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Abstract 2 

For the first time, a ~decadal (9 years from 2000 to 2008) air quality model simulation 3 

with 4 km horizontal resolution over populated regions and daily time resolution has been 4 

conducted for California to provide air quality data for health effects studies. Model predictions 5 

are compared to measurements to evaluate the accuracy of the simulation with an emphasis on 6 

spatial and temporal variations that could be used in epidemiology studies. Better model 7 

performance is found at longer averaging times, suggesting that model results with averaging 8 

times ≥1 month should be the first to be considered in epidemiological studies.  The UCD/CIT 9 

model predicts spatial and temporal variations in the concentrations of O3, PM2.5, elemental 10 

carbon (EC), organic carbon (OC), nitrate, and ammonium that meet standard modeling 11 

performance criteria when compared to monthly-averaged measurements. Predicted sulfate 12 

concentrations do not meet target performance metrics due to missing sulfur sources in the 13 

emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and ammonium 14 

have mean fractional biases that meet the model performance criteria in 95%, 100%, 71%, 73%, 15 

and 92% of the simulated months, respectively.  The base dataset provides an improvement for 16 

predicted population exposure to PM concentrations in California compared to exposures 17 

estimated by central site monitors operated one day out of every 3 days at a few urban locations.   18 

Uncertainties in the model predictions arise from several issues.  Incomplete 19 

understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model 20 

results in summertime but does not affect OC predictions in winter when concentrations are 21 

typically highest. The CO and NO (species dominated by mobile emissions) results reveal 22 

temporal and spatial uncertainties associated with the mobile emissions generated by the 23 

EMFAC 2007 model. The WRF model tends to over-predict wind speed during stagnation 24 



events, leading to under-predictions of high PM concentrations, usually in winter months. The 25 

WRF model also generally under-predicts relative humidity, resulting in less particulate nitrate 26 

formation, especially during winter months. These limitations must be recognized when using 27 

data in health studies.  All model results included in the current manuscript can be downloaded 28 

free of charge at http://faculty.engineering.ucdavis.edu/kleeman/. 29 
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1. Introduction 31 

 32 

Numerous scientific studies have demonstrated associations between exposure to ambient 33 

airborne particulate matter (PM) and a variety of health effects, such as cardiovascular diseases 34 

(Dockery, 2001; Ford et al., 1998; Franchini and Mannucci, 2009; Langrish et al., 2012; Le 35 

Tertre et al., 2002), respiratory diseases (Gordian et al., 1996; Hacon et al., 2007; Hughes and 36 

Tolsma, 2002; Willers et al., 2013), low birth weight and birth defects (Barnett et al., 2011; Bell 37 

et al., 2010; Brauer et al., 2008; Laurent et al., 2014; Laurent et al., 2013; Stieb et al., 2012), lung 38 

cancer (Beelen et al., 2008; Beeson et al., 1998; Pope et al., 2002; Vineis et al., 2006), mortality 39 

and life expectancy (Chen et al., 2013; Correia et al., 2013; Dockery et al., 1993; Franklin et al., 40 

2007; Goldgewicht, 2007; Kan and Gu, 2011; Laden et al., 2000; Ostro et al., 2006; Pope et al., 41 

2009).  Recently a few studies have investigated the associations between particle composition 42 

and health effects (Bell et al., 2010; Bell et al., 2007; Burnett et al., 2000; Cao et al., 2012; 43 

Franklin et al., 2008; Ito et al., 2011; Krall et al., 2013; Levy et al., 2012; Mar et al., 2000; Ostro 44 

et al., 2007; Ostro et al., 2010; Son et al., 2012). However, there remains large uncertainty about 45 

which PM components are most responsible for the observed health effects, possibly due to the 46 

fact that central site monitoring measurements used in the PM composition studies have limited 47 



temporal, spatial, and chemical resolution, which could potentially lead to misclassification of 48 

exposure estimates and mask some detailed correlations. Central site PM measurements typically 49 

have a collection schedule of 1 sample every 3 or 6 days at a few sites used to represent an entire 50 

population region.  Important particle size distribution and chemical composition information is 51 

not always routinely measured. Additional information relating PM composition to health effects 52 

would provide a solid foundation to design effective PM control strategies to protect public 53 

health at a reduced economic and social cost. 54 

 55 

Chemical transport models (CTMs) have recently been used as one of the alternative 56 

approaches to address the limitations of central site monitors (Anenberg et al., 2010; Bravo et al., 57 

2012; Sarnat et al., 2011; Tainio et al., 2012). The latest generation of CTMs represents a “state-58 

of-the-science” understanding of emissions, transport and atmospheric chemistry. CTM 59 

predictions provide more detailed composition information and full spatial coverage of air 60 

pollution impacts with a typical temporal resolution of 1 hour. CTMs have great potential to fill 61 

the time and space gaps in the central site monitoring dataset for PM measurements leading to 62 

improved exposure assessment in epidemiological studies.  63 

 64 

The CTM applications in epidemiology studies to date have generally used relatively 65 

coarse spatial resolutions in order to reduce computational burden. Global CTMs have used 66 

horizontal resolutions of over 100 km and regional CTMs have used resolution of 12-36 km. 67 

These resolutions cannot capture fine spatial gradients of PM concentrations, especially in areas 68 

with diverse topography and demography. Previous CTMs predictions used in epidemiology 69 

studies have also been limited to time periods less than one year. Recently Zhang et al. (Zhang et 70 



al., 2014a) evaluated the performance of the Community Multiscale Air Quality (CMAQ) model 71 

over a 7-year period in the Eastern United States (U.S.), but no other long-term CTMs studies for 72 

health effects analyses have been published to date. As a further limitation, previous 73 

epidemiology studies based on CTM predictions have mostly used predicted particles with 74 

aerodynamic diameter less than 2.5µm (PM2.5) mass concentrations without taking full advantage 75 

of the ability of CTMs to simultaneously estimate population exposure to multiple particle size 76 

fractions, chemical components, and source contributions.  The variation in CTM prediction bias 77 

as a function of space and time due to uncertainties in model inputs (emissions, meteorological 78 

fields, mechanism parameters) is often not sufficiently characterized to understand potential 79 

impacts on health effects estimates. Detailed analyses are needed to assess the temporal and 80 

spatial features of CTM predictions to identify accurate and/or unbiased information for 81 

exposure assessment before such information can be applied in health effect studies (Beevers et 82 

al., 2013). 83 

 84 

The objective of the current study is to develop and apply advanced source-oriented 85 

CTMs to predict the concentrations and sources for enhanced PM exposure assessment in 86 

epidemiological studies over a long-term period with high spatial resolution in California. 87 

California is chosen as the focus area for the current study because it has extensive infrastructure 88 

to support CTM studies, and it has one of the largest populations in the U.S. that is experiencing 89 

unhealthy levels of PM pollution. In 2013, 104 U.S. counties with a population of 65 million 90 

people are in non-attainment with the National Ambient Air Quality Standards (NAAQS) for 91 

PM2.5 (EPA, 2013). Approximately half of that population (31 million people) lives in 29 92 

California counties meaning that California suffers a disproportionately large share of U.S. PM-93 



related mortality (Fann et al., 2012). The California Air Resources Board (CARB) estimates that 94 

14000 – 24000 California residents die prematurely each year due to particulate air pollution 95 

(Tran, 2008). The severity of this problem has motivated extensive investments to support air 96 

pollution studies. California has the densest ambient PM measurement network, accurate 97 

emissions inventories, and the most health effects study groups of any state in the United States. 98 

Rich datasets are available to support model application and evaluation.  99 

 100 

The current study is the first attempt to address the sparse PM data problem in exposure 101 

assessment using CTM results over a ~decadal time period (9 years from 2000 to 2008) over a 102 

domain spanning ~1000 km at a spatial resolution of 4 km. Companion studies have modeled 103 

primary PM2.5 and PM0.1 (particles with aerodynamic diameter less than 0.1µm) concentrations 104 

and sources in California (Hu et al., 2014a; Hu et al., 2014b). The current paper, as the third in 105 

the series, focuses on model evaluation of total (=primary+secondary) PM2.5 and major 106 

components elemental carbon (EC), organic carbon (OC), nitrate, sulfate, ammonium), 107 

emphasizing the aspects of temporal and spatial variations, to identify the features of the CTM 108 

results that could add skill to the exposure assessment for epidemiological studies. A future study 109 

will investigate the model capability for PM source apportionment of primary and secondary 110 

organic aerosols, which is currently an area with great uncertainty.   111 

2. Methods 112 

 113 

2.1 Air Quality Model Description 114 

 115 



The host air quality model employed in the current study is based on the Eulerian source-116 

oriented University of California-Davis/California Institute of Technology (UCD/CIT) chemical 117 

transport model (Chen et al., 2010; Held, 2004; Held et al., 2005; Hixson et al., 2010; Hixson et 118 

al., 2012; Hu et al., 2012; Hu et al., 2010; Kleeman and Cass, 2001; Kleeman et al., 1997; 119 

Kleeman et al., 2007; Mahmud, 2010; Mysliwiec and Kleeman, 2002; Rasmussen et al., 2013; 120 

Ying, 2008; Ying et al., 2007; Ying and Kleeman, 2006; Zhang and Ying, 2010). The UCD/CIT 121 

model includes a complete description of atmospheric transport, deposition, chemical reaction, 122 

and gas-particle transfer. The details of the standard algorithms used in the UCD/CIT family of 123 

models have been described in the above references and therefore are not repeated here. Only the 124 

aspects that are updated during the current study are discussed in the following section.  125 

 126 

The photochemical mechanism used by the UCD/CIT model was updated to reflect the 127 

latest information from smog-chamber experiments. The SAPRC-11 photochemical mechanism 128 

(Carter and Heo, 2012a; Carter and Heo, 2013) was used to describe the gas-phase chemical 129 

reactions in the atmosphere.  The secondary organic aerosol (SOA) treatment was updated 130 

following the method described in Carlton et al. (Carlton et al., 2010). Seven organic species 131 

(isoprene, monoterpenes, sesquiterpenes, long-chain alkanes, high-yield aromatics, low-yield 132 

aromatics, and benzene) are considered as precursors for SOA formation. A total of twelve semi-133 

volatile products and seven nonvolatile products are formed from the oxidation of the precursor 134 

species. The gas-particle transfer of the semi-volatile and nonvolatile products in the UCD/CIT 135 

model is dynamically calculated based on the gas vapor pressures calculated over the particle 136 

surface and the kinetic limitations to mass transfer. The explicit chemical reactions and the 137 

parameters for the thermodynamic equilibrium calculation (i.e., enthalpy of vaporization, 138 



saturation concentrations, and stoichiometric yields) are provided in Carlton et al. and references 139 

therein (Carlton et al., 2010).  140 

 141 

Model simulations were configured using a one-way nesting technique with a parent 142 

domain of 24 km horizontal resolution that covered the entire state of California (referred to as 143 

CA_24km) and two nested domains with 4 km horizontal resolution that covered the Southern 144 

California Air Basin (SoCAB) (referred to as SoCAB_4km) and San Francisco Bay Area + San 145 

Joaquin Valley (SJV) + South Sacramento Valley air basins (referred to as SJV_4km) (shown in 146 

Figure 1). The nested 4 km resolution domains are configured to cover the major ocean, coast, 147 

urban, and rural regions that influence California’s air quality and, most importantly, to cover 148 

most of the California’s population for the purpose of health effects analyses. Over 92% of 149 

California’s population lives in the 4 km domains based on the most recent census information. 150 

The UCD/CIT model was configured with 16 vertical layers up to a height of 5 km above ground 151 

level in all the mother and nested domains, with 10 layers in the first 1 km.  Note that the use of 152 

relatively shallow vertical domains is only appropriate in regions with well-defined air basins 153 

and would not be appropriate for locations in the eastern U.S. or other regions with moderate 154 

topography.  Particulate composition, number and mass concentrations are represented in 15 size 155 

bins, ranging from 0.01 to 10 μm in diameter. Primary particles are assumed to be internally 156 

mixed, i.e., all particles within a size bin have the same composition.  Previous studies (Ying et 157 

al., 2007) have shown that this assumptions provides adequate predictions for total PM 158 

concentrations relative to source-oriented mixing treatments in California when feedbacks to 159 

meteorology are not considered (Zhang et al., 2014b).   160 

 161 



2.2 Meteorology and Emissions 162 

 163 

Hourly meteorology inputs (wind, temperature, humidity, precipitation, radiation, air 164 

density, and mixing layer height) were generated using the Weather Research and Forecasting 165 

model (WRF) v3.1.1 (Wei Wang, January 2010; William C. Skamarock, June 2008). Two-way 166 

nesting was used with the outer domain at 12 km resolution and the inner nested domain at 4 km 167 

resolution. North American Regional Reanalysis (NARR) data with 32 km resolution and 3-hour 168 

time resolution was used as initial and boundary conditions of the coarse 12 km domain. The 169 

WRF model was configured with 31 vertical layers up to 100 hPa (around 16 km). Four-170 

dimensional data assimilation (FDDA) was used. The YSU boundary layer scheme, thermal 171 

diffusion land-surface scheme, and Monin-Obukhov surface layer scheme were used based on 172 

results from a previous study in California (Mahmud, 2010; Zhao et al., 2011).  The surface wind 173 

was over-predicted with the original version of WRF, especially for wind speed less than 3 m/s, 174 

consistent with other studies in California (Angevine et al., 2012; Fast et al., 2014; Michelson et 175 

al., 2010a).  Over-prediction of the slow winds caused under-prediction of concentrations during 176 

high pollution events.  A recent study (Mass, C.F, personal communication) found that 177 

increasing the surface friction velocity (u*) by 50% reduced the bias in surface wind predictions 178 

in a complex-terrain domain. This technique was tested and adopted in previous studies (Hu et 179 

al., 2012; Hu et al., 2014a; Mass and Ovens, 2010; Wang et al., 2015) where it improved the 180 

accuracy of air quality predictions.  In the current study, a 1-year sensitivity simulation for 181 

California in the year of 2000 revealed that increasing u* by 50% improved the mean wind bias 182 

from 1.15 m/s to −0.50 m/s, and lowered the root-mean-square error from 2.95 to 2.20 m/s (Hu et 183 

al., 2014a). It should be noted that this approach reduces positive bias for wind speeds less than 184 



~3 m/s, but increases negative bias at higher speeds.  Analysis of the wind speed measurements 185 

in California air basins shows that 78% of winds are less than 3 m/s.  Therefore, increasing u* by 186 

50% in our study improves the wind predictions for a majority of cases during the modeling 187 

period.  Similar detailed evaluations should be conducted before applying the increased u* 188 

approach to other regions and periods.  Hourly average meteorology outputs at the air quality 189 

model vertical layer heights were created. The meteorology predictions were evaluated against 190 

meteorological observations (CARB, 2011a). The meteorological statistical evaluation over the 191 

period 2000-2006 has been presented in a previous study (Hu et al., 2014a), and the results in the 192 

period 2007-2008 are consistent with those years. In summary, meteorology predictions of 193 

temperature and wind speed generally meet benchmarks suggested by Emery et al. (2001). Mean 194 

fractional biases (MFBs) of temperature and wind are generally within ±0.15, root mean square 195 

errors (RMSEs) of temperature are around 4 ◦C, and RMSEs of wind are generally lower than 2.0 196 

m/s, especially in the SoCAB and SJV air basins which are the focus of the current study. 197 

Relative humidity is under-predicted, consistent with findings in other studies in California (Bao, 198 

2008; Michelson et al., 2010b). Precipitation is also under-predicted with a MFB of -76.1% and 199 

RMSE of 2.84 mm/hr. Wind, temperature and humidity are the major meteorological factors that 200 

influence the PM concentrations. Further discussions of the uncertainties in meteorology 201 

predictions on PM predictions are included in the Results section. 202 

 203 

Hourly gridded gas and particulate emissions were generated using an updated version of 204 

the emissions model described by Kleeman and Cass (Kleeman and Cass, 1998). The standard 205 

emissions inventories from anthropogenic sources (i.e., point sources, stationary area sources, 206 

and mobile sources) were provided by CARB. Size and composition resolved particle emissions 207 



were specified using a library of primary particle source profiles measured during actual source 208 

tests (Cooper, 1989; Harley et al., 1992; Hildemann et al., 1991a; Hildemann et al., 1991b; 209 

Houck, 1989; Kleeman et al., 2008; Kleeman et al., 1999, 2000; Robert et al., 2007a; Robert et 210 

al., 2007b; Schauer et al., 1999a, b, 2001, 2002a, b; Taback et al., 1979). A few studies have 211 

revealed some uncertainties associated with the standard emissions inventories. Millstein and 212 

Harley (Millstein and Harley, 2009) found that PM and NOx emissions from diesel-powered 213 

construction equipment were over-estimated by a factor of 3.1 and 4.5, respectively. Countess 214 

(Countess, 2003) suggested that a scaling factor of 0.33 – 0.74 should be applied to the fugitive 215 

dust emissions in the California’s San Joaquin Valley. Therefore, scaling factors of 0.32 for off-216 

road diesel sources and 0.50 for dust emissions were applied in the current study. The EMFAC 217 

2007 model (CARB, 2008) was used to scale the mobile emissions using predicted temperature 218 

and relative humidity fields through the entire nine-year modeling episode. Biogenic emissions 219 

were generated using the Biogenic Emissions Inventory System v3.14 (BEIS3.14), which 220 

includes a 1-km resolution land cover database with 230 different vegetation types (Vukovich 221 

and Pierce, 2002). Sea-salt emissions were generated on-line based on the formulation described 222 

by de Leeuw et al. (de Leeuw et al., 2000) for the surf zone and the formulation described by 223 

Gong (Gong, 2003) for the open ocean. Emissions from wildfires and open burning at 1 km × 1 224 

km resolution were obtained from the Fire INventory from NCAR (FINN) (Hodzic et al., 2007; 225 

Wiedinmyer et al., 2011). The FINN inventory provides SAPRC99 speciated daily emissions of 226 

gaseous and particulate emissions (EC, organic matter (OM), PM2.5 and PM10) based on satellite 227 

observations of open burning events. Each open burning event is allocated to model grid cells of 228 

each domain based on the reported longitude/latitude of the event and the area burned. The 229 

emissions were injected at the height of the atmospheric mixing layer (PBL). The temporal 230 



variation of wildfire emissions was obtained from the Western Regional Air Partnership 231 

(WRAP) report (WRAP, 2005). A size distribution profile was calculated based on assumptions 232 

described in Hodzic et al. (Hodzic et al., 2007). 233 

 234 

2.3 Ambient Air Quality Measurements 235 

 236 

The evaluation dataset was compiled from several measurement networks, including 237 

CARB’s “2011 Air Quality Data DVD” (CARB, 2011b) and the database maintained by the 238 

Interagency Monitoring of Protected Visual Environments (IMPROVE). The data DVD includes 239 

daily average mass concentrations of PM2.5, EC, OC, nitrate, sulfate, ammonium, and trace 240 

metals every 3 or 6 days at the sites of the PM2.5 Speciation Trends Network (STN) and the State 241 

and Local Air Monitoring Stations (SLAMS). There are a total 13 PM2.5 speciation sites included 242 

in the DVD covered in the 4 km domains during the modeling periods. The precision of STN 243 

measurements is estimated to be 3.5%, 8.6%, and 3.9% for sulfate, nitrate, and ammonium, 244 

respectively (Sickles Ii and Shadwick, 2002).  Measured EC concentrations at 5 sites are found 245 

to be exactly 0.5 µg/m3 on > 80% of the measurement days, suggesting corrupt or missing data 246 

at these locations. Therefore these 5 sites were excluded in the evaluation for EC, but still 247 

included in the evaluation for other PM components.  The OC data were not blank corrected, 248 

resulting in a positive artifact by the NIOSH5040 method that is equivalent to approximately 1 249 

µg/m3. Measured OC concentrations were blank corrected in the current study by subtracting 1 250 

µg/m3 from all OC measurements.  The IMPROVE network provides daily average mass 251 

concentrations every 3 days for PM2.5, EC, OC, nitrate, sulfate, and soil. There are a total of 9 252 

IMPROVE sites covered in the 4 km domains. The precision of IMPROVE measurements is 253 



estimated to be 4–6% for PM2.5 mass, nitrate, and sulfate, and to be > 15% for EC and OC 254 

(http://vista.cira.colostate.edu/improve/Publications/OtherDocs/IMPROVEDataGuide/IMPROV255 

EDataGuide.htm). Daily average PM10 mass measurements and hourly measurements of several 256 

key gaseous pollutants (ozone, CO, NO, NO2, and SO2) are also included in the data DVD. There 257 

are a total of 66 PM2.5 Federal Reference Method (FRM) sites covered in the 4 km domains. 258 

Frank (Frank, 2006) found that FRM PM2.5 mass measured using STN monitors was within ± 259 

30% of reconstructed fine mass (RCFM) concentrations measured using IMPROVE monitors. 260 

3. Results and Discussion 261 

3.1 Statistical evaluation 262 

 263 

Statistical measures of MFB and mean fractional error (MFE) were calculated to evaluate 264 

the accuracy of model estimates in space and time. Boylan and Russell (Boylan and Russell, 265 

2006) proposed concentration dependent MFB and MFE performance goals and criteria, 266 

realizing that lower concentrations are more difficult to accurately predict. The performance 267 

goals are the level of accuracy close to the best that a model can be expected to achieve, while 268 

performance criteria are the level of accuracy acceptable for standard modeling applications. 269 

 270 

Figures 2 and 3 show the monthly MFB and MFE values, respectively, of predicted daily 271 

average EC, OC, nitrate, ammonium, sulfate and total PM2.5 mass in the 4 km domains. 272 

Measured EC, OC, nitrate, ammonium, and total PM2.5 mass concentrations follow similar 273 

seasonal patterns with high concentrations occurring in winters (indicated by blue colors in 274 

figures) and low concentrations occurring in summers (indicated by red colors in figures).  These 275 

patterns are driven by the meteorological cycles (i.e., lower mixing layer and wind speed 276 

http://vista.cira.colostate.edu/improve/Publications/OtherDocs/IMPROVEDataGuide/IMPROVEDataGuide.htm
http://vista.cira.colostate.edu/improve/Publications/OtherDocs/IMPROVEDataGuide/IMPROVEDataGuide.htm


providing less dilution, and lower temperature encouraging partitioning of ammonium nitrate to 277 

the particle phase) and the emissions variations (i.e., additional wood burning emissions for 278 

home heating in winters). The opposite seasonal variations in sulfate concentrations are 279 

observed, due to higher oxidation rates from S(IV) to S(VI) and higher sulfur emissions from 280 

natural sources in summer (Bates et al., 1992). 281 

 282 

EC predictions are in excellent agreement with measurements. MFBs in all months and 283 

MFEs in 107 months out of the total 108 months are within the model performance goal. EC 284 

MFBs and MFEs show no significant difference among months/seasons, indicating consistently 285 

good EC performance during the entire 9-year modeling period. OC, nitrate, sulfate, and 286 

ammonium, the PM components that include the secondary formation pathways, meet the MFBs 287 

model performance criteria in 71%, 73%, 46%, and 92% of the simulated months, respectively. 288 

These components generally have good agreement between predictions and measurements in 289 

winter months, with only a few months not meeting the performance criteria. When analyzing by 290 

season, predicted concentrations of these species are found to be more biased in summer months, 291 

especially for sulfate and nitrate. Different factors influence the seasonal profile of each species. 292 

The more significant OC under-prediction in summertime is mainly associated with the under-293 

prediction of SOA due to incomplete knowledge of SOA formation mechanism at the present 294 

time. Similar patterns have been reported in other modeling studies outside California (Matsui et 295 

al., 2009; Volkamer et al., 2006; Zhang et al., 2014a; Zhang and Ying, 2011). Measured nitrate 296 

concentrations in summertime (1-5 µg/m3) are factors of 2-5 lower than concentrations in 297 

wintertime (5-12 µg/m3). Model predictions tend to underestimate the low particle phase nitrate 298 

concentrations in summer, especially when temperatures exceed 25 °C.  Model predictions for 299 



particulate nitrate are usually less than 1 µg/m3 under these conditions, while 2-3 µg/m3 nitrate 300 

concentrations are still observed in the ambient air. Similar under-predictions of summertime 301 

nitrate have been reported in other regional modeling studies (Appel et al., 2008; Tesche et al., 302 

2006; Yu et al., 2005; Zhang et al., 2014a). Model calculations reflect thermodynamics and 303 

kinetic gas-particle transfer for ammonium nitrate in mixed particles, suggesting that some other 304 

form of nitrate is present in the real atmosphere, such as organo-nitrates (Day et al., 2010).  305 

Sulfate concentrations are consistently under-predicted throughout the modeling period at all 306 

locations, especially in southern California where the measured sulfate concentrations are 307 

highest.  Under-prediction of sulfate has also been reported by other regional modeling studies in 308 

California (Chen et al., 2014; Fast et al., 2014), using different air quality models (e.g., CMAQ, 309 

WRF-Chem).  This consistent behavior suggests that the specific model is not the cause of the 310 

sulfate under-prediction.  A global model study that included ocean DMS emissions showed a 311 

better sulfate performance in California (Walker et al., 2012).  Therefore, missing emissions 312 

sources such as the sulfur emitted as dimethyl sulfide (DMS) from the Pacific Ocean likely 313 

contribute to the sulfate under-predictions in the current study.  The sulfate concentrations at the 314 

sites in southern California are ~2 to 3 times higher than in northern California, and are under-315 

predicted by an even larger amount (with MFBs around -1.0).  It is therefore likely that 316 

anthropogenic sulfur sources are missing in southern California in addition to background DMS 317 

sources.  In the remote areas where the sulfate concentrations are low, the omission of nucleation 318 

processes in the current study could reduce seed aerosol surface area onto which sulfuric acid 319 

can condense.  This factor could contribute to the under-prediction of sulfate mass in these 320 

regions along with the missing sulfur sources.  Ammonium is drawn to acidic particles and so 321 



ammonium concentration predictions reflect the combined trends of nitrate and sulfate 322 

predictions.  323 

 324 

The model predictions of total PM2.5 mass, as a summation of all components, show very 325 

good agreement with measurements, with only 3 summer months and 2 spring months (5% of all 326 

simulated months) not meeting the performance criteria, and 78% and 75% of months within the 327 

performance goals for MFB and MFE, respectively.  The largest biases in the total PM2.5 mass 328 

occur in summer. Under-prediction in summer sulfate and OC contribute to negative biases in 329 

the total PM2.5 mass predictions. Sulfate and OC concentrations in summer accounted for ~18% 330 

and ~37% of the total PM2.5 mass. Sulfate and OC under-prediction contributed to a combined 331 

~37% under-prediction of total PM2.5 mass. However, positive biases in predicted dust 332 

concentrations rich in crustal elements such as aluminum and silica (Hu et al., 2014a) 333 

compensate for the under-predictions in carbonaceous components and water-soluble ions 334 

described above.   335 

 336 

Figure 4 shows the MFB and MFE values of particulate species of PM2.5 total mass, EC, 337 

OC, nitrate, sulfate, ammonium and gaseous species of O3, CO, NO, NO2, SO2 using daily 338 

averages across all measurement sites during the entire modeled 9-year period. PM2.5 total mass, 339 

EC, OC, ammonium and gaseous species of O3, CO, NO2 have MFBs within ±0.3 and MFE less 340 

than 0.75, indicating general agreement between predictions and measurement for these species. 341 

Nitrate and NO have MFBs of -0.4 and -0.28, respectively, but MFEs of 0.8 and 1.07, 342 

respectively. The relatively moderate or small bias combined with relatively large error indicates 343 

that the daily predictions miss the extremely high and low concentrations. Sulfate and SO2 have 344 



high MFBs of -0.7 and -0.5, respectively, and high MFEs of 0.8 and 0.9, respectively, indicating 345 

that these species are consistently under-predicted. 346 

 347 

Concentrations averaged over longer times, such as 1 month or 1 year, are used in some 348 

air pollution-health effects studies. A previous examination of primary particles in California 349 

revealed that air quality model predictions are more accurate over longer averaging time because 350 

the influence of extreme events and short-term variability is reduced as the averaging period gets 351 

longer (Hu et al., 2014a). Figure 4 compares the MFB and MFE values for total 352 

(=primary+secondary) particulate matter and gaseous species using daily, monthly, and annual 353 

averages across all sites in the 4 km domains. The results demonstrate that longer averaging 354 

times produce better agreement between model predictions and measurements (except for 355 

sulfate, which is under-predicted due to missing emissions) because they remove the effects of 356 

random measurement errors at monitoring stations and variations in actual emissions rates that 357 

are not reflected in seasonally-averaged emissions inventories. The reduced errors associated 358 

with longer averaging times indicate that model results may be most useful in epidemiological 359 

studies that can take advantage of averaging times ≥1 month. 360 

3.2 Spatial and temporal variations 361 

 362 

Figure 5 panel (a) shows the predicted and measured monthly average concentrations of 363 

1-h peak O3 at 5 major urban sites (Sacramento, Fresno, Bakersfield, Los Angeles, and 364 

Riverside). Strong seasonal variations are observed in measured and predicted 1-h peak O3. The 365 

measured 1-h peak O3 shows seasonal variation from 100 ppb in summertime to 20 ppb in 366 

wintertime. The predicted high 1-h peak O3 concentrations in non-winter months are in good 367 



agreement with, or slightly higher than, ambient measured concentrations at all sites. This is 368 

consistent with studies in the eastern U.S. (Zhang et al., 2014a), which found similar slight over-369 

predictions of summer O3 concentrations. Predicted 1-h peak O3 concentrations in cold winter 370 

months, however, are generally higher than measured values. Photochemical reaction rates in 371 

wintertime months are slow and the predicted O3 concentration at the surface mostly reflects 372 

downward mixing of the aloft background O3 followed by titration by surface NO emissions. 373 

The STN measurement sites in California are located in urban areas that are close to major 374 

freeways (see the site locations and nearby sources information in (Hu et al., 2014a)).  The 4 km 375 

× 4 km model grid cells that contain both freeways and monitors dilute the high NO 376 

concentrations around the measurement sites leading to an under-prediction of O3 titration and an 377 

over-prediction of O3 concentrations. EPA recommends a threshold O3 value of 60 ppb for 378 

model O3 evaluations (U.S.EPA, 2007), which means that wintertime O3 concentrations at the 379 

urban sites will generally not be considered in the formal model evaluation. 380 

 381 

Figure 5 panels (b) and (c) show the predicted and measured monthly average CO and 382 

NO concentrations. Strong seasonal variations in CO and NO can be observed, with wintertime 383 

concentrations that are a factor of 3-5 higher than summertime concentrations. Model predictions 384 

generally reproduce the seasonal variations except at the Riverside site where predicted seasonal 385 

variations are weaker than measurements. The model performance varies by simulation year and 386 

location. At the Sacramento and Fresno sties, predicted CO is in good agreement with measured 387 

concentrations in all months of 2002 through 2006, but CO is under-predicted in winter months 388 

of 2000-2001 and slightly over-predicted in most months of 2007-2008. At the Bakersfield site, 389 

CO is under-predicted in 2000-2003 and in good agreement with measurements in 2004-2005 390 



(after which further measurements are not available). At the Los Angeles site, CO is in good 391 

agreement in 2000-2003, and over-predicted in the later years. At the Riverside site, CO is 392 

under-predicted in all months of 2000-2003, under-predicted in non-summer months in 2004-393 

2006, and in general agreement with measurements in 2007-2008. NO predictions generally 394 

agree well with measured NO concentrations in 2000-2004 at Sacramento, Fresno, Bakersfield 395 

and Los Angeles, and then are over-predicted in the later years. NO at Riverside is under-396 

predicted in the winter months of 2000-2003, and over-predicted in the summer months of 2004-397 

2008. Mobile emissions are the dominant sources of CO and NO in California, contributing > 398 

80% of total anthropogenic emissions (CARB, 2012). The results of the current modeling study 399 

suggest that uncertainties in the mobile emissions exist both in time and space.  400 

 401 

A clear and similar decreasing trend is apparent in measured CO and NO concentrations 402 

from 2000-2008. This inter-annual trend is not well captured by the model predictions due to the 403 

uncertainties in the emissions. An adjusted NO prediction (NO_adj) can be calculated using CO 404 

as a tracer for the mobile emissions and dilution according to the equation: 405 

NO_adj = NO_noadj * CO_predicted / CO_measured 406 

where NO_noadj is the NO predictions before the adjustment (i.e., the concentrations showing in 407 

Figure 5(c)).  NO_adj has higher correlation coefficient (R2) with measured NO concentrations 408 

than the NO_noadj prediction at all the five monitoring sites (as shown in Figure 7) and NO_adj 409 

has a regression slope closer to 1.0 than NO_noadj at 3 out of 5 sites.  This suggests that either 410 

emissions or physical dilution processes in the model contribute to the errors observed in Figure 411 

5 (in addition to the possibility of errors in model chemistry). Unfortunately, the large variation 412 

in the correction factor among different locations suggests that these scaling factors cannot be 413 



simply interpolated/extrapolated from the indicated five monitoring sites to the full modeling 414 

domain. 415 

 416 

Figure 5 panels (d) and Figure 6 (a) show the predicted and measured monthly average 417 

ammonium and nitrate concentrations. Ammonium nitrate is a major PM2.5 component in 418 

California, especially in wintertime when the low temperature and high relative humidity favor 419 

partitioning to the condensed phase. The monthly average ammonium and nitrate results 420 

demonstrate similar model performance. The predicted concentrations agree reasonably well 421 

with measured ambient concentrations and seasonal variations. Model predictions are lower than 422 

measured values in the early years, especially during winter months when concentrations are 423 

highest. This pattern is very consistent with CO model performance, suggesting mobile 424 

emissions are under-estimated for the early years of the simulation period. Nitrate is formed 425 

through NO oxidation to nitric acid but NO concentrations are not under-predicted, suggesting 426 

that the chemical conversion of NO to nitric acid is too slow. Carter and Heo (Carter and Heo, 427 

2012b) suggested that SAPRC11 mechanism systematically under-predicts OH radical 428 

concentrations by ~30%, which would be consistent with the observed trends. 429 

 430 

Gas-particle partitioning of ammonium nitrate depends on temperature and relative 431 

humidity. While there is no systematic bias in WRF temperature, relative humidity is generally 432 

under-predicted by up to 40% over California. A one-year sensitivity analysis was conducted 433 

with RH increased uniformly by +30% (but not to exceed 95%, and all other meteorological 434 

parameters were kept the same) in 2008 to investigate the impact of the relative humidity bias on 435 

particulate nitrate predictions.  The arbitrary increase in RH by 30% in the air quality model 436 



simulations yields an upper bound estimate of the nitrate sensitivity to RH.  Figure 8 compares 437 

the monthly average nitrate concentrations predicted with the original RH (denoted as “RH_ori” 438 

case) and the enhanced RH (denoted as “RH+0.3” case) at Sacramento and Fresno.  Nitrate 439 

predictions are generally higher in the “RH+0.3” case due to more particle phase water available 440 

to absorb nitrate into the condensed phase. The nitrate predictions at Sacramento are significantly 441 

improved during most months in 2008, suggesting this area suffers from the low RH bias in the 442 

WRF predictions. Nitrate at Fresno is improved mostly in the winter and spring, but is still 443 

under-predicted during the time period with peak winter concentrations, indicating this area is 444 

influenced by other factors besides RH. Nitrate predictions at Fresno in summer and fall are 445 

lower when RH is enhanced, due to faster deposition caused by larger particle sizes with more 446 

particle phase water. The uniform RH increase of 0.3 in this region is likely unrealistically large 447 

during these months. 448 

  449 

Figure 6 panel (b) shows the OC predictions and measurements. Organic aerosol in 450 

California it is typically the second most abundant species, after ammonium nitrate. In the 451 

comparison, an OM/OC ratio of 1.6 (Turpin and Lim, 2010) is applied to convert primary 452 

organic aerosol OM back to OC for comparison to measured concentrations.  The conversion 453 

ratios for SOA species are taken from Table 1 in Carlton et al. (Carlton et al., 2010). Predicted 454 

OC agrees reasonably well with measured concentrations, but is lower than the wintertime high 455 

concentrations in the early years, similar to other PM components. Predicted OC in summers is 456 

also in good agreement with measurements at the indicated monitoring sites. As mentioned 457 

previously, these sites are all near major freeways and therefore OC is dominated by primary 458 

organic aerosols. Larger bias is found at sites distant from local sources where SOA becomes 459 



more important. More analysis about the concentrations and sources of the OC results are 460 

included in a companion paper (Hu, Manuscript in preparation). 461 

 462 

Figure 6 panel (c) shows that predicted EC concentrations agree well with measured 463 

concentrations. High measured EC concentrations in a few winter months in the early years are 464 

under-predicted, but EC concentrations in the summer months are generally over-predicted.   465 

 466 

Figure 6 panel (d) shows that monthly average predictions for PM2.5 mass concentrations 467 

agree well with observations, and seasonal trends are generally captured with high 468 

concentrations in winter, and low concentrations in summer.  PM2.5 is over-predicted in summer 469 

months when nitrate, sulfate, and ammonium are found to be under-predicted.  These trends 470 

reflect the over-prediction of  the primary components, mostly dust particles, in the model 471 

calculations (Hu et al., 2014a). This result suggests that a uniform scaling factor of 0.5 for dust 472 

emissions may not be appropriate.  A smaller factor (for example, a factor of 0.25 was used in 473 

the eastern U.S. (Tesche et al., 2006)) or a spatially resolved method that accounts for the land-474 

use types (Pace, 2005) should be used for future studies in California. 475 

 476 

California experiences the highest PM2.5 concentrations in wintertime, caused by stagnant 477 

meteorological conditions characterized by low wind speed and shallow atmospheric mixing 478 

layer. The WRF model tends to over-predict wind speed during low wind speed events ( ≤ 2 m/s) 479 

in California (Zhao et al., 2011). Increasing u* by 50% improves the WRF wind prediction but 480 

still over-predicts wind speed during events when measured wind speed is <1.5 m/s. A zero-481 

order approximation of air pollutant concentration (Mahmud, 2010) is: 482 



                                        𝐶𝐶 = 𝐸𝐸
𝑉𝑉

=  𝐸𝐸
𝑢𝑢×H

                                                              (1) 483 

where 𝐶𝐶 is the pollutant concentration, 𝐸𝐸 is the source pollutant emission rate, 𝑉𝑉 is the air 484 

ventilation rate which is equal to (wind speed × mixing height), 𝑢𝑢 and H are the horizontal wind 485 

speed and mixing height, respectively.  The concentration is linearly dependent on the inverse 486 

wind speed (1/ 𝑢𝑢). Figure 9 shows the MFBs of the predicted atmospheric inverse wind speed 487 

(1/ 𝑢𝑢) as a function of the observed atmospheric inverse wind speed.  Also shown in Figure 9 are 488 

the MFBs of PM component concentrations as a function of the observed concentrations. The 489 

MFBs decrease when the inverse wind speed or concentrations increase, indicating low inverse 490 

wind speed/concentrations are over-predicted, but high inverse wind speed /concentrations are 491 

under-predicted. The trends of inverse wind speed and concentrations are well correlated, 492 

indicating that simple wind bias leads to bias in PM predictions, especially during the events 493 

with high PM pollution. The correlation with 1/ 𝑢𝑢 MFB is stronger for primary PM component(s) 494 

than for secondary components, indicating that additional processes affect the secondary PM, 495 

such as chemistry, gas-particle partitioning, etc. Sulfate bias has the weakest correlation to 496 

inverse ventilation bias, because sulfate bias is mainly driven by the bias in sulfur emissions. 497 

 498 

Figure 10 shows the predicted 9-year average concentrations of PM2.5, EC, OC, nitrate, 499 

sulfate, and ammonium, compared with measured average concentrations over California. High 500 

concentrations of all PM pollutants occur in the urban areas with large population, indicating that 501 

most of the PM is generated by anthropogenic activities.  The predicted spatial distributions 502 

generally agree well with measurements, but provide much more detailed information. PM2.5 503 

concentrations are over-predicted in the SJV air basin due to an over-prediction of agricultural 504 

dust. High OC concentrations were measured at two sites in northern California due to intense 505 



wood burning. The two sites are in the 24 km model domain but outside the 4 km, therefore the 506 

predicted OC concentrations in the 24 km grids do not agree well with the measurements at this 507 

location. This finding confirms that 24 km resolution is probably too coarse for health effects 508 

studies and justifies the use of 4 km grids over the majority of California’s population in the 509 

current work. Background sulfate concentrations at IMPOVE sites were measured to be 0.6-1 510 

µg/m3 but higher concentrations of 2~3 µg/m3 were measured in Southern California.  Model 511 

calculations do not reproduce this concentration enhancement, leading to an under-prediction in 512 

the concentrations of this PM2.5 species.   513 

3.3 Discussion 514 

 515 

In general, the reasonable agreement between model predictions and measurement builds 516 

confidence that the model predictions can provide a reasonable estimate of exposure fields in 517 

locations with no available measurements.  The detailed analysis described in the previous 518 

section identifies several aspects that must be considered when applying the data in the health 519 

effect studies.  For the gaseous pollutants, daily maximum O3 predictions are in good agreement 520 

with measurements across the entire modeling domain.  Seasonal and annual variations are 521 

captured accurately.  Therefore daily maximum O3 predictions can be used in health analyses 522 

with high confidence.  The predictions also capture the seasonal variations in NO and CO, but do 523 

not reflect the long-term trends, especially in southern California.  Predicted monthly averages of 524 

NO and CO in northern California are preferred over daily averages for use in health analyses.  525 

For the PM pollutants, daily concentrations and spatial distributions of EC and total PM2.5 mass 526 

generally agree well with observations, but monthly averages should be considered first in health 527 

studies as they are in better agreement with observations than shorter averages.  Predicted OC in 528 



winter is also reasonably accurate, but OC in summer should be used with caution.  Sulfate and 529 

nitrate are both under-predicted.  Sulfate has greater bias in southern California than in northern 530 

California, while nitrate has consistent bias throughout the modeling domain.  This suggests that 531 

the spatial distribution information of nitrate might still be useful for health effect studies that 532 

use contrasts in exposure as a function of location, but sulfate data are likely not useful in health 533 

effects studies at the present time.   534 

 535 

Predicted monthly averages for PM concentrations are more accurate than daily averages, 536 

suggesting that the PM exposure predictions will be most useful in studies that can take 537 

advantage of averaging times ≥ 30 days. Longer averaging times smooth out short-term PM 538 

variations that could be useful in some epidemiological studies that focus on short term changes 539 

in health effects.  To get more accurate pollutant predictions at shorter timescales would require 540 

more accurate representation of emissions, meteorological conditions, and atmospheric 541 

chemistry at these time scales.  Many intensive studies that manually corrected input data have 542 

focused on high temporal resolution for short periods (generally less than 1 month), such as the 543 

California Regional PM10/PM2.5 Air Quality Study (CRPAQS) (Ying, 2008).  It is currently 544 

impractical to carry out such efforts for a ~10 year modeling period in which there are  a large 545 

number of special events that are not represented by automated meteorology and emissions 546 

models. The atmospheric modeling community continues to refine tools that can capture and 547 

accurately represent these special cases.  For example, the current study includes automatic 548 

detection and incorporation of wildfire emissions into the modeling system based on satellite 549 

observations.  This automated feature was not generally available in previous studies.  Future 550 

advances will detect transportation patterns responding to traffic accidents or holiday traffic 551 



jams, drought effects on biogenic emissions, etc.  These future advances will improve models to 552 

have more accurate predictions in both short- (<1 month) and long- (> 1 month) averaging times. 553 

4. Conclusions 554 

For the first time, a ~decadal (9 year) CTM air quality model simulation with 4 km 555 

horizontal resolution over populated regions has been conducted in California to provide air 556 

quality data for health effects studies. Model predictions are compared to measurements in order 557 

to evaluate both the spatial and temporal accuracy of the results. The performance of the source-558 

oriented UCD/CIT air quality model is satisfactory for O3, PM2.5, and EC (both spatially and 559 

temporally). Predicted OC, nitrate, and ammonium are less satisfactory, but generally meet 560 

standard model performance criteria. OC bias is larger in summertime than wintertime mainly 561 

due to an incomplete understanding of SOA formation mechanisms. Bias in predicted 562 

ammonium nitrate is associated with uncertainties in emissions, the WRF predicted relative 563 

humidity fields, and the chemistry mechanism. Predicted sulfate is not satisfactory due to 564 

missing sulfur sources in the emissions. The CO and NO (species dominated by mobile 565 

emissions) results reveal significant temporal and spatial uncertainties associated with the mobile 566 

emissions generated by the EMFAC 2007 model. The WRF model tends to over-predict wind 567 

speed during stagnation events, leading to under-predictions of high PM concentrations, usually 568 

in winter months. The WRF model also generally under-predicts relative humidity, resulting in 569 

less particulate nitrate formation especially during winter months. Despite the issues noted 570 

above, predicted spatial distributions of PM components are in reasonably good agreement with 571 

measurements. Predicted seasonal and annual variations also generally agree well with 572 

measurements. Better model performance with longer averaging time is found in the predictions, 573 

suggesting that model results with averaging times ≥1 month should be first considered in 574 



epidemiological studies.  All model results included in the current manuscript can be 575 

downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/. 576 

Acknowledgement 577 

 578 

This study was funded by the United States Environmental Protection Agency under Grant No. 579 

83386401. Although the research described in the article has been funded by the United States 580 

Environmental Protection Agency it has not been subject to the Agency’s required peer and 581 

policy review and therefore does not necessarily reflect the reviews of the Agency and no official 582 

endorsement should be inferred. 583 

References 584 
 585 
Anenberg, S.C., Horowitz, L.W., Tong, D.Q., West, J.J., 2010. An Estimate of the Global 586 
Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality 587 
Using Atmospheric Modeling. Environmental Health Perspectives 118, 1189-1195. 588 
Angevine, W.M., Eddington, L., Durkee, K., Fairall, C., Bianco, L., Brioude, J., 2012. 589 
Meteorological Model Evaluation for CalNex 2010. Monthly Weather Review 140, 3885-3906. 590 
Appel, K.W., Bhave, P.V., Gilliland, A.B., Sarwar, G., Roselle, S.J., 2008. Evaluation of the 591 
community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model 592 
performance; Part II - particulate matter. Atmospheric Environment 42, 6057-6066. 593 
Bao, J.W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., Wilczak, J. M., 2008. Observed 594 
and WRF-simulated low-level winds in a high-ozone episode during the Central California 595 
Ozone Study. Journal of Applied Meteorology and Climatology 47, 2372-2394. 596 
Barnett, A.G., Plonka, K., Seow, W.K., Wilson, L.A., Hansen, C., 2011. Increased traffic 597 
exposure and negative birth outcomes: a prospective cohort in Australia. Environmental health 598 
10, 26. 599 
Bates, T.S., Lamb, B.K., Guenther, A., Dignon, J., Stoiber, R.E., 1992. Sulfur emissions to the 600 
atmosphere from natural sourees. J Atmos Chem 14, 315-337. 601 
Beelen, R., Hoek, G., van den Brandt, P.A., Goldbohm, R.A., Fischer, P., Schouten, L.J., 602 
Armstrong, B., Brunekreef, B., 2008. Long-term exposure to traffic-related air pollution and lung 603 
cancer risk. Epidemiology 19, 702-710. 604 
Beeson, W.L., Abbey, D.E., Knutsen, S.F., 1998. Long-term concentrations of ambient air 605 
pollutants and incident lung cancer in California adults: Results from the AHSMOG study. 606 
Environmental Health Perspectives 106, 813-822. 607 
Beevers, S.D., Kitwiroon, N., Williams, M.L., Kelly, F.J., Ross Anderson, H., Carslaw, D.C., 608 
2013. Air pollution dispersion models for human exposure predictions in London. J Expos Sci 609 
Environ Epidemiol 23, 647-653. 610 



Bell, M.L., Belanger, K., Ebisu, K., Gent, J.F., Lee, H.J., Koutrakis, P., Leaderer, B.P., 2010. 611 
Prenatal exposure to fine particulate matter and birth weight: variations by particulate 612 
constituents and sources. Epidemiology 21, 884-891. 613 
Bell, M.L., Dominici, F., Ebisu, K., Zeger, S.L., Samet, J.M., 2007. Spatial and temporal 614 
variation in PM(2.5) chemical composition in the United States for health effects studies. 615 
Environ Health Perspect 115, 989-995. 616 
Boylan, J.W., Russell, A.G., 2006. PM and light extinction model performance metrics, goals, 617 
and criteria for three-dimensional air quality models. Atmospheric Environment 40, 4946-4959. 618 
Brauer, M., Lencar, C., Tamburic, L., Koehoorn, M., Demers, P., Karr, C., 2008. A cohort study 619 
of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect 116, 680-686. 620 
Bravo, M.A., Fuentes, M., Zhang, Y., Burr, M.J., Bell, M.L., 2012. Comparison of exposure 621 
estimation methods for air pollutants: Ambient monitoring data and regional air quality 622 
simulation. Environmental research 116, 1-10. 623 
Burnett, R.T., Brook, J., Dann, T., Delocla, C., Philips, O., Cakmak, S., Vincent, R., Goldberg, 624 
M.S., Krewski, D., 2000. Association between particulate- and gas-phase components of urban 625 
air pollution and daily mortality in eight Canadian cities. Inhalation Toxicology 12, 15-39. 626 
Cao, J.J., Xu, H.M., Xu, Q., Chen, B.H., Kan, H.D., 2012. Fine Particulate Matter Constituents 627 
and Cardiopulmonary Mortality in a Heavily Polluted Chinese City. Environmental Health 628 
Perspectives 120, 373-378. 629 
CARB, 2008. Calculating emission inventories for vehicles in California. User's Guide EMFAC 630 
2007 version 2.30 Accessed in 2010. 631 
CARB, 2011a. Meteorology Data Query Tool (PST), 632 
http://www.arb.ca.gov/aqmis2/metselect.php. Accessed in 2011. 633 
CARB, 2012. Almanac Emission Projection Data (published in 2009), 634 
http://www.arb.ca.gov/app/emsinv/emssumcat.php. Accessed in 2012. 635 
CARB, 2011b. Database: California Air Quality Data - Selected Data Available for Download 636 
<http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm>. Accessed in 2011. 637 
Carlton, A.G., Bhave, P.V., Napelenok, S.L., Edney, E.D., Sarwar, G., Pinder, R.W., Pouliot, 638 
G.A., Houyoux, M., 2010. Model Representation of Secondary Organic Aerosol in CMAQv4.7. 639 
Environmental Science & Technology 44, 8553-8560. 640 
Carter, W.P.L., Heo, G., 2012a. DEVELOPMENT OF REVISED SAPRC AROMATICS 641 
MECHANISMS. Final Report to California Air Resources Board Contracts No. 07-730 and 08-642 
326. 643 
Carter, W.P.L., Heo, G., 2012b. DEVELOPMENT OF REVISED SAPRC AROMATICS 644 
MECHANISMS. Report to the California Air Resources Board, Contract No. 07-730 and 08-326  645 
Carter, W.P.L., Heo, G., 2013. Development of revised SAPRC aromatics mechanisms. 646 
Atmospheric Environment 77, 404-414. 647 
Chen, J., Lu, J., Avise, J.C., DaMassa, J.A., Kleeman, M.J., Kaduwela, A.P., 2014. Seasonal 648 
modeling of PM2.5 in California's San Joaquin Valley. Atmospheric Environment 92, 182-190. 649 
Chen, J.J., Ying, Q., Kleeman, M.J., 2010. Source apportionment of wintertime secondary 650 
organic aerosol during the California regional PM(10)/PM(2.5) air quality study. Atmospheric 651 
Environment 44, 1331-1340. 652 
Chen, Y.Y., Ebenstein, A., Greenstone, M., Li, H.B., 2013. Evidence on the impact of sustained 653 
exposure to air pollution on life expectancy from China's Huai River policy. P Natl Acad Sci 654 
USA 110, 12936-12941. 655 

http://www.arb.ca.gov/aqmis2/metselect.php
http://www.arb.ca.gov/app/emsinv/emssumcat.php
http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm%3e


Cooper, J.A.e.a., 1989. Dinal Appendix V-G, PM10 source composition library for the South 656 
Coast Air Basin. Technical Report, South Coast Air Quality Management District, Diamond Bar, 657 
California. 658 
Correia, A.W., Pope, C.A., Dockery, D.W., Wang, Y., Ezzati, M., Dominici, F., 2013. Effect of 659 
Air Pollution Control on Life Expectancy in the United States An Analysis of 545 US Counties 660 
for the Period from 2000 to 2007. Epidemiology 24, 23-31. 661 
Countess, R.J., 2003. Reconciling Fugitive Dust Emission Inventories with Ambient 662 
Measurements. 12th Annual EPA Emission Inventory Conference San Diego, CA. 663 
Day, D.A., Liu, S., Russell, L.M., Ziemann, P.J., 2010. Organonitrate group concentrations in 664 
submicron particles with high nitrate and organic fractions in coastal southern California. 665 
Atmospheric Environment 44, 1970-1979. 666 
de Leeuw, G., Neele, F.P., Hill, M., Smith, M.H., Vignali, E., 2000. Production of sea spray 667 
aerosol in the surf zone. Journal of Geophysical Research-Atmospheres 105, 29397-29409. 668 
Dockery, D.W., 2001. Epidemiologic evidence of cardiovascular effects of particulate air 669 
pollution. Environmental Health Perspectives 109, 483-486. 670 
Dockery, D.W., Pope, C.A., Xu, X.P., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., 671 
Speizer, F.E., 1993. An Association between Air-Pollution and Mortality in 6 United-States 672 
Cities. New England Journal of Medicine 329, 1753-1759. 673 
Emery, C., Tai, E., Yarwood, G., 2001. Enhanced meteorological modeling and performance 674 
evaluation for two texas episodes, in: Report to the Texas Natural Resources Conservation 675 
Commission, p.b.E., Internatioanl Corp (Ed.), Novato, CA. 676 
EPA, U.S., 2013. Particulate Matter (PM2.5) Area Information (2006 Standard). 677 
http://www.epa.gov/airquality/greenbook/rindex.html Accessed in January 2014. 678 
Fann, N., Lamson, A.D., Anenberg, S.C., Wesson, K., Risley, D., Hubbell, B.J., 2012. 679 
Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and 680 
Ozone. Risk Anal 32, 81-95. 681 
Fast, J.D., Allan, J., Bahreini, R., Craven, J., Emmons, L., Ferrare, R., Hayes, P.L., Hodzic, A., 682 
Holloway, J., Hostetler, C., Jimenez, J.L., Jonsson, H., Liu, S., Liu, Y., Metcalf, A., 683 
Middlebrook, A., Nowak, J., Pekour, M., Perring, A., Russell, L., Sedlacek, A., Seinfeld, J., 684 
Setyan, A., Shilling, J., Shrivastava, M., Springston, S., Song, C., Subramanian, R., Taylor, J.W., 685 
Vinoj, V., Yang, Q., Zaveri, R.A., Zhang, Q., 2014. Modeling regional aerosol and aerosol 686 
precursor variability over California and its sensitivity to emissions and long-range transport 687 
during the 2010 CalNex and CARES campaigns. Atmos. Chem. Phys. 14, 10013-10060. 688 
Ford, I., Li, X.Y., Donaldson, K., MacNee, W., Seaton, A., Greaves, M., 1998. Particulate air 689 
pollution and cardiovascular risk: Increased factor VIIc follows exposure to ultrafine particles. 690 
Brit J Haematol 101, 80-80. 691 
Franchini, M., Mannucci, P.M., 2009. Particulate Air Pollution and Cardiovascular Risk: Short-692 
term and Long-term Effects. Semin Thromb Hemost 35, 665-670. 693 
Frank, N.H., 2006. Retained nitrate, hydrated sulfates, and carbonaceous mass in Federal 694 
Reference Method fine particulate matter for six eastern US cities. Journal of the Air & Waste 695 
Management Association 56, 500-511. 696 
Franklin, M., Koutrakis, P., Schwartz, J., 2008. The role of particle composition on the 697 
association between PM2.5 and mortality. Epidemiology 19, 680-689. 698 
Franklin, M., Zeka, A., Schwartz, J., 2007. Association between PM2.5 and all-cause and 699 
specific-cause mortality in 27 US communities. Journal of Exposure Science and Environmental 700 
Epidemiology 17, 279-287. 701 

http://www.epa.gov/airquality/greenbook/rindex.html


Goldgewicht, C., 2007. Association between surrounding air pollution and daily mortality in 702 
subjects with diabetes and cardiovascular complications. Environnement Risques & Sante 6, 15-703 
16. 704 
Gong, S.L., 2003. A parameterization of sea-salt aerosol source function for sub- and super-705 
micron particles. Global Biogeochem Cy 17. 706 
Gordian, M.E., Ozkaynak, H., Xue, J.P., Morris, S.S., Spengler, J.D., 1996. Particulate air 707 
pollution and respiratory disease in Anchorage, Alaska. Environmental Health Perspectives 104, 708 
290-297. 709 
Hacon, S., Ornelas, C., Ignotti, E., Longo, K., 2007. Fine particulate air pollution and hospital 710 
admission for respiratory diseases in the Amazon region. Epidemiology 18, S81-S81. 711 
Harley, R.A., Hannigan, M.P., Cass, G.R., 1992. Respeciation of Organic Gas Emissions and the 712 
Detection of Excess Unburned Gasoline in the Atmosphere. Environmental Science & 713 
Technology 26, 2395-2408. 714 
Held, T., Ying, Q., Kleeman, M.J., Schauer, J.J., Fraser, M.P., 2005. A comparison of the 715 
UCD/CIT air quality model and the CMB source-receptor model for primary airborne particulate 716 
matter. Atmospheric Environment 39, 2281-2297. 717 
Held, T., Ying, Q., Kaduwela, A., Kleeman, M., 2004. Modeling particulate matter in the San 718 
Joaquin Valley with a source-oriented externally mixed three-dimensional photochemical grid 719 
model. Atmospheric Environment 38, 3689-3711. 720 
Hildemann, L.M., Markowski, G.R., Cass, G.R., 1991a. Chemical-Composition of Emissions 721 
from Urban Sources of Fine Organic Aerosol. Environmental Science & Technology 25, 744-722 
759. 723 
Hildemann, L.M., Markowski, G.R., Jones, M.C., Cass, G.R., 1991b. Submicrometer Aerosol 724 
Mass Distributions of Emissions from Boilers, Fireplaces, Automobiles, Diesel Trucks, and 725 
Meat-Cooking Operations. Aerosol Science and Technology 14, 138-152. 726 
Hixson, M., Mahmud, A., Hu, J., Bai, S., Niemeier, D.A., Handy, S.L., Gao, S., Lund, J.R., 727 
Sullivan, D.C., Kleeman, M.J., 2010. Influence of regional development policies and clean 728 
technology adoption on future air pollution exposure. Atmospheric Environment 44, 552-562. 729 
Hixson, M., Mahmud, A., Hu, J., Kleeman, M.J., 2012. Resolving the interactions between 730 
population density and air pollution emissions controls in the San Joaquin Valley, USA. Journal 731 
of the Air & Waste Management Association 62, 566-575. 732 
Hodzic, A., Madronich, S., Bohn, B., Massie, S., Menut, L., Wiedinmyer, C., 2007. Wildfire 733 
particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, 734 
transport and radiative effects. Atmospheric Chemistry and Physics 7, 4043-4064. 735 
Houck, J.E., et al., 1989. Determination of particle size distribution and chemical composition of 736 
particulate matter from selected sources in California. Technical Report, Contract A6-175-32, 737 
California Air Resources Board, OMNI Environment Service Incorporate, Desert Research 738 
Institute, Beaverton, Oregon. 739 
Hu, J., Howard, C.J., Mitloehner, F., Green, P.G., Kleeman, M.J., 2012. Mobile Source and 740 
Livestock Feed Contributions to Regional Ozone Formation in Central California. 741 
Environmental Science & Technology 46, 2781-2789. 742 
Hu, J., Ying, Q., Chen, J.J., Mahmud, A., Zhao, Z., Chen, S.H., Kleeman, M.J., 2010. Particulate 743 
air quality model predictions using prognostic vs. diagnostic meteorology in central California. 744 
Atmospheric Environment 44, 215-226. 745 



Hu, J., Zhang, H., Chen, S.-H., Vandenberghe, F., Ying, Q., Kleeman, M.J., 2014a. Predicting 746 
Primary PM2.5 and PM0.1 Trace Composition for Epidemiological Studies in California. 747 
Environmental Science & Technology 48, 4971-4979. 748 
Hu, J., Zhang, H., Chen, S., Ying, Q., Vandenberghe, F., Kleeman, M.J., 2014b. Identifying 749 
PM2.5 and PM0.1 Sources for Epidemiological Studies in California. Environmental Science & 750 
Technology 48, 4980-4990. 751 
Hu, J.L., Zhang, H. L., Chen, S. H., Wiedinmyer, C., Vandenberghe, F.,  Ying, Q., Kleeman, M. 752 
J., Manuscript in preparation. Long-term Particulate Matter Modeling for Health Effects Studies 753 
in California – Part II: Concentrations and Souces of Primary and Secondary Organic Aerosols. 754 
Hughes, J., Tolsma, D., 2002. Association between particulate air pollution and acute respiratory 755 
visits in an ambulatory care setting. Epidemiology 13, S125-S125. 756 
Ito, K., Mathes, R., Ross, Z., Nadas, A., Thurston, G., Matte, T., 2011. Fine Particulate Matter 757 
Constituents Associated with Cardiovascular Hospitalizations and Mortality in New York City. 758 
Environmental Health Perspectives 119, 467-473. 759 
Kan, H.D., Gu, D.F., 2011. Association Between Long-term Exposure to Outdoor Air Pollution 760 
and Mortality in China: A Cohort Study. Epidemiology 22, S29-S29. 761 
Kleeman, M.J., Cass, G.R., 1998. Source contributions to the size and composition distribution 762 
of urban particulate air pollution. Atmospheric Environment 32, 2803-2816. 763 
Kleeman, M.J., Cass, G.R., 2001. A 3D Eulerian source-oriented model for an externally mixed 764 
aerosol. Environmental Science & Technology 35, 4834-4848. 765 
Kleeman, M.J., Cass, G.R., Eldering, A., 1997. Modeling the airborne particle complex as a 766 
source-oriented external mixture. Journal of Geophysical Research-Atmospheres 102, 21355-767 
21372. 768 
Kleeman, M.J., Robert, M.A., Riddle, S.G., Fine, P.M., Hays, M.D., Schauer, J.J., Hannigan, 769 
M.P., 2008. Size distribution of trace organic species emitted from biomass combustion and meat 770 
charbroiling. Atmospheric Environment 42, 3059-3075. 771 
Kleeman, M.J., Schauer, J.J., Cass, G.R., 1999. Size and composition distribution of fine 772 
particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environmental 773 
Science & Technology 33, 3516-3523. 774 
Kleeman, M.J., Schauer, J.J., Cass, G.R., 2000. Size and composition distribution of fine 775 
particulate matter emitted from motor vehicles. Environmental Science & Technology 34, 1132-776 
1142. 777 
Kleeman, M.J., Ying, Q., Lu, J., Mysliwiec, M.J., Griffin, R.J., Chen, J.J., Clegg, S., 2007. 778 
Source apportionment of secondary organic aerosol during a severe photochemical smog 779 
episode. Atmospheric Environment 41, 576-591. 780 
Krall, J.R., Anderson, G.B., Dominici, F., Bell, M.L., Peng, R.D., 2013. Short-term Exposure to 781 
Particulate Matter Constituents and Mortality in a National Study of US Urban Communities. 782 
Environmental Health Perspectives 121, 1148-1153. 783 
Laden, F., Neas, L.M., Dockery, D.W., Schwartz, J., 2000. Association of fine particulate matter 784 
from different sources with daily mortality in six US cities. Environmental Health Perspectives 785 
108, 941-947. 786 
Langrish, J.P., Bosson, J., Unosson, J., Muala, A., Newby, D.E., Mills, N.L., Blomberg, A., 787 
Sandstrom, T., 2012. Cardiovascular effects of particulate air pollution exposure: time course 788 
and underlying mechanisms. J Intern Med 272, 224-239. 789 



Laurent, O., Hu, J., Li, L., Cockburn, M., Escobedo, L., Kleeman, M., Wu, J., 2014. Sources and 790 
contents of air pollution affecting term low birth weight in Los Angeles County, California, 791 
2001-2008. Environment Research Accepted for Publication. 792 
Laurent, O., Wu, J., Li, L., Chung, J., Bartell, S., 2013. Investigating the association between 793 
birth weight and complementary air pollution metrics: a cohort study. Environmental health 12, 794 
18. 795 
Le Tertre, A., Medina, S., Samoli, E., Forsberg, B., Michelozzi, P., Boumghar, A., Vonk, J.M., 796 
Bellini, A., Atkinson, R., Ayres, J.G., Sunyer, J., Schwartz, J., Katsouyanni, K., 2002. Short-term 797 
effects of particulate air pollution on cardiovascular diseases in eight European cities. J 798 
Epidemiol Commun H 56, 773-779. 799 
Levy, J.I., Diez, D., Dou, Y.P., Barr, C.D., Dominici, F., 2012. A Meta-Analysis and Multisite 800 
Time-Series Analysis of the Differential Toxicity of Major Fine Particulate Matter Constituents. 801 
American Journal of Epidemiology 175, 1091-1099. 802 
Mahmud, A., Hixson, M., Hu, J., Zhao, Z., Chen, S. H., Kleeman, M. J., 2010. Climate impact 803 
on airborne particulate matter concentrations in California using seven year analysis periods. 804 
Atmospheric Chemistry and Physics 10, 11097-11114. 805 
Mar, T.F., Norris, G.A., Koenig, J.Q., Larson, T.V., 2000. Associations between air pollution 806 
and mortality in Phoenix, 1995-1997. Environmental Health Perspectives 108, 347-353. 807 
Mass, C., Ovens, D., 2010. WRF model physics: progress, problems, and perhaps some 808 
solutions. the 11th WRF Users' Workshop, 21–25 June, Boulder, CO. 809 
Matsui, H., Koike, M., Takegawa, N., Kondo, Y., Griffin, R.J., Miyazaki, Y., Yokouchi, Y., 810 
Ohara, T., 2009. Secondary organic aerosol formation in urban air: Temporal variations and 811 
possible contributions from unidentified hydrocarbons. Journal of Geophysical Research: 812 
Atmospheres 114, D04201. 813 
Michelson, S.A., Djalalova, I.V., Bao, J.-W., 2010a. Evaluation of the Summertime Low-Level 814 
Winds Simulated by MM5 in the Central Valley of California. Journal of Applied Meteorology 815 
and Climatology 49, 2230-2245. 816 
Michelson, S.A., Djalalova, I.V., Bao, J.W., 2010b. Evaluation of the Summertime Low-Level 817 
Winds Simulated by MM5 in the Central Valley of California. Journal of Applied Meteorology 818 
and Climatology 49, 2230-2245. 819 
Millstein, D.E., Harley, R.A., 2009. Revised estimates of construction activity and emissions: 820 
Effects on ozone and elemental carbon concentrations in southern California. Atmospheric 821 
Environment 43, 6328-6335. 822 
Mysliwiec, M.J., Kleeman, M.J., 2002. Source apportionment of secondary airborne particulate 823 
matter in a polluted atmosphere. Environmental Science & Technology 36, 5376-5384. 824 
Ostro, B., Broadwin, R., Green, S., Feng, W.Y., Lipsett, M., 2006. Fine particulate air pollution 825 
and mortality in nine California counties: Results from CALFINE. Environmental Health 826 
Perspectives 114, 29-33. 827 
Ostro, B., Feng, W.Y., Broadwin, R., Green, S., Lipsett, M., 2007. The effects of components of 828 
fine particulate air pollution on mortality in California: Results from CALFINE. Environmental 829 
Health Perspectives 115, 13-19. 830 
Ostro, B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C., Henderson, K.D., 831 
Bernstein, L., 2010. Long-Term Exposure to Constituents of Fine Particulate Air Pollution and 832 
Mortality: Results from the California Teachers Study. Environmental Health Perspectives 118, 833 
363-369. 834 



Pace, T.G., 2005. Methodology to Estimate the Transportable Fraction (TF) of Fugitive Dust 835 
Emissions for Regional and Urban Scale Air Quality Analyses. US EPA August 2005. 836 
Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. 837 
Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. 838 
Jama-J Am Med Assoc 287, 1132-1141. 839 
Pope, C.A., Ezzati, M., Dockery, D.W., 2009. Fine-Particulate Air Pollution and Life 840 
Expectancy in the United States. New England Journal of Medicine 360, 376-386. 841 
Rasmussen, D.J., Hu, J., Mahmud, A., Kleeman, M.J., 2013. The Ozone–Climate Penalty: Past, 842 
Present, and Future. Environmental Science & Technology 47, 14258-14266. 843 
Robert, M.A., Kleeman, M.J., Jakober, C.A., 2007a. Size and composition distributions of 844 
particulate matter emissions: Part 2- Heavy-duty diesel vehicles. Journal of the Air & Waste 845 
Management Association 57, 1429-1438. 846 
Robert, M.A., VanBergen, S., Kleeman, M.J., Jakober, C.A., 2007b. Size and composition 847 
distributions of particulate matter emissions: Part 1 - Light-duty gasoline vehicles. Journal of the 848 
Air & Waste Management Association 57, 1414-1428. 849 
Sarnat, J.A., Sarnat, S.E., Crooks, J., Isakov, V., Touma, J., Ozkaynak, H., Mulholland, J., 850 
Russell, A., Kewada, P., 2011. Associations Between Spatially Resolved Estimates of Traffic-851 
related Pollution and Acute Morbidity: Assessing Agreement of Results Among Multiple 852 
Exposure Assignment Approaches. Epidemiology 22, S31-S32. 853 
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 1999a. Measurement of emissions 854 
from air pollution sources. 1. C-1 through C-29 organic compounds from meat charbroiling. 855 
Environmental Science & Technology 33, 1566-1577. 856 
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 1999b. Measurement of emissions 857 
from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel 858 
trucks. Environmental Science & Technology 33, 1578-1587. 859 
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions 860 
from air pollution sources. 3. C-1-C-29 organic compounds from fireplace combustion of wood. 861 
Environmental Science & Technology 35, 1716-1728. 862 
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2002a. Measurement of emissions 863 
from air pollution sources. 4. C-1-C-27 organic compounds from cooking with seed oils. 864 
Environmental Science & Technology 36, 567-575. 865 
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2002b. Measurement of emissions 866 
from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor 867 
vehicles. Environmental Science & Technology 36, 1169-1180. 868 
Sickles Ii, J.E., Shadwick, D.S., 2002. Precision of atmospheric dry deposition data from the 869 
Clean Air Status and Trends Network. Atmospheric Environment 36, 5671-5686. 870 
Son, J.Y., Lee, J.T., Kim, K.H., Jung, K., Bell, M.L., 2012. Characterization of Fine Particulate 871 
Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, 872 
Korea. Environmental Health Perspectives 120, 872-878. 873 
Stieb, D.M., Chen, L., Eshoul, M., Judek, S., 2012. Ambient air pollution, birth weight and 874 
preterm birth: A systematic review and meta-analysis. Environmental research 117, 100–111. 875 
Taback, H.J., Brienza, A.R., Macko, J., Brunetz, N., 1979. Fine particle emissions from 876 
stationary and miscellaneous sources in the South Coast Air Basin. Technical Report, Contract 877 
A6-191-30, California Air Resources Board, KVB Incorporate, Research-Cottrell, Tustin, 878 
California. 879 



Tainio, M., Juda-Rezler, K., Reizer, M., Warchałowski, A., Trapp, W., Skotak, K., 2012. Future 880 
climate and adverse health effects caused by fine particulate matter air pollution: case study for 881 
Poland. Regional Environmental Change, 1-11. 882 
Tesche, T.W., Morris, R., Tonnesen, G., McNally, D., Boylan, J., Brewer, P., 2006. 883 
CMAQ/CAMx annual 2002 performance evaluation over the eastern US. Atmospheric 884 
Environment 40, 4906-4919. 885 
Tran, H.T., Alvarado, A., Garcia, C., Motallebi, N., Miyasato, L., and Vance, W, 2008. 886 
Methodology for Estimating Premature Deaths Associated with Long-term Exposure to Fine 887 
Airborne Particulate Matter in California. Staff Report, California Environmental Protection 888 
Agency, Air Resources Board. 889 
Turpin, B.J., Lim, H.J., 2010. Species contributions to PM2.5 mass concentrations: revisiting 890 
common assumptions for estimating organic mass. Aerosol Science and Technology 35:1, 602-891 
610. 892 
U.S.EPA, 2007. Guidance on the Use of Models and Other Analyses for Demonstrating 893 
Attainment of Air Quality Goals for Ozone, PM2.5 and Regional Haze, in: Agency, U.S.E.P. 894 
(Ed.), Research Triangle Park, North Carolina. 895 
Vineis, P., Hoek, G., Krzyzanowski, M., Vigna-Taglianti, F., Veglia, F., Airoldi, L., Autrup, H., 896 
Dunning, A., Garte, S., Hainaut, P., Malaveille, C., Matullo, G., Overvad, K., Raaschou-Nielsen, 897 
O., Clavel-Chapelon, F., Linseisen, J., Boeing, H., Trichopoulou, A., Palli, D., Peluso, M., 898 
Krogh, V., Tumino, R., Panico, S., Bueno-De-Mesquita, H.B., Peeters, P.H., Lund, E.E., 899 
Gonzalez, C.A., Martinez, C., Dorronsoro, M., Barricarte, A., Cirera, L., Quiros, J.R., Berglund, 900 
G., Forsberg, B., Day, N.E., Key, T.J., Saracci, R., Kaaks, R., Riboli, E., 2006. Air pollution and 901 
risk of lung cancer in a prospective study in Europe. Int J Cancer 119, 169-174. 902 
Volkamer, R., Jimenez, J.L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L.T., 903 
Worsnop, D.R., Molina, M.J., 2006. Secondary organic aerosol formation from anthropogenic air 904 
pollution: Rapid and higher than expected. Geophysical Research Letters 33, L17811. 905 
Vukovich, J.M., Pierce, T., 2002. The Implementation of BEIS3 within the SMOKE modeling 906 
framework. MCNC-Environmental Modeling Center, Research Triangle Park and National 907 
Oceanic and Atmospheric Administration. 908 
Walker, J.M., Philip, S., Martin, R.V., Seinfeld, J.H., 2012. Simulation of nitrate, sulfate, and 909 
ammonium aerosols over the United States. Atmos. Chem. Phys. 12, 11213-11227. 910 
Wang, K., Zhang, Y., Yahya, K., Wu, S.-Y., Grell, G., 2015. Implementation and Initial 911 
Application of New Chemistry-Aerosol Options in WRF/Chem for Simulating Secondary 912 
Organic Aerosols and Aerosol Indirect Effects for Regional Air Quality. Atmospheric 913 
Environment doi:10.1016/j.atmosenv.2014.12.007. 914 
Wei Wang, C.B., Michael Duda, Jimy Dudhia, Dave Gill, Hui-Chuan Lin, John Michalakes, 915 
Syed Rizvi, and Xin Zhang, January 2010. The Advanced Research WRF (ARW) Version 3 916 
Modeling System User's Guide. 917 
Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., Soja, 918 
A.J., 2011. The Fire INventory from NCAR (FINN): a high resolution global model to estimate 919 
the emissions from open burning. Geoscientific Model Development 4, 625-641. 920 
Willers, S.M., Eriksson, C., Gidhagen, L., Nilsson, M.E., Pershagen, G., Bellander, T., 2013. 921 
Fine and coarse particulate air pollution in relation to respiratory health in Sweden. European 922 
Respiratory Journal 42, 924-934. 923 



William C. Skamarock, J.B.K., Jimy Dudhia, David O Gill, Dale M. Barker, Michael G. Duda, 924 
Xiang-Yu Huang, Wei Wang, and Jordan G. Powers, June 2008. A Description of the Advanced 925 
Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. 926 
WRAP, 2005. 2002 Fire Emission Inventory for the WRAP Region –Phase II. Air Sciences Inc. 927 
Ying, Q., Fraser, M.P., Griffin, R.J., Chen, J.J., Kleeman, M.J., 2007. Verification of a source-928 
oriented externally mixed air quality model during a severe photochemical smog episode. 929 
Atmospheric Environment 41, 1521-1538. 930 
Ying, Q., Kleeman, M.J., 2006. Source contributions to the regional distribution of secondary 931 
particulate matter in California. Atmospheric Environment 40, 736-752. 932 
Ying, Q., Lu, J., Allen, P., Livingstone, P., Kaduwela, A., Kleeman, M., 2008. Modeling air 933 
quality during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) using the 934 
UCD/CIT source-oriented air quality model - Part I. Base case model results. Atmospheric 935 
Environment 42, 8954-8966. 936 
Yu, S.C., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., Robarge, 937 
W., 2005. An assessment of the ability of three-dimensional air quality models with current 938 
thermodynamic equilibrium models to predict aerosol NO3-. Journal of Geophysical Research-939 
Atmospheres 110. 940 
Zhang, H., Chen, G., Hu, J., Chen, S.-H., Wiedinmyer, C., Kleeman, M., Ying, Q., 2014a. 941 
Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting 942 
(WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. 943 
Science of The Total Environment 473–474, 275-285. 944 
Zhang, H., DeNero, S.P., Joe, D.K., Lee, H.H., Chen, S.H., Michalakes, J., Kleeman, M.J., 945 
2014b. Development of a source oriented version of the WRF/Chem model and its application to 946 
the California regional PM10 / PM2.5 air quality study. Atmos. Chem. Phys. 14, 485-503. 947 
Zhang, H., Ying, Q., 2011. Secondary organic aerosol formation and source apportionment in 948 
Southeast Texas. Atmospheric Environment 45, 3217-3227. 949 
Zhang, H.L., Ying, Q., 2010. Source apportionment of airborne particulate matter in Southeast 950 
Texas using a source-oriented 3D air quality model. Atmospheric Environment 44, 3547-3557. 951 
Zhao, Z., Chen, S.H., Kleeman, M.J., Tyree, M., Cayan, D., 2011. The Impact of Climate 952 
Change on Air Quality-Related Meteorological Conditions in California. Part I: Present Time 953 
Simulation Analysis. Journal of Climate 24, 3344-3361. 954 

 955 
  956 



Figures and Tables 957 
 958 
Figure 1. Modeling domains (blue lines outline the CA_24km domain, and red lines outline the 959 
SoCAB_4km (bottom) and SJV_4km domains (up)) and PM measurement sites (dots). Blue dots 960 
represent the sites of the PM2.5 Speciation Trends Network (STN) and the State and Local Air 961 
Monitoring Stations (SLAMS), green dots represent the Interagency Monitoring of Protected 962 
Visual Environments (IMPROVE) sites, and gray dots represent the PM2.5 Federal Reference 963 
Method (FRM) sites. 964 
 965 
Figure 2. Monthly mean fractional bias (MFB) of PM2.5 EC, OC, nitrate, ammonium, sulfate, and 966 
total mass. Solid lines represent the MFB criteria, and the blue dash lines represent the MFB 967 
goals. 968 
 969 
Figure 3. Monthly mean fractional errors (MFE) of PM2.5 EC, OC, nitrate, ammonium, sulfate, 970 
and total mass. Solid lines represent the MFE criteria, and the blue dash lines represent the MFE 971 
goals. 972 
 973 
Figure 4. Mean fractional bias (MFB) and mean fractional errors (MFE) of PM and gaseous 974 
species when calculated using daily, monthly and annual averages. 975 
 976 
Figure 5. Predicted (red lines) vs. observed (dark dots) monthly average O3 (a), CO (b), NO (c), 977 
and PM2.5 ammonium (d) at Sacramento, Fresno, Bakersfield, Los Angeles, and Riverside. 978 
 979 
Figure 6. Predicted (red lines) vs. observed (dark dots) monthly average PM2.5 nitrate (a), OC 980 
(b), EC (c), and PM2.5 total mass (d) at Sacramento, Fresno, Bakersfield, Los Angeles, and 981 
Riverside. 982 
 983 
Figure 7. Monthly average NO concentrations adjusted with the predicted/observed CO ratios. 984 
NO_noadj represents the NO concentrations in the UCD/CIT model predictions, and NO_adj 985 
represents the NO concentrations adjusted with observations as:  986 
NO_adj = NO_noadj * CO_predicted / CO_measured 987 
 988 
Figure 8. Monthly average nitrate concentrations in2008 at Sacramento and Fresno predicted 989 
with perturbed relative humidity (RH+0.3), compared to the basecase nitrate predictions 990 
(RH_ori) and observed concentrations (Obs) 991 
 992 
Figure 9. Association between predicted PM concentration bias and wind bias vs. observed 993 
values. The observed PM concentrations and 1/u values on the x-axis are expressed in a relative 994 
scale of 0-100% of maximum range calculated as x (%) = (C-Cmin)/(Cmax-Cmin)*100.  Values for 995 
[Cmin, Cmax] are listed in the concentration key. Bias between predicted vs. observed values is 996 
shown on the y-axis.  Ideal behavior is bias of zero at all concentrations & wind speeds. 997 
 998 
Figure 10. Predicted (1) vs. measured (2) 9-year average PM2.5 total mass (a), EC (b), OC (c), 999 
nitrate (d), sulfate (e), and ammonium (f) concentrations. The SoCAB_4km and SJV_4km 1000 
results are overlayed on top of CA_24km results to create the model predicted spatial 1001 



distributions. Predicted and measured concentrations of the same species are in the same scale 1002 
showing in the panels of measurements 1003 
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SoCAB_4km (bottom) and SJV_4km domains (up)) and PM measurement sites (dots). Blue dots 1007 
represent the sites of the PM2.5 Speciation Trends Network (STN) and the State and Local Air 1008 
Monitoring Stations (SLAMS), green dots represent the Interagency Monitoring of Protected 1009 
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Figure 2. Monthly mean fractional bias (MFB) of PM2.5 EC, OC, nitrate, ammonium, sulfate, and 1013 
total mass. Solid lines represent the MFB criteria, and the blue dash lines represent the MFB 1014 
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Figure 3. Monthly mean fractional errors (MFE) of PM2.5 EC, OC, nitrate, ammonium, sulfate, 1018 
and total mass. Solid lines represent the MFE criteria, and the blue dash lines represent the MFE 1019 
goals. 1020 
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Figure 6. Predicted (red lines) vs. observed (dark dots) monthly average PM2.5 nitrate (a), OC 1033 
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Figure 7. Monthly average NO concentrations adjusted with the predicted/observed CO ratios. 1036 
NO_noadj represents the NO concentrations in the UCD/CIT model predictions, and NO_adj 1037 
represents the NO concentrations adjusted with observations as:  1038 
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Figure 8. Monthly average nitrate concentrations in 2008 at Sacramento and Fresno predicted 1043 
with perturbed relative humidity (RH+0.3), compared to the basecase nitrate predictions 1044 
(RH_ori) and observed concentrations (Obs). 1045 
 1046 



 
Figure 9. Association between predicted PM concentration bias and wind bias vs. observed 
values. The observed PM concentrations and 1/u values on the x-axis are expressed in a relative 
scale of 0-100% of maximum range calculated as x (%) = (C-Cmin)/(Cmax-Cmin)*100.  Values for 
[Cmin, Cmax] are listed in the concentration key. Units are µg m-3 for concentrations, and m s-1 for 
wind speed.  Bias between predicted vs. observed values is shown on the y-axis.  Ideal behavior 
is bias of zero at all concentrations & wind speeds.  
  



   

   

   

   
Figure 10. Predicted (1) vs. measured (2) 9-year average PM2.5 total mass (a), EC (b), OC (c), 
nitrate (d), sulfate (e), and ammonium (f) concentrations. The SoCAB_4km and SJV_4km 
results are overlayed on top of CA_24km results to create the model predicted spatial 
distributions. Predicted and measured concentrations of the same species are in the same scale 
showing in the panels of measurements. Unit are µg m-3. 


