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Abstract

the successful application of the isotope mass-balance calculations for inferring the isotope

signature of the contamination source. The '*0/'°O ratios of the latter unambiguously indicate

organics with ample stratospheric O; that could have yielded the artificial CO. While the exact
contamination mechanism is not known, it is clear that the issue pertains only to the earlier
(first) phase of the CARIBIC project. Finally, estimated UT/LMS ozone '*0/'°0 ratios are

lower than those observed in the LMS within the same temperature range, suggesting that

value.

1 Introduction

Successful determination of the atmospheric carbon monoxide (CO) content based on the

collection of air samples depends on the preservation of the mixing ratio of CO inside the
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receptacle, from the point of sampling to the moment of physiochemical analysis in a

laboratory. A well known example in our field of research is the filling of pairs of glass flasks at

long transit times, especially during polar winter, was a perhaps not perfect, but certainly a

practical measure. Here we deal with a different case: Using aircraft-based collection of very

large air samples rendered duplicate sampling unpractical, yet analyses could be performed

soon after the sampling had taken place because of the proximity of the aircraft’s landin

location to the laboratory involved. A presumption of the analytical integrity of the process was

that the growth of CO in receptacles is gradual and jakes its time. Reminding Thomas Henry

troposphere/lowermost _stratosphere (UT/LMS) higher CO values were measured in the '

laboratory than measured in situ _during the collection of these air samples. Moreover,

measurement of the stable oxygen isotopic composition of CO from these tanks revealed

additional isotopic enrichments in '*O of 10%. or more. It was soon realised that this

phenomenon was due to the formation of CO in these tanks and/or possibly in the sampling

system and inlet tubing used, by reactions involving ozone (Brenninkmeijer et al., 1999).

Unexpectedly high '*0/'°O ratios in stratospheric ozone (O5) were discovered by Konrad

Mauersberger using a balloon-borne mass spectrometer (Mauersberger, 1981), which has
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discuss this phenomenon and turn its disadvantage,into an advantage, namely that of obtaininga -~

valid estimate of the oxygen isotopic composition of O; in the UT/LMS, an atmospheric o

N

domain not yet covered by specific measurements. The air samples we examine in this study

~
~

~
\
\
N

were collected onboard a passenger aircraft carrying an airfreight container with analytical and

\
\

air/aerosol sampling equipment on long distance flights from Germany to South India and the |

Caribbean within the framework of the CARIBIC project (Civil Aircraft for the Regular

\
\\
Investigation of the atmosphere Based on an Instrument Container, http:/www.caribic-

atmospheric.com).

2 Experimental and results

\

\
\
\

2.1 Whole air sampling

CARIBIC—1 (Phase #1, abbreviated hereafter “C1”) was operational from November 1998

until April 2002 using a Boeing 767-300 ER operated by LTU International Airlines

Brenninkmeijer et al., 1999). Using a whole air sample (WAS) collection system, twelve air

samples were collected per flight (of ~10 hours duration at cruise altitudes of 10—12 km) in

stainless steel tanks for subsequent laboratory analysis of the abundances of various trace gases,

including "CO. Large air samples were required in view of the ultra-low abundance of this

mainly cosmogenic tracer (10—100 molecules cm™> STP, about 40—400 amol/mol). Each Cl

WAS sample (holding ~350 litres of air STP) was collected within 15—20 min intervals

representing the integral of the compositions encountered along flight segments of ~250 km.
The overall uncertainty of the measured WAS [CO] is less than £1% for the mixing ratio and

+0.1%0/-+0.2%0 513C(COY8"0(CO).

for respectively (Brenninkmeijer, 1993:

Brenninkmeijer et al., 2001). Isotope compositions are reported throughout this manuscript

using &' = (R/'R «—1) relating the ratio of rare over abundant isotopes 'R of interest (i denotes

B¢, "0 or 0) to the standard ratio ‘Ry. These are V-SMOW of 2005.20x10" for "*0/'°0
(Gonfiantini, 1978:  Coplen, 1994) 386.72x10°° 70/"0

Brenninkmeijer, 2003). and V-PDB of 11237.2x10  for *C/"*C (Craig, 1957). respectively. As

and for (Assonov and

we mention above, the oxygen isotopic composition of the CO present in these WAS samples

\
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2.2 On-line instrumentation

In addition to the WAS] collection systems, both C1 and C2 measurement setups include
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .

different instrumentation for on-line detection of [CO] and [O;] (hereinafter the squared ‘',
)
brackets [] denote the abundance, i.e. concentration or mixing ratio, of the respective species).

Jnsitu CO analysis in C1 is done using a gas chromatography (GC)-reducing gas analyser N

””””””” \ W
which provides measurements each 130 s with uncertainty of +3 nmol/mol (Zahn et al., 2000). ', ',
N \
W

In C2, a vacuum ultraviolet fluorescence (VUV) instrument with lower measurement

\
\ \
I
]

W\
W\
\

\
\
v

2.3 Results

When comparing the CO abundances in relation to O; mixing ratios for C1 and C2,

differences are apparent in the LMS, where C2 CO values are systematically lower. This is

illustrated in Figure 1 (a) which presents the LMS CO-Oj; distribution of the C2 measurements

\
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\
\

N
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Natrella (2003), i.e. £1.5 and £3 IQR ranges define the inner and outer statistical fences (ranges

outside which the data points are considered mild and extreme outliers) of the C2 [CO]

observations. Because the CO levels cannot have changed over the period in question by the
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Unnatural elevations in the '*0/'°0 ratios of CO from WAS measurements are also evident, ~

as shown in Fig. 2. The large §'0(CO) departures that reach beyond +16%o are found to be
proportional to the concomitant O3 abundances (denoted with colour) and more prominent at

lower [CQJ (see also Fig. S2 in the Supplementary Material). A rather different relationship,

Brenninkmeijer et al. (1996) (hereafter denoted as “B96”). That is, the more stratospheric CO
is, the greater fraction of its local inventory is refilled with the photochemical component
stemming from methane oxidation with a characteristic 'O signature of ~0%o or lower
temperatures proceeds more readily than its production, as the reaction of hydroxyl radical
(OH) with CO, being primarily pressure-dependent, outcompetes the temperature-sensitive
reaction of OH with CH,4. Furthermore, as the lifetime of CO quickly decreases with altitude,
transport-mixing effects take the lead in determining the vertical distributions of [CO] and
at [CO] below 50 nmol/mol that line-up in a near linear relationship towards the end-members

with lowest '80/'°0 ratios. These result from the largest share of the '‘*O-depleted

reaction with OH (fractionation about ~11%o at pressures below 300 hPa, Stevens et al., 1980;
Rockmann et al., 1998b).

enrichment in heavy oxygen (above +60%o in 5'°0, Brenninkmeijer ef al,, 2003) is typical and ~
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stratospheric air, sampled into the same WAS tank. Such sampling-induced mixing renders an
unambiguous determination of the artefact source’ isotope signature rather difficult, because
neither mixing nor isotope ratios of the admixed air portions are known sufficiently well (see

below).

Differences between the WAS and in,situ measured [COJ — a possible indication that the

5.3+0.2 nmol/mol (1 SD of the mean, n = 408) and happen to be random with respect to any
operational parameter or measured characteristic in Cl, ie. irrespective of CO or Os
abundances. The quoted mixing ratio discrepancy remained after several calibrations between

the two systems had been performed, and likely results from the differences in the detection

methods, drifts of the calibration standards used (see details in Brenninkmeijer et al,, 2001) and

a short-term production of CO in the stainless steel tanks during sampling. The large spread of

‘ Awas-insitu of £3.5 nmol/mol (1o of the population) ensues from the fact that the in,situ

sampled air corresponds to (2—4)% of the concomitantly sampled WAS volume, as typically

integrity of the WAS CO is further affirmed by the unsystematic distribution of the artefact

compositions among tanks (an opposite case for 8'8O(CO,) in Cl is discussed by
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extremely well (adj. R* = 0.972, slope of 0.992+0.008 (1), n = 408). However, both anomalies
in [CO] and §'30(CO) manifest clear but complex functions of the concomitant [O5]. That is,

the same nature. Below we ascertain and quantify these.

3 Discussion

(STE), when a [CO] outside the statistically expected range results from the integration of air
having dissimilar ratios of the tracers’ abundances, viz. po,.co = [O3]/[CO]. For example, mixing
of two air parcels in a 15%:85% proportion (by moles of air) with typical po;.co of 700:24
(stratospheric) and 60:125 (tropospheric), respectively, yields an integrated composition with

pos.co of ~580:40 which indeed corresponds to C1 data (this case is exemplified by the mixing
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curve in Fig. 1). Nonetheless, occurrences of rather high (compared to the typical
24-26 nmol/mol) stratospheric CO mixing ratios (in our case, ~40 nmol/mol at the concomitant
[O3] of 500—600 nmol/mol) are rare. For instance, a deep STE similar to that described by
Pan et al. (2004) was observed by C2 only once (c¢f the outliers at [O;] of 500 nmol/mol in
Fig. 1), whereas the Cl outliers were exclusively registered in some 12 flights during
1997-2001. No relation between these outliers and the large-scale [CO] perturbation due to
CO mixing ratios should manifest themselves at lower [O;] as well. Other tracers detected in
CARIBIC provide supporting evidence against such strongly STE-mixed air having been
captured by CI. That is, the binned distributions for the water vapour and de-trended N,O
(similar to that for [CO] vs. [O;] presented in Fig. 1, not shown here) are greatly similar in C1
and C2. Whereas the small relative variations in atmospheric [N,O] merely confirm matching
[Os] statistics in CARIBIC, the stratospheric [H,O] distributions witness no po,,0 values

corresponding to the C1 outliers' po,.co, suggesting the latter being unnaturally low.

processing. Since the CARIBIC platform is not stationary, about 5 s long sampling of an insitu

air probe in Cl implies integration of the compositions encountered along some hundred
metres, owing to the high aircraft speed. This distance may cover a transect between
tropospheric and stratospheric filaments of much different compositions. The effect of such
‘translational mixing’ can be simulated by averaging the sampling data with higher temporal
frequency over longer time intervals. In this respect, the substantially more frequent CO data in
C2 (<1 s) were artificially averaged over a set of increasing intervals to reckon whether the long
sampling period in C1 could be the culprit for skewing its CO—O; distribution. As a result, the
original C2 data and their averages (equivalent to the C1 CO sample injection time) differ
negligibly, as do the respective po,.co values; the actual C2 CO—O; statistic in the region of
interest ([O;] of 540—620 nmol/mol) remains insensitive to integration of up to 300s.

Furthermore, a very strong artificial mixing with an averaging interval of at least 1200 s

involved in the stratospheric [CO] discrepancies seen in C1. It therefore stands to reason to
conclude that the sample contamination in C1 occurred prior the probed air reaching the

analytical/sampling instrumentation in the container, since clearly elevated stratospheric CO
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by integrating Eq. (1) using the in situ C1 [Os] data for each WAS sample.) By rewriting the

above equation w.r.t. the isotope signature of the admixed portion ‘d,, one obtains:
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expected from such calculation, yet accounting for a mere one-half of the (13.3—14.6)%o
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outboard to 275-300K inboard, sampling rate of ~12.85-10° moless ' corresponding to
350L STP sampled in 1200 s, inlet/tubing volume gauged to yield exposure times of 0.01 to
0.1 s due to variable air intake rate, [O;] of 600 nmol/mol), the overall reaction rate coefficient
(k. in Eq. (A1) from Appendix A) must be on the order of 6:10 "/z, [molec™ ¢cm® s '], where 7.
is the exposure time. Assuming the case of a gas-phase CO production from a recombining O;
derivative and an unknown carbonaceous compound X, the reaction rate coefficient for the
latter (¥, in Eq. (A1) in Appendix A) must be rather high, at least ~6:10'° [molec ' cm®s™]
over 7. = 1/100 s. This number decreases proportionally with growing 7, and [X], if we take less
strict exposure conditions. Nonetheless, in order to provide the amounts of artefact CO we
detect, a minimum abundance of 20 nmol/mol (or up to 4 pg of C per flight) of X is required,
which is not available in the UT/LMS from the species readily undergoing ozonolysis, e.g.

alkenes.

Second, a more complex heterogeneous chemistry on the inner surface of the inlet or

supplying tubing may be involved. Such can be the tracers’ surface adsorption, (catalytic)

the surfaces with subsequent production of the reactive atomic oxygen species (see, e.g.,

Liet al,, 1998, also Oyama, 2000). It is probable that sufficient amounts of organics have
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remained on the walls of the sampling line exposed to highly polluted tropospheric air, to be
later broken down by the products of the heterogeneous decomposition of the ample

effects in the C1 CO contamination problem is very limited.

4 Conclusions

quantify the artefact CO production from O; likely in the sample line of the CARIBIC—1

contamination isotope signatures even in the case of a large sampling-induced mixing of the air
with very different compositions. Obtained as a collateral result, the estimate of the 3'%0(0;) in

the UT/LMS appears adequate, calling, however, for additional laboratory data (e.g., the
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temperature-driven variations of the O; formation KIE at pressures above 100 hPa) for a more

unambiguous verification.

Appendix A. Contamination Kinetic framework

discriminating the C1 outliers from respective C2 data in the following kinetic framework:

o (+X—‘>)

0, —— o\ |7 0,CO,

(,..+O3 "—>”.)(K*l) (A1)
C, = f 1%k [0s][] *k. [X]dt = 2, k. [05] =

where k. denotes the overall pseudo-first-order rate coefficient of the reaction chain leading to

the artefact CO production with the respective yield o,. The individual rate coefficients *%, and

- { Deleted

. ozone

- { Deleted

. ozone

factors K and «, respectively. Practically we find that variations in C, are exhaustively described

using [Os]. x and k. (the latter are obtained in a regression analysis). The value of k. thus

integrates the influence of the unknown (and likely invariable) [X], Xk; and K. The relation

defined by Eq.(Al) provides the best approximation for C. as a function of [O;] at k=
2.06+0.38, suggesting two chain steps involving Os or its derivatives. At k= 2, the ratio

C./[Os]* (essentially proportional to the reaction time 7. and overall rate coefficient k) is found

taken equal to the [Os] bin size owing to the N,O—O; and H,0—Oj; distributions matching well
between the datasets). Lower Ao, values, otherwise, should have resulted in a noticeable (i.e.,

greater than 20 nmol/mol) decrease in the C1 O; abundances with respect to the C2 levels.

13

- { Deleted:

(

o ‘[ Deleted

: /mol)™" (

N C\’ { Deleted

. amere

N ‘[ Deleted

. ozone

) ‘[ Deleted

: comparable

- - - { Deleted:

c,

o JC




Appendix B. Corrections to measured 8> C(CO) values due to the oxygen

MIF

fractionation, MIF) with a substantially higher relative enrichment in '"O over that in '*O
(above +25%o in A'70 = (8'70+1)/(8"*0+1)’~1, p = 0.528) when compared to the majority of
terrestrial oxygen reservoirs that are mass-dependently fractionated (i.e., with A'’O of ~0%o)
(see Brenninkmeijer et al. (2003) and refs. therein). CO itself also has an unusual oxygen

isotopic composition, possessing a moderate tropospheric MIF of around +5%. in A'’O(CO)

oxygen induces proportional changes to A'’O(CO) that largely exceed its natural atmospheric
variation. Furthermore, the MIF has implications in the analytical determination of §*C(CO),
because the presence of C'7O species interferes with the mass-spectrometric measurement of
the abundances of ">CO possessing the same basic molecular mass (m/e is 45). When inferring
the exact C'70/C'®0 ratio in the analysed sample is not possible, analytical techniques usually
involve assumptions (e.g., mass-dependently fractionated compositions or a certain non-zero
effect for the C1 CO data, the artefact CO produced from O; had contributed with unexpectedly
high C'7O abundances that led to the overestimated 8C(CO) analysed. Knowing the
contamination magnitude C,. and assuming the typical O; MIF composition being "°A., the

. - 13 . .
respective bias "5, is calculated using

A"0(CO)=("°AC, + A, C)(C,)"

. (B1)
€5, =7.2568-102A"70(CO)

where "CA, denotes the natural, ie. expected “true” value of A'’O(CO). The remaining
parameters pertain to the contamination kinetic framework (see Appendix A, Eq. (Al)). For the
purpose of the current estimate it is sufficient to take '’A, of +5%o representing equilibrium
A, the value of +30%o (the average A'7O(0s) expected from the kinetic laboratory data at
conditions met along the C1 flight routes, see Sect. 3.2 and Table 1) is adopted. The coefficient
that proportionates “d, and A'’0 in Eq. (B1) is reckoned for the CO with initially unaccounted
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MIF (e.g., the sample is assumed to be mass-dependently fractionated) and quantifies some

extra +0.73%o in the analysed 31C(Co) per every +10%o of A0O(CO) excess (Assonov and

Brenninkmeijer, 2001). The most contaminated Cl  WAS CO samples at [O;] above

300 nmol/mol are estimated to bear A'’O(CO) of (6-12)%o corresponding to fractions of
(0.10-0.27) of the artefact CO in the sample. Accordingly, the reckoned §"*C(CO) biases span
(0.5-0.9)%o. Although not large, these well exceed the 5"*C(CO) measurement precision of

+0.1%o and were corrected for, and therefore are taken into account in the calculations with the
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Tables

Table 1. Ozone '*0/'°0 isotope ratios from literature and this study
p

o

Domain T[K] P [hPa] 370(03) [%o] Remarks -~ { Deleted: .
Stmophee R = (N 0@ I -~ peletedt: Lis
UT/LMS 220-235 240-270 89-95 (8) ER ~ | peleted: *
84-88 (6) T o { Deleted: ®
91-98 (9) TC
112-124 (17) C
Laboratory 190-210 ~67 87-97 (6) 2 e { Deleted: ¢
220-235 ~67 102-110 (6) 2 - { Deleted: *
220-235 240-270 95-103 - { eleted: *
Notes: Values in parentheses denote the average of the estimates’ standard errors. The expected O isotope composition -~ ~ { Deleted: ozone
on the V-SMOW scale is calculated from the O enrichments ¢ reported relative to O, uﬁsiggf)ixQ(Q_L)v;s@w = - { Deleted: ozone
3"°0(02)v-smow + "%6(0s)o, + [3"°0(02)v-smow * "*6(0s)o,]-
T Observations (see Krankowsky ef . (2007) and refs. therein). lowermost values (19-25 k). Quoted temperaiure -~ | Deleted: ”
range is derived by matching measured 3'°0(0;) and laboratory data (seenotey). - { Deleted: ©
+ This study, C1 observations (10~12 km). Letters denote the estimates derived using the data from - { Deleted: ¥
Bhattacharya et al. (2008) and assuming only terminal (T), only central (C) and equiprobable terminal and central
(TC) s atoms transfer to the artefactco. _ - { Deleted: ozone
+_Caleulated using the laboratory KIE temperature dependence data summarised by Janssen eral. (2003). - { Deleted: ©
+ Calculated assuming a pressure dependence of the O; formation KIE similar to that measured at 320K (see - { Deleted: @

W o U

Guenther et al. (1999) and refs. therein).
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Figure Captions

CARIBIC in the LMS ([O;]>300 nmol/mol). The shaded area is the two-dimensional histogram of the C2

measurements (all C2 data obtained until June 2013) counted in 5x1 nmol/mol size [O;]x[CO] bins, thus

darker areas emphasise greater numbers of particular CO—O; pairs observed. Small symbols denote the

total 408) are shown with large symbols. Thin and thick step-lines demark the inner and outer statistical

fences (ranges outside which the data points are considered mild or extreme outliers, see text) of the C2

and C2 data shown in box-and-whisker diagrams for samples clustered in 20 nmol/mol O5 bins (whiskers

represent 9%/91%" percentiles). (¢) Sample statistic for each CARIBIC dataset (note the C2 figures scaled

down by a factor of 1000). (d) Estimates of the C1 in situ CO contamination strength C,. as a function of

[Os] (solid line) obtained by fitting the difference ACO between the C2 and Cl in situ [CO] (small

symbols) in the kinetic framework (see Appendix A, Eq. (A1)). Step line shows the ACO for the statistical

averages (the shaded area equals the height of the inner statistical fences of the C2 data). Large symbols

denote the estimates of C, in the C1 WAS data (slight variations vs. the in situ data are due to the sample

mixing effects. see Sect. 3). Colour denotes the respective C1 WAS §"0(CO) (note that typically 6—7

in situ measurements correspond to one WAS sample). Note: The entire C1 CO/O; dataset is presented in

the Supplementary Material, Fig. S1.

Fig. 2. '%0/"0 isotope composition of CO as a function of its reciprocal mixing ratio. Triangles present
the data from the remote SH UT/LMS obtained by Brenninkmeijer ez al. (1996) (B96). Colour refers to the
concomitantly observed O; abundances; note the extremely low [Os] encountered by B96 in the Antarctic
dashed arrow) C1 WAS data, respectively, with the symbol size scaling proportional to the estimated

contamination magnitude (see text).

source isotope signatures ‘0, as a function of the respective coefficient of determination (R*). Colour
denotes the number of samples in each subset selected. Solid and dashed lines present the best guess
+1 SD for the §'*0(05) and §"*C(C.) estimates. Dashed circles mark the values obtained at highest R for

05, regression (above 0.9). See text for details.
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greater. It was soon realised that this phenomenon was due to the formation of CO
in these tanks and/or in the sampling system and inlet tubing used, by reactions
involving ozone (Brenninkmeijer et al., 1999).
Unexpectedly high '®0/'°0 ratios in stratospheric ozone (O3) were discovered by

Konrad Mauersberger using a balloon-borne mass spectrometer (Mauersberger,

1981).
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the atypical 'O and the subsequently discovered concomitant disproportionately

high '’O enrichments of stratospheric O3 were subject to

Page 2: [3] Deleted Sergey Gromov 19/10/2014 7:43 PM
However, measurement of the
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ozone is generally problematic
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its concentrations may be higher
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helps a good deal to obtain information on the O3 isotopic composition

Page 2: [7] Deleted Sergey Gromov 19/10/2014 7:43 PM
The air samples we refer to here were collected onboard a passenger aircraft

carrying an airfreight container with analytical and air/aerosol sampling equipment on
long distance passenger flights between Germany and South India/the Caribbean
within the framework of the CARIBIC project (Civil Aircraft for the Regular
Investigation of the atmosphere Based on an Instrument Container,

http://www.caribic-atmospheric.com).
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C1 WAS samples for the laboratory analyses were collected in stainless steel
tanks (holding ~350 litres of air STP) sampled within ~20 min intervals representing
the integral of the compositions encountered along flight segments of ~250 km. The
overall uncertainty of the measured WAS [CO] is less than +1% for the mixing ratio

and £0.1%o/+0.2%o for 8"*C(C0O)/5'*0(CO), respectively (Brenninkmeijer, 1993;
Brenninkmeijer et al., 2001). The isotope compositions are reported throughout this
manuscript using &' = (‘R/'Ry—1) relating the ratio of rare over abundant isotopes ‘R of
interest (i denotes 13C, B0 or 17O) to the standard ratio ‘Ry. These are V-SMOW of
2005.20x107° for '*0/'°0 (Gonfiantini, 1978; Coplen, 1994) and 386.72x10° for
70/'°0 (Assonov and Brenninkmeijer, 2003), and V-PDB of 11237.2x107° for
BC/MC (Craig, 1957), respectively.



New version of Fig. 1

@ ClWAS
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—- mixing curve
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Fig. 1. (a) Distribution of CO mixing ratios as a function of
concomitant O; mixing ratios measured by CARIBIC in the LMS
([03]»300 nmol/mol). The shaded area is the two-dimensional
histogram of the C2 measurements (all C2 data obtained until June
2013) counted in 5%1 nmol/mol size [O;]*[CO] bins, thus darker
areas emphasise greater numbers of particular CO—-O; pairs
observed. Small symbols denote the original Cl1 in situ
measurements (black) and corrected for the artefacts (red); the C1
WAS analyses (11 of total 408) are shown with large symbols. Thin

40 and thick step-lines demark the inner and outer statistical fences
35 (ranges outside which the data points are considered mild or
extreme outliers, see text) of the C2 data, respectively. The dashed
30 curve exemplifies compositions expected from the linear mixing of
. very different (e.g., tropospheric and stratospheric) end-members.
_g %6 (b) Statistics on CO mixing ratios from C1 and C2 data shown in
X o box-and-whisker diagrams for samples clustered in 20 nmol/mol Os
g » bins (whiskers represent 9915t percentiles). (c) Sample statistic for
= each CARIBIC dataset (note the C2 figures scaled down by a factor
o 20 of 1000). (d) Estimates of the C1 in situ CO contamination strength
T 80 C. as a function of [O;] (solid line) obtained by fitting the
2 5 Cl in—situ difference ACO between the C2 and C1 in situ [CO] (small
= Cl in-situ (corrected) symbols) in the kinetic framework (see Appendix A, Eq. (Al)).
£ 60 ng‘x::;::; Step line shows the ACO for the statistical averages (the shaded
8 C2 stat. fence (outer) area equals the height of the inner statistical fences of the C2 data).
C2 stat. fence (inner) Large symbols denote the estimates of C. in the C1 WAS data
50 (slight variations vs. the in situ data are due to the sample mixing
effects, see Sect. 3). Colour denotes the respective C1 WAS
L 3'%0(CO) (note that typically 67 in situ measurements correspond
40 to one WAS sample). Note: The entire C1 CO/O; dataset is
35 presented in the Supplementary Material, Fig. S1.
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Updated Fig. 2
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Fig. 2. "80/'°0 isotope composition of CO as a function of its
reciprocal mixing ratio. Triangles present the data from the remote
SH UT/LMS obtained by Brenninkmeijer et al. (1996) (B96).
Colour refers to the concomitantly observed O; abundances; note
the extremely low [Os] encountered by B96 in the Antarctic "ozone
hole" conditions. Filled and hollow circles denote the original and
corrected (as exemplified by the dashed arrow) C1 WAS data,
respectively, with the symbol size scaling proportional to the
estimated contamination magnitude (see text).
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