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Abstract

The chemical composition of 15–80 nm diameter particles was measured at Mace
Head, Ireland, during May 2011 using the TDCIMS (Thermal Desorption Chemical Ion-
ization Mass Spectrometer). Measurable levels of chloride, sodium, and sulfate were
present in essentially all collected samples of these particles at this coastal Atlantic5

site. Organic compounds were rarely detectable, but this was likely an instrumental
limitation. Concomitant particle hygroscopicity observations usually showed two main
modes, one which contained a large sea salt component and another which was likely
dominated by sulfate. There were several occasions lasting from hours to about two
days during which 10–60 nm particle number increased dramatically in polar oceanic10

air. During these events, the sulfate mode increased substantially in number. This ob-
servation, along with the presence of very small (<10 nm) particles during the events,
suggests that the particles were formed by homogeneous nucleation, followed by sub-
sequent growth by sulfuric acid and potentially other vapors. The frequency of the
events and similarity of event particles to background particles suggest that these15

events are important contributors of nanoparticles in this environment.

1 Introduction

Particles in the atmosphere play important roles in the global climate through direct
interaction with radiation and by becoming cloud condensation nuclei (CCN), which in-
fluence the formation and properties of clouds. Understanding controls on cloud extent20

and type is critical for predicting future climate (Solomon et al., 2007). The formation
and growth of particles from gas phase species in the atmosphere is likely a significant
contributor to aerosol number and atmospheric optical depth in a variety of environ-
ments, and this process may therefore influence CCN concentrations (Kulmala et al.,
2004; Wang and Penner, 2009; Yu and Luo, 2009; Spracklen et al., 2006). Water vapor25

uptake on small, recently formed particles is limited by the Kelvin effect, so new parti-
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cles must grow via uptake of other species before they are large enough to act as CCN.
In the marine boundary layer, where cloud water vapor supersaturations are typically
around 0.2 %, even very hygroscopic sea salt aerosols must be greater than 70 nm in
diameter before they are activated into cloud droplets (Hoppel et al., 1996; Seinfeld and
Pandis, 1997). For this reason, in order for homogeneously nucleated particles to have5

a significant impact on cloud formation, they must grow swiftly enough to CCN size
before they are lost by coagulation onto existing aerosol. Condensation of low volatil-
ity vapors and/or multiphase reactive uptake are required to accomplish this growth
(Khvorostyanov and Curry, 2007; Donahue et al., 2011).

Many different compounds are involved in particle nucleation and growth, and differ-10

ent compounds are likely important under different conditions. Sulfuric acid (H2SO4)
may be critical for particle nucleation throughout the atmosphere, and it has been
shown to contribute to nanoparticle growth (Kuang et al., 2008; Eisele and McMurry,
1997; Bzdek et al., 2012). However, beyond the very initial stages of particle forma-
tion, H2SO4 probably plays a small role in the boundary layer (Kuang et al., 2012,15

2008; Zhang et al., 2012). For particle diameters larger than ∼ 10 nm in diameter, ob-
servations from a variety of environments suggest that condensation of organic vapors
contribute greatly to particle growth (Kuang et al., 2012; Bzdek et al., 2011; Donahue
et al., 2011). Multifunctional acidic organic species are thought to be likely contributors
to particle growth due to their low vapor pressures (Zhang et al., 2012). Recently nu-20

cleated particles have been observed in coastal regions that experience large sea–air
fluxes of readily photolyzable iodine-containing species (O’Dowd and Hoffmann, 2005;
Mäkelä, 2002; Whitehead et al., 2009, 2010; McFiggans et al., 2010).

The particle distribution in the Marine Boundary Layer (MBL) is an important climate
parameter. The MBL is characterized by relatively low particle concentrations com-25

pared to the terrrestrial boundary layer (Heintzenberg et al., 2000; Spracklen et al.,
2010). Small changes in particle number are therefore more likely to have an effect
on ensemble aerosol properties and CCN numbers, and newly formed particles have
more time to grow to CCN size before coagulation. For example, Pierce and Adams
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(2006) showed that the inclusion of small sea salt aerosols in a general circulation
model increased the CCN concentrations in some regions as much as 500 %. Also,
cloud albedo is in general significantly higher than ocean albedo, making the relative
per-area radiative impacts of cloud formation high. An understanding of how CCN are
formed in the MBL is necessary for good parameterizations of cloud formation over the5

global oceans.
Sub-micron MBL particles are typically found in two dominant modes: an accumu-

lation mode centered around 150 nm diameter, and an Aitken mode centered around
50 nm diameter (Heintzenberg et al., 2000). Particles at intermediate sizes tend to grow
quickly to larger sizes. Smaller particles either quickly grow, are accommodated onto10

existing aerosol, or are deposited to the sea surface, depending on the availability of
condensable vapors and the aerosol size distribution (McMurry, 1983). Sea salt is typ-
ically the primary component of super-micron MBL aerosol, but smaller MBL particles
likely contain significant fractions of sulfate and organics (Mcinnes et al., 1997; Allan,
2004). Nonetheless, recent lab and in situ studies show that bubble bursting at the15

ocean surface can generate large numbers of sub-100 nm particles, raising the possi-
bility that the MBL Aitken mode has a large sea salt aerosol component (Clarke et al.,
2006; Russell and Singh, 2006). Clarke et al. (2003) showed that wave breaking con-
tributed significantly to sub-100 nm particles measured at a coastal site, with a peak
in the number distribution at ∼ 30 nm. Observations at Mace Head, Ireland, show evi-20

dence for apparent “open ocean particle production” characterized by enhancements
in particle number in the 15–50 nm diameter range as well as slow growth rates of the
order of 0.8 nmh−1(Dall’Osto et al., 2011; O’Dowd et al., 2010). Total number concen-
trations during these conditions are on average about 8× larger than for background
conditions (Dall’Osto et al., 2011).25

We present measurements of nanoparticle chemical composition and hygroscopicity
made in marine air at Mace Head during May 2011. These observations provide in-
sights into the formation and growth of small marine particles, with implications for the
role of new particle formation in marine atmospheric chemistry and climate.
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2 Site and methods

2.1 Mace Head

The Mace Head Atmospheric Research Station is located on the west coast of Ireland
at 53◦20′ N, 9◦54′ W. Measurements of the molecular composition of marine nanopar-
ticles were made between 14–31 May 2011, during the Marine Aerosol–Cloud Inter-5

actions (MaCloud Inc.) campaign. During this period, the air temperature ranged from
7.6–13.4 ◦C, with a mean of 11.0 ◦C and typical diel range of 2–3 ◦C. The relative humid-
ity ranged from 56–98 %, with a mean of 82±10 % (1 std dev). Winds were consistently
onshore and typically W to SW, and they ranged from 3.1–25.2 ms−1, with a mean of
10.9±3.1 ms−1 (1 std dev). Air mass back trajectories were calculated for air arriving10

at the site using the NAME III dispersion model (UK Met Office) and the HYSPLIT
model (NOAA) (Draxler and Hess, 1997). The air masses arriving at the site originated
in polar regions, North America, and the subtropics, but rarely if at all from continental
Europe.

Particle size distributions were measured using an Scanning Mobility Particle Sizer15

(SMPS), consisting of a long differential mobility analyzer (model 3081; TSI, Inc.) and
condensation particle counter (model 3010; TSI, Inc.). SMPS measurements were per-
formed continuously with a roughly 3 min time resolution.

2.2 TDCIMS instrument

Particle chemical composition was measured using the Thermal Desorption Chemical20

Ionization Mass Spectrometer (TDCIMS). This instrument has been described in de-
tail elsewhere (Smith et al., 2004; Voisin et al., 2003). The instrument draws ambient
air through a pair of unipolar chargers (UPCs), where small particles are efficiently
charged by ion diffusion (Chen and Pui, 1999). The particles are size selected in ra-
dial differential mobility analyzers, or RDMAs (Zhang et al., 1995), operating at low25

resolution (McMurry et al., 2009). Particle mobilities corresponding to singly charged
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particles of 15, 20, or 30 nm diameter are selected for analysis based on ambient
aerosol size distributions. Charged, size-selected aerosols are electrostatically pre-
cipitated onto a loop of Pt wire maintained at 4000 V relative to ground for a sampling
time of typically 30 min. The wire is shielded from contamination from neutral aerosols
and gases by a sheath of clean N2. After the collection period, the wire is translated5

into an ion source region containing an 241Am alpha-emitting radioactive foil. Here the
wire is heated by a 70 s programmed current ramp from room temperature to ∼ 600 ◦C
to desorb the compounds contained in the collected aerosol. The reagent ions gener-
ated by the ion source react with desorbed compounds from the collected aerosol to
form product ions, which are passed through a collisional dissociation chamber and an10

ocotopole ion guide before being detected with a mass spectrometer.
The TDCIMS is capable of observing ions of both polarities, but only one polarity

for a given sample. At all times, the ion source is filled with ultra high purity N2 gas.
The reagent ions are provided by small impurities in the N2. In negative ion mode, the
reagent ions are O−

2 and (H2O)nO−
2 clusters. This chemistry is particularly effective for15

generating ions from strong gas-phase acids (both organic and inorganic) (Smith and
Rathbone, 2008). In positive ion mode, the reagent ions are H3O+ and larger water
clusters. Ammonia, amines, and some oxygenated hydrocarbons can be ionized by
this chemistry.

The instrument was operated on a roughly 2 h cycle including aerosol collection and20

a “background” for both positive and negative ions. The background signal is assessed
using the same procedures as the collection, but without applying a collection voltage
to the wire. The background signal therefore represents the accumulation of neutral
gases and/or particles on the wire, due either to diffusion of gases from nearby in-
strument surfaces or to some of the sample air mixing into the N2 sheath gas flowing25

past the wire, as well as the contribution by any semi-volatile species that desorb from
the walls of the ion source while the collection wire is heated during analysis. Both
collection and background signals represent integrated “desorption period” ion counts,
which have a pre-desorption baseline signal removed. These signals are scaled at ev-
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ery point by reagent ion signal to account for changes in sensitivity arising due to slight
changes in the reagent ion concentration. The reported aerosol composition measure-
ments here have had the background signal subtracted. Signal errors were estimated
as the square root of counted ions, and errors were propagated for all arithmetic oper-
ations. Detectable signal was defined as background-corrected signals which were two5

standard errors above zero.
The TDCIMS signals are reported here as fractions of total detectable ion signal for

each collected mass spectrum. This was done, rather than using absolute ion signal or
collected mass- or volume-normalized ion signal, to avoid uncertainties and potentially
misleading interpretations stemming from the variability in particle volume and sizes10

collected. Estimated uncertainties in the collected mass are significant, usually on the
order of 50 % but sometimes higher. This is primarily due to the effects of multiple
charging in the unipolar chargers (McMurry et al., 2009). A water-based condensation
particle counter (CPC; model 3787; TSI Inc.) was located downstream of the TDCIMS
collection wire. This allowed for an accurate assessment of number collected, by com-15

paring sampling and background particle concentrations. To estimate the particle vol-
ume collected, it was necessary to estimate the actual size distribution of collected
particles. This depends on the ambient distribution, the selected electrical mobility, the
size-dependent transmission and collection efficiency, and the distribution of charge
number for a given particle size. The collected volume estimation was done using lab-20

oratory observations of multiple charging and transmission in the system, alongside
an inverse model that optimized an empirical sampling efficiency function to match ob-
served ambient particle size distributions to the TDCIMS CPC number concentrations.
The approximate maximum sizes of collected particles for nominal 15, 20, and 30 nm
singly charged particles are 50, 65, and 85 nm. The details of the fitting procedure can25

be found in the Supplement. While the model is a somewhat imprecise tool, it gives
a qualitative picture of which size of ambient particles made up the bulk of the mass
sampled for each collection. Representing the data as ion fractions also has the benefit
of reducing the impact of sample matrix effects. For example, laboratory experiments

2093

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/2087/2014/acpd-14-2087-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/2087/2014/acpd-14-2087-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 2087–2111, 2014

Marine nanoparticle
composition

M. J. Lawler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

have indicated that the TDCIMS sensitivity to weak acids can be higher in the presence
of higher concentrations of stronger acids.

Just prior to the campaign, the TDCIMS was modified to improve chemical speci-
ficity via the replacement of the quadrupole mass spectrometer with a high resolution
time-of-flight mass spectrometer (HTOF; TofWerk AG). Associated with that modifica-5

tion, the vacuum chamber and ion optics were redesigned to interface the atmospheric
pressure ion source with the HTOF. Several observations, both during the campaign
and after post-campaign instrument modifications, suggest that the initial designs of
the vacuum chamber and ion optics resulted in poor ion tranmission and excessive
collisional dissociation of analyte ions. This had the effect of low sensitivity for positive10

ions in general and, we suspect, for organic species during these measurements.
A chemical calibration of the TDCIMS was performed on 30 May 2011 using am-

monium sulfate aerosol generated by a nebulizer. This resulted in clear SO−
2 and SO−

4
signals in the negative ion spectrum. These ions likely result directly from the ioniza-
tion of gas phase SO2 or SO3, suggesting that the very recalcitrant ammonium sulfate15

thermally decomposed on the wire rather than desorbing as a neutral salt. There was
a negligible response in the positive ion spectrum to the ammonium sulfate calibra-
tion aerosol; however, ammonium was detected in some ambient mass spectra. Later
laboratory measurements indicated that ammonium nitrate was detected as NO−

2 in
the negative ion spectrum. Some organic nitrates would likely appear as NO−

2 as well.20

The instrument is roughly 100× more sensitive to ammonium nitrate (as NO−
2 ) than to

ammonium sulfate (as SO−
2 ), based on laboratory calibrations.

2.3 HTDMA instrument

Aerosol growth factors were measured at Mace Head using the Manchester custom-
built Hygroscopicity Tandem Differential Mobility Analyser (HTDMA; Duplissy et al.,25

2009). The growth factor (GF) is defined here as the ratio between the aerosol’s equi-
librium diameter at 90 % relative humidity (RH) and its dry diameter (< 15 % RH). To
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measure this, the sample was drawn first through a membrane drier, to bring the RH
down to < 15 %, then through a charge neutraliser. The first DMA was then used to
select a particle size. This quasi-monodisperse aerosol sample was humidified at 90 %
RH before being passed into a chamber where the temperature was maintained at 2–
3 ◦C below the first DMA, for a residence time of around 10 s. A second DMA was then5

used to size scan the humidified aerosol, with particle detection provided by a water-
based CPC (TSI model 3782), resulting in a GF distribution as a function of dry di-
ameter (GF(D0)). The raw data were inverted using the TDMAinv software described
by Gysel et al. (2009). The nominal resolution of the instrument is 0.05 in GF space.
The aerosol dry diameters selected during this campaign were 51, 75, 109, 162 and10

258 nm, and GF was scanned between 0.8 and 2.8. The sizes most relevant for com-
parison to the TDCIMS data are 51 and 75 nm. The sample flow rate was maintained
at 0.45 LPM, and the DMA sheath flows at 4.5 LPM.

Full descriptions of the calibrations needed for HTDMA measurements is given by
Good et al. (2010). Briefly, dry scans (no humidification, RH< 15 %) were performed15

on a weekly basis in order to correct for the system transfer function, and for any offset
between the DMAs. A size calibration of the first DMA was also performed at the start
of measurements using latex spheres of a known size. In addition, a salt calibration was
performed at the start and end of measurements, whereby an inorganic salt solution
(typically ammonium sulphate or sodium chloride) was nebulised and sampled by the20

HTDMA at a set dry size of 150 nm. The RH was then scanned over a range of values
to produce a humidogram (mean GF as a function of RH), which can be compared
to modelled values from the Aerosol Diameter Dependent Equilibrium Mixing Model
(ADDEM) (Topping et al., 2005).
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3 Results

3.1 Background particles and events

Typical sub-micron background particle size distributions showed two main modes,
an accumulation mode with a number peak around 200 nm and an Aitken mode with
a number peak around 50–60 nm (Fig. 1). Typical total integrated aerosol number con-5

centration was on the order of 500 cm−3. There were also periods of up to a few hours
during which background aerosol concentration was low, roughly 200–300 cm−3. The
lowest recorded concentration was ∼ 100 cm−3.

On several occasions lasting from hours to about two days, there were large in-
creases in the concentrations of 10–60 nm particles (Fig. 1). The total particle num-10

ber during these “nanoparticle enhancement events” was typically 1000–2000 cm−3.
During these events, there were also less pronounced but clear increases in particle
number at sizes smaller than the main enhancement band, sometimes down to the
roughly 4 nm cutoff size of the instrument. The enhancement events were primarily as-
sociated with polar air masses advected over the ocean and were very similar to the15

apparent open ocean particle production described by O’Dowd et al. (2010). Apparent
coastal nucleation events also occurred, during which there were large, brief increases
in < 10 nm particles. These coastal nucleation particles were too small to be analyzed
with either the TDCIMS or the HTDMA, and we do not comment further on them in this
work. The nanoparticle enhancement events referred to in the rest of this work pertain20

to the periods of strong 10–60 nm number concentration enhancement.

3.2 HTDMA observations

The HTDMA size bin closest to the sizes measured by the TDCIMS was at 51 nm dry
mobility diameter. It is worth noting that the particle number enhancements during the
events sometimes included 50–60 nm diameter particles and sometimes were confined25

to smaller sizes. For most of the measurement period, there were two distinct growth
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factor (GF) modes, one around 1.5–1.7 and one around 2–2.3 (Fig. 3). The higher
growth factor mode corresponds to highly hygroscropic sea salt, potentially at different
degrees of aging. The lower GF mode could contain ammonium sulfate or some mix-
ture of inorganic and organic components (Sjogren et al., 2007; Hersey et al., 2009).
For larger marine particles measured in the eastern Atlantic, a GF of about 1.7 was5

attributed to internally mixed sulfate, ammonium, and organic particles (Allan et al.,
2009).

We identified four characteristic particle distributions based on the SMPS and HT-
DMA observations, and averaged the HTDMA data over these periods. These were (1)
non-event periods (background), (2) events with major enhancements only for particles10

smaller than 50 nm (sub-50 nm events), (3) events in which the number enhancements
included 50 nm or greater particles (50 nm events), and (4) a period dominated by
one high hygroscopicity mode (sea salt or SS). Examples of the different period types
are shown in Fig. 1. During background conditions and sub-50 nm event conditions,
both the 1.5–1.7 and 2–2.3 GF modes tended to be present. However, during events15

in which there were large enhancements in > 50 nm particles, the highly hygroscopic
mode decreased sharply and the 1.5–1.7 GF mode became larger (Fig. 3).

The mean distributions of the different periods suggest a progression of marine
aerosol states, controlled in part by the nanoparticle enhancement events. During the
“sea salt” period, only a high hygroscopicity mode was observed (GF ∼ 2.3), and the20

mean GF was larger than for any other period. This period appears to have been
dominated by relatively fresh sea salt in the size range above 50 nm. In the 50 nm
event periods, there was a great abundance of GF 1.5–1.7 particles, and the GF 2–2.3
mode was almost eliminated. The elimination of the sea salt mode suggests either that
the sea salt which had been present was significantly modified by the events, or that25

events occurred under conditions of lower sea salt loading. The new GF 1.5–1.7 par-
ticles seem likely to be sulfate particles with varying degrees of organic components,
as ammonium sulfate has a growth factor of 1.7, and measured organic GFs are uni-
formly lower (Peng et al., 2001; Zardini et al., 2008; Hansson et al., 1998). Further
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evidence that sulfate was involved is found in the TDCIMS observations (below). The
“background” aerosol state may represent the aftermath of this process, in which the
low GF mode has shifted still lower by addition of organics, and the high GF mode
has returned (due to direct sea salt emission and/or uptake of inorganic acids). In this
context, the second half of the “sea salt” period appears to represent the aftermath of5

an event that occurred elsewhere (Fig. 1). A strong enhancement of particle number
was evident in the 20–40 nm range, but no growth from smaller sizes was observed,
and the high GFs for all the observed HTDMA sizes (50 nm and greater) indicate that
the sea salt present was not significantly modified by the addition of organic vapors.

3.3 TDCIMS observations10

The size of particles sampled by the TDCIMS is dependent on the ambient size dis-
tribution, the selected RDMA voltage, and instrument characteristics such as charging
efficiency and collection efficiency. The result in the case of these observations is that
a fairly wide range of sizes was sampled during most particle collections. Therefore
individual spectra may represent a variety of aerosol types, e.g. very small sulfate-15

dominated particles mixed with somewhat larger seasalt particles. Because the volume
and mass go as the cube of the particle diameter, the sampled particle volume is typi-
cally skewed towards larger sizes. An estimate of collected particle volume by particle
size is plotted, along with the volume mean diameter for collected particles (Fig. 1).

3.3.1 Negative ions20

The negative ion spectra were dominated by Cl−, SO−
2 , NO−

2 , and SO−
4 . A subset of the

time series is plotted in Fig. 2 as fraction of total ion signal above detection for each
mass spectrum. The observed Cl− generally covaried with Na+ and a ClNa+

2 cluster
in the positive ion spectrum, indicating the presence of sea salt. SO−

2 and SO−
4 are

indicators of sulfate (SO2−
4 ) in the particles. NO−

2 is an indicator of nitrate (NO−
3 ) in the25

particles, potentially inorganic or organic in origin. Laboratory calibrations conducted
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after the observations showed that the instrument is roughly 100× more sensitive to
ammonium nitrate than to ammonium sulfate, so the relative nitrate concentrations in
the particles are likely much lower than suggested by the relative ion abundances.
Nitrate can also be prominent in the background signals, causing the occasional deter-
mination of negative particulate nitrate signals. Br− was also occasionally measured at5

detectable levels, and it closely tracked Cl−. I− was not present at detectable levels.
The chloride to sulfate ratio (Cl− to SO−

2 signal) was a useful diagnostic for char-
acterizing the collected particles. For example, there was an event with an extremely
high sulfate fraction (about 60×Cl−) on 26 May, most likely a volcanic plume resulting
from the Grímsvötn volcano eruptions of 22–25 May. Air masses during this day came10

almost directly from the north near Iceland. During the seasalt period, the chloride to
sulfate ratio was maintained at a relatively high level of about 3. Nonetheless, a signif-
icant sulfate fraction was still present despite the lack of a strong GF 1.5–1.7 mode in
the HTDMA data during this period. Chloride to sulfate was generally lower during the
long > 50 nm event that began on the 24th and during the period beginning on the 28th15

when the smallest particles and lowest particle volumes were collected. Brief intense
sea spray bursts which occurred early in the campaign yielded chloride to sulfate ratios
closer to 10, so this value is probably more indicative of fresh sea salt with a minor non-
sea-salt sulfate (nss-sulfate) component. Chloride is about 17 times more abundant on
a molar basis than sulfate in seawater (e.g. Savoie et al., 1989), so the TDCIMS sen-20

sitivity to sulfate was likely slightly higher than to chloride. Typical chloride to sulfate
ion ratios were about 1–3. This ratio indicates that most of the observed sulfate was
nss-sulfate.

3.3.2 Positive ions

The positive ion spectra were dominated by (H2O)Na+. Na+ tracked the (H2O)Na+ sig-25

nal but was smaller due to ion clustering in the instrument. The absolute sodium signal
generally followed the chloride signal. Acetaldehyde, measured as C2H5O+, was the
only organic species which was regularly observed. It was not enhanced during the par-
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ticle events. Acetaldehyde has a high saturation vapor pressure and is therefore most
likely a fragmentation product of larger organic compounds. There were occasional in-
stances when another organic species was found to be above the detection limit, and
these are plotted as “Organics” in Fig. 1. These include C4H+

9 , CH3O+
2 , and C3H7O+,

but points above detection were rare, despite the fact that these species occasionally5

represented large relative ion fractions. Ion peaks which were above detection but not
identified are plotted as “Others”.

There were very few points for which NH+
4 was above detection, making it difficult

to discern patterns. The TDCIMS sensitivity to ammonium was clearly very low for this
campaign (see Sect. 2). However, ammonium reached its highest fractional abundance10

during the apparent volcanic plume event on 26 May when a large amount of mass was
collected and sulfate levels were high.

3.3.3 Characterizing collected particles

Correlation coefficients between estimated mass collected and TDCIMS signals were
calculated for each of the major ions observed (Fig. 4). The data used are from the one-15

week time series presented in Fig. 3, including all characteristic periods, with the large
outliers from the volcanic plume removed (three points removed for each ion). Sulfate
signal (measured as SO−

2 ) was the best explainer of collected mass (r2 = 0.36). The
amount of particle volume collected was primarily dependent on the presence or ab-
sence of nanoparticle enhancement events, so the event particles in general contained20

a significant sulfate fraction. Chloride and sodium had lower r2 values of 0.15 and 0.14,
and NO−

2 and C2H5O+ had the least explanatory power for collected mass with r2 val-
ues of 0.09 and 0.08. However, volume-normalized sulfate (sulfate ions per collected
particle volume) was not generally higher during the events than at other times. This
could be because the background particles are similar to the event particles, or be-25

cause event particles contained more species that were not effectively detected by the
TDCIMS, such as ammonium and organics. Other than for the sea salt period, there
was not a clear distinction in TDCIMS-derived compositions among the various char-
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acteristic periods. This observation, and the fact that there were typically two similar
hygroscopicity modes throughout the measurements, suggests that the background,
< 50 nm event, and 50 nm event particles had similar compositions with respect to the
major ions observed.

3.4 Discussion5

The frequent nanoparticle enhancement events observed at this site appear to stem
from nucleation and subsequent growth by sulfate and potentially additional organic
vapors. The increases in particle mass were at least partly due to sulfate, and the
hygroscopicity measurements support the idea that sulfate is a major component of
the event aerosol. The smaller but still clear increases in the number of very small10

(sub-10 nm) particles during the enhancement events also argues that the particles
have grown from very small sizes. Given that the air came on an ocean trajectory via
the Arctic and North Atlantic Oceans, the sulfur source is most likely biological (i.e.
dimethyl sulfide). The event periods can be quite long (over a day), and the lifetime
of such small particles is generally quite short (a few hours). The mechanisms that15

generate these particles appear therefore to operate both in the day and the night.
Our observations support the idea that sea salt is a major component of marine

aerosol even at very small sizes. Sodium and chloride were observed in essentially all
collected particle samples, but neither species was as strongly linked to the nanoparti-
cle enhancement events as was sulfate. During the events, the sea salt particles may20

have taken up organic vapors which contributed to the particle volume during the events
and resulted in a decrease in their hygroscopicity. Whether the sea salt particles tran-
sitioned into the 1.5–1.7 GF hygroscopicity mode during the events is not clear from
these observations. In general we appear to have observed the progression of fresh
sea salt to more aged, less hygroscopic forms.25
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4 Conclusions

The chemical composition and hygroscopicity of marine nanoparticles were measured
during May 2011 at the coastal site Mace Head. There was essentially always a sea
salt component in the observered aerosol, at different stages of aging. There were sev-
eral events during which the number concentrations of 10–60 nm particles increased5

dramatically. These events appear to involve the nucleation of new particles over the
ocean, and these recently grown particles contain a significant sulfate fraction. The
similarity between the characteristics of event particles and background particles and
the frequency of the events suggest that these events are a major source of nanopar-
ticles in this marine environment.10

Supplementary material related to this article is available online at
http://www.atmos-chem-phys-discuss.net/14/2087/2014/
acpd-14-2087-2014-supplement.pdf.
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Fig. 1. (a) Hygroscopic growth factor for 51 nm dry diameter particles. (b) Ambient particle size
distribution. (c) Fracitonal ion abundance for negative spectra and Cl− to SO−

2 signal ratio (black
points). (d) Fractional ion abundance for positive spectra. (e) Estimated volume of collected
aerosol in each size bin (cm−3) and volume mean diameter for each collection (black crosses).
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Fig. 2. Campaign-averaged mass spectrum of particle composition in negative ion mode, measured by
TDCIMS. This is an average of background-corrected points, and one standard error bars are plotted.
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Fig. 2. Campaign-averaged mass spectrum of particle composition in negative ion mode, mea-
sured by TDCIMS. This is an average of background-corrected points, and one standard error
bars are plotted.
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Fig. 3. Averaged HTDMA growth factor (GF) distributions for 51 nm dry diameter particles for the four
characteristic periods during the observations. There were usually two main modes, a seasalt mode with
GF > 2, and a GF 1.5-1.7 mode which was probably dominated by sulfate.
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Fig. 3. Averaged HTDMA growth factor (GF) distributions for 51 nm dry diameter particles for
the four characteristic periods during the observations. There were usually two main modes,
a seasalt mode with GF> 2, and a GF 1.5–1.7 mode which was probably dominated by sulfate.
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Fig. 4. Correlations between individual species measured by TDCIMS and total estimated collected
mass for the period shown in Figure 1. Three points prior to midnight on the 26th were excluded,
due to very high sulfate levels attributed to a volcanic plume. All linear slopes are greater than two
standard deviations above zero. SO−2 , an indicator of particle sulfate, is the best explainor of particle
mass collected by the instrument.
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Fig. 4. Correlations between individual species measured by TDCIMS and total estimated col-
lected mass for the period shown in Fig. 1. Three points prior to midnight on the 26th were
excluded, due to very high sulfate levels attributed to a volcanic plume. All linear slopes are
greater than two standard deviations above zero. SO−

2 , an indicator of particle sulfate, is the
best explainor of particle mass collected by the instrument.
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