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Abstract  1 

Estimating representative surface-fluxes using eddy covariance leads invariably to questions 2 

concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are 3 

linked to local physical parameters and up-scaled through numerical modeling efforts, low-4 

frequency contributions interfere with our ability to isolate local biogeochemical processes of 5 

interest, as represented by turbulent fluxes. No method currently exists to disentangle low-6 

frequency contributions on flux estimates. Here, we present a novel comprehensive numerical 7 

scheme to identify and separate out low-frequency contributions to vertical turbulent surface fluxes. 8 

For high flux-rates (|Sensible heat flux| >  40 Wm−2, |latent heat flux| > 20 Wm−2 and 9 

|CO2 flux| > 100 mmol m−2d−1) we found that the average relative difference between fluxes 10 

estimated by Ogive optimization and the conventional method was low �5– 20%� suggesting 11 

negligible low-frequency influence and that both methods capture the turbulent fluxes equally well. 12 

For flux-rates below these thresholds, however, the average relative difference between flux 13 

estimates was found to be very high �23– 98%� suggesting non-negligible low-frequency influence 14 

and that the conventional method fails in separating low-frequency influences from the turbulent 15 

fluxes. Hence, the Ogive optimization method is an appropriate method of flux analysis, particularly 16 

in low-flux environments.  17 

 18 

1 Introduction 19 

The eddy covariance (EC) technique allows for direct, continuous and non-invasive tower-based 20 

ecosystem-scale estimation of surface-atmosphere scalar fluxes by simultaneous sampling of 21 

atmospheric fluctuations of wind and scalars (e.g. Baldocchi, 2008). These characteristics, along 22 

with ease of operation, have promoted the widespread application of the technique in both short-23 

term experiments and long-term monitoring network operations (e.g. FLUXNET, CarboEurope, 24 

EuroFlux, and AmeriFlux). 25 

Reliable flux estimation in a local environment is often complicated by a number of issues relating 26 

to the large range of fluctuation-scales which drive fluxes (Stull, 1988). Fluxes driven by high-27 

frequency fluctuations (turbulence) are inherently local in nature whereas fluxes driven by low-28 

frequency fluctuations are associated with e.g. topographical forcing on the observed flow, or large-29 

scale meteorological phenomena, including gravity waves, deep convection and large roll vortices 30 
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(Lee et al., 2004). Traditionally the presence of a spectral gap (Stull, 1988) is assumed to exist 1 

between these contributions, allowing investigators to disentangle contributions simply by 2 

separating continuous observations into quasi-stationary intervals each yielding one flux estimate. 3 

However, the existence of a distinct spectral gap is unclear (Lee et al., 2004) and a growing body of 4 

work suggests that low-frequency contributions may often be non-negligible even for relatively flat 5 

sites. Furthermore studies have shown that the low-frequency contributions are highly site-specific 6 

and characterized by significant uncertainty (Aubinet et al., 2010; Loescher et al., 2006; Yi et al., 7 

2008). Hence, observations of atmospheric fluctuations are likely to reflect some degree of 8 

convolution between signals of local turbulent contributions and site/time-specific low-frequency 9 

contributions.  10 

The importance of including vertical low-frequency contributions in studies is debated. For 11 

instance, some studies suggest that inclusion may improve closure in energy and carbon-balance 12 

studies (Finnigan et al., 2003; Mahrt, 1998; Sakai et al., 2001; von Randow et al., 2002), while 13 

other studies suggest otherwise (Aubinet et al., 2010). Kanda et al. (2004) demonstrated that, 14 

although the systematic bias decreased when including low-frequency contributions, the variance 15 

between flux-estimates increases greatly. In other words, any single flux-estimate becomes 16 

vulnerable to random low-frequency contributions, and thus increasingly difficult to interpret in 17 

terms of local surface fluxes. Moreover, it has been commented that horizontal low-frequency 18 

contributions, which are typically assumed negligible, may become significant during conditions of 19 

low turbulence intensity and gravitational flows (Yi et al., 2008) as well as during flow disturbance 20 

associated with complex topography (Zeri et al., 2010). 21 

Accordingly, we can distinguish between two principal applications of the EC technique: (1) 22 

process-oriented studies in which fluxes are being linked to local biogeochemical processes for 23 

parametric insight into universal causal flux-relationships and up-scaled through numerical 24 

modeling, and (2) long-term net ecosystem-exchange studies in which the flux estimates are 25 

understood to be site-specific, applying only for the unique conditions of a particular ecosystem. 26 

This study will focus on (1) and we will refer to the turbulence driven fluxes as locally meaningful 27 

fluxes, following Lee et al. (2004).  28 

For process-oriented studies, a number of typical approaches exist to estimate locally meaningful 29 

fluxes. These include: (1) adjusting the flux averaging time to strike an appropriate balance between 30 

adequate sampling of the turbulent flux contribution while avoiding excessive inclusion of low-31 
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frequency contributions (Sun et al., 2006); (2) ensuring horizontal homogeneous conditions within 1 

the foot print of the flux; (3) estimating vertical low-frequency contribution by performing profile 2 

measurements of fluxes on a single tower (Lee, 1998; Leuning et al., 2008) and filtering out 3 

observations reflecting excessive low-frequency influence (Novick et al., 2014); (4) filtering 4 

observations based on co-spectral similarity with theoretical co-spectra assumed to represent local 5 

flux distributions for ideal site-conditions (Hojstrup, 1981, 1982; Hunt et al., 1985; Kaimal, 1978; 6 

Kaimal et al., 1972; Moore, 1986; Moraes, 1988; Moraes and Epstein, 1987; Olesen et al., 1984); 7 

(5) estimating the ideal turbulent contribution by matching the observed co-spectral peak with that 8 

of a theoretical distribution (Sorensen and Larsen, 2010).  9 

While each method has its merits none is universally applicable and without its caveats. In the 10 

absence of a distinct spectral gap between contributions, separating flux contributions by adjusting 11 

the flux averaging time will inevitably fail. Moreover given the evolving nature of the natural flow 12 

a proposed spectral gap is likely to change in character over time, indicating that setting a fixed 13 

averaging time for an entire experiment inevitably causes some misrepresentation of fluxes. In the 14 

limit of low absolute covariance (i.e.: small fluxes) a relative large variance of the co-spectra 15 

estimates complicate the comparison between observed and theoretical co-spectra. While such cases 16 

could be treated as reflecting observations approaching the detection limit of the system, and 17 

discarded accordingly, they are important for exchange studies over low-flux surfaces such as sea-18 

ice creating a demand for a new approach here.  19 

Ensuring co-spectral similarity requires a number of site/system-specific empirical co-spectral 20 

corrections to account for high-frequency non-white noise/dampening produced by the presence of 21 

the EC system in the observed flow as well as signal dampening in closed path systems, greatly 22 

complicating the approach (Aubinet et al., 2000; De Ligne et al., 2010; Kaimal, 1968; Massman and 23 

Ibrom, 2008; Moncrieff et al., 1997; Moore, 1986; Silverman, 1968). Matching the co-spectral peak 24 

solves the issue of excessive scaling-offset mentioned above, but increases the risk of subjective 25 

analysis.  26 

Here, we present a novel method for estimating locally meaningful atmosphere-surface fluxes 27 

despite low-frequency influences, using a single eddy covariance system and a numerical modeling 28 

scheme for Ogive optimization. Accordingly we call this method Ogive optimization. Ogive 29 

optimization makes no assumptions regarding optimal flux averaging time or the presence of a 30 

spectral gap and improves the flux estimates by also considering contributions in the very high/low 31 
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frequency ranges. To evaluate the method, we applied it on eddy covariance observations of 1 

sensible heat, latent heat and CO2-flux at five sites covering different ranges of fluxes, ecosystem-2 

types and topographical conditions. Results were compared with the conventional eddy covariance 3 

method both in terms of flux estimate yield and flux difference relative to flux strength.    4 

 5 

2 Method and theory 6 

2.1 Eddy covariance and spectral analysis 7 

The theory of eddy covariance is well established (e.g. Baldocchi, 2008). Average surface fluxes of 8 

sensible heat, latent heat and CO2 may be estimated over a large upwind area (Kljun et al., 2004; 9 

Kormann and Meixner, 2001) using fast response instruments by: 10 

 QSENS = cpρdw′θv′������� 

QLAT = Lhcdsw′rq′������� 

FCO2 = cdsw′rc′������� 

(1a) 

(1b) 

(1c) 

Where QSENS is the sensible heat flux, cp is the specific heat of dry air, ρd is the mass density of dry 11 

air, e.g. w = w� + w′ is the Reynolds decomposition of vertical wind-speed into its average(w�) and 12 

turbulent (w′) components, θv is potential virtual temperature, QLAT is the latent heat flux, Lh is the 13 

latent heat of vaporization, cds is the molar concentration of dry air �moldrym−3�, FCO2 is the CO2-14 

flux and rq = molqmoldry−1  and  rc = molcmoldry−1  are the dry mixing ratio of humidity and CO2 15 

concentration scalars, respectively. The terms w′θv′�������, w′rq′������� and w′rc′������� are the covariance between 16 

turbulent fluctuations of vertical wind and turbulent fluctuations of potential virtual temperature and 17 

dry mixing ratio of humidity and CO2 concentration, respectively. For Eqn. (1) to truly represent the 18 

vertical fluxes a number of assumptions should be met during field operation. Principal among 19 

these are stationarity of the observation �∂ξ
∂t

= 0�, horizontal homogeneity � ∂ξ
∂x1

= 0  &  ∂ξ
∂x2

= 0�, 20 

mass conservation �w� = 0   &   ∂ςj
∂xj

= 0�, negligible density flux �ρ′
ρ
≪ 1� and a vertical constant 21 

flux layer (e.g. dFCO2dz = 0) (Foken and Wichura, 1996). Here, ρ is the air density, xj represents the 22 

three axes of observed flow,  ς = {u, v, w} is the wind vectors, s = �θv, rq, rc� is the scalars of 23 

interest and ξ = (ς, s) is the latter two combined.  24 
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Flux estimates (eq. 1) may be decomposed into frequency-dependent contributions, called co-1 

spectra Cows(f), between vertical wind-velocity w and the scalars of interest s, for frequencies f. 2 

Deviations of observed co-spectra from theoretical co-spectra (Kaimal et al., 1972; Moore, 1986) 3 

can be linked to a number of issues including influence of the eddy covariance system on the flow, 4 

oscillations of the tower (or ship), topographical forcing on the flow, etc., and is often used to filter 5 

out observations characterized by excessive non-turbulent influence (Novick et al., 2014).  6 

Subsequently we may perform an Ogive analysis (Desjardins et al., 1989; Foken et al., 2006; Lee et 7 

al., 2004). The analysis requires the same basic assumptions and involves the cumulative 8 

summation of co-spectral energy, starting from the highest frequencies,  9 

 
Ogws(f0) = � Cows(f)df

f0

∞
 

(2) 

The principal use of Ogives is to estimate the optimal flux averaging time as the point of 10 

convergence of cumulative co-spectral energy to an asymptote (Berger et al., 2001; Foken et al., 11 

2006). However, low-frequency influences may result in Ogives which instead either converge to 12 

an extremum or diverge, depending on the direction of low-frequency fluxes. Such conditions may 13 

arise in the absence of a distinct spectral gap during significant overlap of high-frequency 14 

(turbulent) and low-frequency flux contributions. Depending on the severity of the deviation from 15 

asymptotic behaviour an optimal averaging time can be impossible to determine. Such cases are 16 

conventionally considered to be in-stationary and no flux estimation is possible.  17 

 18 

2.2 Why eddy covariance often fails to capture local fluxes 19 

Fig. 1 illustrates a number of observational situations showing examples of how low-frequency 20 

influence could affect our ability to capture local fluxes. In the figure, situations are shown using 21 

both co-spectral and Ogive plots.  22 

In the ideal case (Fig. 1a), turbulent and low-frequency flux contributions are separated by a 23 

spectral gap, allowing investigators to isolate the former simply by choosing an appropriate flux 24 

averaging time T1 and using fast response instruments recording at frequency T2. Accordingly, the 25 

corresponding Ogive distribution is seen to converge to a stable flux estimate within T1 (Fig. 1b). 26 

Both turbulent fluxes and the low-frequency contribution, shown in Fig. 1b as a blue region of 27 
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Ogive-divergence relative to asymptotic convergence, may be positive or negative, though the 1 

former has been illustrated as positive here.   2 

Given the unclear existence of a spectral gap (Lee et al., 2004), however, another more general 3 

situation is the case (Fig. 1c) of overlapping contributions from low-frequency motions, turbulence 4 

and site and instrument-specific non-white noise/dampening. One way to strike a balance between 5 

adequate inclusion of the turbulent contribution and exclusion of excessive low-frequency influence 6 

is by adjusting T1. Typically a fixed averaging time is set for an entire experiment (here 30 min is 7 

shown) and the flux errors are assumed, or tested (e.g. Novick et al., 2014), to be negligible. In the 8 

high-frequency end of the spectrum, instrument response limitations may prevent observation of the 9 

smallest scales of turbulence contribution (Here 10 Hz is shown). Furthermore, non-white 10 

instrument-specific non-white noise and/or dampening may at times be reduced by application of 11 

site-specific co-spectral corrections, called transfer functions (Aubinet et al., 2000; De Ligne et al., 12 

2010; Massman and Ibrom, 2008; Kaimal, 1968; Moncrieff et al., 1997; Moore, 1986; Silverman, 13 

1968). Accordingly the Ogive distribution indicates negligible influence on the flux estimates for a 14 

30 min averaging time and an instrument response time of 20 Hz (Fig. 1d). Note that the influence 15 

of dampening and non-white noise on the Ogive distribution occurs in the reverse (Fig. 1d) relative 16 

to co-spectral space (Fig. 1c).  17 

Observations reflecting excessive low-frequency influence, relative to the turbulent contribution, 18 

(Fig. 1e) are typically discarded. This is because strong relative low-frequency influence results in 19 

non-negligible flux contribution to the overall estimate and further obstructs any efforts to separate 20 

contributions by adjusting the flux averaging time (Figure 1f). The use of the term relative in this 21 

context refers to the fact that an identical problem can arise despite modest low-frequency influence 22 

when estimating fluxes in a low-flux environment. Flux estimation in such environments are often 23 

further complicated by a high ratio of co-spectral variance to actual turbulent flux contribution. This 24 

prohibits unambiguous evaluation of similarity between observed co-spectra and theoretical co-25 

spectrum distributions, as well as proper estimation of the co-spectral peak (Sorensen and Larsen, 26 

2010).  27 

 28 
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2.3 Formation of averaging intervals 1 

In order to fulfil the stationarity requirement described in Sect. 2.1, continuous observations are 2 

typically subdivided into averaging intervals. Averaging interval time T1 has conventionally been 3 

assumed constant, based on the requirements that T1 should be long enough to reduce random error 4 

(Berger et al., 2001; Lenschow and Stankov, 1986) and short enough to avoid low-frequency 5 

influence associated with non-stationarity (Foken and Wichura, 1996; Vickers and Mahrt, 1997). 6 

However, as noted, adjustment of T1 will not generally allow for separation of turbulent and low-7 

frequency flux contributions. Here, we propose a method that makes no assumption regarding the 8 

presence of a spectral gap. Instead we require averaging time to be as long as necessary while 9 

ensuring stationarity of the local processes, irrespective of the temporal evolution of low-frequency 10 

contributions.  11 

The following is an iterative scheme for developing averaging intervals based on basic data quality 12 

requirements. Data collected during a field-experiment is considered continuous with end-points 13 

Tmin and Tmax, despite the presence of gaps. A range of possible subsets are preliminarily 14 

determined based on a linear series of interval midpoints Tm(i) within the range Tmin + T1
2

 to 15 

Tmax − T1
2  in intervals of T1, and dataset lengths Tw(i) within the range 10 min to 60 min in 5 min 16 

intervals. Here T1 is set according to desired temporal resolution of flux-estimates. For this study 17 

we use site-specific settings of T1 = 5 min, T1 = 15 min and the conventional T1 = 30 min to 18 

strike a balance between desired temporal resolution and computational cost of running the Ogive 19 

optimization method. The minimum dataset length is chosen to be 10 min for the Ogive function to 20 

yield statistically representative estimates of the scales of turbulence-driven fluxes and the 21 

maximum dataset length is chosen to be 60 min to ensure approximate stationarity of the local 22 

turbulence-driven fluxes.  23 

Using an iterative bisectional algorithm for enhanced computational speed, combinations of Tm(i) 24 

and Tw(j) are evaluated with regard to a number of basic quality assessment criteria to obtain the 25 

longest dataset around Tw(j), which passes the assessment criteria. These include absence of 26 

instrument diagnostics errors, absence of long data gaps, favourable mean wind-direction and 27 

reasonably narrow range of wind-directions (≤ 60°). Minor spiking (≤ 1%) is corrected based on 28 

the median of surrounding data-points and the dataset is discarded otherwise (for spiking> 1%) 29 

according to Vickers and Mahrt (1997). Other quality assessment includes the requirement that 30 
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momentum fluxes should be negative. Evidence to the contrary would imply a disconnection 1 

between the upwind surface processes and the point of observation on the tower, a condition 2 

typically associated with low wind conditions. However, momentum fluxes may also be affected by 3 

low-frequency contributions. As direction, but not strength, of the turbulent momentum flux is 4 

relevant we may simplify by calculating an Ogive distribution OgwU based on the momentum flux 5 

co-spectrum CowU, where U is the horizontal along-wind component, and simply verify that 6 

OgwU < 0 at the mid-range natural frequency of fm = 0.1 Hz. The choice of fm reflects a spectral 7 

region least impacted by instrument-specific non-white noise, dampening and low-frequency 8 

influences.  Typically around 4 estimates of Tw(j) are evaluated by the iterative bisectional 9 

algorithm for each Tm(i) before the optimal Tw(j) is determined.  10 

Finally, signals with very rapid evolutions such as transient signals in dynamic systems like eddy 11 

covariance observations may undergo abrupt changes associated with observational interference e.g. 12 

electrical interference or instrument error. These are referred to as dropouts and discontinuities in 13 

Vickers and Mahrt (1997). Global transforms, like the Fourier transform, are usually not able to 14 

detect these events. In contrast, Wavelet transforms such as the Haar transform, permit a localized 15 

evolutionary spectral study of signals, thus allowing for detection of subtle signal discontinuities 16 

leading to semi-permanent changes (Lee et al., 2004; Mahrt, 1991; Vickers and Mahrt, 1997). In 17 

this study we perform the Haar analysis for the data-set Tw(j), given by the bisectional algorithm, 18 

and observations are sorted in three categories (good, soft flag, hard flag) according to the presence 19 

and severity of signal discontinuities (Vickers and Mahrt, 1997). Conventionally these events are 20 

thought to preclude flux estimation on the basis of stationarity violations. Accordingly we discard 21 

such datasets (hard flags) when applying the conventional eddy covariance method. However, as 22 

will be shown, we find in this study that the Ogive optimization method allows for convincing flux 23 

estimation in many cases of soft and hard flags. Therefore no flux estimates derived using the Ogive 24 

optimization are discarded, unless visually inspected.  25 

  26 
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2.4 The Ogive optimization method 1 

2.4.1 Mass Ogive calculation 2 

As noted, adjusting the flux averaging time will not generally allow for separation of turbulent and 3 

low-frequency flux contributions. Subtracting a running mean from observed signals, as opposed to 4 

the conventional linear detrending, allows for enhanced filtering of low-frequency contributions 5 

alone (Sakai et al., 2001; Mcmillen, 1988). Consequently some combination of data-set length 6 

(averaging time) and running mean window size might allow for filtering out of low-frequency 7 

contributions while retaining turbulent contributions. Note that both adjusting the flux averaging 8 

time and subtracting a running mean from the observed signal may, in many cases, provide 9 

sufficient separation of turbulent fluxes and low-frequency contributions. Here we apply both to 10 

arrive at a more generally applicable approach. We visualize this concept by calculating co-spectra, 11 

and corresponding Ogives, for a very large number of data permutations and derive a map of the 12 

resulting Ogive density pattern (Fig. 2a). The figure illustrates the density of 10,000 individual 13 

sensible heat-flux Ogives based on the following data perturbations: 50 linear increments on the 14 

averaging time axis between 10 min and the maximum time available (60 min in this example) and 15 

200 linear increments for the running mean window in the range of one minute to half the length of 16 

the dataset in question (30 min in this example). The standard 30 min linear detrended Ogive is 17 

marked in red. 18 

What is clear immediately in this particular example is the strong consistency between individual 19 

Ogive representations. This suggests that the fluxes are very well defined for this particular period 20 

with an actual flux around −55 Wm−2 following the convergence to a horizontal assymptote. A 21 

classic Ogive shape. The flux estimate for a regular 30 min linear detrended dataset (red) appears 22 

representative of the overall Ogive pattern as well. The presence of haze on the graph below 23 

−60 Wm−2 suggests that a small part of the permutations states are affected by low-frequency 24 

motions. The presence of these large-scale motions is in part supported by the Haar analysis, which 25 

has soft-flagged the temperature signal (Fig. 2b). Additionally, inspection of a running covariance 26 

with a 5 min window (Fig. 2c) indicates the onset of increased flux variability in the range 20 min – 27 

60 min. 28 

 29 
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2.4.2 The model and the optimization method 1 

Unfortunately not all Ogive density maps indicate as well defined fluxes as shown in Fig. 2. In such 2 

cases, answering the overall question of most likely flux requires the fitting, or optimization, of an 3 

Ogive model to the Ogive density map. With the introduction of an optimization aspect the 4 

advantage of performing the analysis for Ogives, as opposed to co-spectra, becomes clear. In the 5 

limit of low absolute covariance (i.e.: small fluxes), co-spectra typically become increasingly 6 

characterized by both positive and negative frequency-wise flux contributions. The co-spectral 7 

model, however, can only account for fluxes in one direction. Observed and modelled Ogives, in 8 

contrast, are able to describe and account for this bi-directionality.  9 

The basic premise in our model solution is that a region exists in the mid-to-high frequency range of 10 

the Ogive representation, which is least impacted by instrument-specific non-white noise, 11 

dampening and low-frequency influences. This was illustrated in Fig. 1bdf. While such a region is 12 

clearly evident in Fig. 2a for f > 5 ∙ 10−2 the example also illustrates the real advantage of 13 

performing a large number of data perturbations and deriving a density map of possible solutions: 14 

the most likely Ogive distribution of the observation in question stands out as a very well defined 15 

pattern, which for this particular observation allows us to extend our understanding of the ongoing 16 

fluxes all the way to the lower observational bound (f = 2.5 ∙ 10−4, or 60 min). While the co-17 

spectral peak method (Sorensen and Larsen, 2010) bases its flux estimation on one point within this 18 

representation (i.e. the peak) we base our flux estimate on the entire range to enhance the certainty.  19 

To describe the most likely flux resulting from a given Ogive density pattern we apply the 20 

generalized co-spectral distribution model (Lee et al., 2004)  21 

 
fCo(f) = A0

� ffx
�

�1 + m � ffx�
2µ
�
1
2µ�

m+1
m �

 
(3) 

Where a number of parameters are tuned to change the appearance of the co-spectral distribution: 22 

A0 is a normalization parameter, µ is a broadness parameter controlling the shape of the spectrum, f 23 

is the natural frequency, fx is a horizontal offset of the distribution and m = 3 4⁄  is a constant 24 

describing co-spectra characterized by a −4 3⁄  power law in the inertial subrange. Subsequently an 25 

Ogive distribution is calculated using (eq. 2). We set A0 = 1 and instead scale the low-frequency 26 

end-point f1 (equivalent to the averaging time T1) of the Ogive distribution to a variable parameter 27 
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F0 to allow for more direct flux control. This is particularly convenient when formulating 1 

reasonable limits on fluxes for the optimization algorithm described below. 2 

One important aspect considered is the concept of local fluxes that cannot be observed directly. The 3 

problem may arise in the low-frequency range as over/under-estimation of covariance due to 4 

inclusion of low-frequency contributions or the use of inadequate averaging times. Similarly in the 5 

high-frequency range the problem may arise as under-estimation of covariance due to inadequate 6 

sensor frequency, attenuation and distortion by both the spatial averaging of the sensors and the 7 

sampling and filtering of the sensor electronics. This is illustrated in Fig. 3a. Actual flux, 8 

represented by an ideal theoretical co-spectrum (red line) is shown alongside a corresponding Ogive 9 

(black line). In the case of insufficient observation time (here 20 min) and observational frequency 10 

(here fnyquist = 5hz) the missing range of observed fluxes can be illustrated as an orange area 11 

below the co-spectrum and as equivalent blue ranges in the negative and positive Ogive axes, 12 

respectively. The corrected flux is shown as a dashed black line and is derived as Fcor = F +13 

FLF1 − FHF1, where F is the uncorrected flux. Note that FHF1 is subtracted as it is of opposite sign 14 

relative to F. Secondly, because theoretical models are empirical representations, verified only 15 

within a certain frequency range, it becomes tempting to investigate how much, if any, of the fluxes 16 

are being left out by such a restriction in observational range, assuming that the model is valid 17 

outside this frequency range. The consequent extrapolation of model results beyond actual observed 18 

frequencies is illustrated in Fig. 3b and the corrected flux (dashed black line) may similarly be 19 

derived as Fcor = F + FLF2 − FHF2.  20 

Combined the corrections amount to FO2 = F + (FLF1 + FLF2) − (FHF1 + FHF2) where O2 is 21 

adopted as shorthand mathematical notation for Ogive optimization. In practice the corrections are 22 

accounted for by combining F and all low-frequency contributions into one parameter: F0 = F +23 

FLF1 + FLF2, which controls the shape of the Ogive model, and by adding a high-frequency vertical 24 

offset FHF = −(FHF1 + FHF2). In total we are thus left with four tunable parameters: F0, FHF, µ and 25 

fx, for which the final model-estimated flux is: 26 

 FO2 = F0 + FHF (4) 

Our goal is to tune the parameters of the Ogive model to achieve an optimal fit to the density map. 27 

That is, to find the parameter combination, for which the model Ogive follows optimally the 28 

strongest densities in the density map (Fig. 2a). A number of local and global optimization 29 
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techniques were investigated in terms of accuracy and speed. The final steps taken in optimizing the 1 

model with respect to the Ogive density map include optimization of a random parameter guess 2 

within reasonable parameter bounds using a fast local optimization algorithm and a slower, but 3 

robust, Darwinian evolution-style global optimization algorithm called Differential Evolution (Storn 4 

and Price, 1997). The optimization is performed for a number of frequency intervals and the final 5 

solution is chosen by subjective visual inspection. An in-depth explanation of these steps can be 6 

found in Appendix A. 7 

One intriguing consequence of including a modeling and optimization aspect is that the inevitable 8 

occurrence of overlapping data-intervals does not relate linearly to interdependency of successive 9 

flux estimates, suggesting that the Ogive optimization approach allows for very high temporal 10 

resolution of flux evolution at less expense in terms of flux independence.   11 

 12 

2.5 Field sites 13 

To evaluate the Ogive optimization method, five sites reflecting different environments in terms of 14 

ecosystem, topography and flux strengths (QSENS, QLAT and FCO2) are investigated (Fig. 4).   15 

2.5.1 High-flux environment 16 

The Abisko field-site (Fig. 4a) is located in Stordalen (68°21.248N, 19°3.02E), a mixed mire 10 km 17 

east of Abisko in subarctic Sweden, the site of a number of past and ongoing studies on mire carbon 18 

fluxes (e.g. Christensen et al., 2012; Jackowicz-Korczynski et al., 2010). The measuring mast is 19 

situated on the coastal edge of a minerotrophic fen dominated by sedges and a lake environment. 20 

Wind patterns consistently alternate between the upwind fen-environment signal towards the west 21 

and the upwind lake-environment signal towards the east. Hence we treat the observations 22 

separately as fen- and lake-sites, respectively. Continuous eddy covariance observations were 23 

conducted from 2 July to 1 August, 2012. Site instruments include an R3 sonic anemometer (Gill 24 

Instruments®, Lymington UK) mounted on top of the mast at 2.9 m height and an LI-7500 open 25 

path gas analyzer (LI-COR®, Lincoln, NE, USA) on a boom extending towards the southwest at 26 

2.5 m height, with a 0.43 m horizontal offset along the boom and a slight tilt of the instrument 27 

relative to the vertical plane to allow water dripping. Data were logged at 10 Hz. Observations 28 
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reflecting wind origins along the boom axis were filtered out to limit flow distortion. Flux estimates 1 

were evaluated in intervals of: T1ABI = 30 min.   2 

2.5.2 Intermediate-flux environment 3 

The RIMI site (Fig. 4b) is an active FLUXNET site (e.g. Groenendijk et al., 2011; Stoy et al., 2013; 4 

Yi et al., 2010) located in a large flat homogeneous grassland area (55°41.658'N, 12°07.027'E) east 5 

of the research campus Risø in Eastern Denmark. The dataset presented here consists of continuous 6 

eddy covariance observations from the period 16 March to 3 May, 2009. Site conditions suggest 7 

intermediate fluxes with limited impact from topographical flow distortion. Site instruments include 8 

an R2 sonic anemometer (Gill Instruments®, Lymington UK) and an LI-7500 open path gas 9 

analyzer (LI-COR®, Lincoln, NE, USA) mounted on the same boom at heights of 2.2 m and 2.1 m 10 

respectively extending from the side of a 10 m mast, with a horizontal offset along the boom of 0.40 11 

m. Raw data were logged at 20 Hz. Observations reflecting wind origins along the boom axis were 12 

filtered out to limit flow distortion. Flux estimates were evaluated in intervals of: T1RIMI = 30 min. 13 

2.5.3 Low-flux environment 14 

Young Sound (Fig. 4c) is the entrance of a 7 km wide fjord in NE Greenland characterized by thick 15 

fast sea-ice within the fjord and an ice-free polynia at the mouth of the fjord (Rysgaard et al., 2003). 16 

Continuous eddy covariance observations were conducted at three sites within the fjord system in 17 

the period 20 March to 27 April 2012. Two separate field-stations, one static and one mobile, were 18 

used at three different locations (ICEI, POLYI and DNB). ICEI (74°18.576’N, 20°18.275’W) was 19 

located 2 km from the coastline from 20 to 27 March and DNB (74°18.566’N, 20°13.998’W) was 20 

located approximately 200 m from the coastline from 30 March to 27 April. POLYI (74°13.883’N, 21 

20°07.758’W) was located at the mouth of the sound close to the ice-free polyna region from 24 to -22 

27 March. For the mobile tower (POLYI and DNB) a METEK USA-1 sonic anemometer 23 

(METEK®, Elmshorn, Germany) was mounted at a height of 3.1 m and an LI-7500A open path gas 24 

analyzer (LI-COR®, Lincoln, NE, USA) was mounted at an angle of 70° degrees relative to the 25 

horizontal plane at a height of 2.7 m relative to the snow-surface. Raw data were logged at 20 Hz. 26 

The sonic anemometer and gas analyzer were displaced horizontally by 0.4 m in orthogonal 27 

alignment to the prevailing wind direction, so as to limit the instrument flow distortion and 28 

temporal offset between simultaneous signals. In addition to filtering for tower based flow 29 

distortion, observations from the shore-adjacent DNB site reflecting wind-directions associated with 30 
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the shoreline were likewise filtered out due to anthropogenic interference. For the static tower a Gill 1 

Windmaster pro sonic anemometer (Gill Instruments®, Lymington UK) was mounted at a height of 2 

3.7 m relative to the snow-surface and an enclosed LI-7200 gas analyzer (LI-COR®, Lincoln, NE, 3 

USA) was mounted with a 65 cm inlet tube terminating directly under the sonic anemometer. Raw 4 

data were logged at 10 Hz. Sea-ice and snow-cover thickness was approximately 110 cm and 75 cm 5 

for the ICEI and DNB sites, respectively, and approximately 25 cm and 20 cm for the POLYI site. 6 

Average air temperature increased from −35℃ to −15℃ during the period. As such all sites were 7 

expected to be characterized by significantly smaller turbulent fluxes relative to the Abisko and the 8 

RIMI sites while simultaneously being subjected to varying degrees of low-frequency motions due 9 

to their locations in a fjord surrounded by mountains. Flux estimates were evaluated at the three 10 

sites for the following intervals: T1POLYI = T1ICEI = 5 min and T1DNB = 15 min. The higher 11 

resolutions of flux-estimates, relative to the Abisko and RIMI sites, were chosen for the purpose of 12 

another study concerning CO2-fluxes on sea-ice.  13 

 14 

2.6 Instrument corrections and post-processing 15 

During post-processing a number of instrument-specific corrections are needed to adjust for 16 

instrument-bias. For the sonic anemometers (Gill R2, Gill R3, Gill Windmaster Pro and METEK 17 

USA-1) these include: An empirical angle of attack correction (Nakai and Shimoyama, 2012), and 18 

humidity and crosswind corrections (Liu et al., 2001; Schotanus et al., 1983). We convert all 19 

observations to mixing ratios (Burba et al., 2012) using the Webb-Pearman-Leuning correction 20 

when necessary (Sahlee et al., 2008; Webb et al., 1980) as recommended by Ibrom et al. (2007). 21 

The need for instrument heating corrections (Burba et al., 2008) associated with operation of the 22 

open path LI-7500 in a cold environment (Daneborg, POLYI and ICEI) is alleviated by using the 23 

newer LI-7500A with a ‘cold’-setting correcting observations down to −25℃ (Burba et al., 2011). 24 

Sites featuring the LI-7500 (Abisko and RIMI) never reached sufficiently cold temperatures to 25 

warrant instrument heating corrections during this experiment. Coordinate rotation, linear de-26 

trending and iterative de-spiking of raw data is performed according to Vickers and Mahrt (1997). 27 

Temporal offset between sensor signals is typically corrected based on a maximum cross-28 

covariance analysis (Berger et al., 2001; Fan et al., 1990). In the limit of low absolute covariance, 29 

however, actual temporal offset may be obscured by secondary cross-covariance optima. Here, we 30 
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locate the optimal cross-correlation automatically based on the incident horizontal wind flow and 1 

the specific geometry of each covariance system.  2 

 3 

3 Results and discussion 4 

3.1 Examples of Ogive optimization performance 5 

In the following, we describe several typical cases observed and the associated performance of the 6 

Ogive optimization method.  7 

(1) Near-absence of low-frequency influence is observed leading to a strong similarity between the 8 

Ogive density pattern, the 30 min linear detrended Ogive and the modelled Ogive. This is illustrated 9 

in Fig. 5a for a case of sensible heat flux at the Abisko site. Disregarding the high-frequency 10 

component associated with extrapolation of model results, seen here to contribute FHF ≈ −5 Wm−2 11 

to the overall modelled sensible heat flux (eq. 4), the standard 30 min linear detrending approach 12 

will suffice to provide the turbulent flux estimate. The observational period in question was 13 

characterized by neutral atmospheric stability, high wind-speed U� = 8.25 ms−1 and winds 14 

originating from the fen area (Fig. 5a), along with fairly constant temperature 8.2 ± 0.4℃ (Fig. 5b) 15 

and a slight gradual increase in uptake (Fig. 5c).  16 

(2) Cases where non-negligible low-frequency influence on the flux-estimate is observed for CO2 17 

flux (Fig. 6). The low-frequency contribution is seen to be positive just like the turbulent flux (Fig. 18 

6a). The Ogive optimization method is seen to separate the turbulent and the low-frequency 19 

contributions completely, yielding only the locally meaningful turbulent flux. The observational 20 

period in question was characterized by a slightly unstable atmospheric stability zL−1 = −0.19, 21 

moderate wind-speed U� = 3.65 ms−1 and wind originating from the lake area (Fig. 6a), along with 22 

a slightly increasing atmospheric temperature and a varying CO2 concentration (Fig. 6b). A 23 

consequent marked increase in flux covariance around 35-45 min is evident in Fig. 6c.  24 

(3) An example of ambivalence caused by bimodality in the Ogive density pattern is illustrated in 25 

Fig. 7, for a case of sensible heat flux at the Abisko site. Such cases indicate that fluxes are 26 

changing within the sampling period. The Ogive optimization method is seen to capture the 27 

turbulent flux contribution with the strongest data density. Had both modes been of equal Ogive 28 

density, the choice of mode during subjective evaluation would be based on the quality of the model 29 
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Ogive optimization, and the length of the time-series responsible for the modes. If both Ogive 1 

models were equally good, the choice would fall on the mode produced by the Ogives which consist 2 

of shorter time-series as they represent a more instantaneous flux-estimate relative to the mode 3 

produced by longer time-series. The sampling period in question was characterized by a slightly 4 

stable atmosphere zL−1 = 0.12, low wind-speed U� = 2 ms−1 and wind originating from the fen 5 

area (Fig. 7a), along with a steady decline in atmospheric temperature (Fig. 7b) and a strong 6 

variation in flux covariance (Fig. 7c). 7 

(4) The inadequacy of applying a fixed averaging interval for flux estimation becomes apparent in 8 

Fig. 8, for a case of sensible heat flux at the Daneborg site. Here, the Ogive density pattern is seen 9 

to reflect a gradual evolution in the Ogive flux pattern with increasing averaging time. The standard 10 

30 min averaging time is seen to be too long and also to increasingly reflect low-frequency 11 

interference (Fig. 8a). This is consistent with an abrupt increase in atmospheric temperature (Fig. 12 

8b) and decrease in covariance (Fig. 8c) around 30-40 min. The Ogive optimization method 13 

identifies the appropriate flux estimate (Fig. 8a), whereas the standard 30 min linear detrending 14 

method fails on account of in-stationarity. In addition, the case is a perfect example of how co-15 

spectral evaluation of frequency-wise contributions can be misleading (Fig. 8a, inner plot). The 16 

observational period in question was characterized by a stable atmosphere zL−1 = 0.29, low wind-17 

speed U� = 2.6 ms−1 and wind originating from the fen area (Fig. 8a).  18 

(5) Signals may be degraded for a number of reasons such as instrument failure, electronic 19 

interference etc. Such a case is illustrated in Fig. 9, for a case of CO2-flux at the Abisko site. Here a 20 

brief drop in atmospheric CO2 concentration, hard flagged by the Haar analysis (Fig. 9b), gives rise 21 

to an intermittent three-fold increase in flux covariance (Fig. 9c), ultimately resulting in the low-22 

frequency influences illustrated in Fig. 9a. Nonetheless, the Ogive optimization method is seen to 23 

identify the actual prevalent flux during this period. The observational period in question was 24 

characterized by near-neutral atmospheric stability zL−1 = −0.07, moderate wind-speeds U� =25 

5 ms−1 and wind originating from the lake area (Fig. 9a), along with a near-constant air 26 

temperature Tair = 6.9℃ (Fig. 9b).  27 

(6) During conditions of strong high-frequency dampening caused by the use of a closed path 28 

instrument, the Ogive optimization method automatically shifts the high-frequency bound on 29 

optimization towards lower frequencies to avoid influence of the dampened frequencies during 30 

optimization. This is illustrated in Fig. 10 for a case of latent heat flux at the ICEI site. Here the 31 
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upper optimization bound is shifted back to 1 Hz thus allowing for an accurate description of the 1 

high-frequency fluxes as well (Fig. 10a, inner plot). The observational period in question was 2 

characterized by a slightly unstable atmosphere zL−1 = −0.08 and moderate wind-speeds U� =3 

5 ms−1 (Fig. 10a), along with gradual increases in both atmospheric H2O content and atmospheric 4 

temperature (Fig. 10b) and a gradual increase in flux covariance (Fig. 10c). 5 

 6 

3.2 Comparison of Ogive optimization and the conventional method 7 

The difference in flux estimates of the standard 30 min linear detrending approach and the Ogive 8 

optimization method is associated with both the inclusion/exclusion of low-frequency contributions, 9 

the inadequacy of the fixed averaging interval and the extrapolation of modelled Ogives into un-10 

observable high/low-frequencies. The relative flux difference δ is evaluated within i = 10 intervals 11 

of absolute flux estimates ��F30min��
i
 as the standard deviation of difference in flux estimate relative 12 

to the mean absolute Ogive optimization flux estimate within respective intervals: 13 

 
δ(i) =

std ��F30min�
i
− �FO2�

i
�

[|F30mın|]ı������������� ∙ 100% 
(5) 

Where square brackets [ ]i signify flux estimates native to interval i of the equivalent absolute flux 14 

estimates by the standard eddy covariance method ��F30min��
i
. Estimates of relative flux difference 15 

δ are shown logarithmically in Fig. 11 for all three scalar flux types, at all five observation sites and 16 

for all 10 intervals of the respective Ogive optimization flux ranges. Outliers have been excluded 17 

from the flux ranges shown in the bottom of the figure to ensure a minimum of 3 flux estimates 18 

within the largest absolute flux-estimate bin and resolution of the resulting δ estimates have been 19 

doubled by spline interpolation. The median relative difference is shown (red line) along with 20 

standard deviation (light gray area) and 25-75% percentile range (dark gray area).  21 

As hypothesized in section 2.2, the average relative flux difference is seen to be very high for small 22 

absolute flux estimates, peaking at δ�SENS = 80%, δ�LAT = 23% and δ�CO2 = 98% for the lowest 23 

absolute flux estimates. The variation in δ  is quite high for low absolute flux estimates, with the 24 

13.6 and 86.4 percentiles of δ reaching as much as δSENS = 40 − 208%, δLAT = 10 − 98% and 25 

δCO2 = 52 − 538%. For larger absolute flux estimates (|QSENS| >  40 Wm−2, |QLAT| > 20 Wm−2 26 

and |FCO2| > 100 mmol m−2d−1)  the relative difference is seen for all three flux types to drop and 27 
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level off to a near-stable range of δ = 5% − 20%. These absolute flux thresholds thus mark clear 1 

shifts between non-negligible low-frequency contributions on one side and plausibly negligible 2 

low-frequency contributions on the other.  3 

Depending on perspective and the character of observed fluxes at a particular site the described 4 

thresholds may either serve as an indicator of a lower limit to local-scale flux resolvability by the 5 

standard 30 min linear detrending approach, or as an argument for the application of enhanced flux 6 

estimation techniques such as the presented method. For the presented observations the 7 

consequences are illustrated by the histograms of the different sites (Fig. 11). Although the location 8 

of the flux threshold is a bit unclear for latent heat flux, estimation of locally meaningful fluxes at 9 

the three sea-ice sites Daneborg, POLYI and ICEI is essentially impossible without accounting for 10 

low-frequency contributions. The same applies for sensible heat flux at the Abisko lake site, latent 11 

heat flux at the grassland site RIMI and CO2-flux at both the Abisko lake site and the RIMI site. 12 

Note that only the Abisko Fen environment showed a dynamic range in excess of |FCO2| =13 

400 mmol m−2d−1 and that most flux estimates from RIMI are from the morning or late 14 

evening/night, which explains the range of relatively small fluxes.  15 

The relative flux difference was furthermore investigated in terms of atmospheric stability (Fig. 12). 16 

Though variation in δ is significant for all flux types, average δ appears to be lowest between 17 

slightly unstable zL−1 ≈ −0.2 and neutral conditions (δ ≈ 10 − 20%). In contrast δ is significantly 18 

larger for |zL−1| > 0.2 (20 < δ < 1000%). This is consistent with current consensus on turbulence 19 

spectra (Kaimal et al., 1972; Olesen et al., 1984): For strongly unstable conditions (zL−1 < −0.2) 20 

all spectra have increased low frequency components (Hojstrup, 1982), which would have been 21 

filtered out using the Ogive optimization method. For strongly stable conditions (zL−1 > 0.2) the 22 

turbulence spectral intensity is often small relative to low frequency variation associated with meso-23 

scale variability (Larsen et al., 1980; Vickers and Mahrt, 2003). Exactly for neutral and slightly 24 

unstable conditions boundary layer turbulence structure is at its simplest being dominated by shear 25 

produced turbulence that is best described by the standard spectral expressions, being the 26 

background for the standard  eddy-correlation flux determination methods  (Kaimal et al., 1972; 27 

Olesen et al., 1984). 28 

For many flux estimates the vertical wind speed signal or the scalar signal are non-stationary to the 29 

point of prohibiting a flux estimation using traditional methodology. Hence the Ogive optimization 30 

method may also provide a greater number of flux estimates. This is shown in Table 1 to generally 31 

19 
 



be true for the Abisko and Daneborg sites, both of which characterized by degraded signal quality at 1 

times. Sites RIMI and POLYI are inconclusive in this respect and the conventional method appears 2 

superior in the case of ICEI. The latter may be related to the very low fluxes observed for this site 3 

(Fig. 11) suggesting the presence of a detection limit for the Ogive optimization method when using 4 

the particular instrument setup at ICEI (LI-7200 enclosed gas analyser) within the respective ranges 5 

|QSENS| < 25 Wm−2, |QLAT| < 3 Wm−2 and |FCO2| < 10 mmol m−2d−1. No similar 6 

characteristics indicate the presence of a detection limit of the Ogive optimization method at any of 7 

the other sites (open path gas analyzers), suggesting superiority of open path instruments in very 8 

low flux environments when using the Ogive optimization method.  9 

Low-frequency shifts in flux direction were found to be common in this study. To our knowledge 10 

such occurrences are not described by any existing theoretical framework, indicating a puzzling 11 

caveat to current theory. The occurrences challenge the notion that fluxes should be of same sign 12 

regardless of incident eddy scales. One explanation might be that vertical low-frequency 13 

contributions represent only one part of a net low-frequency contribution and hence is balanced by a 14 

horizontal component. Indeed the horizontal low-frequency component has been shown to be 15 

significant during certain conditions (Yi et al., 2008; Zeri et al., 2010), despite typically being 16 

assumed negligible. The finding indicates that further investigation of the interplay between low-17 

frequency contributions, and their influence on turbulent flux estimates, is necessary.  18 

 19 

4 Conclusion 20 

The presented Ogive optimization method has been shown to successfully separate local from non-21 

local flux contributions. In addition, it enhances flux estimation by both investigation of a large 22 

range of averaging times and running mean detrending, and extrapolation of optimized Ogive model 23 

results. The method makes no assumptions concerning appropriate averaging time or the presence 24 

of a spectral gap, does not require the application of transfer functions and allows for very high 25 

temporal resolution of flux evolution. For high flux-rates (|QSENS| >  40 Wm−2, |QLAT| >26 

20 Wm−2 and |FCO2| > 100 mmol m−2d−1) we found that the average relative difference between 27 

fluxes estimated by Ogive optimization and the conventional method was low �5– 20%� suggesting 28 

negligible low-frequency influence and that both methods capture the turbulent fluxes equally well. 29 

For flux-rates below these thresholds, however, the average relative difference between flux 30 
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estimates was found to be very high �23– 98%� suggesting non-negligible low-frequency influence 1 

and that the conventional method fails in separating low-frequency influences from the turbulent 2 

fluxes. The average relative flux difference was found to be lowest (10 − 20%) for slightly 3 

unstable and neutral atmospheric stabilities zL−1 = −0.2 to zL−1 = 0. In contrast δ was 4 

significantly larger (20 − 1000%) for |zL−1| > 0.2. This is consistent with current consensus on 5 

turbulence spectra. Furthermore, the Ogive optimization model has been shown to allow for flux 6 

estimation despite signal disruption. Fewer flux estimates could be derived relative to the 7 

conventional method for an LI-7200 enclosed gas analyzer in very low-flux conditions, suggesting 8 

the possible presence of a detection limit in the |QSENS| < 25 Wm−2, |QLAT| < 3 Wm−2 and 9 

|FCO2| < 10 mmolm−2d−1 ranges with this particular instrument setup, as well as a superiority of 10 

open path instruments in low-flux environments. The study suggests favourable application of the 11 

Ogive optimization method in most environments, particularly in environments characterized by 12 

small fluxes such as over sea-ice. Overall, the notion of a dynamic and generally non-negligible 13 

overlap of low-frequency and turbulent flux contributions is confirmed.  14 

Finally, low-frequency shifts in flux direction were found to be common in this study. To our 15 

knowledge such occurrences are not described by any existing theoretical framework. Based on 16 

studies indicating non-negligible horizontal low-frequency contributions during certain conditions 17 

(Yi et al., 2008; Zeri et al., 2010) we hypothesize a more intricate balancing interplay between 18 

vertical and horizontal low-frequency flux contributions which, if confirmed, suggests the need for 19 

more sophisticated eddy covariance system arrays if low-frequency contributions are to be 20 

accurately included (i.e.: for site-specific studies). If exclusion of low-frequency contributions is 21 

desired (i.e.: for universal process oriented studies), the presented method should be unaffected by 22 

these questions.  23 

 24 

Appendix A: Ogive optimization steps 25 

As described in section 2.4.2 our goal is to tune the four final model parameters F0, FHF, µ and fx to 26 

achieve the optimal fit between a modelled Ogive and the Ogive density map (e.g. Fig. 2). The 27 

process is called optimization and involves the following steps:  28 

1. A random guess of parameters is made within a set of reasonable bounds. The speed and 29 

accuracy of any optimization method involving pre-set bounds depend greatly on the 30 
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reasonable choice of these bounds. Here we set 0.05 < µ < 1 and −2 < log(fx) < 1. The 1 

bounds for F0 and FHF are a bit more complicated. If >80% of the summed density map is 2 

located on, say, the positive side (suggesting F0 > 0), bounds on F0 and FHF are set as 3 

0 < F0 < |2R+|  and −|R+| < FHF < 0, where R+ is the 95th percentile range of the 4 

positive side of the density map. Reverse bounds are applied if >80% of the summed density 5 

map is located on the negative side (−|2R−|  < F0 < 0  and 0 < FHF < |R−|), and 6 

optimization is performed twice, using the two different sets of bounds, if neither side 7 

contains >80% of the summed density map.  8 

2. Think of optimizing a model Ogive to an Ogive density map as choosing a path between 9 

two points in the Pyrenees for which you travel at the highest possible average altitude, all 10 

the while being constrained to a certain type of path (the Ogive form and the associated 11 

parameters). In more technical terms optimizing the four parameters of the model Ogive 12 

may be thought of as locating the point in a parameter-wise four-dimensional probability 13 

space, for which the net Ogive density reached along the path is the highest. In this context 14 

we seek a global, as opposed to local, solution within the probability space formed by the 15 

four parameters. Based on the initial random guess, a local solution is determined using the 16 

MATLAB function fminsearchbnd (available through the Mathworks® file exchange) 17 

which is a nelder-mead polytope direct search optimization algorithm. The algorithm is fast 18 

for problems of low dimensionality such as ours, but not certain to converge to a global 19 

solution. The goal is to perform a rough, but fast, improvement of the random guess to limit 20 

processing time for the next step, which is far more computationally expensive.  21 

3. Based on the local optimization of parameters produced by fminsearchbnd, a global solution 22 

is determined using the Differential Evolution (DE) algorithm (Storn and Price, 1997). 23 

Differential evolution is a simple and reliable evolutionary population-based search 24 

technique, which has been successfully applied on a wide range of problems in a variety of 25 

scientific fields (Mallipeddi et al., 2011). Inspired by Darwinian evolutionary theory it 26 

optimizes a problem by iteratively improving a population of NP candidate solutions 27 

(agents) based on random candidate mutation (motion) and survivability within the 28 

probability space of a multivariate problem. Mutations are governed by predefined 29 

mathematical relations, called strategies, which depend on crossover probability CR = [0,1] 30 

and differential weight F ∈ [0,2], and survivability relates to the change in probability (i.e. 31 

the sum of Ogive density below a given Ogive model solution) between two generations. 32 
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The performance of the optimization algorithm varies with each problem and depends 1 

greatly on the choice of strategy and algorithm parameters. For the purpose of optimizing 2 

the algorithm performance a number of observational cases were investigated using various 3 

strategies and a large number of parameter variations resulting in the application of the 4 

strategy called DE/best/1/exp and parameters NP = 40, CR = 1 and F = .8 for a maximum 5 

of 100 iterations. If enough agents (NP) are initiated and allowed to evolve throughout the 6 

probability space sufficiently long (iterations) the DE algorithm is certain to locate a global 7 

solution (optimal Ogive parameters).  8 

4. Often optimizing a smaller subset of the problem is an advantage, particularly during low-9 

frequency interference which persists despite data-perturbation in the mass Ogive phase. 10 

One such case is shown in Fig. 13. Optimizing in subsets is achieved by subdividing the 11 

problem into 18 frequency interval weights in the range 0 to 1, signifying 0 to 100% 12 

influence of a given part of the density map on the optimization output (Fig. 13a, black 13 

lines). Corresponding solutions for the 18 frequency interval weights are shown in Fig. 13b 14 

(green lines). All solutions based on frequency intervals with lower bound before or after the 15 

Ogive density peak (f ≈ 7 ∙ 10−4) are seen to underestimate the actual undisturbed turbulent 16 

flux. Accordingly an appropriate solution (blue line) may be estimated within the subset 17 

solution for which the frequency interval features the Ogive density peak as its lower bound. 18 

Essentially, the optimization problem, as posed to the optimization algorithm, lacks an 19 

element mirroring our basic sense of intuition. Different schemes to address this issue were 20 

investigated, though none proved robust enough at this time to compete with basic 21 

subjective evaluation during visual inspection. Further development of this aspect is of 22 

continued interest as subjective visual inspection, aside from being a very time consuming 23 

process, may result in personal bias on final flux estimates. Note the gradual decrease in 24 

optimization weighting of high-frequency Ogive density (Fig. 13a), which has been added to 25 

limit any influence of high-frequency instrument-specific non-white noise and dampening 26 

during the optimization. The high-frequency limit of the fitting interval is furthermore 27 

allowed to move to lower frequencies for closed-path instruments to account for excessive 28 

dampening of the high-frequency end of the spectrum often observed with this type of 29 

instrument. The latter is illustrated in the results and discussion section of this study. 30 

 31 
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Availability 1 

The executable code of our procedure Ogive optimization will be made available and can be 2 

acquired by e-mailing the corresponding author (jasi@envs.au.dk or lls@bios.au.dk). The program 3 

is coded in MATLAB and is optimized for use with the parallel computing toolbox. 4 
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Table 1: Number of flux estimates from the conventional method (N30min), the Ogive optimization 1 
method (NO2) and the number of combined pairs of estimates (NBoth) used to determine the relative flux-2 
estimate differences illustrated in Fig. 10.  3 

Site Flux 𝐍𝐍𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝐍𝐍𝐎𝐎𝟐𝟐  𝐍𝐍𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 
Abisko 
(fen) 

QSENS 
QLAT 
FCO2 

391 
344 
310 

418 
422 
385 

373 
342 
297 

Abisko 
(Lake) 

QSENS 
QLAT 
FCO2 

270 
199 
146 

247 
260 
195 

233 
197 
128 

RIMI QSENS 
QLAT 
FCO2 

325 
270 
264 

369 
232 
156 

294 
194 
132 

Daneborg QSENS 
QLAT 
FCO2 

328 
291 
324 

388 
402 
411 

289 
265 
310 

POLYI QSENS 
QLAT 
FCO2 

313 
301 
321 

306 
297 
261 

282 
263 
246 

ICEI QSENS 
QLAT 
FCO2 

459 
464 
469 

335 
257 
238 

316 
254 
230 
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 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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 2 

Figure 1: A number of typical observational situations shown in terms of co-spectra (top row) and Ogives 3 
(bottom row). Shown are the turbulent fluxes (red) and low-frequency/noise/dampening components 4 
(blue).  5 
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 1 

Figure 2: (A) Density pattern of 10.000 individual Ogive flux distributions following data perturbation of flux 2 
averaging time and running mean detrending for a 60 min observation from Abisko on the 2nd of July 2012 3 
at 7.45PM. The standard 30 min linear detrending is shown in red and atmospheric stability, mean wind-4 
speed and wind-origin (clockwise) are given in the bottom right. Also shown are (B) a smoothed raw 5 
atmospheric temperature signal (red line) and (C) a running covariance (5 min window, linear detrending) 6 
between 𝑤𝑤′ and 𝜃𝜃𝑣𝑣′ . 7 
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 1 

 2 

Figure 3: Theoretical cospectra (red line) and equivalent Ogives (black line) are shown for two cases: (A) 3 
instrument limitations (10 Hz as opposed to 20 Hz observation frequency) and insufficient flux averaging 4 
time (20 min as opposed to 30 min), both marked in blue/red dashed lines, may result in underestimation 5 
of the outer parts of the flux spectrum. The missing cospectral area and Ogive range (FLF1 and FHF1) is 6 
marked in orange and in blue respectively. The corrected Ogive is shown as a dashed black line. (B) 7 
Equivalently, if assuming the model is valid beyond 30 min and an observational frequency of 20 Hz 8 
respectively, the flux is likely somewhat underestimated using conventional methods, giving rise to 9 
additional Ogive correction terms (FLF2 and FHF2). Although illustrated similarly, generally FLF1 ≠ FLF2 and 10 
FHF1 ≠ FHF2. 11 
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Figure 4: Illustration of site locations and conditions. 3 
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 1 

Figure 5: 60 min observation of sensible heat flux recorded at Abisko on the 2nd of July 2012 at 9.15PM. 2 
Shown are (A) the Ogive density pattern (gray shading), modelled Ogive (Blue line), the standard 30 min 3 
linear detrended Ogive (red line) and the equivallent co-spectra of the modelled Ogive and standard 30min 4 
observation (Inner figure, top right).  Atmospheric stability, mean wind-speed and clockwise wind-origin are 5 
given in the bottom right box; (B) smoothed raw atmospheric temperature signal (red line); (C) running 6 
covariance (5 min window, linear detrend) between 𝑤𝑤′ and 𝜃𝜃𝑣𝑣′ . 7 
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 1 

Figure 6: 60 min observation of CO2 flux recorded at Abisko on the 10th of July 2012 at 10AM. The 2 
illustration is similar to fig. 5, except for the addition of a smoothed raw signals of atmospheric CO2 (black 3 
line) seen in (B). 4 
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 1 

Figure 7: 60 min observation of sensible heat flux recorded at Abisko on the 10th of July 2012 at 8.50PM. 2 
The illustration is similar to fig. 5. 3 
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 1 

Figure 8: 40 min observation of sensible heat flux recorded at Daneborg on the 13th of April 2012 at 2 
3.30PM. The illustration is similar to fig. 5. 3 
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 1 

Figure 9: 60 min observation of CO2-flux recorded at Abisko on the 10th of July 2012 at 3.20AM. The 2 
illustration is similar to fig. 5, except for the addition of a smoothed raw signals of atmospheric CO2 (black 3 
line) seen in (B). 4 
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 1 

Figure 10: 60 min observation of latent heat flux recorded at ICEI on the 27th of March 2012 at 1.30AM. The 2 
illustration is similar to fig. 5, except for the addition of a smoothed raw signals of atmospheric H2O (black 3 
line) seen in (B). 4 
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 2 

Figure 11: Relative difference in percent (See eq. 5) is shown logarithmically as a function of absolute flux 3 
estimate for all investigated sites. Also shown are the median (red line), standard deviation (light gray area) 4 
and 25-75% percentile (dark gray area) of the relative differences. In the bottom of the figure, histograms 5 
of absolute Ogive optimization flux estimate ranges are shown for each site. Numbers indicated to the left 6 
of the histograms are the respective maximum values.  7 

 8 

40 
 



 1 

 2 

Figure 12: As fig. 11, but here the relative difference is shown as a function of atmospheric stability zL−1 for 3 
all investigated sites.  4 
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 1 

Figure 13: 60 min observation of latent heat flux recorded at Abisko on the 12th of July 2012 at 8.50PM. (A) 2 
The 18 frequency interval optimization weights (black lines) and the final optimization weight (blue line) are 3 
shown alongside (B) the corresponding optimized Ogive solutions (green lines), the final Ogive solution 4 
(blue line) and the optimization bounds of the final Ogive solution (vertical blue lines). Otherwise, the 5 
illustration is similar to fig. 5.  6 
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