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Abstract

For the first time, a ∼ decadal (9 years from 2000 to 2008) air quality model simulation
with 4 km horizontal resolution and daily time resolution has been conducted in Cali-
fornia to provide air quality data for health effects studies. Model predictions are com-
pared to measurements to evaluate the accuracy of the simulation with an emphasis5

on spatial and temporal variations that could be used in epidemiology studies. Better
model performance is found at longer averaging times, suggesting that model results
with averaging times ≥ 1 month should be the first to be considered in epidemiological
studies. The UCD/CIT model predicts spatial and temporal variations in the concen-
trations of O3, PM2.5, EC, OC, nitrate, and ammonium that meet standard modeling10

performance criteria when compared to monthly-averaged measurements. Predicted
sulfate concentrations do not meet target performance metrics due to missing sulfur
sources in the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC,
nitrate, and ammonium have mean fractional biases that meet the model performance
criteria in 95 %, 100 %, 71 %, 73 %, and 92 % of the simulated months, respectively.15

The base dataset provides an improvement for predicted population exposure to PM
concentrations in California compared to exposures estimated by central site monitors
operated one day out of every 3 days at a few urban locations.

Uncertainties in the model predictions arise from several issues. Incomplete un-
derstanding of secondary organic aerosol formation mechanisms leads to OC bias20

in the model results in summertime but does not affect OC predictions in winter
when concentrations are typically highest. The CO and NO (species dominated by
mobile emissions) results reveal temporal and spatial uncertainties associated with
the mobile emissions generated by the EMFAC 2007 model. The WRF model tends
to over-predict wind speed during stagnation events, leading to under-predictions25

of high PM concentrations, usually in winter months. The WRF model also gener-
ally under-predicts relative humidity, resulting in less particulate nitrate formation es-
pecially during winter months. These issues will be improved in future studies. All
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model results included in the current manuscript can be downloaded free of charge
at http://faculty.engineering.ucdavis.edu/kleeman/.

1 Introduction

Numerous scientific studies have demonstrated associations between exposure to am-
bient airborne particulate matter (PM) and a variety of health effects, such as cardio-5

vascular diseases (Dockery, 2001; Ford et al., 1998; Franchini and Mannucci, 2009;
Langrish et al., 2012; Le Tertre et al., 2002), respiratory diseases (Gordian et al., 1996;
Hacon et al., 2007; Hughes and Tolsma, 2002; Willers et al., 2013), low birth weight and
birth defects (Barnett et al., 2011; Bell et al., 2010; Brauer et al., 2008; Laurent et al.,
2014, 2013; Stieb et al., 2012), lung cancer (Beelen et al., 2008; Beeson et al., 1998;10

Pope et al., 2002; Vineis et al., 2006), mortality and life expectancy (Chen et al., 2013;
Correia et al., 2013; Dockery et al., 1993; Franklin et al., 2007; Goldgewicht, 2007; Kan
and Gu, 2011; Laden et al., 2000; Ostro et al., 2006; Pope et al., 2009). Recently a few
studies have investigated the associations between particle composition and health
effects (Bell et al., 2010, 2007; Burnett et al., 2000; Cao et al., 2012; Franklin et al.,15

2008; Ito et al., 2011; Krall et al., 2013; Levy et al., 2012; Mar et al., 2000; Ostro et al.,
2007, 2010; Son et al., 2012). However, there remains large uncertainty about which
PM components are most responsible for the observed health effects, possibly due to
the fact that central site monitoring measurements used in the PM composition studies
have limited temporal, spatial, and chemical resolution, which could potentially lead to20

misclassification of exposure estimates and mask some detailed correlations. Central
site PM measurements typically have a collection schedule of 1 sample every 3 or 6
days at a few sites used to represent an entire population region. In addition, important
particle size distribution and chemical composition information is not always routinely
measured. Additional information relating PM composition to health effects would pro-25

vide a solid foundation to design effective PM control strategies to protect public health
at a reduced economic and social cost.
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Chemical transport models (CTMs) have recently been used as one of the alterna-
tive approaches to address the limitations of central site monitors (Anenberg et al.,
2010; Bravo et al., 2012; Sarnat et al., 2011; Tainio et al., 2013). The latest generation
of CTMs represents a “state-of-science” understanding of emissions, transport and at-
mospheric chemistry. CTM predictions provide more detailed composition information5

and full spatial coverage of air pollution impacts with a typical temporal resolution of 1 h.
CTMs have great potential to fill the time and space gaps in the central site monitoring
dataset for PM measurements leading to improved exposure assessment in epidemi-
ological studies. The CTM applications in epidemiology studies to date have gener-
ally used relatively coarse spatial resolutions in order to reduce computational burden.10

Global CTMs have used horizontal resolutions of over 100 km and regional CTMs have
used resolution of 12–36 km. These resolutions cannot capture fine spatial gradients
of PM concentrations, especially in areas with diverse topography and demography.
Previous CTM predictions used in epidemiology studies have also been limited to time
periods less than one year. Recently Zhang et al. (Zhang et al., 2014a) evaluated the15

performance of the Community Multiscale Air Quality (CMAQ) model over a 7 year pe-
riod in the Eastern United States (US), but no other long-term CTMs studies for health
effects analyses have been published to date. As a further limitation, previous epidemi-
ology studies based on CTM predictions have mostly used predicted particles with
aerodynamic diameter less than 2.5 µm (PM2.5) mass concentrations without taking20

full advantage of the ability of CTMs to simultaneously estimate population exposure
to multiple particle size fractions, chemical components, and source contributions.

The objective of the current study is to develop and apply advanced source-oriented
CTMs to predict the concentrations and sources for enhanced PM exposure assess-
ment in epidemiological studies over a long-term period with high spatial resolution in25

California. California is chosen as the focus area for the current study because it has
extensive infrastructure to support CTM studies, and it has one of the largest popula-
tions in the US that is experiencing unhealthy levels of PM pollution. In 2013, 104 US
counties with a population of 65 million people are in non-attainment with the National
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Ambient Air Quality Standards (NAAQS) for PM2.5 (EPA, 2013). Approximately half of
that population (31 million people) lives in 29 California counties meaning that Cali-
fornia suffers a disproportionately large share of US PM-related mortality (Fann et al.,
2012). The California Air Resources Board (CARB) estimates that 14 000–24 000 Cali-
fornia residents die prematurely each year due to particulate air pollution (Tran, 2008).5

The severity of this problem has motivated extensive investments to support air pollu-
tion studies. California has the densest ambient PM measurement network, accurate
emissions inventories, and the most health effects study groups of any state in the US.
Rich datasets are available to support model application and evaluation.

The current study is the first attempt to address the sparse PM data problem in10

exposure assessment using CTM results over a ∼ decadal time period (9 years from
2000 to 2008) over a domain spanning ∼ 1000 km at a spatial resolution of 4 km. Com-
panion studies have modeled primary PM2.5 and PM0.1 (particles with aerodynamic
diameter less than 0.1 µm) concentrations and sources in California (Hu et al., 2014a,
b). The current paper, as the third in the series, focuses on model evaluation of total15

(=primary+ secondary) PM2.5 and major components elemental carbon (EC), organic
compounds (OC), nitrate, sulfate, ammonium), emphasizing the aspects of temporal
and spatial variations, to identify the features of the CTM results that could add skill to
the exposure assessment for epidemiological studies. A future study will investigate the
model capability for PM source apportionment of primary and secondary OC, which is20

currently an area with great uncertainty.

2 Methods

2.1 Air quality model description

The host air quality model employed in the current study is based on the Eule-
rian source-oriented University of California-Davis/California Institute of Technology25

(UCD/CIT) chemical transport model (Chen et al., 2010; Held, 2004; Held et al., 2005;
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Hu et al., 2012, 2010; Kleeman and Cass, 2001; Kleeman et al., 1997, 2007; Mah-
mud, 2010; Mysliwiec and Kleeman, 2002; Rasmussen et al., 2013; Ying, 2008; Ying
et al., 2007; Ying and Kleeman, 2006; Zhang and Ying, 2010). The UCD/CIT model in-
cludes a complete description of atmospheric transport, deposition, chemical reaction,
and gas-particle transfer. The details of the standard algorithms used in the UCD/CIT5

family of models have been described in the above references and therefore are not re-
peated here. Only the aspects that are updated during the current study are discussed
in the following section.

The photochemical mechanism used by the UCD/CIT model was updated to reflect
the latest information from smog-chamber experiments. The SAPRC-11 photochemical10

mechanism (Carter and Heo, 2012a, 2013) was used to describe the gas-phase chem-
ical reactions in the atmosphere. The secondary organic aerosol (SOA) treatment was
updated following the method described in Carlton et al. (2010). Seven organic species
(isoprene, monoterpenes, sesquiterpenes, long-chain alkanes, high-yield aromatics,
low-yield aromatics, and benzene) are considered as precursors for SOA formation.15

A total of twelve semi-volatile products and seven nonvolatile products are formed from
the oxidation of the precursor species. The gas-particle transfer of the semi-volatile
and nonvolatile products in the UCD/CIT model is dynamically calculated based on the
gas vapor pressures calculated over the particle surface and the kinetic limitations to
mass transfer. The explicit chemical reactions and the parameters for the thermody-20

namic equilibrium calculation (i.e., enthalpy of vaporization, saturation concentrations,
and stoichiometric yields) are provided in Carlton et al. and references therein (Carlton
et al., 2010).

Model simulations were configured using a one-way nesting technique with a parent
domain of 24 km horizontal resolution that covered the entire state of California (re-25

ferred to as CA_24 km) and two nested domains with 4 km horizontal resolution that
covered the Southern California Air Basin (SoCAB) (referred to as SoCAB_4 km) and
San Francisco Bay Area + San Joaquin Valley (SJV) + South Sacramento Valley air
basins (referred to as SJV_4 km) (shown in Fig. 1). The nested 4 km resolution do-

21002

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/20997/2014/acpd-14-20997-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/20997/2014/acpd-14-20997-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 20997–21036, 2014

Model performance
on temporal and
spatial variations

J. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

mains are configured to cover the major ocean, coast, urban, and rural regions that
influence California’s air quality and, most importantly, to cover most of the California’s
population for the purpose of health effects analyses. Over 92 % of California’s pop-
ulation lives in the 4 km domains based on the most recent census information. The
UCD/CIT model was configured with 16 vertical layers up to a height of 5 km above5

ground level in all the mother and nested domains, with 10 layers in the first 1 km. Par-
ticulate composition, number and mass concentrations are represented in 15 size bins,
ranging from 0.01 to 10 µm in diameter. Primary particles are assumed to be internally
mixed, i.e., all particles within a size bin have the same composition. Previous stud-
ies (Ying et al., 2007) have shown that this assumption provides adequate predictions10

for total PM concentrations relative to source-oriented mixing treatments in California
when feedbacks to meteorology are not considered (Zhang et al., 2014b).

2.2 Meteorology and emissions

Hourly meteorology inputs (wind, temperature, humidity, precipitation, radiation, air
density, and mixing layer height) were generated using the Weather Research and15

Forecasting model (WRF) v3.1.1 (Wei Wang, January 2010; William C. Skamarock,
June 2008). Two-way nesting was used with the outer domain at 12 km resolution
and the inner nested domain at 4 km resolution. North American Regional Reanaly-
sis (NARR) data with 32 km resolution and 3 h time resolution was used as initial and
boundary conditions of the coarse 12 km domain. The WRF model was configured with20

31 vertical layers up to 100 hpa (around 16 km). Four-dimensional data assimilation
(FDDA) was used. The YSU boundary layer scheme, thermal diffusion land-surface
scheme, and Monin–Obukhov surface layer scheme were used based on results from
a previous study in California (Mahmud, 2010; Zhao et al., 2011). Surface friction veloc-
ity (u∗) was increased by 50 % to improve the surface wind predictions (Hu et al., 2012,25

2014a). A sensitivity simulation conducted for the year 2000 revealed that increasing
u∗ by 50 % improved the mean wind bias from 1.15 m s−1 to −0.50 m s−1, and low-
ered the root-mean-square error from 2.95 to 2.20 m s−1. Hourly average meteorology
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outputs at the air quality model vertical layer heights were created. The meteorology
predictions were evaluated against meteorological observations (CARB, 2011a). The
meteorological statistical evaluation over the period 2000–2006 has been presented in
a previous study (Hu et al., 2014a), and the results in the period 2007–2008 are con-
sistent with those years. In summary, meteorology predictions of temperature and wind5

speed generally meet benchmarks suggested by Emery et al. (2001). Mean fractional
biases (MFBs) of temperature and wind are generally within ±0.15, root mean square
errors (RMSEs) of temperature are around 4 ◦C, and RMSEs of wind are generally
lower than 2.0 m s−1, especially in the SoCAB and SJV air basins which are the focus
of the current study. Relative humidity is under-predicted, consistent with findings in10

other studies in California (Bao, 2008; Michelson et al., 2010). Wind, temperature and
humidity are the major meteorological factors that influence the PM concentrations.
Further discussions of the uncertainties in meteorology predictions on PM predictions
are included in the Results and Discussions section.

Hourly gridded gas and particulate emissions were generated using an updated ver-15

sion of the emissions model described by Kleeman and Cass (Kleeman and Cass,
1998). The standard emissions inventories from anthropogenic sources (i.e., point
sources, stationary area sources, and mobile sources) were provided by CARB. Size
and composition resolved particle emissions were specified using a library of primary
particle source profiles measured during actual source tests (Cooper, 1989; Harley20

et al., 1992; Hildemann et al., 1991a, 1991b; Houck, 1989; Kleeman et al., 2008, 1999,
2000; Robert et al., 2007a, b; Schauer et al., 1999a, b, 2001, 2002a, b; Taback et al.,
1979). A few studies have revealed some uncertainties associated with the standard
emissions inventories. Millstein and Harley (Millstein and Harley, 2009) found that PM
and NOx emissions from diesel-powered construction equipment were over-estimated25

by a factor of 3.1 and 4.5, respectively. Countess (Countess, 2003) suggested that
a scaling factor of 0.33–0.74 should be applied to the fugitive dust emissions in the
California’s San Joaquin Valley. Therefore, scaling factors of 0.32 for off-road diesel
sources and 0.50 for dust emissions were applied in the current study. The EMFAC
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2007 model (CARB, 2008) was used to scale the mobile emissions using predicted
temperature and relative humidity fields through the entire nine-year modeling episode.
Biogenic emissions were generated using the Biogenic Emissions Inventory System
v3.14 (BEIS3.14), which includes a 1 km resolution land cover database with 230 differ-
ent vegetation types (Vukovich and Pierce, 2002). Sea-salt emissions were generated5

on-line based on the formulation described by de Leeuw et al. (2000) for the surf zone
and the formulation described by Gong (2003) for the open ocean. Emissions from wild-
fires and open burning at 1km×1km resolution were obtained from the Fire INventory
from NCAR (FINN) (Hodzic et al., 2007; Wiedinmyer et al., 2011). The FINN inventory
provides SAPRC99 speciated daily emissions of gaseous and particulate emissions10

(EC, OC, PM2.5 and PM10) based on satellite observations of open burning events.
Each open burning event is allocated to model grid cells of each domain based on
the reported longitude/latitude of the event and the area burned. The emissions were
injected at the height of the atmospheric mixing layer (PBL). The temporal variation of
wildfire emissions was obtained from the Western Regional Air Partnership (WRAP)15

report (WRAP, 2005). A size distribution profile was calculated based on assumptions
described in Hodzic et al. (2007).

2.3 Ambient air quality measurements

The evaluation dataset was compiled from several measurement networks, includ-
ing CARB’s “2011 Air Quality Data DVD” (CARB, 2011b) and the database main-20

tained by the Interagency Monitoring of Protected Visual Environments (IMPROVE).
The data DVD includes daily average mass concentrations of PM2.5, EC, OC, nitrate,
sulfate, ammonium, and trace metals every 3 or 6 days at the sites of the PM2.5
Speciation Trends Network (STN) and the State and Local Air Monitoring Stations
(SLAMS). There are a total 13 PM2.5 speciation sites included in the DVD covered25

in the 4 km domains during the modeling periods. The precision of STN measure-
ments is estimated to be 3.5 %, 8.6 %, and 3.9 % for sulfate, nitrate, and ammonium,
respectively (Sickles Ii and Shadwick, 2002). Measured EC concentrations at 5 sites
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are found to be exactly 0.5 µg m−3 on > 80 % of the measurement days, suggesting
corrupt or missing data at these locations. Therefore these 5 sites were excluded
in the evaluation for EC, but still included in the evaluation for other PM compo-
nents. The OC data were not blank corrected, resulting in a positive artifact by the
NIOSH5040 method that is equivalent to approximately 1 µg m−3. Measured OC con-5

centrations were blank corrected in the current study by subtracting 1 µg m−3 from all
OC measurements. The IMPROVE network provides daily average mass concentra-
tions every 3 days for PM2.5, EC, OC, nitrate, sulfate, and soil. There are a total of
9 IMPROVE sites covered in the 4 km domains. The precision of IMPROVE mea-
surements is estimated to be 4–6 % for PM2.5 mass, nitrate, and sulfate, and to be10

> 15 % for EC and OC (http://vista.cira.colostate.edu/improve/Publications/OtherDocs/
IMPROVEDataGuide/IMPROVEDataGuide.htm). Daily average PM10 mass measure-
ments and hourly measurements of several key gaseous pollutants (ozone, CO, NO,
NO2, and SO2) are also included in the data DVD. There are a total of 66 PM2.5 Federal
Reference Method (FRM) sites covered in the 4 km domains. Frank (2006) found that15

FRM PM2.5 mass measured using STN monitors was within ±30 % of reconstructed
fine mass (RCFM) concentrations measured using IMPROVE monitors.

3 Results and discussions

3.1 Statistical evaluation

Statistical measures of MFB and mean fractional error (MFE) were calculated to eval-20

uate the accuracy of model estimates in space and time. Boylan and Russell (2006)
proposed concentration dependent MFB and MFE performance goals and criteria, re-
alizing that lower concentrations are more difficult to accurately predict. The perfor-
mance goals are the level of accuracy close to the best that a model can be expected
to achieve, while performance criteria are the level of accuracy acceptable for standard25

modeling applications.
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Figures 2 and 3 show the monthly MFB and MFE values, respectively, of predicted
daily average EC, OC, nitrate, ammonium, sulfate and total PM2.5 mass in the 4 km
domains. Measured EC, OC, nitrate, ammonium, and total PM2.5 mass concentrations
follow similar seasonal patterns with high concentrations occurring in winters (indicated
by blue colors in figures) and low concentrations occurring in summers (indicated by5

red colors in figures). These patterns are driven by the meteorological cycles (i.e.,
lower mixing layer and wind speed providing less dilution, and lower temperature en-
couraging partitioning of ammonium nitrate to the particle phase) and the emissions
variations (i.e., additional wood burning emissions for home heating in winters). The
opposite seasonal variations in sulfate concentrations are observed, due to higher ox-10

idation rates from S(IV) to S(VI) and higher sulfur emissions from natural sources in
summer (Bates et al., 1992).

EC predictions are in excellent agreement with measurements. MFBs in all months
and MFEs in 107 months out of the total 108 months are within the model performance
goal. EC MFBs and MFEs show no significant difference among months/seasons, in-15

dicating consistently good EC performance during the entire 9 year modeling period.
OC, nitrate, sulfate, and ammonium, the PM components that include the secondary
formation pathways, meet the MFBs model performance criteria in 71, 73, 46, and
92 % of the simulated months, respectively. These components generally have good
agreement between predictions and measurements in winter months, with only a few20

months not meeting the performance criteria. When analyzing by season, predicted
concentrations of these species are found to be more biased in summer months, es-
pecially for sulfate and nitrate. Different factors influence the seasonal profile of each
species. The more significant OC under-prediction in summertime is mainly associ-
ated with the under-prediction of SOA due to incomplete knowledge of SOA formation25

mechanism at the present time. Similar patterns have been reported in other model-
ing studies outside California (Matsui et al., 2009; Volkamer et al., 2006; Zhang et al.,
2014a; Zhang and Ying, 2011). Measured nitrate concentrations in summertime (1–
5 µg m−3) are factors of 2–5 lower than concentrations in wintertime (5–12 µg m−3).
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Model predictions tend to underestimate the low particle phase nitrate concentrations
in summer, especially when temperatures exceed 25 ◦C. Model predictions for partic-
ulate nitrate are usually less than 1 µg m−3 under these conditions, while 2–3 µg m−3

nitrate concentrations are still observed in the ambient air. Similar under-predictions
of summertime nitrate have been reported in other regional modeling studies (Appel5

et al., 2008; Tesche et al., 2006; Yu et al., 2005; Zhang et al., 2014a). Model calcula-
tions reflect thermodynamics and kinetic gas-particle transfer for ammonium nitrate in
mixed particles, suggesting that some other form of nitrate is present in the real atmo-
sphere, such as organo-nitrates (Day et al., 2010). Sulfate concentrations are under-
predicted because of missing emissions sources such as the sulfur emitted as dimethyl10

sulfide (DMS) from the Pacific Ocean. Ammonium is drawn to acidic particles and so
ammonium concentration predictions reflect the combined trends of nitrate and sulfate
predictions. The model predictions of total mass of PM2.5, as a summation of all com-
ponents, show very good agreement with measurements, with only 3 summer months
and 2 spring month (5 % of all months) not meeting the performance criteria, and 78 %15

and 75 % of months within the performance goals for MFB and MFE, respectively. The
largest biases in the total PM2.5 mass occur in summer. Under-prediction in summer
sulfate and OC contribute to negative biases in the total PM2.5 mass predictions. Sulfate
and OC concentrations in summer accounted for ∼ 18 % and ∼ 37 % of the total PM2.5
mass. Therefore, sulfate and OC under-prediction contributed to a combined ∼ 37 %20

under-prediction of total PM2.5 mass. However, positive biases in predicted dust con-
centrations rich in crustal elements such as aluminum and silica (Hu et al., 2014a)
compensate for the under-predictions in carbonaceous components and water-soluble
ions described above.

Figure 4 shows the MFB and MFE values of particulate species of PM2.5 total mass,25

EC, OC, nitrate, sulfate, ammonium and gaseous species of O3, CO, NO, NO2, SO2
using daily averages across all measurement sites during the entire modeled 9 year
period. PM2.5 total mass, EC, OC, ammonium and gaseous species of O3, CO, NO2
have MFBs within ±0.3 and MFE less than 0.75, indicating general agreement between
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predictions and measurement for these species. Nitrate and NO have MFBs of −0.4
and −0.28, respectively, but MFEs of 0.8 and 1.07, respectively. The relatively moder-
ate or small bias combined with relatively large error indicates that the daily predictions
miss the extremely high and low concentrations. Sulfate and SO2 have high MFBs of
−0.7 and −0.5, respectively, and high MFEs of 0.8 and 0.9, respectively, indicating that5

these species are consistently under-predicted.
Concentrations averaged over longer times, such as 1 month or 1 year, are used

in some air pollution-health effects studies. A previous examination of primary parti-
cles in California revealed that air quality model predictions are more accurate over
longer averaging time because the influence of extreme events and short-term vari-10

ability is reduced as the averaging period gets longer (Hu et al., 2014a). Figure 4 com-
pares the MFB and MFE values for total (=primary+ secondary) particulate matter
and gaseous species using daily, monthly, and annual averages across all sites in the
4 km domains. The results demonstrate that longer averaging times produce better
agreement between model predictions and measurements (except for sulfate, which is15

under-predicted due to missing emissions) because they remove the effects of random
measurement errors at monitoring stations and variations in actual emissions rates that
are not reflected in seasonally-averaged emissions inventories. The reduced errors as-
sociated with longer averaging times indicate that model results may be most useful in
epidemiological studies that require averaging times ≥ 1 month.20

3.2 Spatial and temporal variations

Figure 5a shows the predicted and measured monthly average concentrations of 1 h
peak O3 at 5 major urban sites (Sacramento, Fresno, Bakersfield, Los Angeles, and
Riverside). Strong seasonal variations are observed in measured and predicted 1 h
peak O3. The measured 1 h peak O3 shows seasonal variation from 100 ppb in sum-25

mertime to 20 ppb in wintertime. The predicted high 1 h peak O3 concentrations in non-
winter months are in good agreement with, or slightly higher than, ambient measured
concentrations at all sites. This is consistent with studies in the eastern US (Zhang
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et al., 2014a), which found similar slight over-predictions of summer O3 concentra-
tions. Predicted 1 h peak O3 concentrations in cold winter months, however, are gener-
ally higher than measured values. Photochemical reaction rates in wintertime months
are slow and the predicted O3 concentration at the surface mostly reflects downward
mixing of the aloft background O3 followed by titration by surface NO emissions. The5

STN measurement sites in California are located in urban areas that are close to major
freeways (see the site locations and nearby sources information in Hu et al., 2014a).
The 4km×4km model grid cells that contain both freeways and monitors dilute the high
NO concentrations around the measurement sites leading to an under-prediction of O3
titration and an over-prediction of O3 concentrations. EPA recommends a threshold O310

value of 60 ppb for model O3 evaluations (USEPA, 2007), which means that winter-
time O3 concentrations at the urban sites will generally not be considered in the formal
model evaluation.

Figure 5b and c show the predicted and measured monthly average CO and NO
concentrations. Strong seasonal variations in CO and NO can be observed, with win-15

tertime concentrations that are a factor of 3–5 higher than summertime concentrations.
Model predictions generally reproduce the seasonal variations except at the Riverside
site where predicted seasonal variations are weaker than measurements. The model
performance varies by simulation year and location. At the Sacramento and Fresno
sties, predicted CO is in good agreement with measured concentrations in all months20

of 2002 through 2006, but CO is under-predicted in winter months of 2000–2001 and
slightly over-predicted in most months of 2007–2008. At the Bakersfield site, CO is
under-predicted in 2000–2003 and in good agreement with measurements in 2004–
2005 (after which further measurements are not available). At the Los Angeles site,
CO is in good agreement in 2000–2003, and over-predicted in the later years. At the25

Riverside site, CO is under-predicted in all months of 2000–2003, under-predicted in
non-summer months in 2004–2006, and in general agreement with measurements in
2007–2008. NO predictions generally agree well with measured NO concentrations in
2000–2004 at Sacramento, Fresno, Bakersfield and Los Angeles, and then are over-
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predicted in the later years. NO at Riverside is under-predicted in the winter months
of 2000–2003, and over-predicted in the summer months of 2004–2008. Mobile emis-
sions are the dominant sources of CO and NO in California, contributing > 80 % of total
anthropogenic emissions (CARB, 2012). The results of the current modeling study sug-
gest that uncertainties in the mobile emissions exist both in time and space.5

A clear and similar decreasing trend is apparent in measured CO and NO concen-
trations from 2000–2008. This inter-annual trend is not well captured by the model pre-
dictions due to the uncertainties in the emissions. An adjusted NO prediction (NO_adj)
can be calculated using CO as a tracer for the mobile emissions and dilution according
to the equation:10

NO_adj = NO_noadj × CO_predicted/CO_measured

where NO_noadj is the NO predictions before the adjustment (i.e., the concentrations
showing in Fig. 5c). NO_adj has higher correlation coefficient (R2) with measured NO
concentrations than the NO_noadj prediction at all the five monitoring sites (as shown15

in Fig. 6) and NO_adj has a regression slope closer to 1.0 than NO_noadj at 3 out of
5 sites. This suggests that either emissions or physical dilution processes in the model
contribute to the errors observed in Fig. 5 (in addition to the possibility of errors in model
chemistry). Unfortunately, the large variation in the correction factor among different lo-
cations suggests that these scaling factors cannot be simply interpolated/extrapolated20

from the indicated five monitoring sites to the full modeling domain.
Figure 5d and e show the predicted and measured monthly average ammonium

and nitrate concentrations. Ammonium nitrate is a major PM2.5 component in Califor-
nia, especially in wintertime when the low temperature and high relative humidity fa-
vor partitioning to the condensed phase. The monthly average ammonium and nitrate25

results demonstrate similar model performance. The predicted concentrations agree
reasonably well with measured ambient concentrations and seasonal variations. Model
predictions are lower than measured values in the early years, especially during win-
ter months when concentrations are highest. This pattern is very consistent with CO
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model performance, suggesting mobile emissions are under-estimated for the early
years of the simulation period. Nitrate is formed through NO oxidation to nitric acid but
NO concentrations are not under-predicted, suggesting that the chemical conversion
of NO to nitric acid is too slow. Carter and Heo (Carter and Heo, 2012b) suggested
that SAPRC11 mechanism systematically under-predicts OH radical concentrations by5

∼ 30 %, which would be consistent with the observed trends.
Gas-particle partitioning of ammonium nitrate depends on temperature and relative

humidity. While there is no systematic bias in WRF temperature, relative humidity is
generally under-predicted by up to 40 % over California. A one-year sensitivity anal-
ysis was conducted with RH increased uniformly by +30 % (but not to exceed 95 %)10

in 2008 to investigate the impact of the relative humidity bias on particulate nitrate
predictions. Figure 7 compares the monthly average nitrate concentrations predicted
with the original RH (denoted as “RH_ori” case) and the enhanced RH (denoted as
“RH+0.3” case) at Sacramento and Fresno. Nitrate predictions are generally higher
in the “RH+0.3” case due to more particle phase water available to absorb nitrate into15

the condensed phase. The nitrate predictions at Sacramento are significantly improved
during most months in 2008, suggesting this area suffers from the low RH bias in the
WRF predictions. Nitrate at Fresno is improved mostly in the winter and spring, but is
still under-predicted during the time period with peak winter concentrations, indicating
this area is influenced by other factors besides RH. Nitrate predictions at Fresno in20

summer and fall are lower when RH is enhanced, due to faster deposition caused by
larger particle sizes with more particle phase water. The uniform RH increase of 0.3 in
this region is likely unrealistically large in these months.

Figure 5f shows the OC predictions and measurements. Organic aerosol in Califor-
nia it is typically the second most abundant species, after ammonium nitrate. In the25

comparison, an OM/OC ratio of 1.6 (Turpin and Lim, 2010) is applied to convert pri-
mary organic aerosol OM back to OC for comparison to measured concentrations. The
conversion ratios for SOA species are taken from Table 1 in Carlton et al. (2010). Pre-
dicted OC agrees reasonably well with measured concentrations, but is lower than the
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wintertime high concentrations in the early years, similar to other PM components. Pre-
dicted OC in summers is also in good agreement with measurements at the indicated
monitoring sites. As mentioned previously, these sites are all near major freeways and
therefore OC is dominated by primary organic aerosols. Larger bias is found at sites
distant from local sources where SOA becomes more important. More analysis about5

the concentrations and sources of the OC results are included in a companion paper
(Hu, 2014).

Figure 5g shows that predicted EC concentrations agree well with measured con-
centrations. High measured EC concentrations in a few winter months in the early
years are under-predicted, but EC concentrations in the summer months are gener-10

ally over-predicted. Figure 5h shows that monthly average predictions for PM2.5 mass
concentrations agree well with observations, and seasonal trends are generally cap-
tured with high concentrations in winter, and low concentrations in summer. PM2.5 is
over-predicted in summer months when nitrate, sulfate, and ammonium are found to be
under-predicted. These trends reflect the over-prediction of the primary components,15

mostly dust particles, in the model calculations (Hu et al., 2014a). This result suggests
that a uniform scaling factor of 0.5 for dust emissions may not be appropriate. A smaller
factor (for example, a factor of 0.25 was used in the eastern US, Tesche et al., 2006) or
a spatially resolved method that accounts for the land-use types (Pace, 2005) should
be used for future studies in California.20

California experiences the highest PM2.5 concentrations in wintertime, caused by
stagnant meteorological conditions characterized by low wind speed and shallow at-
mospheric mixing layer. The WRF model tends to over-predict wind speed during low
wind speed events (≤ 2 m s−1) in California (Zhao et al., 2011). Increasing u∗ by 50 %
improves the WRF wind prediction but still over-predicts wind speed during events25

when measured wind speed is < 1.5 m s−1. A zero-order approximation of air pollutant
concentration (Mahmud, 2010) is:

C =
E
V

=
E

u×H
(1)
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where C is the pollutant concentration, E is the source pollutant emission rate, V is
the air ventilation rate which is equal to (wind speed×mixing height), u and H are the
horizontal wind speed and mixing height, respectively.. The concentration is linearly de-
pendent on the inverse wind speed (1/u). Figure 8 shows the MFBs of the predicted at-
mospheric inverse wind speed (1/u) as a function of the observed atmospheric inverse5

wind speed. Also shown in Fig. 8 are the MFBs of PM component concentrations as
a function of the observed concentrations. The MFBs decrease when the inverse wind
speed or concentrations increase, indicating low inverse wind speed/concentrations
are over-predicted, but high inverse wind speed/concentrations are under-predicted.
The trends of inverse wind speed and concentrations are well correlated, indicating10

that simple wind bias effects on the ventilation rates leads to bias in PM predictions,
especially during the events with high PM pollution. The correlation with 1/u MFB is
stronger for primary PM component(s) than for secondary components, indicating that
additional processes affect the secondary PM, such as chemistry, gas-particle parti-
tioning, etc. Sulfate bias has the least correlation to inverse ventilation bias, because it15

is mainly driven by the bias in SO2 emissions.
Figure 9 shows the predicted 9 year average concentrations of PM2.5, EC, OC, ni-

trate, sulfate, and ammonium, compared with measured average concentrations over
California. High concentrations of all PM pollutants occur in the urban areas with large
population, indicating that most of the PM is generated by anthropogenic activities.20

The predicted spatial distributions generally agree well with measurements, but provide
much more detailed information. PM2.5 concentrations are over-predicted in the SJV air
basin due to an over-prediction of agricultural dust. High OC concentrations were mea-
sured at two sites in northern California due to intense wood burning. The two sites are
in the 24 km model domain but outside the 4 km, therefore the predicted OC concentra-25

tions in the 24 km grids do not agree well with the measurements at this location. This
finding confirms that 24 km resolution is probably too coarse for health effects studies
and justifies the use of 4 km grids over the majority of California’s population in the cur-
rent work. Background sulfate concentrations at IMPROVE sites were measured to be
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0.6–1 µg m−3 but higher concentrations of 2–3 µg m−3 were measured in Southern Cal-
ifornia. Model calculations do not reproduce this concentration enhancement, leading
to an under-prediction in the concentrations of this PM2.5 species. In general, the rea-
sonable agreement between model predictions and measurement builds confidence
that the model predictions in locations with no available measurements likely provide5

a reasonable estimate of exposure fields.

4 Conclusions

For the first time, a ∼ decadal (9 year) CTM air quality model simulation with 4 km
horizontal resolution has been conducted in California to provide air quality data for
health effects studies. Model predictions are compared to measurements in order to10

evaluate both the spatial and temporal accuracy of the results. The performance of
the source-oriented UCD/CIT air quality model is satisfactory for O3, PM2.5, and EC
(both spatially and temporally). Predicted OC, nitrate, and ammonium are less sat-
isfactory, but generally meet standard model performance criteria. OC bias is larger
in summertime than wintertime mainly due to an incomplete understanding of SOA15

formation mechanisms. Bias in predicted ammonium nitrate is associated with uncer-
tainties in emissions, the WRF predicted relative humidity fields, and the chemistry
mechanism. Predicted sulfate is not satisfactory due to missing sulfur sources in the
emissions. The CO and NO (species dominated by mobile emissions) results reveal
significant temporal and spatial uncertainties associated with the mobile emissions20

generated by the EMFAC 2007 model. The WRF model tends to over-predict wind
speed during stagnation events, leading to under-predictions of high PM concentra-
tions, usually in winter months. The WRF model also generally under-predicts relative
humidity, resulting in less particulate nitrate formation especially during winter months.
Despite the issues noted above, predicted spatial distributions of PM components are25

in reasonably good agreement with measurements. Predicted seasonal and annual
variations also generally agree well with measurements. Better model performance
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with longer averaging time is found in the predictions, suggesting that model results
with averaging times ≥ 1 month should be first considered in epidemiological studies.
All model results included in the current manuscript can be downloaded free of charge
at http://faculty.engineering.ucdavis.edu/kleeman/.
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 889 
Figure 1. Modeling domains (blue lines outline the CA_24km domain, and red lines outline the 890 
SoCAB_4km (bottom) and SJV_4km domains (up)) and PM measurement sites (dots). Blue dots 891 
represent the sites of the PM2.5 Speciation Trends Network (STN) and the State and Local Air 892 
Monitoring Stations (SLAMS), green dots represent the Interagency Monitoring of Protected 893 
Visual Environments (IMPROVE) sites, and gray dots represent the PM2.5 Federal Reference 894 
Method (FRM) sites. 895 

Figure 1. Modeling domains (blue lines outline the CA_24 km domain, and red lines outline the
SoCAB_4 km (bottom) and SJV_4 km domains (top)) and PM measurement sites (dots). Blue
dots represent the sites of the PM2.5 Speciation Trends Network (STN) and the State and Local
Air Monitoring Stations (SLAMS), green dots represent the Interagency Monitoring of Protected
Visual Environments (IMPROVE) sites, and gray dots represent the PM2.5 Federal Reference
Method (FRM) sites.
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 896 
Figure 2. Monthly mean fractional bias (MFB) of PM2.5 EC, OC, nitrate, ammonium, sulfate, and 897 
total mass. Solid lines represent the MFB criteria, and the blue dash lines represent the MFB 898 
goals. 899 
  900 

Figure 2. Monthly mean fractional bias (MFB) of PM2.5 EC, OC, nitrate, ammonium, sulfate,
and total mass. Solid lines represent the MFB criteria, and the blue dash lines represent the
MFB goals. Color key represents month of the year.
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 901 
Figure 3. Monthly mean fractional errors (MFE) of PM2.5 EC, OC, nitrate, ammonium, sulfate, 902 
and total mass. Solid lines represent the MFE criteria, and the blue dash lines represent the MFE 903 
goals. 904 
  905 

Figure 3. Monthly mean fractional errors (MFE) of PM2.5 EC, OC, nitrate, ammonium, sulfate,
and total mass. Solid lines represent the MFE criteria, and the blue dash lines represent the
MFE goals. Color key represents month of the year.
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Figure 4. Mean fractional bias (MFB) and mean fractional errors (MFE) of PM and gaseous
species when calculated using daily, monthly and annual averages.
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Figure 5. Predicted (red lines) vs. observed (dark dots) monthly average O3, CO, NO, ammo-
nium, nitrate, OC, EC, and PM2.5 total mass at Sacramento, Fresno, Bakersfield, Los Angeles,
and Riverside.
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Figure 6. Monthly average NO concentrations adjusted with the predicted/observed
CO ratios. NO_noadj represents the NO concentrations in the UCD/CIT model pre-
dictions, and NO_adj represents the NO concentrations adjusted with observations as:
NO_adj=NO_noadj×CO_predicted/CO_measured.
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Figure 7. Monthly average nitrate concentrations in 2008 at Sacramento and Fresno pre-
dicted with perturbed relative humidity (RH+0.3), compared to the basecase nitrate predictions
(RH_ori) and observed concentrations (Obs).
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Figure 8. Association between predicted PM concentration bias and wind bias vs. observed 
values. The observed PM concentrations and 1/u values on the x-axis are expressed in a relative 
scale of 0-100% of maximum range calculated as x (%) = (C-Cmin)/(Cmax-Cmin)*100.  Values for 
[Cmin, Cmax] are listed in the concentration key. Bias between predicted vs. observed values is 
shown on the y-axis.  Ideal behavior is bias of zero at all concentrations & wind speeds.  
  

Figure 8. Association between predicted PM concentration bias and wind bias vs. observed
values. The observed PM concentrations and 1/u values on the x-axis are expressed in a rela-
tive scale of 0–100 % of maximum range calculated as x (%) = (C−Cmin)/(Cmax −Cmin)×100.
Values for [Cmin, Cmax] are listed in the concentration key. Bias between predicted vs. observed
values is shown on the y-axis. Ideal behavior is bias of zero at all concentrations and wind
speeds.
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Figure 9. Predicted (1) vs. measured (2) 9-year average PM2.5 total mass (a), EC (b), OC (c), 
nitrate (d), sulfate (e), and ammonium (f) concentrations. The SoCAB_4km and SJV_4km 
results are overlayed on top of CA_24km results to create the model predicted spatial 
distributions. Predicted and measured concentrations of the same species are in the same scale 
showing in the panels of measurements. 

Figure 9. Predicted (1) vs. measured (2) 9 year average PM2.5 total mass (a), EC (b), OC
(c), nitrate (d), sulfate (e), and ammonium (f) concentrations. The SoCAB_4 km and SJV_4 km
results are overlayed on top of CA_24 km results to create the model predicted spatial distribu-
tions. Predicted and measured concentrations of the same species use a common scale shown
in the measurement panel (2) for each pair.
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