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Abstract 2 

For the first time, a ~decadal (9 years from 2000 to 2008) air quality model simulation 3 

with 4 km horizontal resolution over populated regions and daily time resolution has been 4 

conducted forin California to provide air quality data for health effects studies. Model 5 

predictions are compared to measurements to evaluate the accuracy of the simulation with an 6 

emphasis on spatial and temporal variations that could be used in epidemiology studies. Better 7 

model performance is found at longer averaging times, suggesting that model results with 8 

averaging times ≥1 month should be the first to be considered in epidemiological studies.  The 9 

UCD/CIT model predicts spatial and temporal variations in the concentrations of O3, PM2.5, 10 

elemental carbon (EC), organic carbon (, OC),, nitrate, and ammonium that meet standard 11 

modeling performance criteria when compared to monthly-averaged measurements. Predicted 12 

sulfate concentrations do not meet target performance metrics due to missing sulfur sources in 13 

the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and 14 

ammonium have mean fractional biases that meet the model performance criteria in 95%, 100%, 15 

71%, 73%, and 92% of the simulated months, respectively.  The base dataset provides an 16 

improvement for predicted population exposure to PM concentrations in California compared to 17 

exposures estimated by central site monitors operated one day out of every 3 days at a few urban 18 

locations.   19 

Uncertainties in the model predictions arise from several issues.  Incomplete 20 

understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model 21 

results in summertime but does not affect OC predictions in winter when concentrations are 22 

typically highest. The CO and NO (species dominated by mobile emissions) results reveal 23 

temporal and spatial uncertainties associated with the mobile emissions generated by the 24 



EMFAC 2007 model. The WRF model tends to over-predict wind speed during stagnation 25 

events, leading to under-predictions of high PM concentrations, usually in winter months. The 26 

WRF model also generally under-predicts relative humidity, resulting in less particulate nitrate 27 

formation, especially during winter months. These limitations mustissues will be recognized 28 

when using dataimproved in healthfuture studies.  All model results included in the current 29 

manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/. 30 

Key Words: particulate matter, chemical transport models, temporal variation, spatial variation 31 

1. Introduction 32 

 33 

Numerous scientific studies have demonstrated associations between exposure to ambient 34 

airborne particulate matter (PM) and a variety of health effects, such as cardiovascular diseases 35 

(Dockery, 2001; Ford et al., 1998; Franchini and Mannucci, 2009; Langrish et al., 2012; Le 36 

Tertre et al., 2002), respiratory diseases (Gordian et al., 1996; Hacon et al., 2007; Hughes and 37 

Tolsma, 2002; Willers et al., 2013), low birth weight and birth defects (Barnett et al., 2011; Bell 38 

et al., 2010; Brauer et al., 2008; Laurent et al., 2014; Laurent et al., 2013; Stieb et al., 2012), lung 39 

cancer (Beelen et al., 2008; Beeson et al., 1998; Pope et al., 2002; Vineis et al., 2006), mortality 40 

and life expectancy (Chen et al., 2013; Correia et al., 2013; Dockery et al., 1993; Franklin et al., 41 

2007; Goldgewicht, 2007; Kan and Gu, 2011; Laden et al., 2000; Ostro et al., 2006; Pope et al., 42 

2009).  Recently a few studies have investigated the associations between particle composition 43 

and health effects (Bell et al., 2010; Bell et al., 2007; Burnett et al., 2000; Cao et al., 2012; 44 

Franklin et al., 2008; Ito et al., 2011; Krall et al., 2013; Levy et al., 2012; Mar et al., 2000; Ostro 45 

et al., 2007; Ostro et al., 2010; Son et al., 2012). However, there remains large uncertainty about 46 

which PM components are most responsible for the observed health effects, possibly due to the 47 



fact that central site monitoring measurements used in the PM composition studies have limited 48 

temporal, spatial, and chemical resolution, which could potentially lead to misclassification of 49 

exposure estimates and mask some detailed correlations. Central site PM measurements typically 50 

have a collection schedule of 1 sample every 3 or 6 days at a few sites used to represent an entire 51 

population region.  ImportantIn addition, important particle size distribution and chemical 52 

composition information is not always routinely measured. Additional information relating PM 53 

composition to health effects would provide a solid foundation to design effective PM control 54 

strategies to protect public health at a reduced economic and social cost. 55 

 56 

Chemical transport models (CTMs) have recently been used as one of the alternative 57 

approaches to address the limitations of central site monitors (Anenberg et al., 2010; Bravo et al., 58 

2012; Sarnat et al., 2011; Tainio et al., 2012); Bravo et al., 2012; Sarnat et al., 2011; Tainio et al., 59 

2012). The latest generation of CTMs represents a “state-of-the-science” understanding of 60 

emissions, transport and atmospheric chemistry. CTM predictions provide more detailed 61 

composition information and full spatial coverage of air pollution impacts with a typical 62 

temporal resolution of 1 hour. CTMs have great potential to fill the time and space gaps in the 63 

central site monitoring dataset for PM measurements leading to improved exposure assessment 64 

in epidemiological studies.  65 

 66 

The CTM applications in epidemiology studies to date have generally used relatively 67 

coarse spatial resolutions in order to reduce computational burden. Global CTMs have used 68 

horizontal resolutions of over 100 km and regional CTMs have used resolution of 12-36 km. 69 

These resolutions cannot capture fine spatial gradients of PM concentrations, especially in areas 70 
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with diverse topography and demography. Previous CTMs predictions used in epidemiology 71 

studies have also been limited to time periods less than one year. Recently Zhang et al. (Zhang et 72 

al., 2014a) evaluated the performance of the Community Multiscale Air Quality (CMAQ) model 73 

over a 7-year period in the Eastern United States (U.S.), but no other long-term CTMs studies for 74 

health effects analyses have been published to date. As a further limitation, previous 75 

epidemiology studies based on CTM predictions have mostly used predicted particles with 76 

aerodynamic diameter less than 2.5µm (PM2.5) mass concentrations without taking full advantage 77 

of the ability of CTMs to simultaneously estimate population exposure to multiple particle size 78 

fractions, chemical components, and source contributions.  The variation in CTM prediction bias 79 

as a function of space and time due to uncertainties in model inputs (emissions, meteorological 80 

fields, mechanism parameters) is often not sufficiently characterized to understand potential 81 

impacts on health effects estimates. Detailed analyses are needed to assess the temporal and 82 

spatial features of CTM predictions to identify accurate and/or unbiased information for 83 

exposure assessment before such information can be applied in health effect studies (Beevers et 84 

al., 2013). 85 

 86 

The objective of the current study is to develop and apply advanced source-oriented 87 

CTMs to predict the concentrations and sources for enhanced PM exposure assessment in 88 

epidemiological studies over a long-term period with high spatial resolution in California. 89 

California is chosen as the focus area for the current study because it has extensive infrastructure 90 

to support CTM studies, and it has one of the largest populations in the U.S. that is experiencing 91 

unhealthy levels of PM pollution. In 2013, 104 U.S. counties with a population of 65 million 92 

people are in non-attainment with the National Ambient Air Quality Standards (NAAQS) for 93 



PM2.5 (EPA, 2013). Approximately half of that population (31 million people) lives in 29 94 

California counties meaning that California suffers a disproportionately large share of U.S. PM-95 

related mortality (Fann et al., 2012). The California Air Resources Board (CARB) estimates that 96 

14000 – 24000 California residents die prematurely each year due to particulate air pollution 97 

(Tran, 2008). The severity of this problem has motivated extensive investments to support air 98 

pollution studies. California has the densest ambient PM measurement network, accurate 99 

emissions inventories, and the most health effects study groups of any state in the United States. 100 

Rich datasets are available to support model application and evaluation.  101 

 102 

The current study is the first attempt to address the sparse PM data problem in exposure 103 

assessment using CTM results over a ~decadal time period (9 years from 2000 to 2008) over a 104 

domain spanning ~1000 km at a spatial resolution of 4 km. Companion studies have modeled 105 

primary PM2.5 and PM0.1 (particles with aerodynamic diameter less than 0.1µm) concentrations 106 

and sources in California (Hu et al., 2014a; Hu et al., 2014b). The current paper, as the third in 107 

the series, focuses on model evaluation of total (=primary+secondary) PM2.5 and major 108 

components elemental carbon (EC), organic carboncompounds (OC), nitrate, sulfate, 109 

ammonium), emphasizing the aspects of temporal and spatial variations, to identify the features 110 

of the CTM results that could add skill to the exposure assessment for epidemiological studies. A 111 

future study will investigate the model capability for PM source apportionment of primary and 112 

secondary organic aerosolsOC, which is currently an area with great uncertainty.   113 

2. Methods 114 

 115 

2.1 Air Quality Model Description 116 



 117 

The host air quality model employed in the current study is based on the Eulerian source-118 

oriented University of California-Davis/California Institute of Technology (UCD/CIT) chemical 119 

transport model (Chen et al., 2010; Held, 2004; Held et al., 2005; Hu et al., 2012; Hu et al., 2010; 120 

Kleeman and Cass, 2001; Kleeman et al., 1997; Kleeman et al., 2007; Mahmud, 2010; Mysliwiec 121 

and Kleeman, 2002; Rasmussen et al., 2013; Ying, 2008; Ying et al., 2007; Ying and Kleeman, 122 

2006; Zhang and Ying, 2010). The UCD/CIT model includes a complete description of 123 

atmospheric transport, deposition, chemical reaction, and gas-particle transfer. The details of the 124 

standard algorithms used in the UCD/CIT family of models have been described in the above 125 

references and therefore are not repeated here. Only the aspects that are updated during the 126 

current study are discussed in the following section.  127 

 128 

The photochemical mechanism used by the UCD/CIT model was updated to reflect the 129 

latest information from smog-chamber experiments. The SAPRC-11 photochemical mechanism 130 

(Carter and Heo, 2012a; Carter and Heo, 2013) was used to describe the gas-phase chemical 131 

reactions in the atmosphere.  The secondary organic aerosol (SOA) treatment was updated 132 

following the method described in Carlton et al. (Carlton et al., 2010). Seven organic species 133 

(isoprene, monoterpenes, sesquiterpenes, long-chain alkanes, high-yield aromatics, low-yield 134 

aromatics, and benzene) are considered as precursors for SOA formation. A total of twelve semi-135 

volatile products and seven nonvolatile products are formed from the oxidation of the precursor 136 

species. The gas-particle transfer of the semi-volatile and nonvolatile products in the UCD/CIT 137 

model is dynamically calculated based on the gas vapor pressures calculated over the particle 138 

surface and the kinetic limitations to mass transfer. The explicit chemical reactions and the 139 



parameters for the thermodynamic equilibrium calculation (i.e., enthalpy of vaporization, 140 

saturation concentrations, and stoichiometric yields) are provided in Carlton et al. and references 141 

therein (Carlton et al., 2010).  142 

 143 

Model simulations were configured using a one-way nesting technique with a parent 144 

domain of 24 km horizontal resolution that covered the entire state of California (referred to as 145 

CA_24km) and two nested domains with 4 km horizontal resolution that covered the Southern 146 

California Air Basin (SoCAB) (referred to as SoCAB_4km) and San Francisco Bay Area + San 147 

Joaquin Valley (SJV) + South Sacramento Valley air basins (referred to as SJV_4km) (shown in 148 

Figure 1). The nested 4 km resolution domains are configured to cover the major ocean, coast, 149 

urban, and rural regions that influence California’s air quality and, most importantly, to cover 150 

most of the California’s population for the purpose of health effects analyses. Over 92% of 151 

California’s population lives in the 4 km domains based on the most recent census information. 152 

The UCD/CIT model was configured with 16 vertical layers up to a height of 5 km above ground 153 

level in all the mother and nested domains, with 10 layers in the first 1 km.  Note that the use of 154 

relatively shallow vertical domains is only appropriate in regions with well-defined air basins 155 

and would not be appropriate for locations in the eastern U.S. or other regions with moderate 156 

topography.  Particulate composition, number and mass concentrations are represented in 15 size 157 

bins, ranging from 0.01 to 10 μm in diameter. Primary particles are assumed to be internally 158 

mixed, i.e., all particles within a size bin have the same composition.  Previous studies (Ying et 159 

al., 2007) have shown that this assumptions provides adequate predictions for total PM 160 

concentrations relative to source-oriented mixing treatments in California when feedbacks to 161 

meteorology are not considered (Zhang et al., 2014b).   162 
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 163 

2.2 Meteorology and Emissions 164 

 165 

Hourly meteorology inputs (wind, temperature, humidity, precipitation, radiation, air 166 

density, and mixing layer height) were generated using the Weather Research and Forecasting 167 

model (WRF) v3.1.1 (Wei Wang, January 2010; William C. Skamarock, June 2008). Two-way 168 

nesting was used with the outer domain at 12 km resolution and the inner nested domain at 4 km 169 

resolution. North American Regional Reanalysis (NARR) data with 32 km resolution and 3-hour 170 

time resolution was used as initial and boundary conditions of the coarse 12 km domain. The 171 

WRF model was configured with 31 vertical layers up to 100 hPahpa (around 16 km). Four-172 

dimensional data assimilation (FDDA) was used. The YSU boundary layer scheme, thermal 173 

diffusion land-surface scheme, and Monin-Obukhov surface layer scheme were used based on 174 

results from a previous study in California (Mahmud, 2010; Zhao et al., 2011).  The surface wind 175 

was over-predicted with the original version of WRF, especially for wind speed less than 3 m/s, 176 

consistent with other studies in California (Angevine et al., 2012; Fast et al., 2014; Michelson et 177 

al., 2010a).  Over-prediction of the slow winds caused under-prediction of concentrations during 178 

high pollution events.  A recent study (Mass, C.F, personal communication) found that 179 

increasing the surfaceSurface friction velocity (u*) was increased by 50% reducedto improve the 180 

bias in surface wind predictions in a complex-terrain domain. This technique was tested and 181 

adopted in previous studies (Hu et al., 2012; Hu et al., 2014a) where it improved the accuracy of 182 

air quality predictions.  In the current study, a 1-year . A sensitivity simulation conducted for 183 

California in the year of 2000 revealed that increasing u* by 50% improved the mean wind bias 184 

from 1.15 m/s to −0.50 m/s, and lowered the root-mean-square error from 2.95 to 2.20 m/s (Hu et 185 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1



al., 2014a)..  Hourly average meteorology outputs at the air quality model vertical layer heights 186 

were created. The meteorology predictions were evaluated against meteorological observations 187 

(CARB, 2011a). The meteorological statistical evaluation over the period 2000-2006 has been 188 

presented in a previous study (Hu et al., 2014a)(Hu et al., 2014a), and the results in the period 189 

2007-2008 are consistent with those years. In summary, meteorology predictions of temperature 190 

and wind speed generally meet benchmarks suggested by Emery et al. (2001). Mean fractional 191 

biases (MFBs) of temperature and wind are generally within ±0.15, root mean square errors 192 

(RMSEs) of temperature are around 4 ◦C, and RMSEs of wind are generally lower than 2.0 m/s, 193 

especially in the SoCAB and SJV air basins which are the focus of the current study. Relative 194 

humidity is under-predicted, consistent with findings in other studies in California (Bao, 2008; 195 

Michelson et al., 2010). Wind, temperature and humidity are the major meteorological factors 196 

that influence the PM concentrations. Further discussions of the uncertainties in meteorology 197 

predictions on PM predictions are included in the Results and Discussions section. 198 

 199 

Hourly gridded gas and particulate emissions were generated using an updated version of 200 

the emissions model described by Kleeman and Cass (Kleeman and Cass, 1998). The standard 201 

emissions inventories from anthropogenic sources (i.e., point sources, stationary area sources, 202 

and mobile sources) were provided by CARB. Size and composition resolved particle emissions 203 

were specified using a library of primary particle source profiles measured during actual source 204 

tests (Cooper, 1989; Harley et al., 1992; Hildemann et al., 1991a; Hildemann et al., 1991b; 205 

Houck, 1989; Kleeman et al., 2008; Kleeman et al., 1999, 2000; Robert et al., 2007a; Robert et 206 

al., 2007b; Schauer et al., 1999a, b, 2001, 2002a, b; Taback et al., 1979). A few studies have 207 

revealed some uncertainties associated with the standard emissions inventories. Millstein and 208 



Harley (Millstein and Harley, 2009) found that PM and NOx emissions from diesel-powered 209 

construction equipment were over-estimated by a factor of 3.1 and 4.5, respectively. Countess 210 

(Countess, 2003) suggested that a scaling factor of 0.33 – 0.74 should be applied to the fugitive 211 

dust emissions in the California’s San Joaquin Valley. Therefore, scaling factors of 0.32 for off-212 

road diesel sources and 0.50 for dust emissions were applied in the current study. The EMFAC 213 

2007 model (CARB, 2008) was used to scale the mobile emissions using predicted temperature 214 

and relative humidity fields through the entire nine-year modeling episode. Biogenic emissions 215 

were generated using the Biogenic Emissions Inventory System v3.14 (BEIS3.14), which 216 

includes a 1-km resolution land cover database with 230 different vegetation types (Vukovich 217 

and Pierce, 2002). Sea-salt emissions were generated on-line based on the formulation described 218 

by de Leeuw et al. (de Leeuw et al., 2000) for the surf zone and the formulation described by 219 

Gong (Gong, 2003) for the open ocean. Emissions from wildfires and open burning at 1 km × 1 220 

km resolution were obtained from the Fire INventory from NCAR (FINN) (Hodzic et al., 2007; 221 

Wiedinmyer et al., 2011). The FINN inventory provides SAPRC99 speciated daily emissions of 222 

gaseous and particulate emissions (EC, organic matter (OM),OC, PM2.5 and PM10) based on 223 

satellite observations of open burning events. Each open burning event is allocated to model grid 224 

cells of each domain based on the reported longitude/latitude of the event and the area burned. 225 

The emissions were injected at the height of the atmospheric mixing layer (PBL). The temporal 226 

variation of wildfire emissions was obtained from the Western Regional Air Partnership 227 

(WRAP) report (WRAP, 2005). A size distribution profile was calculated based on assumptions 228 

described in Hodzic et al. (Hodzic et al., 2007). 229 

 230 

2.3 Ambient Air Quality Measurements 231 



 232 

The evaluation dataset was compiled from several measurement networks, including 233 

CARB’s “2011 Air Quality Data DVD” (CARB, 2011b) and the database maintained by the 234 

Interagency Monitoring of Protected Visual Environments (IMPROVE). The data DVD includes 235 

daily average mass concentrations of PM2.5, EC, OC, nitrate, sulfate, ammonium, and trace 236 

metals every 3 or 6 days at the sites of the PM2.5 Speciation Trends Network (STN) and the State 237 

and Local Air Monitoring Stations (SLAMS). There are a total 13 PM2.5 speciation sites included 238 

in the DVD covered in the 4 km domains during the modeling periods. The precision of STN 239 

measurements is estimated to be 3.5%, 8.6%, and 3.9% for sulfate, nitrate, and ammonium, 240 

respectively (Sickles Ii and Shadwick, 2002).  Measured EC concentrations at 5 sites are found 241 

to be exactly 0.5 µg/m3 on > 80% of the measurement days, suggesting corrupt or missing data 242 

at these locations. Therefore these 5 sites were excluded in the evaluation for EC, but still 243 

included in the evaluation for other PM components.  The OC data were not blank corrected, 244 

resulting in a positive artifact by the NIOSH5040 method that is equivalent to approximately 1 245 

µg/m3. Measured OC concentrations were blank corrected in the current study by subtracting 1 246 

µg/m3 from all OC measurements.  The IMPROVE network provides daily average mass 247 

concentrations every 3 days for PM2.5, EC, OC, nitrate, sulfate, and soil. There are a total of 9 248 

IMPROVE sites covered in the 4 km domains. The precision of IMPROVE measurements is 249 

estimated to be 4–6% for PM2.5 mass, nitrate, and sulfate, and to be > 15% for EC and OC 250 

(http://vista.cira.colostate.edu/improve/Publications/OtherDocs/IMPROVEDataGuide/IMPROV251 

EDataGuide.htm). Daily average PM10 mass measurements and hourly measurements of several 252 

key gaseous pollutants (ozone, CO, NO, NO2, and SO2) are also included in the data DVD. There 253 

are a total of 66 PM2.5 Federal Reference Method (FRM) sites covered in the 4 km domains. 254 
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http://vista.cira.colostate.edu/improve/Publications/OtherDocs/IMPROVEDataGuide/IMPROVEDataGuide.htm


Frank (Frank, 2006) found that FRM PM2.5 mass measured using STN monitors was within ± 255 

30% of reconstructed fine mass (RCFM) concentrations measured using IMPROVE monitors. 256 

3. Results and DiscussionDiscussions 257 

3.1 Statistical evaluation 258 

 259 

Statistical measures of MFB and mean fractional error (MFE) were calculated to evaluate 260 

the accuracy of model estimates in space and time. Boylan and Russell (Boylan and Russell, 261 

2006) proposed concentration dependent MFB and MFE performance goals and criteria, 262 

realizing that lower concentrations are more difficult to accurately predict. The performance 263 

goals are the level of accuracy close to the best that a model can be expected to achieve, while 264 

performance criteria are the level of accuracy acceptable for standard modeling applications. 265 

 266 

Figures 2 and 3 show the monthly MFB and MFE values, respectively, of predicted daily 267 

average EC, OC, nitrate, ammonium, sulfate and total PM2.5 mass in the 4 km domains. 268 

Measured EC, OC, nitrate, ammonium, and total PM2.5 mass concentrations follow similar 269 

seasonal patterns with high concentrations occurring in winters (indicated by blue colors in 270 

figures) and low concentrations occurring in summers (indicated by red colors in figures).  These 271 

patterns are driven by the meteorological cycles (i.e., lower mixing layer and wind speed 272 

providing less dilution, and lower temperature encouraging partitioning of ammonium nitrate to 273 

the particle phase) and the emissions variations (i.e., additional wood burning emissions for 274 

home heating in winters). The opposite seasonal variations in sulfate concentrations are 275 

observed, due to higher oxidation rates from S(IV) to S(VI) and higher sulfur emissions from 276 

natural sources in summer (Bates et al., 1992). 277 



 278 

EC predictions are in excellent agreement with measurements. MFBs in all months and 279 

MFEs in 107 months out of the total 108 months are within the model performance goal. EC 280 

MFBs and MFEs show no significant difference among months/seasons, indicating consistently 281 

good EC performance during the entire 9-year modeling period. OC, nitrate, sulfate, and 282 

ammonium, the PM components that include the secondary formation pathways, meet the MFBs 283 

model performance criteria in 71%, 73%, 46%, and 92% of the simulated months, respectively. 284 

These components generally have good agreement between predictions and measurements in 285 

winter months, with only a few months not meeting the performance criteria. When analyzing by 286 

season, predicted concentrations of these species are found to be more biased in summer months, 287 

especially for sulfate and nitrate. Different factors influence the seasonal profile of each species. 288 

The more significant OC under-prediction in summertime is mainly associated with the under-289 

prediction of SOA due to incomplete knowledge of SOA formation mechanism at the present 290 

time. Similar patterns have been reported in other modeling studies outside California (Matsui et 291 

al., 2009; Volkamer et al., 2006; Zhang et al., 2014a; Zhang and Ying, 2011). Measured nitrate 292 

concentrations in summertime (1-5 µg/m3) are factors of 2-5 lower than concentrations in 293 

wintertime (5-12 µg/m3). Model predictions tend to underestimate the low particle phase nitrate 294 

concentrations in summer, especially when temperatures exceed 25 °C.  Model predictions for 295 

particulate nitrate are usually less than 1 µg/m3 under these conditions, while 2-3 µg/m3 nitrate 296 

concentrations are still observed in the ambient air. Similar under-predictions of summertime 297 

nitrate have been reported in other regional modeling studies (Appel et al., 2008; Tesche et al., 298 

2006; Yu et al., 2005; Zhang et al., 2014a). Model calculations reflect thermodynamics and 299 

kinetic gas-particle transfer for ammonium nitrate in mixed particles, suggesting that some other 300 



form of nitrate is present in the real atmosphere, such as organo-nitrates (Day et al., 2010).  301 

Sulfate concentrations are consistently under-predicted throughout the modeling period at all 302 

locations, especially in southern California where the measured sulfate concentrations are 303 

highest.  Under-prediction of sulfate has also been reported by other regional modeling studies in 304 

California (Chen et al., 2014; Fast et al., 2014), using different air quality models (e.g., CMAQ, 305 

WRF-Chem).  This consistent behavior suggests that the specific model is not the cause of the 306 

sulfate under-prediction.  A global model study that included ocean DMS emissions showed a 307 

better sulfate performance in California (Walker et al., 2012).  Therefore,because of missing 308 

emissions sources such as the sulfur emitted as dimethyl sulfide (DMS) from the Pacific Ocean 309 

likely contribute to the sulfate under-predictions in the current study.  The sulfate concentrations 310 

at the sites in southern California are ~2 to 3 times higher than in northern California, and are 311 

under-predicted by an even larger amount (with MFBs around -1.0).  It is therefore likely that 312 

anthropogenic sulfur sources are missing in southern California in addition to background DMS 313 

sources..  Ammonium is drawn to acidic particles and so ammonium concentration predictions 314 

reflect the combined trends of nitrate and sulfate predictions.  315 

 316 

The model predictions of total mass of PM2.5 mass, as a summation of all components, 317 

show very good agreement with measurements, with only 3 summer months and 2 spring 318 

monthsmonth (5% of all simulated months) not meeting the performance criteria, and 78% and 319 

75% of months within the performance goals for MFB and MFE, respectively.  The largest 320 

biases in the total PM2.5 mass occur in summer. Under-prediction in summer sulfate and OC 321 

contribute to negative biases in the total PM2.5 mass predictions. Sulfate and OC concentrations 322 

in summer accounted for ~18% and ~37% of the total PM2.5 mass. SulfateTherefore, sulfate and 323 
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OC under-prediction contributed to a combined ~37% under-prediction of total PM2.5 mass. 324 

However, positive biases in predicted dust concentrations rich in crustal elements such as 325 

aluminum and silica (Hu et al., 2014a)(Hu et al., 2014a) compensate for the under-predictions in 326 

carbonaceous components and water-soluble ions described above.   327 

 328 

Figure 4 shows the MFB and MFE values of particulate species of PM2.5 total mass, EC, 329 

OC, nitrate, sulfate, ammonium and gaseous species of O3, CO, NO, NO2, SO2 using daily 330 

averages across all measurement sites during the entire modeled 9-year period. PM2.5 total mass, 331 

EC, OC, ammonium and gaseous species of O3, CO, NO2 have MFBs within ±0.3 and MFE less 332 

than 0.75, indicating general agreement between predictions and measurement for these species. 333 

Nitrate and NO have MFBs of -0.4 and -0.28, respectively, but MFEs of 0.8 and 1.07, 334 

respectively. The relatively moderate or small bias combined with relatively large error indicates 335 

that the daily predictions miss the extremely high and low concentrations. Sulfate and SO2 have 336 

high MFBs of -0.7 and -0.5, respectively, and high MFEs of 0.8 and 0.9, respectively, indicating 337 

that these species are consistently under-predicted. 338 

 339 

Concentrations averaged over longer times, such as 1 month or 1 year, are used in some 340 

air pollution-health effects studies. A previous examination of primary particles in California 341 

revealed that air quality model predictions are more accurate over longer averaging time because 342 

the influence of extreme events and short-term variability is reduced as the averaging period gets 343 

longer (Hu et al., 2014a)(Hu et al., 2014a). Figure 4 compares the MFB and MFE values for total 344 

(=primary+secondary) particulate matter and gaseous species using daily, monthly, and annual 345 

averages across all sites in the 4 km domains. The results demonstrate that longer averaging 346 
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times produce better agreement between model predictions and measurements (except for 347 

sulfate, which is under-predicted due to missing emissions) because they remove the effects of 348 

random measurement errors at monitoring stations and variations in actual emissions rates that 349 

are not reflected in seasonally-averaged emissions inventories. The reduced errors associated 350 

with longer averaging times indicate that model results may be most useful in epidemiological 351 

studies that can take advantage ofrequire averaging times ≥1 month. 352 

3.2 Spatial and temporal variations 353 

 354 

Figure 5 panel (a) shows the predicted and measured monthly average concentrations of 355 

1-h peak O3 at 5 major urban sites (Sacramento, Fresno, Bakersfield, Los Angeles, and 356 

Riverside). Strong seasonal variations are observed in measured and predicted 1-h peak O3. The 357 

measured 1-h peak O3 shows seasonal variation from 100 ppb in summertime to 20 ppb in 358 

wintertime. The predicted high 1-h peak O3 concentrations in non-winter months are in good 359 

agreement with, or slightly higher than, ambient measured concentrations at all sites. This is 360 

consistent with studies in the eastern U.S. (Zhang et al., 2014a), which found similar slight over-361 

predictions of summer O3 concentrations. Predicted 1-h peak O3 concentrations in cold winter 362 

months, however, are generally higher than measured values. Photochemical reaction rates in 363 

wintertime months are slow and the predicted O3 concentration at the surface mostly reflects 364 

downward mixing of the aloft background O3 followed by titration by surface NO emissions. 365 

The STN measurement sites in California are located in urban areas that are close to major 366 

freeways (see the site locations and nearby sources information in (Hu et al., 2014a)(Hu et al., 367 

2014a)).  The 4 km × 4 km model grid cells that contain both freeways and monitors dilute the 368 

high NO concentrations around the measurement sites leading to an under-prediction of O3 369 



titration and an over-prediction of O3 concentrations. EPA recommends a threshold O3 value of 370 

60 ppb for model O3 evaluations (U.S.EPA, 2007), which means that wintertime O3 371 

concentrations at the urban sites will generally not be considered in the formal model evaluation. 372 

 373 

Figure 5 panels (b) and (c) show the predicted and measured monthly average CO and 374 

NO concentrations. Strong seasonal variations in CO and NO can be observed, with wintertime 375 

concentrations that are a factor of 3-5 higher than summertime concentrations. Model predictions 376 

generally reproduce the seasonal variations except at the Riverside site where predicted seasonal 377 

variations are weaker than measurements. The model performance varies by simulation year and 378 

location. At the Sacramento and Fresno sties, predicted CO is in good agreement with measured 379 

concentrations in all months of 2002 through 2006, but CO is under-predicted in winter months 380 

of 2000-2001 and slightly over-predicted in most months of 2007-2008. At the Bakersfield site, 381 

CO is under-predicted in 2000-2003 and in good agreement with measurements in 2004-2005 382 

(after which further measurements are not available). At the Los Angeles site, CO is in good 383 

agreement in 2000-2003, and over-predicted in the later years. At the Riverside site, CO is 384 

under-predicted in all months of 2000-2003, under-predicted in non-summer months in 2004-385 

2006, and in general agreement with measurements in 2007-2008. NO predictions generally 386 

agree well with measured NO concentrations in 2000-2004 at Sacramento, Fresno, Bakersfield 387 

and Los Angeles, and then are over-predicted in the later years. NO at Riverside is under-388 

predicted in the winter months of 2000-2003, and over-predicted in the summer months of 2004-389 

2008. Mobile emissions are the dominant sources of CO and NO in California, contributing > 390 

80% of total anthropogenic emissions (CARB, 2012). The results of the current modeling study 391 

suggest that uncertainties in the mobile emissions exist both in time and space.  392 



 393 

A clear and similar decreasing trend is apparent in measured CO and NO concentrations 394 

from 2000-2008. This inter-annual trend is not well captured by the model predictions due to the 395 

uncertainties in the emissions. An adjusted NO prediction (NO_adj) can be calculated using CO 396 

as a tracer for the mobile emissions and dilution according to the equation: 397 

NO_adj = NO_noadj * CO_predicted / CO_measured 398 

where NO_noadj is the NO predictions before the adjustment (i.e., the concentrations showing in 399 

Figure 5(c)).  NO_adj has higher correlation coefficient (R2) with measured NO concentrations 400 

than the NO_noadj prediction at all the five monitoring sites (as shown in Figure 76) and NO_adj 401 

has a regression slope closer to 1.0 than NO_noadj at 3 out of 5 sites.  This suggests that either 402 

emissions or physical dilution processes in the model contribute to the errors observed in Figure 403 

5 (in addition to the possibility of errors in model chemistry). Unfortunately, the large variation 404 

in the correction factor among different locations suggests that these scaling factors cannot be 405 

simply interpolated/extrapolated from the indicated five monitoring sites to the full modeling 406 

domain. 407 

 408 

Figure 5 panels (d) and Figure 6 (a(e) show the predicted and measured monthly average 409 

ammonium and nitrate concentrations. Ammonium nitrate is a major PM2.5 component in 410 

California, especially in wintertime when the low temperature and high relative humidity favor 411 

partitioning to the condensed phase. The monthly average ammonium and nitrate results 412 

demonstrate similar model performance. The predicted concentrations agree reasonably well 413 

with measured ambient concentrations and seasonal variations. Model predictions are lower than 414 

measured values in the early years, especially during winter months when concentrations are 415 



highest. This pattern is very consistent with CO model performance, suggesting mobile 416 

emissions are under-estimated for the early years of the simulation period. Nitrate is formed 417 

through NO oxidation to nitric acid but NO concentrations are not under-predicted, suggesting 418 

that the chemical conversion of NO to nitric acid is too slow. Carter and Heo (Carter and Heo, 419 

2012b) suggested that SAPRC11 mechanism systematically under-predicts OH radical 420 

concentrations by ~30%, which would be consistent with the observed trends. 421 

 422 

Gas-particle partitioning of ammonium nitrate depends on temperature and relative 423 

humidity. While there is no systematic bias in WRF temperature, relative humidity is generally 424 

under-predicted by up to 40% over California. A one-year sensitivity analysis was conducted 425 

with RH increased uniformly by +30% (but not to exceed 95%, and all other meteorological 426 

parameters were kept the same)%) in 2008 to investigate the impact of the relative humidity bias 427 

on particulate nitrate predictions.  The arbitrary increase in RH by 30% in the air quality model 428 

simulations yields an upper bound estimate of the nitrate sensitivity to RH.  Figure 8Figure 7 429 

compares the monthly average nitrate concentrations predicted with the original RH (denoted as 430 

“RH_ori” case) and the enhanced RH (denoted as “RH+0.3” case) at Sacramento and Fresno.  431 

Nitrate predictions are generally higher in the “RH+0.3” case due to more particle phase water 432 

available to absorb nitrate into the condensed phase. The nitrate predictions at Sacramento are 433 

significantly improved during most months in 2008, suggesting this area suffers from the low 434 

RH bias in the WRF predictions. Nitrate at Fresno is improved mostly in the winter and spring, 435 

but is still under-predicted during the time period with peak winter concentrations, indicating this 436 

area is influenced by other factors besides RH. Nitrate predictions at Fresno in summer and fall 437 

are lower when RH is enhanced, due to faster deposition caused by larger particle sizes with 438 



more particle phase water. The uniform RH increase of 0.3 in this region is likely unrealistically 439 

large duringin these months. 440 

  441 

Figure 65 panel (bf) shows the OC predictions and measurements. Organic aerosol in 442 

California it is typically the second most abundant species, after ammonium nitrate. In the 443 

comparison, an OM/OC ratio of 1.6 (Turpin and Lim, 2010) is applied to convert primary 444 

organic aerosol OM back to OC for comparison to measured concentrations.  The conversion 445 

ratios for SOA species are taken from Table 1 in Carlton et al. (Carlton et al., 2010). Predicted 446 

OC agrees reasonably well with measured concentrations, but is lower than the wintertime high 447 

concentrations in the early years, similar to other PM components. Predicted OC in summers is 448 

also in good agreement with measurements at the indicated monitoring sites. As mentioned 449 

previously, these sites are all near major freeways and therefore OC is dominated by primary 450 

organic aerosols. Larger bias is found at sites distant from local sources where SOA becomes 451 

more important. More analysis about the concentrations and sources of the OC results are 452 

included in a companion paper (Hu, Manuscript in preparation). 453 

 454 

Figure 65 panel (cg) shows that predicted EC concentrations agree well with measured 455 

concentrations. High measured EC concentrations in a few winter months in the early years are 456 

under-predicted, but EC concentrations in the summer months are generally over-predicted.   457 

 458 

Figure 65 panel (dh) shows that monthly average predictions for PM2.5 mass 459 

concentrations agree well with observations, and seasonal trends are generally captured with 460 

high concentrations in winter, and low concentrations in summer.  PM2.5 is over-predicted in 461 



summer months when nitrate, sulfate, and ammonium are found to be under-predicted.  These 462 

trends reflect the over-prediction of  the primary components, mostly dust particles, in the model 463 

calculations (Hu et al., 2014a)(Hu et al., 2014a). This result suggests that a uniform scaling 464 

factor of 0.5 for dust emissions may not be appropriate.  A smaller factor (for example, a factor 465 

of 0.25 was used in the eastern U.S. (Tesche et al., 2006)) or a spatially resolved method that 466 

accounts for the land-use types (Pace, 2005) should be used for future studies in California. 467 

 468 

California experiences the highest PM2.5 concentrations in wintertime, caused by stagnant 469 

meteorological conditions characterized by low wind speed and shallow atmospheric mixing 470 

layer. The WRF model tends to over-predict wind speed during low wind speed events ( ≤ 2 m/s) 471 

in California (Zhao et al., 2011). Increasing u* by 50% improves the WRF wind prediction but 472 

still over-predicts wind speed during events when measured wind speed is <1.5 m/s. A zero-473 

order approximation of air pollutant concentration (Mahmud, 2010) is: 474 

                                        𝐶 = 𝐸
𝑉

=  𝐸
𝑢×H

                                                              (1) 475 

where 𝐶 is the pollutant concentration, 𝐸 is the source pollutant emission rate, 𝑉 is the air 476 

ventilation rate which is equal to (wind speed × mixing height), 𝑢 and H are the horizontal wind 477 

speed and mixing height, respectively. . The concentration is linearly dependent on the inverse 478 

wind speed (1/ 𝑢). Figure 98 shows the MFBs of the predicted atmospheric inverse wind speed 479 

(1/ 𝑢) as a function of the observed atmospheric inverse wind speed.  Also shown in Figure 98 480 

are the MFBs of PM component concentrations as a function of the observed concentrations. The 481 

MFBs decrease when the inverse wind speed or concentrations increase, indicating low inverse 482 

wind speed/concentrations are over-predicted, but high inverse wind speed /concentrations are 483 

under-predicted. The trends of inverse wind speed and concentrations are well correlated, 484 



indicating that simple wind bias effects on the ventilation rates leads to bias in PM predictions, 485 

especially during the events with high PM pollution. The correlation with 1/ 𝑢 MFB is stronger 486 

for primary PM component(s) than for secondary components, indicating that additional 487 

processes affect the secondary PM, such as chemistry, gas-particle partitioning, etc. Sulfate bias 488 

has the weakestleast correlation to inverse ventilation bias, because sulfate biasit is mainly driven 489 

by the bias in sulfurSO2 emissions. 490 

 491 

Figure 109 shows the predicted 9-year average concentrations of PM2.5, EC, OC, nitrate, 492 

sulfate, and ammonium, compared with measured average concentrations over California. High 493 

concentrations of all PM pollutants occur in the urban areas with large population, indicating that 494 

most of the PM is generated by anthropogenic activities.  The predicted spatial distributions 495 

generally agree well with measurements, but provide much more detailed information. PM2.5 496 

concentrations are over-predicted in the SJV air basin due to an over-prediction of agricultural 497 

dust. High OC concentrations were measured at two sites in northern California due to intense 498 

wood burning. The two sites are in the 24 km model domain but outside the 4 km, therefore the 499 

predicted OC concentrations in the 24 km grids do not agree well with the measurements at this 500 

location. This finding confirms that 24 km resolution is probably too coarse for health effects 501 

studies and justifies the use ofthee 4 km grids over the majority of California’s population in the 502 

current work. Background sulfate concentrations at IMPOVE sites were measured to be 0.6-1 503 

µg/m3 but higher concentrations of 2~3 µg/m3 were measured in Southern California.  Model 504 

calculations do not reproduce this concentration enhancement, leading to an under-prediction in 505 

the concentrations of this PM2.5 species.   506 

3.3 Discussion 507 



 508 

In general, the reasonable agreement between model predictions and measurement builds 509 

confidence that the model predictions can provide a reasonable estimate of exposure fields in 510 

locations with no available measurements.  The detailed analysis described in the previous 511 

section identifies several aspects that must be considered when applying the data in the health 512 

effect studies.  For the gaseous pollutants, daily maximum O3 predictions are in good agreement 513 

with measurements across the entire modeling domain.  Seasonal and annual variations are 514 

captured accurately.  Therefore daily maximum O3 predictions can be used in health analyses 515 

with high confidence.  The predictions also capture the seasonal variations in NO and CO, but do 516 

not reflect the long-term trends, especially in southern California.  Predicted monthly averages of 517 

NO and CO in northern California are preferred over daily averages for use in health analyses.  518 

For the PM pollutants, daily concentrations and spatial distributions of EC and total PM2.5 mass 519 

generally agree well with observations, but monthly averages should be considered first in health 520 

studies as they are in better agreement with observations than shorter averages.  Predicted OC in 521 

winter is also reasonably accurate, but OC in summer should be used with caution.  Sulfate and 522 

nitrate are both under-predicted.  Sulfate has greater bias in southern California than in northern 523 

California, while nitrate has consistent bias throughout the modeling domain.  This suggests that 524 

the spatial distribution information of nitrate might still be useful for health effect studies that 525 

use contrasts in exposure as a function of location, but sulfate data are likely not useful in health 526 

effects studies at the present time.   527 

 528 

Predicted monthly averages for PM concentrations are more accurate than daily averages, 529 

suggesting that the PM exposure predictions will be most useful in studies that can take 530 



advantage of averaging times ≥ 30 days. Longer averaging times smooth out short-term PM 531 

variations that could be useful in some epidemiological studies that focus on short term changes 532 

in health effects.  To get more accurate pollutant predictions at shorter timescales would require 533 

more accurate representation of emissions, meteorological conditions, and atmospheric 534 

chemistry at these time scales.  Many intensive studies that manually corrected input data have 535 

focused on high temporal resolution for short periods (generally less than 1 month), such as the 536 

California Regional PM10/PM2.5 Air Quality Study (CRPAQS) (Ying, 2008).  It is currently 537 

impractical to carry out such efforts for a ~10 year modeling period in which there are  a large 538 

number of special events that are not represented by automated meteorology and emissions 539 

models. The atmospheric modeling community continues to refine tools that can capture and 540 

accurately represent these special cases.  For example, the current study includes automatic 541 

detection and incorporation of wildfire emissions into the modeling system based on satellite 542 

observations.  This automated feature was not generally available in previous studies.  Future 543 

advances will detect transportation patterns responding to traffic accidents or holiday traffic 544 

jams, drought effects on biogenic emissions, etc.  These future advances will improve models to 545 

have more accurate predictions in both short- (<1 month) and long- (> 1 month) averaging 546 

timesprovide a reasonable estimate of exposure fields. 547 

4. Conclusions 548 

For the first time, a ~decadal (9 year) CTM air quality model simulation with 4 km 549 

horizontal resolution over populated regions has been conducted in California to provide air 550 

quality data for health effects studies. Model predictions are compared to measurements in order 551 

to evaluate both the spatial and temporal accuracy of the results. The performance of the source-552 

oriented UCD/CIT air quality model is satisfactory for O3, PM2.5, and EC (both spatially and 553 
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temporally). Predicted OC, nitrate, and ammonium are less satisfactory, but generally meet 554 

standard model performance criteria. OC bias is larger in summertime than wintertime mainly 555 

due to an incomplete understanding of SOA formation mechanisms. Bias in predicted 556 

ammonium nitrate is associated with uncertainties in emissions, the WRF predicted relative 557 

humidity fields, and the chemistry mechanism. Predicted sulfate is not satisfactory due to 558 

missing sulfur sources in the emissions. The CO and NO (species dominated by mobile 559 

emissions) results reveal significant temporal and spatial uncertainties associated with the mobile 560 

emissions generated by the EMFAC 2007 model. The WRF model tends to over-predict wind 561 

speed during stagnation events, leading to under-predictions of high PM concentrations, usually 562 

in winter months. The WRF model also generally under-predicts relative humidity, resulting in 563 

less particulate nitrate formation especially during winter months. Despite the issues noted 564 

above, predicted spatial distributions of PM components are in reasonably good agreement with 565 

measurements. Predicted seasonal and annual variations also generally agree well with 566 

measurements. Better model performance with longer averaging time is found in the predictions, 567 

suggesting that model results with averaging times ≥1 month should be first considered in 568 

epidemiological studies.  All model results included in the current manuscript can be 569 

downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/. 570 
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Figures and Tables 946 
 947 
Figure 1. Modeling domains (blue lines outline the CA_24km domain, and red lines outline the 948 
SoCAB_4km (bottom) and SJV_4km domains (up)) and PM measurement sites (dots). Blue dots 949 
represent the sites of the PM2.5 Speciation Trends Network (STN) and the State and Local Air 950 
Monitoring Stations (SLAMS), green dots represent the Interagency Monitoring of Protected 951 
Visual Environments (IMPROVE) sites, and gray dots represent the PM2.5 Federal Reference 952 
Method (FRM) sites. 953 
 954 
Figure 2. Monthly mean fractional bias (MFB) of PM2.5 EC, OC, nitrate, ammonium, sulfate, and 955 
total mass. Solid lines represent the MFB criteria, and the blue dash lines represent the MFB 956 
goals. 957 
 958 
Figure 3. Monthly mean fractional errors (MFE) of PM2.5 EC, OC, nitrate, ammonium, sulfate, 959 
and total mass. Solid lines represent the MFE criteria, and the blue dash lines represent the MFE 960 
goals. 961 
 962 
Figure 4. Mean fractional bias (MFB) and mean fractional errors (MFE) of PM and gaseous 963 
species when calculated using daily, monthly and annual averages. 964 
 965 
Figure 5. Predicted (red lines) vs. observed (dark dots) monthly average O3 (a),, CO (b),, NO 966 
(c),, ammonium, nitrate, OC, EC, and PM2.5 ammonium (d)total mass at Sacramento, Fresno, 967 
Bakersfield, Los Angeles, and Riverside. 968 
 969 
Figure 6. Predicted (red lines) vs. observed (dark dots) monthly average PM2.5 nitrate (a), OC 970 
(b), EC (c), and PM2.5 total mass (d) at Sacramento, Fresno, Bakersfield, Los Angeles, and 971 
Riverside. 972 
 973 
Figure 7.Figure 6. Monthly average NO concentrations adjusted with the predicted/observed CO 974 
ratios. NO_noadj represents the NO concentrations in the UCD/CIT model predictions, and 975 
NO_adj represents the NO concentrations adjusted with observations as:  976 
NO_adj = NO_noadj * CO_predicted / CO_measured 977 
 978 
Figure 87. Monthly average nitrate concentrations in2008 at Sacramento and Fresno predicted 979 
with perturbed relative humidity (RH+0.3), compared to the basecase nitrate predictions 980 
(RH_ori) and observed concentrations (Obs) 981 
 982 
Figure 98. Association between predicted PM concentration bias and wind bias vs. observed 983 
values. The observed PM concentrations and 1/u values on the x-axis are expressed in a relative 984 
scale of 0-100% of maximum range calculated as x (%) = (C-Cmin)/(Cmax-Cmin)*100.  Values for 985 
[Cmin, Cmax] are listed in the concentration key. Bias between predicted vs. observed values is 986 
shown on the y-axis.  Ideal behavior is bias of zero at all concentrations & wind speeds. 987 
 988 
Figure 109. Predicted (1) vs. measured (2) 9-year average PM2.5 total mass (a), EC (b), OC (c), 989 
nitrate (d), sulfate (e), and ammonium (f) concentrations. The SoCAB_4km and SJV_4km 990 
results are overlayed on top of CA_24km results to create the model predicted spatial 991 



distributions. Predicted and measured concentrations of the same species are in the same scale 992 
showing in the panels of measurements 993 
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Figure 1. Modeling domains (blue lines outline the CA_24km domain, and red lines outline the 996 
SoCAB_4km (bottom) and SJV_4km domains (up)) and PM measurement sites (dots). Blue dots 997 
represent the sites of the PM2.5 Speciation Trends Network (STN) and the State and Local Air 998 
Monitoring Stations (SLAMS), green dots represent the Interagency Monitoring of Protected 999 
Visual Environments (IMPROVE) sites, and gray dots represent the PM2.5 Federal Reference 1000 
Method (FRM) sites. 1001 
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Figure 2. Monthly mean fractional bias (MFB) of PM2.5 EC, OC, nitrate, ammonium, sulfate, and 1003 
total mass. Solid lines represent the MFB criteria, and the blue dash lines represent the MFB 1004 
goals. 1005 
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 1007 
Figure 3. Monthly mean fractional errors (MFE) of PM2.5 EC, OC, nitrate, ammonium, sulfate, 1008 
and total mass. Solid lines represent the MFE criteria, and the blue dash lines represent the MFE 1009 
goals. 1010 
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Figure 4. Mean fractional bias (MFB) and mean fractional errors (MFE) of PM and gaseous 1014 
species when calculated using daily, monthly and annual averages. 1015 
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Figure 5. Predicted (red lines) vs. observed (dark dots) monthly average O3 (a),, CO (b),, NO(c) , 1021 
ammonium, nitrate, OC, EC, and PM2.5 ammonium (d)total mass at Sacramento, Fresno, 1022 
Bakersfield, Los Angeles, and Riverside. 1023 
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 1027 
Figure 6.5 (continued). Predicted (red lines) vs. observed (dark dots) monthly average PM2.5 O3, 1028 
CO, NO, ammonium, nitrate (a),, OC (b),, EC (c),, and PM2.5 total mass (d) at Sacramento, 1029 
Fresno, Bakersfield, Los Angeles, and Riverside. 1030 



  

  

 

 

Figure 76. Monthly average NO concentrations adjusted with the predicted/observed CO ratios. 1031 
NO_noadj represents the NO concentrations in the UCD/CIT model predictions, and NO_adj 1032 
represents the NO concentrations adjusted with observations as:  1033 
NO_adj = NO_noadj * CO_predicted / CO_measured 1034 
  1035 
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 1037 
Figure 87. Monthly average nitrate concentrations in 2008in2008 at Sacramento and Fresno 1038 
predicted with perturbed relative humidity (RH+0.3), compared to the basecase nitrate 1039 
predictions (RH_ori) and observed concentrations (Obs). 1040 
 1041 



 
Figure 98. Association between predicted PM concentration bias and wind bias vs. observed 
values. The observed PM concentrations and 1/u values on the x-axis are expressed in a relative 
scale of 0-100% of maximum range calculated as x (%) = (C-Cmin)/(Cmax-Cmin)*100.  Values for 



[Cmin, Cmax] are listed in the concentration key. Units are µg m-3 for concentrations, and m s-1 for 
wind speed.  Bias between predicted vs. observed values is shown on the y-axis.  Ideal behavior 
is bias of zero at all concentrations & wind speeds.  
  



   

   

   

   
Figure 109. Predicted (1) vs. measured (2) 9-year average PM2.5 total mass (a), EC (b), OC (c), 
nitrate (d), sulfate (e), and ammonium (f) concentrations. The SoCAB_4km and SJV_4km 
results are overlayed on top of CA_24km results to create the model predicted spatial 
distributions. Predicted and measured concentrations of the same species are in the same scale 
showing in the panels of measurements. Unit are µg m-3. 


