
Manuscript prepared for J. Name
with version 5.0 of the LATEX class copernicus.cls.
Date: 1 December 2014

Daily global fire radiative power fields estimation from one or two
MODIS instruments
S. Remy1 and J.W. Kaiser2

1European Centre for Medium-range Weather Forecasts, Reading, U.K.
2King’s College London, London, U.K.; Max-Planck-Institut für Chemie, Mainz, Germany; European Centre for
Medium-range Weather Forecasts, Reading, U.K.

Correspondence to: S. Remy
(samuel.remy@ecmwf.int)

Abstract. Fires are important emitters of aerosol and trace
gases and as such need to be taken into account in any at-
mospheric composition modeling enterprise. One method to
estimate these emissions is to convert Fire Radiative Power
(FRP) analysis to dry matter burnt and emissions of smoke5

constituents using land cover dependent conversion factors.
Inventories like the Global Fire Assimilation System (GFAS)
follow this approach by calculating daily global smoke emis-
sions from FRP observed by the MODIS instruments on-
board of the Terra and Aqua satellites. Observations with dif-10

ferent overpass times systematically sample fires at different
stages in the strong diurnal fire cycle. For some time periods,
observations are available from only one instrument, which
leads to a bias in the observed average FRP.

We develop a method to correct this bias in daily FRP ob-15

servations from any Low Earth Orbit (LEO) satellite, so that
the budget of daily smoke emissions remains independent of
the number of satellites from which FRP observations are
taken into account. This ensures the possibility of running,
e.g., GFAS in case of a default of one of the MODIS in-20

struments. It also enables the extension GFAS to 2000-2002
and the inclusion of FRP observations from upcoming satel-
lite missions. The correction combines linear and non-linear
regressions and uses an adaptive regionalization algorithm.
It decreases the bias in daily average FRP from Terra and25

Aqua by more than 95%, and RMSE by 75% for Aqua and
55% for Terra. The correction algorithm is applied to Terra
observations from 25/2/2000 to 31/12/2002, when Aqua ob-
servations were not available. The database of fire emissions
GFASv1.0 is extended correspondingly.30

1 Introduction

1.1 Importance of biomass burning emissions in atmo-
spheric composition modeling

Vegetation fires are a frequent occurrence in all vegetated en-35

vironments. They are ignited naturally (i.e. by lightning) or
by anthropogenic activity. They can be the cause of serious
public health issues such as the extreme Particulate Matter
(PM) concentrations recorded in Singapore at the end of June
2013, caused by fires in neighboring Sumatra island 1. De-40

pending on the vegetation cover, fires emit various aerosols,
reactive gases and greenhouse gases. More specifically, fires
are a major source of black carbon in the atmosphere: they
are responsible for around 40 per cent of the emissions of
Carbon Monoxide (CO), a precursor gas for Ozone (O3).45

They are also an important source of Nitrogen oxides(NOX).
As such, biomass burning emissions play an important role
in chemical composition and air quality forecasts.

Fires also affect the radiative balance of the atmosphere by
emitting greenhouse gases such as Carbon Dioxide (CO2)50

and Methane (CH4). They also release large quantities of
aerosol particles such as Black Carbon (BC) and Organic car-
bon (OC), which in turn impact the atmosphere through the
aerosol-radiation and aerosol-cloud interactions. Diehl et al.
(2012) estimate the global OC emissions from biomass burn-55

ing as 14-57 Tg per year, while BC ranges from 1.8 to 7 Tg
per year. Bond et al. (2013) cite ranges of 2—11 Tg(BC)
and 18—77 Tg(organic carbon) for the global annual esti-
mates of emissions from open biomass burning. Out of 13
identified radiative forcing agents (Bowman et al., 2009), 860

are impacted by fires. Therefore, taking into account the con-

1See http://www.gmes-atmosphere.eu/news/singapore smoke



2 S. Remy and J.W. Kaiser: Daily Global Fire Radiative Power

tribution of fires in the emissions of aerosols, reactive gases
and greenhouses gases is a necessary step in any atmospheric
composition modeling enterprise.

Fires occur mostly in locations where in-situ observations65

are not available and are characterized by a large temporal
and spatial variability; assessing their size and intensity re-
quires the use of remote observations. Most fires are charac-
terized by a strong diurnal cycle, e.g. Giglio (2007), Roberts
et al. (2009), often with a maximum in the early afternoon.70

Satellite observations of the currently active fires are the only
source that can provide a global estimation of fire activity.
Several systems that calculate the biomass burning emissions
from satellite observations of burnt area or active fire areas
have been developed over the recent years (van der Werf et al.75

(2006, 2010); Freitas et al. (2005); Reid et al. (2009); Sofiev
et al. (2009); Kaiser et al. (2009, 2012)).

The Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument observes thermal radiation around
3.9µm and 11µm wavelengths. Thermal radiation includes80

signal from fires, but also from volcanoes and gas flares that
will need to be masked. From this source of information,
NASA produces the MOD14 product (Justice et al. (2002)
and Giglio (2005)) which contains a quantitative observation
of Fire Radiative Power (FRP). FRP represents the amount85

of power that is released by the fire into the atmosphere, in
W/m2. The Spinning Enhanced Visible and Infrared Imager
(SEVIRI) onboard the Meteosat-8 satellite also provides es-
timates of FRP using the Middle InfraRed (MIR) radiance
method (Wooster et al. (2003)).90

The European Union funded project ”Monitoring Atmo-
spheric Composition and Climate – Interim Implementation”
(MACC-II) provides global analysis and forecasts of atmo-
spheric composition, alongside European air quality fore-
casts (Hollingsworth et al., 2008). In order to provide this95

forecasting system with accurate estimates of aerosol, reac-
tive gases and greenhouse gas emissions from biomass burn-
ing, the Global Fire assimilation System (GFAS, Kaiser et al.
(2009)) based on satellite-based fire radiative power (FRP)
observations has been developed. GFAS grids and aver-100

ages FRP observations from the MODIS instrument onboard
NASA’s Terra and Aqua satellites. FRP observations from
sensors onboard geostationary satellites such as Meteosat-
8 and Goes East and West are currently not used in GFAS,
as their values are very different from MODIS. This grid-105

ded data from the two satellites are then merged to produce
global daily averaged FRP fields with 0.5 degree and 0.1 de-
gree resolutions. An analysis of daily averaged FRP is then
built by assimilating this merged daily averaged FRP obser-
vation. The assimilation step consists of a simple Kalman110

filter used with a persistence model; its objective is to fill the
observational gaps, caused mainly by cloudy conditions.

Heil et al. (2010) found strong correlations between FRP
and the dry matter combustion rate of the Global Fire Emis-
sion Database (GFED, van der Werf et al. (2010)) v3.1. This115

allowed the derivation of conversion factors for eight land

cover classes that link GFAS FRP to GFED dry matter com-
bustion rate, which allows GFAS to provide a global analysis
of dry matter burnt. Emission factors following Andreae and
Merlet (2001) are then used to estimate the emissions of 41120

species from the dry matter burnt estimate. As GFAS trans-
lates a daily averaged FRP into a daily average emission rate
of species (Kaiser et al. (2012)), it contains no information
about the diurnal cycle of biomass burning emissions. Our
aim here is to try to reproduce this daily average FRP and125

biomass burning emissions using one source of observations
instead of two.

The MACC-II project also produced an 8-years reanaly-
sis (Inness et al. , 2012) of global atmospheric composition,
using biomass burning emissions estimates from GFED and130

GFAS. The biomass burning emissions database was then ex-
tended from 1st of January 2003 to the current day. Besides
its every-day use in the MACC-II global atmospheric com-
position forecasts, this database attracts a growing number
of users worldwide.135

1.2 Satellite observations used in real-time emission cal-
culation

Only low-earth-orbiting (LEO) satellites provide full global
observational coverage and the MODIS instruments on-
board NASA’s polar orbiting satellites Aqua and Terra are140

the only instruments for which fire products are currently
provided in real-time (Giglio et al., 2003, 2006). The FINN
(Wiedinmyer et al. , 2011) and FLAMBE emission inven-
tories (Reid et al. (2009)) use hot spot observations from
MODIS. Other real-time inventories, i.e. GFAS, QFED (Dar-145

menov and da Silva , 2013) and IS4FIRES (Sofiev et al.,
2009) use the additional quantitative information of the Fire
Radiative Power (FRP) products from the MODIS satellites.
Both observations are only available for clear-sky conditions,
and show a decreasing accuracy as the viewing angle in-150

creases (Freeborn et al. (2011)). The Terra overpass time is
around 10:30 local solar time in its descending mode and
22:30 local solar time in its ascending mode. The Aqua over-
pass times are around 13:30 (resp. 01:30) local solar time in
ascending (resp. descending) mode.155

The diurnal fire cycle is reflected in a significant bias in the
FRP observations from the two MODIS instruments (Giglio
(2007),Roberts et al. (2009)). This bias has a strong geo-
graphic dependency because the diurnal cycle of fire inten-
sity depends on the land cover type: for example, peat fire’s160

intensity hardly vary between day and night while savannah
fires nearly extinguish at night. Accurate emission invento-
ries need to combine as much information as possible. For
example, GFAS currently merges observations from Aqua
and Terra, weighted by the observed area product, which de-165

pends on the cloud cover. That means that the relative signal
from both satellites in the final GFAS FRP analysis is vary-
ing from day to day. To sum up, the difference between Terra
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and Aqua FRP can be caused by the diurnal cycle of fires and
by a change in cloudiness between their overpass times.170

While running GFAS with FRP observations from only
Aqua or Terra is technically feasible with the current con-
figuration, the above shows that if we want to ensure that the
daily averaged FRP and biomass burning emissions are co-
herent with the classical configuration (i.e. assimilating data175

from both satellites), a correction step is required. This also
applies to other emission inventories that use MODIS ob-
servations with a temporal resolution of one day or more.
Availability of only one MODIS instrument occurs in three
situations: before the launch and start of product generation180

from Aqua (02/2000—12/2002), during short breaks in the
real-time availability of one or the other MODIS instrument,
and, in the future, after the lifetime of whichever instruments
fails first.

1.3 Objectives of this work185

The objective of this work is to develop a method that can ad-
equately correct the FRP products from LEO satellites such
that daily averaged FRP, and thus biomass burning emission,
estimates remain unbiased between time periods with all
satellites available. The method will be derived for MODIS190

observations from the Terra and Aqua satellites, but it shall
also be applicable for VIIRS and Sentinel-3 observations. It
will be used to extend the GFAS emission inventory back to
2000. It will also provide resilience of GFAS against failure
of one of the MODIS instruments, and prepare for the inges-195

tion of FRP products of NPP VIIRS and Sentinel-3 SLSTR
in as soon as they become available in real time.

Ellicott et al. (2009) succeeded in using observations from
Terra only to estimate monthly averaged FRE, with only a
small bias from using observations from Aqua and Terra. The200

system used in their work was rather different from GFAS, as
it estimated a diurnal cycle based on geostationary satellites
and didn’t include a data assimilation step to fill observa-
tional gaps. Our aim is however to reach the same results
with daily averaged FRP and biomass burning emissions.205

Section two describes the statistical methods used to cor-
rect the daily observations from Aqua or Terra; the results
from these methods is exposed in section 3. Section 4 shows
how the GFAS database was extended back to 2000 by us-
ing corrected observations from Terra only. Finally, section 5210

sums up the results of this paper.

2 Methods

2.1 Overall approach

Since fires vary so much both spatially and temporally and
the relative contribution of Aqua and Terra FRP observations215

to the final product vary from day to day, it is not realistic to
aim to reproduce the local and temporal variability of fires
as sampled by two sources of observations when running

with only one source. Also, cloudiness changes and the di-
urnal cycle of fires introduce differences between Aqua and220

Terra. We will focus here on trying to compensate the effect
of the diurnal cycle on observed FRP. A statistical regression
fit from a learning dataset will be used, the quality of its out-
put will be assessed using an independent verifying dataset.

2.2 Choice of variables225

GFAS assimilates merged FRP observations in a 24 hour
window to produce a best estimate of the daily average FRP,
from which emissions of various gases and aerosols are de-
rived. We will work on these daily FRP observations instead
of FRP analysis from GFAS or directly on the emissions. As230

global observations from Aqua or Terra are collected within
a 12 hour span, it makes sense to use a longer period for our
explanatory variable : a 24 hour period is the best choice as
it allows us to directly apply the correction to the merged ob-
servations that are assimilated in GFAS. For the same reason,235

it was preferred to scale daily observations of Terra (resp.
Aqua) toward merged FRP from both satellites instead of to-
wards observations from the other satellite.

2.3 Learning and verification datasets

The learning dataset is composed of daily averages of FRP240

from Aqua and Terra, averaged over a 0.5 degree grid by the
GFAS algorithm. It extends from 1st of January 2003 to 31st

of December 2011. To prevent taking into account situations
where Aqua and Terra observations are very different, be-
cause of a change in cloudiness for example, fires for which245

the ratio of Terra- or Aqua-GFAS over Full-GFAS was above
the ninth decile of the whole dataset for the considered day
were not included in the dataset. The effect of this exclusion
was shown to increase the correlation coefficient between the
datasets by up to 20%, especially over Africa.250

The diurnal cycle, and thus the physics underlying the sta-
tistical link between FRP observations from Aqua and Terra,
depends on the land cover; therefore an application of a re-
gression algorithm to global FRP needs to take this depen-
dency into account. Also, fire typology varies a lot from re-255

gion to region. Tropical regions dominated by large forests
and savannah exhibit large seasonal fire activity that is long-
lasting and relatively regular. These regions contribute a lot
to global FRP. Boreal regions with forests mostly composed
of coniferous trees are on the other hand subject to fire events260

that are much more irregular in size and intensity. A few large
events such as the Rim fire of August 2013 in California, or
the Quebec fires of June and July 2013 2 that sent a plume
crossing the Atlantic and affecting Europe can have a signifi-
cant impact on global FRP (see also Dahlkötter et al. (2013)).265

To be able to take into account this geographical variability

2See http://www.copernicus-atmosphere.eu/news/canada smoke/
and http://www.wunderground.com/blog/JeffMasters/canadas-2nd-
largest-fire-on-record-spreading-smoke-to-europe
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in fire activity patterns and the impact of different land cov-
ers, regression needs to be applied to regional subsets of the
learning dataset instead of a global one.

The verification dataset extends from 1st of January 2012270

to 31st of December of the same year.

2.4 Two different regionalization strategies

The sample size for every considered local datasets needs
to be large enough for a regression algorithm to be applied
safely. A minimal sample size of 400 positive gridded obser-275

vations of FRP for both Aqua and Terra was chosen. Larger
values for this threshold were tested, without much impact
on the quality of the regression.

2.4.1 Fixed regions

The regression was applied to 2x2 degree regions across the280

globe that contained more than 400 fires (as observed by both
Aqua and Terra) in the learning dataset. Tests with smaller
regions showed that the statistical link between the datasets
didn’t vary much from one region to another, while many
more regions didn’t contain enough fires to be considered for285

regression.

2.4.2 Adaptive regions

In order not to exclude too many regions, an adaptive region-
alization algorithm was also tested. If the sample does not
meet the size criterion for a given 2x2 degrees tile, then all290

fires in a 4x4 degrees regions centered on the original tile
are considered. If there are still not enough fires in the 4x4
degree region, then fires are considered in a 6x6 degrees re-
gion, and so on, up to a maximum area of 12x12 degrees.
Figure 1 shows the comparative areas that meet the sample295

size criterion for the two regionalization methods. It is clear
from this figure that the ”adaptive regionalization” algorithm
allows us to apply regression to nearly the whole globe in-
stead of a much smaller domain when using only 2x2 degree
domains. The regions where fires are very common, and es-300

pecially the tropical forests and savannahs, are prominent in
Figure 1 when using fixed regions. A few regions that meet
the sample size criterion lie in desert areas, such as at the
border between Tunisia and Algeria or in South-West Iran.
These could be due to fires coming from gas extraction fa-305

cilities that were not masked in GFAS. The comparative ad-
vantage of this regionalization strategy will be assessed in
section 3.

2.5 Regression approaches

2.5.1 Linear regression310

The linear regression algorithm was applied to the two set
of regions described above and to the learning dataset that
extends from 2003 to 2011. The algorithm consists of com-

puting for every region, the linear regression coefficient a,
and a coefficient b, such that :315

‖Y − (a ∗X + b)‖2 (1)

is minimal. X is the sample of 0.5 degree daily FRP from
Aqua or Terra contained in the considered region (i.e. the ex-
planatory variable), and Y is the sample of 0.5 degree FRP
merged from both Aqua and Terra (i.e. the dependent vari-320

able). The correlation of the two variables will be evaluated
on the learning dataset using the square of the correlation
coefficient r2. The skill of the regression will be assessed
on the verification dataset by comparing the output of GFAS
when assimilating corrected and uncorrected daily FRP from325

either Aqua or Terra. This comparison will be carried out
by means of checking the bias and the Root Mean Square
Error (RMSE) against GFAS used in the classical configu-
ration, i.e. assimilating merged observations from both Terra
and Aqua.330

2.5.2 Nonlinear regression

Three different kinds of nonlinear regression formulae were
tried, the polynomial

∑
i aix

i, the hyperbolic
∑

i
ai

xi and the
exponential aebx or axb where a, ai and b are parameters that
are adjusted to find the best fit. Combinations of the three335

families were also tried, and it was shown that the approach
that minimized the distance between the corrected daily FRP
and the merged FRP was to combine a polynomial and the
hyperbolic function :

F (X) = aX4 + bX3 + cX2 + dX +
e

X
(2)340

where the five parameters a,b,c,d and e are determined
for each region by minimizing the least square distance be-
tween Y and F (X) using the Levenberg-Marquardt algo-
rithm (Marquardt, 1963).

2.5.3 Combined regression345

It is also possible to combine the linear and non-linear ap-
proaches when correcting the verification dataset. As the
non-linear algorithm is less stable, for larger values of FRP
the linear regression is preferred while for smaller values
non-linear regression is applied. The threshold between the350

two needs to be adaptive as outlying values are very time and
space-dependent. It was chosen to depend percentile of the
whole daily FRP dataset for the considered dataset. A sen-
sitivity study was carried out as to what percentile fives the
best results depending on which satellite observations are be-355

ing corrected; its results are shown in section 3.

2.5.4 Distance metrics

In order to compare the results from linear, non-linear regres-
sions and combined approaches, a common distance metric
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needs to be defined to be able to measure the efficiency of360

each algorithm. The classical regression coefficient is only
applicable to linear regression algorithm. The approach cho-
sen here is to compare, for each regional dataset, the norms
of the vector composed of the difference between the regres-
sion and the dependent variable, i.e.365

‖Y −F (X)‖2 =
√

(
∑

i

(Y i−F (Xi))2) (3)

where Y is the dependent variable vector, i.e. Full GFAS
here, composed of a sample of Y i scalars, X is the explana-
tory variable vector, i.e. Aqua or Terra GFAS, and F is the lin-
ear or non-linear regression algorithm applied to every com-370

ponent Xi of this vector. This distance is not normalized by
the size of the dependent variable vector; that means that its
value depends also on the size of this vector. As we used this
distance only to compare the various algorithms that were
tried, this is not an issue here.375

3 Results with the verification dataset

In this section daily FRP from the verification dataset are
corrected by the different regressions shown above and then
assimilated in Terra- and Aqua-GFAS. Table 1 shows the
global daily FRP averaged over the verification dataset, as380

computed by GFAS using observations from both Terra and
Aqua, from Aqua only and from Terra only. The important
bias of GFAS when running it with observations from only
one satellite without any correction is very apparent in this
table and gives an indication on the importance of the cor-385

rection that needs to be made.

3.1 Linear regression

The linear regression was applied to regional datasets corre-
sponding to fixed 2x2 regions with more than 400 fires, and
to regional datasets provided by the adaptive regionalization390

algorithm.

3.1.1 Results with the fixed regionalization

Figure 2 shows the square of the correlation coefficient for
the daily Aqua or Terra FRP against merged FRP. The square
of the correlation coefficient is much higher for Aqua (val-395

ues lie between 0.85 and 1) than for Terra (values generally
lie between 0.5 and 0.8). This is not really surprising, con-
sidering that the overpass time of Aqua is generally closer
to the fire activity peak. As such, Aqua FRP observations are
usually larger than Terra’s and correlation of Aqua daily FRP400

with the merged FRP is also larger.
For the same reason, the regression coefficient (not shown)

is generally below one for Terra and above one for Aqua.
However, the values are very different from one region to
the other, in both cases. The differences between the main405

groups of regions can be explained in terms of land cover, us-
ing the MODIS-based MCD12 land cover map version 5.1,
shown in Figure 3 for the year 2005 (Olofsson et al. (2012)
and Stehman et al. (2012)). Regions with relatively higher
regression coefficients, such as Northern Australia and South410

America are predominantly savannah regions, while regions
with woody savannah display lower regression coefficients
(Africa, south of the Equator). Grasslands, like the ones that
can be found in Africa, north of the Equator, are in an inter-
mediate position. An explanation for this different behaviour415

could lie with the different diurnal cycles associated with
each of these land cover type, which could be a cause for
the difference between fire intensity as observed by Terra in
the morning and by Aqua at midday (Giglio (2007),Roberts
et al. (2009), for example).420

For a simpler reading, GFAS FRP obtained assimilat-
ing only Aqua (resp. Terra) FRP data from the verification
dataset will be called ”Aqua (resp. Terra) GFAS”, while the
reference GFAS FRP, obtained assimilating FRP data from
both satellites will be called ”Full GFAS”.425

Table 1 shows the global averaged RMSE and bias of the
linear regression correction for Aqua GFAS and Terra GFAS
as compared to Full GFAS. The global average FRP is also
indicated and can be compared to the global average FRP
from GFAS when running with uncorrected daily FRP ob-430

servations from Terra or Aqua. When the correction was not
available, because the sample was too small for example, un-
corrected values of daily FRP were used.

Comparing the results from Table 1 shows that for both
Aqua GFAS and Terra GFAS, using daily FRP corrected435

by linear regression is rather efficient in bringing the aver-
age FRP closer to our reference. Using the corrected daily
FRP reduced the bias by a factor of three for both Aqua-
and Terra- GFAS. The RMSE is quite high for both cases,
with values that are 20 to 25 per cent of the average FRP440

for Aqua GFAS and Terra GFAS respectively. This relatively
high level of error can be partially explained by the bias,
which represents more than half of the RMSE in both cases.

This first result is encouraging though not entirely satis-
fying, because of the remaining bias and the relatively high445

level of RMSE.

3.1.2 Results with the adaptive regionalization algo-
rithm and comparison with fixed regions

Figure 4 shows the square of the correlation coefficient of
Aqua or Terra daily FRP with merged FRP, using the adap-450

tive regionalization algorithm. In the regions where fires are
common, the same features as with the fixed regions are dis-
played. In other regions, the impact of the land cover type
is clearly shown: savannah and grassland regions in particu-
lar (United States, Australia outside the Northern rim, Africa455

around the Northern Tropics) have very similar values. Bo-
real forests display regression coefficient (not shown) values
close to one, for both Aqua and Terra. This can be explained
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by the fact that fires in these regions occur not as frequently
as in the tropical forests, but usually with a higher intensity.460

Intense fires tend to also burn during the nights and to limit
the amplitude of the diurnal cycle. The correlation coeffi-
cients display larger values for Aqua daily FRP as compared
to Terra daily FRP, for reasons already explained. The val-
ues are very close to one in most of the regions where fires465

were considered in a larger area than the original 2x2 de-
gree region. This means that enlarging the sample was not
detrimental to how much the explanatory and the dependent
variables are correlated in these regions.

Comparing the results with fixed and adaptive regions in470

Table 1 shows that the RMSE of the scaled Aqua-GFAS is
reduced by nearly a factor of two when using the adaptive
regionalization algorithm, and by more than ten per cent for
Terra-GFAS. The bias is nearly entirely eliminated for Aqua-
GFAS and reduced by a fourth for Terra-GFAS. These results475

show that including regions where fires are not as common
as in the fixed regions help a lot in improving the quality
of the regression. The global average of FRP show that the
regression nearly entirely eliminates the bias that was caused
by using observations from only one satellite.480

3.2 Nonlinear regression and combined approach

Nonlinear regression was applied only to datasets provided
by the adaptive regionalization algorithm, as it was shown
that this algorithm improves significantly the quality of the
regression. Using only the non-linear regression to correct485

observations brought a marked degradation when using these
observations in GFAS. This degradation is caused by the fact
that non-linear regression gave extreme results for a few fires
with large FRP : this algorithm is much less stable as com-
pared to linear regression. These values were non-physical,490

above 100 and reaching to 5000 W/m2 over a 0.5 degree
grid cell. Only a few grid cells were concerned, so the rel-
ative proportion of non-physical values being produced by
the non-linear regression was negligible. However, as these
values were so large, they significantly impacted the average495

FRP.

3.2.1 Reasons for using the combined approach

As we are dealing with datasets that are very varied, with
weaker or stronger statistical links between them, a non-
linear regression will be more efficient in capturing the sta-500

tistical link between Aqua and Terra daily FRP on one hand
and merged daily FRP on the other hand. This is shown by
Figure 5, which presents the relative improvement brought
by the non-linear regression relatively to the linear regres-
sion as applied to the learning dataset, in terms of distance505

to merged daily FRP. In many areas, the improvement is in
the order of 10 to 20 %. The relative improvement brought
by the non-linear approach as compared to the linear one is
mostly evident in regions where fires are less common and

as a consequence where the adaptive regionalization algo-510

rithm provides larger domains, as shown on Figure 1. Also,
the non-linear approach seems to have a larger impact for
Terra as compared to Aqua as shown by Figure 5.

However, the non-linear formulae cannot be applied to
the verification dataset without removing the outlying data.515

The non-linear algorithm is generally more efficient in min-
imizing the error between the corrected FRP and the depen-
dent variable. However, for very large daily FRP from Terra
or GFAS, or if the difference between Aqua and Terra is
too large because of difference cloud cover conditions, non-520

linear regression can bring very large errors. In particular,
applying the non-linear approach to daily FRP that lies out-
side of the learning dataset will give very poor results; while
the linear approach is safer in this case. This is clearly shown
by Figure 6 : if the non-linear approach is applied to large525

values, then the result will be extremely large (for the region
considered in the right part of the figure), or even negative
for the region considered on the left.

A way to exploit both the robustness of the linear algo-
rithm and the added skill of the non-linear approach was530

found by designing and applying the combined algorithm
that has been explained in the methods section. Several val-
ues for the daily threshold between the use of linear and non-
linear approaches were tested on the verifying dataset. The
results of this sensitivity study are summed up in Table 2 for535

Aqua and Table 3 for Terra. The 100th percentile corresponds
to the linear regression being applied only. These tables show
a marked difference between Terra and Aqua. For Aqua, the
RMSE is decreasing very fast with increasing percentiles, but
quickly reaches a floor. Bias however is decreasing more reg-540

ularly, reaches a minimum and then increases slightly again.
Overall, the non-linear approach is not improving the scores
much as compared to the linear regression : the RMSE is the
same and the bias is only slightly decreased. For Terra, both
RMSE and bias are decreasing and then increasing with the545

threshold percentiles. RMSE is much larger than for Aqua,
and the non-linear approach is more efficient in reducing the
bias. In the end, the percentile that minimizes the errors are
60 for Aqua and 45 for Terra; these are the values that will
be used in the final correction algorithm.550

3.2.2 Comparison of the combined algorithm to linear
regression

Figure 7 shows daily globally averaged FRP from Aqua-,
Terra- and Full GFAS using daily FRP not corrected or cor-
rected by the linear regression and the combined algorithm555

applied to the verifying datasets. The high temporal variabil-
ity of global FRP is very apparent on this figure, as well as
how both the linear and combined algorithms are successful
overall in scaling both Aqua-GFAS towards Full-GFAS, ex-
cept for a few large fire events such as in March and April560

2012 and also at the end of October 2012. The differences
between the linear and combined approaches are very small.
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For Terra-GFAS, the regression is overall less successful, in
particular up to 1st of May 2012. For Aqua, the daily FRP as
provided by GFAS using observations corrected by the com-565

bined algorithm are 5-30% larger as compared to the values
obtained with the linear regression. For Terra, the difference
is generally negligible, as a global average. As shown also by
Table 3, applying linear-regression is having a greater impact
on Terra than on Aqua.570

The apparent difference between the small improvement
brought by the combined regression when applied to the ver-
ifying dataset and the larger reduction of the distance brought
by the same method when applied to the learning dataset (see
Figure 5) can be explained by the fact that the regions where575

the combined algorithm reduces this distance the most are
the regions where fires are less common. The tropical forests
and savannahs, which contribute generally the most to the
global FRP, do not show much improvement of the combined
method as compared to linear regression on Figure 5. This580

shows that non-linear regression has most impact on fires in
regions that generally contribute much to global FRP, so that
this improvement is not very visible when considering daily
global FRP, even though it is locally important.

Figure 8 shows daily FRP from Aqua-, Terra- and Full585

GFAS, averaged over Africa, Indonesia, South and North
America. GFAS output using observations not corrected and
corrected with the combined algorithm are shown. This fig-
ure clearly shows the varying ratio Aqua over Terra from re-
gion to region : it is important in Africa where Aqua val-590

ues can be up to 8 times larger than Terra value, and rather
small in North America where Aqua values are usually 5-
15% larger than Terra.

A spurious oscillation of daily FRP as estimated by Aqua
observations, with a two day frequency, is very prominent in595

Africa. This is caused by the fact that the detection threshold
of the MODIS sensor varies across the swath. It increases
with viewing angle, towards the swath edges (e.g. Freeborn
et al. (2011)); this leads to lower FRP estimates in GFAS for
grid cells that are observed nearer the MODIS swath edges600

as smaller fires are not taken into account. As for both Aqua
and Terra there are fewer overpasses around the equator, this
results in an underestimation of FRP every two days. This
shows more clearly for Aqua, because it captures better the
maximum intensity of fires thanks to its overpass time. This605

underestimation in the FRP analysis over Africa is compen-
sated by the fact that the conversion factors to convert FRP
into dry matter burnt were computed using monthly average
FRP from GFAS and monthly average dry matter combus-
tion rates of GFED (Andela et al. (2013)). This issue will be610

addressed in the next version of GFAS, which will include a
correction of FRP observations to account for the detection
threshold of MODIS as a function of the viewing angle. The
algorithm of this correction is exposed in detail in Kaiser et
al. (2013).615

Figure 8 also shows that the correction algorithm is very
efficient in bringing both Terra- and Aqua-GFAS towards

full-GFAS, for the four considered regions. For South Amer-
ica, the relative improvement brought by the correction ap-
pears more important for Aqua-GFAS than for Terra-GFAS.620

3.2.3 Results of the combined algorithm to linear re-
gression in two case studies

To focus to a local scale, Figure 9 shows the impact of both
methods on a particular fire event, in West Africa, on 3rd of
April 2012. The daily FRP analysis from GFAS using the625

original Terra dataset shows values that are largely inferior
to merged FRP whereas they superior for the original Aqua
dataset. The observed area (not shown) are comparable for
both satellites on that day, which means that different cloudi-
ness between the Terra and Aqua overpass times is not the630

cause of this very important difference. This fire event con-
tributed significantly to global FRP on that day, and as Figure
7 shows, the correction of Terra values was not very success-
ful on that particular day on a global scale. The causes of this
relative lack of success for Terra are clear when consider-635

ing the difference between the uncorrected Terra-GFAS and
Aqua-GFAS. Many fires that were detected by Aqua were
not by Terra; as a consequence the correction algorithm, even
though it significantly reduced the difference between Terra-
GFAS and full-GFAS, still showed important errors. The cor-640

rection algorithm was successful in producing a maximal
FRP for Terra-GFAS that was in the order of magnitude of
the one observed in full-GFAS. This was accomplished by
the non-linear part of the correction algorithm, as shown by
the differences between the linear correction and the com-645

bined approach results in Figure 7.
For this particular example, the combined approach scales

FRP from Terra-GFAS closer to Full-GFAS as compared to
linear regression. The different behaviour of both regression
methods from one region to another is clear when consider-650

ing that the maximum FRP does not occur in the same grid
cell once either regression method is applied.

This figure shows that at a local scale, errors are reduced
by the regression but can still remain important. It also shows
that the differences from the linear and combined regressions655

are larger when considered at a local scale.
Figure 10 shows how both regression algorithms perform

at a local scale on 23rd of October 2012, for fires in Australia
that were an important contribution to the peak of global FRP
that was observed that day, as shown on Figure 7. The dif-660

ference between the FRP analysis from Full-GFAS, Terra-
GFAS and Aqua-GFAS using non-corrected data are visible
but much less important than in the other case. As a result,
the regression is much more efficient in producing daily FRP
that bring Terra-GFAS and Aqua-GFAS FRP analysis closer665

to Full-GFAS. The non-linear approach does not have any
visible impact in that case.
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4 Extension of the GFAS emissions database

The combined linear and non-linear approach was applied to
Terra-GFAS for the period extending from 24th of February670

2000 to 31st of December 2002. Static correction (volcanoes,
gas flares) and quality control were carried out as described
in Kaiser et al. (2012): all observations with a daily FRP
value above 20 W (average for a 0.5 degree grid cell) per
square meter were not taken into account.675

Figure 11 shows Terra-GFAS using uncorrected daily FRP
from Terra, values corrected with linear regression and non-
linear regression. The correction brings larger GFAS FRP
analysis: the mean daily global FRP for the 24th of Febru-
ary 2000 to 31st of December 2002 period is 1.79e-4 mW/m2

680

when using uncorrected Terra daily FRP, 2.31.e-4 mW/m2

when using corrected Terra daily FRP. These averages are
comparable to the values for the year 2012 when using
merged daily FRP: 1.486 e-4 and 2.238.e-4 mW/m2, respec-
tively.685

Figure 12 shows monthly global FRP from Aqua, Terra
and GFASv1.0, including the extension of GFAS for the pe-
riod extending from 24th of February 2000 to 31st of Decem-
ber 2002. While the unavailability of any independent veri-
fying satellite observations makes it impossible to quantita-690

tively assess the accuracy of the corrected FRP, the values
for the years 2000 to 2002 show a good agreement with the
values afterwards.

The observation products (MOD14) from Terra contain no
fire detections for a few periods, especially from 6th to 17th of695

August 2000, from 16th of June to 2nd of July 2001 and from
21st to 29th of March 2002. This kind of data fault cannot be
detected by the implemented quality control. Therefore, we
assume persistence of the fire distribution for these specific
dates.700

FRP and biomass burning emissions for the period of 1st

of March 2000 to 31st of December 2002 have been added to
the GFASv1.0 database, which now encompasses the years
2000-2014.

5 Summary705

Several configurations for the correction of Aqua and Terra
daily FRP were tried. The adaptive regionalization improves
the result of GFAS as compared to the fixed regionalization
for both satellites, more so for Aqua as compared to Terra
(see 1). The combination of non-linear and linear approaches710

is more efficient for Terra than for Aqua (see table 2 and 3).
Table 4 shows the final scores for Aqua- and Terra-GFAS,

corrected with the adaptive regionalization algorithm and
the combined linear-nonlinear approach. The correction im-
proves the RMSE by more than 75% for Aqua-GFAS and715

55% for Terra-GFAS. The bias is also improved by more
than 95% for both Aqua and Terra. While the correction is
very efficient at reducing the bias at a global scale, errors can

be large when considered at a local scale, as on 3 of April
2012 in Western Africa (see Figure 9).720

6 Conclusions

This paper showed that a combination of linear and non-
linear regression manages to remove effectively the bias of
the output of GFAS when using observations from only Aqua
or Terra. These results are qualitatively similar to the results725

obtained by Ellicott et al. (2009) with a different system. The
regression is overall more efficient for Aqua than for Terra,
and was designed to address the difference between Aqua
and Terra caused by the diurnal cycle of fires. This will en-
sure the coherence of the output of GFAS at a global scale,730

should one of these satellites fail. As such, this work con-
solidated the whole MACC-II system. The GFAS FRP and
biomass burning emissions database was successfully ex-
tended to the period from 24th of February 2000 to 1st of
January 2003.735

As the fire typology varies a lot from one region to the
other, an adaptive regionalization algorithm was successfully
implemented to design samples that were statistically signifi-
cant. This allowed us to run the regression in nearly every re-
gion of the globe where fires occurred in the past 9 years. For740

regions where fires were too scarce for the regression algo-
rithms to be run safely, which represent a very small fraction
of all fires, the correction exposed here cannot be applied.
The approach that was applied here to MODIS observations
on Aqua and Terra is also applicable to FRP observations745

from other sources, i.e SEVIRI, VIIRS and SLSTR, acting
as a bias correction. That would open the possibility of as-
similating more FRP observations in GFAS.

This work also documented the differences between Aqua
and Terra FRP observations. These differences are important750

at a global scale, and even more so at a local scale, as shown
by the 3rd of April 2012 situation in West Africa.
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Table 1. RMSE and bias of mean global FRP in mW/m2 for the
year 2012 for Aqua and Terra GFAS with linear regression applied,
as compared to Full GFAS, fixed and adaptive regions.

Satellite data assimilated RMSE Bias Average FRP

Aqua and GFAS 0 0 2.238e-04

Aqua (not corrected) 1.059e-04 -8.7611e-05 3.112e-04

Terra (not corrected) 8.769e-05 7.541e-05 1.486e-04

Aqua (fixed regions) 4.349e-05 -2.952e-05 2.536e-04

Terra (fixed regions) 5.138e-05 3.304e-05 1.910e-04

Aqua (adaptive regions) 2.599e-05 -1.876e-06 2.260e-04

Terra (adapative regions) 4.515e-05 2.503e-05 1.991e-04
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Table 2. RMSE and bias of mean global FRP in mW/m2 for the
year 2012 for Aqua-GFAS as a function of the percentile of gridded
FRP above which linear regression is applied instead of non-linear
regression.

Percentile RMSE Bias Average FRP

5 1.411e-04 -3.683e-5 2.609e-04

10 7.098e-5 -1.574e-5 2.398e-04

15 6.312e-5 -1.017e-5 2.343e-04

20 2.969e-5 -5.898e-6 2.300e-04

25 2.8385e-5 -4.105e-6 2.282e-04

30 2.693e-5 -2.722e-6 2.268e-04

35 2.635e-5 -2.076e-6 2.262e-04

40 2.609e-5 -1.639e-6 2.257e-04

45 2.610e-5 -1.425e-6 2.255e-04

50 2.608e-5 -1.259e-6 2.254e-04

60 2.605e-5 -1.180e-6 2.253e-04

100 2.599e-5 -1.876e-6 2.260e-04

Table 3. RMSE and bias of mean global FRP in mW/m2 for the
year 2012 for Terra-GFAS as a function of the percentile of gridded
FRP above which linear regression is applied instead of non-linear
regression.

Percentile RMSE Bias Average FRP

5 1.114e-03 -2.981e-4 5.223e-04

10 3.410e-04 -8.815e-5 3.122e-04

15 2.075e-04 -3.897e-5 2.631e-04

20 4.766e-5 -1.746e-5 2.416e-04

25 4.183e-5 -1.239e-5 2.365e-04

30 4.038e-5 -8.642e-6 2.327e-04

35 3.916e-5 -4.957e-6 2.290e-04

40 3.820e-5 -1.127e-6 2.252e-04

45 3.758e-5 2.325e-6 2.218e-04

50 3.725e-5 5.773e-6 2.183e-04

60 3.828e-5 1.122e-5 2.129e-04

100 4.515e-5 2.503e-5 1.991e-04
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Fig. 1. Width in multiples of 2 degrees of every region with more than 400 positive 0.5 degree FRP grid cells from Terra and Aqua, in the
period from 1st of January 2003 to 31st of December 2011. Fixed regions on the left, adaptive regionalization algorithm on the right.

Table 4. RMSE and bias of mean global FRP in mW/m2 for the
year 2012 for full GFAS (reference), uncorrected Aqua- and Terra-
GFAS, and corrected Aqua- and Terra-GFAS, against full-GFAS
FRP

Satellite data assimilated RMSE Bias Average FRP

Aqua and GFAS 0 0 2.238e-04

Aqua (not corrected) 1.059e-04 -8.7611e-05 3.112e-04

Terra (not corrected) 8.769e-05 7.541e-05 1.486e-04

Aqua (corrected) 2.605e-05 -1.180e-06 2.253e-04

Terra (corrected) 3.758e-05 2.325e-06 2.218e-04
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Fig. 2. Square of the correlation coefficient between Aqua daily FRP (top), Terra daily FRP (bottom) and merged FRP. Fixed 2x2 degrees
regions were used.
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Fig. 3. Left, map of MCD12 (v5.1) land cover of the year 2005 (UMD classification) remapped to 0.1 degree using largest area fraction
approach. Right, area in millions of km2 of the UMD land cover classes.
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Fig. 4. Square of the correlation coefficient between Aqua daily FRP (top), Terra daily FRP (bottom) and merged FRP with the adaptive
regionalization algorithm.
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Fig. 5. Reduction in per cent of the distance between daily FRP from Aqua (top), Terra (bottom) and merged FRP by the nonlinear regression
as compared to the linear regression.
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Fig. 6. Scatterplot of Terra-(left) and Aqua(right) daily FRP together with merged FRP. Linear regression between the two datasets is shown
by a red line while the best fit nonlinear regression is shown in black. Regions considered are the square that extends from 24 to 26 degrees
East and from 16 to 18 degrees south (left) and from 36 to 38 degrees East and 58 to 60 degrees North (right).

Fig. 7. Daily global FRP from Aqua- and Terra-GFAS in red (Aqua on top, Terra, bottom), from Full-GFAS in black. Linear regression
applied to Aqua- and Terra-GFAS is shown in green while the mix of linear on non-linear approaches is displayed in blue. Data from
1/1/2012 to 31/12/2012.
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Fig. 8. Daily FRP averaged of Africa (top), Indonesia (top middle), North America (bottom middle) and South America (bottom), for 2012.
GFAS is in black, Aqua-GFAS (solid line) and Terra-GFAS (dashed line), using non corrected observations (red) and corrected observations
(blue).
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Fig. 9. Daily FRP in mW/m2 for West Africa on 3/4/2012, given by Full-GFAS (top left), Terra-GFAS (top right), Terra-GFAS using linear
regression (middle left) and non-linear regression (middle right),Aqua-GFAS (bottom left) and Aqua-GFAS using non-linear regression
(bottom right).
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Fig. 10. Daily FRP in mW/m2 for Australia on 23/10/2012, given by Full-GFAS (top left), Aqua-GFAS (top right), Aqua-GFAS using linear
regression (middle left) and non-linear regression (middle right), Terra-GFAS (bottom left) and Terra-GFAS using non-linear regression
(bottom right).
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Fig. 11. Daily global FRP from Terra-GFAS from 24/2/2000 to 31/12/2002, using non-corrected observations in red, using corrected ob-
servations in blue. The gray areas indicate that the MODIS/Terra observations were not available and that persistence was used instead in
Terra-GFAS.

Fig. 12. Monthly global FRP from Terra in green, from Aqua in blue, and from GFAS in red. Before 1/1/2003, GFAS is using Terra
observations corrected with a combination of linear and non-linear regression, after 1/1/2003, GFAS is using observations from Aqua and
Terra.


