

height retrievals using the MINX algorithm (Nelson et al., 2013). These data were used to test the

ability of a 1-D plume rise model, initialized with different combinations of derived heat-flux and

active fire area, in predicting the injection heights inferred from the Multi-angle Imaging SpectroRa-

diometer space-borne instrument (Diner et al., 2010) during the 2002, 2004 and 2007 North Amer-

ican burning seasons. They found that the plume rise model typically underpredicted the injection265

heights into the free troposphere due to the uncertain nature of input paramaters as FRP, fire area,

and environmental meteorological conditions. A previous study showed that the model often over-

predicts low injections but always under-predicts for high fire injections (Val Martin et al., 2012).

The authors in that paper argue that a pre-compiled classification of injection heights as a function of

parameters described in a look-up table may be an efficient approach to including injection heights270

in global models. While we agree that there is an urgent need for a predictive capability for plume

rise, we believe that finding a robust relationship with injection height may well be as uncertain as

using the plume rise model itself. We find that one of the biggest uncertainties is identifying the

stability of the overlying atmosphere given the coarse meteorological information from global mod-

els. We emphasize that we agree with the findings of Val Martin et al. (2012) that the uncertainty of275

detrainment and entrainment processes in the plume rise model could be the largest source of overall

model error.

Figure 6 shows that the normalized frequency distribution of injection heights over key burning

regions are consistent, with differences only in the extent of the tails. This suggests that in almost

all biomass burning regions smaller and less intense fires dominate with differences due mainly to280

the number of extreme fires, and how extreme they are. For brevity we focus on a few regions. The

median injection height for all regions is ≃ 1.5 km, with the highest injection heights of > 6 km over

Indonesia, Africa, North America and Siberia. Once we subtract the local BL+ 250m layer (taking

into account uncertainty of the BL value) from this we find that typically 20% of fires are injected

above the BL consistent with bulk statistics reported in previous work (Val Martin et al., 2010). If285

we increase the free troposphere threshold to the local BL+ 500m we find that the fraction of fire
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reaching the free troposphere drops to 10–20%; where Africa, Asia and North America is most

affected suggesting these fires only just reach the free troposphere.

Val Martin et al. (2012) studied 584 MISR plumes over North America for the years 2002, 2006–

2007 and their scaled-FRP/FRPx10 set-up found that 16–35% (500–250m BL uncertainty) reached290

the free troposphere compared to 24–48% observed by MISR. We find that over North America

during 2006, 14–22% (500–250m BL uncertainty) reach the free tropopshere. While the percentage

of model plumes reaching the free troposphere over North America is similar to MISR they are not

necessary the same group of plumes (Val Martin et al., 2010).

We use land cover classifications from AVHRR and MODIS observations (Hansen et al., 2000;295

Friedl et al., 2002) to investigate the relationship between the land cover (savannah, agriculture,

peat, tropical and extratropical forest), FRP of fires and the resulting injection heights. We find that

agricultural fires have a median FRP of 20MW and are typically lower than over the other four

biomes that have median values of 30MW (not shown). The corresponding injection height means

are similar for all vegetation types with the exception of agricultural vegetation for which the mean300

height is < 5 km. Agricultural fires are small and typically low intensity, resulting in what would be

expected to be low FRP for the fires when compared, for example, to many other types of fire. We

also found no evidence to support that injection heights for extratropical forests were higher than

from other biomes.

4.2 The Sensitivity of Atmospheric CO to Pyroconvection305

We use the GEOS-Chem atmospheric chemistry transport model (Sect. 3.2) to vertically distribute

biomass burning emissions of CO according to the scene-dependent MODIS FRP-inferred injection

height to understand the impact on atmospheric CO distributions. We then compare this model

output to see whether it improves agreement with available data relative to the model that assumes

an injection height that is limited to the BL.310

To help evaluate our model during 2006, we use exclusively space-borne observations of CO

from the v5 MOPITT CO profile retrievals (Deeter et al., 2013). The two major airborne campaigns

MOZAIC (Marenco et al., 1998) and INTEX-B (Arellano Jr. et al., 2007) that measured CO during

this period are not ideal for studying biomass burning. Previous work has shown that MOPITT data

can be used to estimate emissions of CO from biomass burning (e.g., Pfister et al., 2005; Arellano Jr.315

et al., 2006; Chevallier et al., 2008; Kopacz et al., 2009; Gonzi et al., 2011a,b) but there still exists

large uncertainties associated with the magnitude and timing of these emissions, reflecting model

errors but also the coverage and uncertainties associated with MOPITT. As discussed in Sect. 3.2 we

sample the model at the time and location of each MOPITT scene and convolve the resulting profile

in log-space with scene-specific averaging kernels (see equ. (2)).320

Figure 7 shows that the model using the injection height estimate inferred from MODIS as

a monthly mean value has the largest differences (−5–+2%), relative to the control, over and down-
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wind of central and southern Africa. Including our diurnal variation of FRP (Fig. 2) increases the

magnitude and spatial extent of the differences over and downwind of Africa and also introduces

differences over Siberia and to a lesser extent over Southeast Asia and Australia. As Figure 8 shows,325

even when we use a different selection criteria for thinning the MOPITT data, there are only minor

localised differences and the results do not change. A cross section plot along the latitudes vs. al-

titude (Fig. 9) shows that the largest averaged monthly negative bias occurs in the BL at ≈−12◦

latitude, corresponding to the largest negative bias in the total columns. If we then convolve the

model profiles with scene-dependent MOPITT averaging kernels these differences (not shown) are330

substantially reduced to <±2%. We find that the differences (±50%) between model values as

would be observed by MOPITT space with MOPITT data are an order of magnitude larger (see

Fig. 10 and 11) than those introduced by using different formulations of injection height.

In general, we find that the model bias against MOPITT, largely due to errors in prior emission

inventories, is an order of magnitude larger than the model response convolved with MOPITT aver-335

aging kernels to different prescriptions of injection height.

Previous work used the GEOS-Chem model to infer CO emissions from MOPITT v5 CO profiles

between June and August 2006 (Jiang et al., 2012). This work found that a posterior emission es-

timates were sensitive to the pressure levels used: GEOS-Chem over(under)-estimates CO at lower

(middle and upper) levels. The authors did not account for injection height however, and as Fig-340

ure 9 shows accounting for injection height will not necessarily reduce CO concentrations within

the boundary layer. Figure 9 shows, for the diurnal FRP cycle, that accounting for injection height

will increase the CO concentrations (bias <0%) in the BL between the latitude cross section -10◦

and -20◦, but will decrease CO concentrations between 0◦ and -10◦. The decrease of CO concentra-

tions is a consequence of the injection height and model transport and corresponds to the location of345

maximum injection heights in Africa (see Figure 1 F) and G)). Emissions injected into the free tro-

posphere are quickly advected, hence the positive bias (control run > model with injection height).

Figure 12 shows an example of model and MOPITT CO profiles over Siberian forest fires. The

difference of model CO mixing ratio with and without MODIS-inferred injection height using our

diurnal distribution is 30–80 ppb in the lower troposphere. After we relate model CO concentrations350

to CO concentrations which are observed by MOPITT using the relevant averaging kernel (Fig. 12)

the difference between the two models reduces to < 10 ppb. We find the resulting model profile

overestimates (underestimates) CO at the surface (in the free troposphere), relative to MOPITT. The

corresponding column amounts are 3.3×1018 moleccm−2 for MOPITT and 2.4×1018 moleccm−2

(2.3×1018 moleccm−2) for the model with (without) scene-dependent injection height. For this355

example, it is clear that the model minus MOPITT bias of 27% is much larger than the 5% difference

between the two model calculations. We find similar instances over the other burning loci around the

world. We show this example profile because it corresponds to the time and location of the largest

bias (≈ 5%) between model w/wo injection height over the region SIB (Fig. 7). MOPITT profiles
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have generally finer vertical resolution.360

For the above calculations we have assumed that material is distributed uniformally from the

surface or boundary layer to the prescribed injection height. We consider two alternative formu-

lations. First, we take into account that the majority of surface fires will typically be < 2◦×2.5◦

(≈ 62500 km2), and acknowledge that only the most intense of these will play a substantial role in

determining atmospheric composition. We select the fires within the top 20th percentile of global in-365

jection heights (> 2.2 km) and artifically (and crudely) increase the associated emissions by a factor

of four. We denote this simulation as InJS1. Second, we take into account that the injection height is

only a crude measure of the atmospheric flow, and that detrainment of the vertical flow generated by

eddies in the mixing processes will deposit emissions at heights below the highest value. To address

this we incorporate a normalized parabolic injection height profile with a half-width maximum of370

1 km such that the profile integrates to unity (InJS2). For both sensitivity runs we produce a cor-

responding control run that can be used to assess the importance of the parameter being perturbed.

We find that the maximum total column bias in Fig. 7 is about a factor of two larger for InjS1 than

for InjS2 (not shown), although the spatial distribution of the bias is the same, as expected, but is

still small compared to the model minus MOPITT differences. We argue that MOPITT averaging375

kernels are too broad to distinguish between different prescribed vertical injection heights due to fire

induced convection. This is reflected in more detailed analyses involving MAP algorithms for which

we find only small adjustments to posterior emissions compared to differences due to emissions that

have been published previously (e.g., Gonzi et al., 2011a). We therefore do not discuss this any

further.380

5 Concluding Remarks

We presented the first global, annual study of space-borne observations of fire radiative power and

fire area to study the resulting injection heights. We used MODIS FRP and active fire area obser-

vations for 2006 to improve understanding their relationship and the resulting injection height by

embedding a 1-D plume-rise model into a global 3-D chemistry transport model.385

Based on our data and models we did not find a strong relationship between FRP, active fire area

and injection height. This is in contrast to other studies (Sofiev et al., 2012). We suggest based on

our analysis a robust relationship may be as uncertain as using these data to determine scene specific

initial conditions for a 1-D plume rise model.

We demonstrated using a plume rise model that different prescriptions of injection height do390

have an impact on the distribution and concentration of model CO over intense fires. However,

transformation of model CO concentration into MOPITT measurement space using scene depen-

dent averaging kernels greatly reduces this impact. This is largely due to the vertical broadness of

averaging kernels. Therefore, it cannot a priori be assumed that MOPITT is sensitive to different
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prescriptions of biomass burning injection height. In general, model bias against MOPITT can be as395

large as 50%, which dwarves any realistic perturbation from the redistribution of CO mass within

a vertical column after being convolved with scene-dependent MOPITT averaging kernels. We have

shown examples over large fires where MOPITT measurements can differentiate between different

prescriptions of the vertical transport of CO coming from fires. But those instances are relatively

rare, and for most fires MOPITT measurements of CO are largely insensitive to the injection height.400

As a consequence injection height does not significantly affect CO emission estimates inferred from

MOPITT data. The major implication from this result is that outside of detailed case studies, use

of MOPITT to quantify biomass burning emissions is biased towards the very largest fires that can

perturb substantial sections of the observed atmospheric column. Space borne retrievals of FRP and

active fire area together with atmospheric concentration measurements of fire-emitted species such405

as CO, will be more effective together than individually when used as constraints for biomass burn-

ing emissions and their associated vertical transport. More thorough use of these types of data may,

however, require assimilation within a model that explicitly includes these observed parameters.

Interpreting NIR/TIR observations of CO from the MOPITT instrument currently offers us in-

sights into the spatial and temporal distributions of biomass burning emissions. However, our study410

has shown there are limitations to these data in understanding pyrogenic emissions that lie far beyond

the original science and instrument requirements. The next-generation instruments that will focus on

addressing gaps in our understanding of biomass burning will observe simultaneously the spectral

regions that are sensitive to changes in atmospheric trace gases and aerosols and land-surface prop-

erties. Previous analysis of the atmospheric signature from biomass burning using space-borne data415

has focused on CO using thermal IR sensors such as MOPITT with greatest sensitivity in the free tro-

posphere, or short-lived trace gases such as formaldehyde measured by UV/Vis sensors that require

a detailed knowledge of atmospheric chemistry (e.g., Gonzi et al., 2011b). An ideal mission concept

would have a vertical resolution < 1 km in the lower and free troposphere and a ground-pixel size

of 1 km or less, sufficient to capture expected variations in the land-surface and in the atmosphere.420

To achieve this a combined nadir/limb viewing instrument that measures thermal and short-wave IR

wavelength may be required but integrating these data bring their own challenges (e.g., Gonzi and

Palmer, 2010).

13



Appendix

The plume rise model variables are solved on a vertical grid comprising 200 levels in steps of 100m.

We extended the original model by introducing a mass conservation variable ζ (Paugam et al., 2010).

∂w
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+w

∂w

∂z
=

1
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where w denotes vertical plume velocity (m s−1), T (K) is the plume temperature, Te (K) is the en-425

vironmental temperature, B (kg) is the buoyancy (gB), g (m s−2) gravitational constant, γ (unitless)

scaling factor, cp (J kg−1K−1) specific heat for constant pressure, ζ mass (kgm−1), ǫ (1 s−1) and

δ (1 s−1) denote entrainment and detrainment, respectively, where Cǫ (–) and Cδ (–) are empirical,

unitless scaling factors (Pergaud et al., 2009), u (m s−2) denotes the horizontal velocity of the center

of the plume at level z. The subscript micro takes into account: evaporation, condensation, rain, ice430

with respect to the saturation water mass mixing ratio.

The initial boundary conditions rely on GEOS-5 temperatures, relative humidity (available water),

and wind fields. The active fire area and convective heat flux, respectively is based on MODIS

derived observations (see main text). As mentioned in the main text we calculate the available water

(gm−2) from the fuel by a simple formula and add it to the environmental available water in the first

vertical model grid box:

water=
Hf ×

dt
H
×(0.5+fmoist)

0.55
×1000, (A2)

where Hf is the convective heat flux (Wm−2), H is the fuel its heat storage capacity (Jkg−1), dt is

the time step in (s), and fmoist is the moisture content of the fuel (–). We assume fmoist has a ratio

of 10%. The factor 0.5 in the equation assumes 0.5 kg is being emitted as water per 1 kg fuel burnt.

For H we choose a value of 19 MJ kg−1, representing typical fuel vegetation characteristics.435
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Fig. 1: A) Spatial distribution of the number of MODIS observations that fall into 2.0◦×2.5◦ GEOS-

Chem grid boxes during 2006, and the median (MED) and maximum values (MAX) for B) and C)

radiant heatflux (kWm−2), D) and E) active fire area (hectares), F) and G) the resulting injection

height ztop (km). The study regions include North America (NAM), South America (SAM), Europe

(EU), Africa (AF), Siberia (SIB), Asia (AS), and Indonesia (INDO).
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Fig. 2: Daily normalized FRP diurnal cycle used in this study.
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Fig. 3: Box and whiskers, A) and B), and frequency distributions, C) and D), of convective

heat flux HF (kWm−2) and active fire area A (hectare) for the year 2006. For the box and

whiskers plot the mean is denoted by the diamond and the median by a horizontal line within the

box. The frequency distribution uses a logarithmic scale for heatflux and active fire area. The x-

axis denotes the following bins: 0.001,1,5,10,20, 30,40,50,60,70,80,90,100, 200,300,400,500,600,

700,800,900,1000−20000. The number of observation reported is approximately 562 000.
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Fig. 4: Sensitivity of injection height to varying atmospheric profiles of temperature (K) and specific

humidity (gKg−1). The solid horizontal lines denote the injection height ZTOP (km) and local

boundary layer heights (BL), respectively. Red, green, and blue vertical profiles denote potential

temperature, temperature, and specific humidity qv (gkg−1), respectively. Convective heat flux (HF,

kWm−2), active fire size (A, ha) and corresponding injection height (ZTOP, km) are shown in panel-

specific legends. Not all profiles start at 1000 hPa due to the local terrain. Panel A) and B) includes

profiles over Africa (+17.5◦/+10◦) and over the Amazon basin (−55◦/−14◦) with ZTOP values

of 0.1 km and 3.3 km, respectively. Panel C) and D) includes profiles over Canada (−122◦/+56◦)

and over Australia (+130◦/−20◦) with ZTOP values of 6.9 km and 10.0 km, respectively.
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Fig. 5: Injection heights as a function of MODIS derived active fire area (ha) and convective heat

flux (kWm−2) during 2006. The number of observations (Nobs) per bin of heat flux is given in

parantheses. Left panel shows instances where there is a stable atmosphere in the first few levels de-

termined by a positive vertical gradient in potential temperature, and the right panel shows instances

with an unstable atmosphere.
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Fig. 6: Distribution of injection height (ZTOP) minus the local boundary layer (BL)+ 250m for four

example burning regions around the globe: INDO (Indonesia), NAM (North America), AF (Africa),

and SIB (Siberia). The grey area represents the distribution of injection heights. The ordinate is in

log-space.
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Fig. 7: Top panel: CO total column bias [%] between model and model with injection height in

GEOS-Chem model space for the month of July 2006. Title indicates nondiurnal or diurnal FRP

cycle. Note: we sample the model at the time and location of each MOPITT observation.
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Fig. 8: Same as Figure 7 but with a more relaxed DOF criteria for thinning the MOPITT data (see

Sect. 2.3). Top panel: CO total column bias [%] between model and model with injection height

in GEOS-Chem model space for the month of July 2006. Title indicates nondiurnal or diurnal FRP

cycle.
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Fig. 9: CO concentration bias [%] along latitude versus altitude at ≈17◦ longitude for July 2006.

The title indicates use of nondiurnal (top) or diurnal (bottom) FRP cycle. A negative bias means the

model without injection height (control run) is lower than the model with MODIS derived injection

heights, and vice versa.
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Fig. 10: CO total column bias [%] between model with injection height and MOPITT for the month

of July 2006. White areas indicate a bias of ≈ 0%.

Fig. 11: Same as Figure 10 but with a more relaxed DOF criteria for thinning the MOPITT data

(see Sect. 2.3). CO total column bias [%] between model with injection height and MOPITT for the

month of July 2006. White areas indicate a bias of ≈ 0%.
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Fig. 12: Observed CO profile (ppb) from MOPITT in July 2006 over Siberia and comparison to

model profiles with (MODEL INJ) and without (MODEL) injection height. NOAVK denotes the

profiles in GEOS-Chem model space. The title denotes the region and month. The model pro-

files shown here are for the diurnal FRP cycle. The right plot shows the corresponding MOPITT

averaging kernels (AVK) from the surface (SF) to 100 hPa.
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