Dear Dr. Guenther,

First of all, we would like to thank you and the reviewers for the valuable comments. We appreciate their time and contribution. We have made revisions to reflect all of the comments. We have added more analysis and revised some parts of the manuscript to make it clearer and more accurate.

The revised manuscript is attached, and the responses to the reviewers' comments are listed below.

Responses to comments Reviewer 1:

There are some revisions suggested mainly to address the uncertainties in the results.

The authors report long term averages of N2O fluxes, including daytime and nighttime averages. However, these averages have very large standard deviations (factor of three larger than the mean) which show that the frequency distribution of the measured fluxes are highly skewed with a small number of high fluxes and a large number of low fluxes. In this case, the uncertainty should be expressed in terms of a 90 or 95% confidence limit derived from the analysis.

We used the nonparametric boot-strapping procedure to obtain the 95% confidence intervals and presented the results in Table 3.

We also added case studies for five selected days for day and night flux comparisons:

Diurnal variations of the N₂O flux were detected (Figures 7 and 8). Figure 7 contains nearly complete diurnal data for each day for five selected days (>20 hours data per day and $u_* \ge 0.2 \text{ m s}^{-1}$). The peak flux commonly appeared during the daytime, whereas the flux was low at night except for the third sub-period in Figure 8 when soil moisture was high during the night time. The average daytime and night time N₂O fluxes during the five days were 96.4 ± 11.7 µg N₂O-N m⁻² hr⁻¹ and 59.0±13.0 µg N₂O-N m⁻² hr⁻¹, respectively. The flux was about 63% higher during the daytime than during the night time (Figure 7). The average daytime and night time N₂O fluxes during the whole season were 278.8±47.5 and 99.9±29.8 µg N₂O-N m⁻² hr⁻¹, respectively. This diurnal response was most likely a temperature response.

The collected data only represented a small fraction of the total measurement period due to filtering of low turbulence and precipitation periods. Regression equations were used to gap-fill the data. Some discussion of the uncertainty in gap-filling is warranted and, in particular, how do uncertainties in gap-filling compare to the other EC measurement uncertainties. Further, how do the uncertainties in gap-filling affect the overall

accumulated N2O fluxes and the conclusion that the N2O flux represents 1.43% of N applied.

We added the following discussion section:

4.5 Uncertainty in the gap-filling

The gap-filling method used in this study may bring uncertainty to the total N₂O flux estimating. However, it is a common practice that regression model is developed using "good" data (with $u_* \ge$ a threshold value); then the regression model is used to gap-fill the missing data and estimate the total value.

We evaluated the uncertainty of the regression equations used in the gap-fillings by comparing the regressed and the measured flux data when $(u_* \ge 0.2 \text{ m s}^{-1})$ and found the average error ratio was 14%. The regression equations were from the "good" eddycovariance data $(u_* \ge 0.2 \text{ m s}^{-1})$. The "good" data may have been overestimated about 12-16% (Table 2). Therefore, the total N₂O may be overestimated from the gap-filling by about 27% to 32% [e.g., 27%=(1+14%)(1+12%)-1].

Based on the equation on Figure 11, the seasonal released N_2O should be 3.76 kg N_2O -N Ha⁻¹. However, from this study, it was 6.87 kg N_2O -N Ha⁻¹. Therefore, the gap-filling and the EC measurement uncertainties may have partially contributed to the overestimated N_2O release.

In the same way, since 93% of the good data were collected during daytime, can anything substantive really be said about daytime vs nighttime fluxes? Comparison of the averages with their large uncertainties seems misleading. Perhaps some case study periods where there is more complete data would be useful for addressing day-night changes.

We agree with the reviewer. We did some case studies as mentioned in the response above.

Reviewer 2

Suggestions for technical corrections or reasons for rejection

whether or not the apparent difference between day and nighttime N2O fluxes is actually significant given the large variances for them both and the scarcity of nighttime data that are kept.

We agree with the reviewer. Please see our response to reviewer 1's comment above.

I'd like to see the data used for defining the u* cutoff instead of just using a value from a range in the literature. The approach presented by Barr et al, AGRICULTURAL AND

FOREST METEOROLOGY, 2013, 171 DOI: 10.1016/j.agrformet.2012.11.023) ought to be mentioned and could be included to quantify the uncertainty associated with selecting a cutoff for low-turbulence.

We revised our manuscript and provided the specific values of u* in the revised manuscript as the following:

:

Mammarella (2010) summarizes the appropriate range of the u_* threshold as 0.1 for grassland to 0.3 for forest. In this study we used 0.2 as the threshold for the cornfield. A u_* threshold value (0.15 m s⁻¹) was obtained using the method in Barr et al., 2012. That value was similar to and slightly smaller than our threshold value of 0.2 m s⁻¹. Therefore, our data processing using 0.2 m s⁻¹ threshold value was conservative and warranted to exclude all the low-turbulence data and even excluded some data just around the low-to-normal turbulence transition zone (u_* from 0.15 to 0.2 m s⁻¹).

Reviewer #3:

Specific comments

I suggest you re-write the abstract: in its present form it is a dry list of some facts that are reported throughout the paper: it doesn't need to contain any references to other work, but it should synthesise the hypothesis and outcome of your work.

We rewrote the Abstract as instructed synthesizing the outcome of our work.

In the abstract, you mention the fertilisation rate of the field is 217 kg N ha-1. Then in the table, the total N is reported to be 118 kg N ha-1 (39+79). Which one is true?

We clarified this in the revision. 217 kg N ha⁻¹ is true. Table 1 only showed the URAN-32-0-0 N during the growing season (April 4 to August 8). An additional 39 kg N ha⁻¹ of chicken litter before the growing season was applied on March 10, as presented in the table caption. Why do you think there is such an abrupt change in N2O concentrations in the period at the beginning of June? (Fig.6). The average shift from the plot seems to be of a bit less than 10 ppb in the level of N2O in the surface layer: this is quite a significant step in concentration, especially looking at the step from one day to the other (roughly on first days of June?): how do you explain it? How did you calibrate the instrument for concentrations? (how regularly, what was used in all instances of calibration). Before the first fertilisation, the levels of N2O seem to be quite consistent with the levels after the fertilisation events (both first and second).

These may have been caused by the high application rates of fertilizer on March 10, April 8, and May 17, and less nitrogen use by the establishing crop before June, which resulted in higher soil N availability and more N_2O emissions during that period, as shown in Figures 5 and 6. In addition, the frequent rain events before June may have leached the nitrogen in deep water and reduced N availability for N emission.

The N_2O analyzer has a standard N_2O chamber inside. We calibrated the instrument to that standard every two weeks and after rainfall events.

I'm not sure of the value of the regression in Fig.10. While it is very useful to show a comparative and summarising plot of other studies combined with this, I am not sure the regression is adding any value. However, I see the authors' point of presenting an overall emission factor.

We basically wanted to show the overall emission factor as the reviewer pointed out.

Generally, the authors report figures with too many digits, regardless of significant figures: albeit this comment may seem pedantic, there is no point in reporting figures that suggest a level of precision that is not actually achieved. Could you modify this throughout?

We modified all these for all the figures.

L440: do you think that the daytime fluxes were higher consistently through the whole season? My impression is that the first two periods did have this behaviour, but afterwards it doesn't look like it from Fig.7. I think it is likely that the first two periods are pushing the overall averages in that direction.

Yes, the reviewer is right. We added one sentence to reflect this fact (after Line 437): "The daytime fluxes were not always higher through the whole season, as shown on Figure 7; i.e., the daytime fluxes were not higher during the third and the fourth periods because the soil moisture was a predominant factor ($r_{sm} > 0.4$)."

We also conducted case studies to compare day and night flux differences (see our response to reviewer 1's comments above).

Technical corrections: typing errors, etc.

Please revise all references (especially with regards to names), as there are a few spelling errors.

Revised accordingly.

L61-62: remove nitrogen use; "consequently": I think it's wrong, as these are the reason why you get inefficient N use, not the other way round. Correct the sentence. Removed "nitrogen use" and "consequently" as suggested.

L63: these are some of the forms through which N is lost, not the only ones, so add "e.g."

Revised.

L77: oxygen supply within the soil strata. Revised.

L93: before the references in brackets, put "e.g.", as the articles are all referring to the original source of the Reynolds theory. Revised.

L97: remove "fluctuations". The covariance is between the variables themselves, not their fluctuations.

Removed.

L99: the vertical wind speed seems an omega; it should be "w" (also in L183). Revised.

L102: "previous" to when? The laser spectrometers have been available since the early 90s.

Removed "Previous N₂O analyzer instruments lacked the necessary precision and their response times were too slow for use in EC measurements."

L106: The reference needs correction, the author is Di Marco. Correct also in the reference section. Revised.

L137: it's a wave number. Revised.

L151: Do you mean NH4+ here? Yes, revised to NH4+.

L152: can you specify here the working principle of such equipment? Just briefly, but it is useful for the reader who does not normally deal with such system, to identify what detector type is used.

We briefly explained the principle:

The Auto-analyzer mixes sample (liquid state) homogeneously with reagents; the sample and reagents are merged to form a concentration gradient that yields analysis results.

L155: same as line 97.

Removed 'fluctuations'.

L189: add "applied to trace gas measurements". Added.

L192: insert "e.g." before Ferrara. Added.

L198-199: cospectrum Revised.

L208: the star in ustar is a subscript, not superscript. correct throughout. Revised all.

L238:it's not clear here on what you made the regression/correlation. Does this refer to a figure? If so, include it. If not, then explain more in words what you've done, or where you explain it.

Lines 228 to 237 explained some of the regression. We also added the following after Line 237:

"In the regression analysis, soil moisture and temperature were independent variables and N_2O flux was the dependent variable." Table 5 shows the regression equations.

L270-1: swap "units" with "points". Swapped.

L278-280: this sentence is unclear. Add "that" after "continuous corn canopy", delete "with".

Revised.

L280-281: With "these" do you mean the differences? Spell it out, as the sentence is unclear.

We revised "These" to "These differences".

L287: using different units of measure through the paper does not help: can you be consistent throughout? You used ng N2O-N m-2 s-1; ug m-2 hr-1; ug ha-1 hr-1. Just settle on one and change throughout.

Changed all flux units to ug $m^{-2} hr^{-1}$ except seasonal cumulative emission, which was changed to kg ha⁻¹.

L315: availability of N Revised.

L334: what do you mean with N+? Revised N+ to N. L363-364: this is a repetition of an earlier sentence. Removed the repetition.

L368: Delete "a" before vapour cospectra. Revised.

L375: I don't understand here: how do you apply the correction? All the corrections were conducted using the calculated factors by Eddypro using the methods in Ibrom et al. (2007), Horst and Lenschow (2009), and Di Moncrieff et al. (2004).

The corrections were compared with frequency loss calculated from cospectra analysis (Table 2).

L389: delete the comma after Figure 10. Deleted.

L409-410: you are comparing figures with different units of measure, change that, and as before keep it as much as possible in the same unit. Revised.

L421: amount is singular in this case Revised.

L424: change in N2O flux. Revised.

L426-429: I don't understand these sentences "monitoring these events.." onwards. Perhaps you can synthetise them in one simpler sentence. How do you mean "apparently caused"? Justify this.

We revised to:

The difference of N_2O emission response after the first and second applications of fertilizer showed the trigger effect of precipitation on the N_2O emission. The other notable feature of Figure 5 was the remarkable increases of N_2O for the days with precipitation. The variations in the increases may have been mainly caused by the changes in soil moisture content due to precipitation.

L430: is it not better to say "is not correlated"? Revised.

L433: table 4 does not contemplate N application rates, so it is difficult to conclude what you say, perhaps add the information on N application so it is easier to see. Added the information in Table 4.

L435:delete the double comma. replace "during the diurnal cycles" with "when looking at the diurnal cycles". Revised.

L442: delete the double dot. Revised.

L471: N2O-N, not just N. Revised.

L479-81: i don't fully agree with this, if you specify during the first and second periods it's more correct. The soilT has a diurnal cycle (more or less pronounced) through the year, and this is not driving N₂O emissions at all times (see my comment before). We removed the following: "although a diurnal variation in flux was in response to the diurnal soil temperature wave. Average daytime emissions were much higher than night emissions (278.8 vs. 100.0 μ g N₂O-N m⁻² hr⁻¹)."

Fig4. Caption. "a" and "b" are not visible in the charts, perhaps add them to the plots inside the chart area, otherwise specify in the text what's right/left. Correct "Obukov". Replace "outputted" with "output". Revised.

Fig 5-6: replace the fertilization asterisk symbols with vertical lines for example, to make it easier to read. These symbols are not easily seen together with the rest of the charts content. Revised.

Fig 7: the legends, axis, text in the plot areas are too small to be readable. I understand the advantage of having all charts nearby, but I think it would be better to change the format of the written words within the plot areas. I take the regression coefficients are referring to daily values

Revised all accordingly.

In the caption, added 30-min to show the data frequency.

Fig8: again, change the marker for fertilizer events to vertical lines or something that is easier to see. The caption is unclear, you mention data from March were shown, but the graph shows from april onwards?

Added the following in the caption:

"24 days before the experiment (March 10) chicken litter was applied at a rate of 99 kg N ha^{-1} (not shown on the figure)."

Fig.9: need to change the size of the text within the plots, they're difficult to read. Also, in the caption, specify the values time resolution (hourly?). Add in all plots when the fertilisation events occurred (maybe a vertical line).

Revised accordingly. In the caption, added 30-min to show the data frequency.

Fig.10: I suggest to replace the red square with a filled square (red or not) as it will be more visible in the final format. Revised.

TABLES:

Tab4: In the headers of the table, repeat the units and what does r(p) meaN? Also, SxN, it's an index of some nature, but what information does it add to the paper? If you want to keep it, you need to explain it. Revised.

Tab6: double parenthesis in the caption, delete it. Replace "swiss" with Switzerland.

Revised.

We thank you and reviewers again for the constructive comments and hope the above mentioned changes are satisfactory for final acceptance of the manuscript.

Sincerely,

Junming Wang

1	
2	Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy-
3	covariance technique
4	Haiyan Huang ^{1,} Junming Wang ^{1*} , Dafeng Hui ² , David R. Miller ³ , Sudeep Bhattarai ² , Sam
5	Dennis ² , David Smart ⁴ , Ted Sammis ⁵ , and Chandra-K. Chandra Reddy ²
6	
7	¹ Climate Science Section, Illinois State Water Survey, Prairie Research Institute, University of
8	Illinois at Urbana-Champaign, Champaign, IL 61802, USA
9	² College of Agriculture, Human and Natural Sciences, Tennessee State University, Nashville, TN
10	37209, USA.
11	³ Department of Natural Resources and Environment, University of Connecticut, Storrs, CT
12	06269, USA.
13	⁴ Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
14	⁵ Department of Plant and Environmental Science, New Mexico State University, Las Cruces,
15	NM 88003, USA.
16	
17	
18	
19	
20	
21	
22	

24	Water Survey, Prairie -Research -Institute, University of Illinois at Urbana-Champaign,
25	2204 Griffith Dr., IL 61820.
26	
27	E-mail: wangjim@illinois.edu
28	ABSTRACT
29	
30	Increases in observed atmospheric concentrations of the long-lived greenhouse gas, nitrous oxide
31	(N ₂ O), have been well documented. However, information on event-related instantaneous
32	emissions during fertilizer applications is lacking. With the development of fast-response N_2O
33	analyzers, the eddy covariance (EC) technique can be used to gather instantaneous measurements
34	of N_2O concentrations to quantify the exchange of nitrogen between the soil and atmosphere. The
35	objectives of this study were to evaluate the performance of a new EC system, to measure the
36	N_2O flux with the system, and finally to examine relationships of the N_2O flux with soil
37	temperature, soil moisture, precipitation, and fertilization events.
38	An EC system was assembled with a sonic anemometer and a fast-response N ₂ O analyzer
39	(quantum cascade laser spectrometer) and applied in a cornfield in Nolensville, Tennessee during
40	the 2012 corn growing season (April 4-August 8). We assembled an EC system that included a
41	sonic anemometer and a fast response N_2O analyzer (quantum cascade laser spectrometer) in a
42	cornfield in Nolensville, Tennessee during the 2012 corn growing season (April 4 August
43	8).—Fertilizer amounts totaling 217 kg N ha ^{-1} were applied to the experimental site. The
44	precision of the instrument was 0.066 ppbv for 10 Hz measurements. The seasonal mean

* Corresponding author address: Junming Wang, Climate Science Section, Illinois State

23

Formatted: Right: 0.06", Don't adjust right indent when grid is defined, Space Before: 0.9 pt, After: 0 pt, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

45	detection limit of the N ₂ O flux measurements was 2.10 ng N m ⁻² -s ⁻¹ -Results showed that Fthis
46	N_2O EC system can be used to provided reliable N_2O flux measurements. The cumulative
47	emitted N ₂ O <u>amount</u> for the entire growing season was 6.87 kg N ₂ O-N ha ⁻¹ . The 30 min average
48	N_2O emissions ranged from 0 to 11,100 µg N_2O N m ⁻² hr ⁻¹ (mean=257.5, standard
49	deviation=817.7). Average daytime emissions were much higher than night emissions
50	$(278.8\pm865.8 \text{ vs.} 100.0\pm210.0 \mu\text{g }\text{N}_2\text{O N m}^{-2} \text{hr}^{-1})$. Seasonal fluxes were highly dependent on
51	soil moisture rather than soil temperature, although the diurnal flux was positively related to soil
52	temperatureThis study was one of the few experiments that continuously measured
53	instantaneous, high-frequency N2O emissions in crop fields over a growing season of more than
54	100 days.
55	
56	
57	
58	
59	
60	1. INTRODUCTION
61	
62	As the largest corn producer in the world, the United States produces about one-third of the
02	The me surgest comproducer in the world, the ornica batters produces about one and of the
63	world's corn crop (about 84 million ha in 2011)
64	(http://www.epa.gov/agriculture/ag101/cropmajor.html). Corn is a nitrogen- (N) intensive crop.
65	Every year, large amounts of N are applied to cornfields, but its nitrogen use efficiency is low
66	(30% – 59%) (Halvorson et al. 2005). <u>Consequently, aA</u> large proportion of applied N can be

67	leached to groundwater as (e.g., NO_3^{-}) and/or emitted to the atmosphere (e.g., as nitrous oxide ,	
68	$(N_2O_{\underline{i}})$, nitric dioxide , $(NO_{\underline{i}})$, or nitrogen dioxide, (NO_2) .	
69	N2O is one of the longest -lived greenhouse gases (GHGs) and, has an estimated radiative	
70	forcing of 0.15 Wm^{-2} , compared to carbon dioxide (CO ₂) at 2.43 Wm^{-2} and methane (CH ₄) at	
71	0.48 Wm^{-2} (Forster et al. 2007). In addition to its contribution to global warming, N ₂ O also	
72	plays an important role in stratospheric ozone depletion through O (1D) oxidation (Ravishankara	
73	et al. 2009). The volume concentration of N_2O in the atmosphere has increased from 273 parts	
74	per billion dry air mole fraction (ppbv) in 19750 to 319 ppbv in 2005 (Forster et al. 2007). The	
75	major source of anthropogenic N2O in the atmosphere is believed to be N fertilization accounting	
76	for up to 80% of anthropogenic N_2O emissions (Kroeze et al. 1999; Mosier et al. 1998). N_2O	
77	emitted from soil is produced by bacterial processes, mainly through nitrification and	
78	denitrification (Davidson and Swank 1986). These processes may be affected by several factors,	
79	including the percentage of water-filled pore spaces in soil (WFPS) (Dobbie and Smith 2003;	
80	Davidson 1991), mineral N concentrations in the soil (Ma et al. 2010; Bouwman et al. 2002;	
81	Bouwman 1996), crop type, soil type, soil moisture, air/soil temperature, and oxygen supply	
82	within the soil strata. Therefore, N ₂ O emissions are typically highly variable both in time and	Fo
83	space, and are difficult to quantify.	
84	Significant efforts have been invested in developing reliable tools for measuring	
85	instantaneous N_2O emissions from soil to the atmosphere. The two major measurement methods	
86	currently available for N_2O fluxes are the chamber method and the eddy covariance (EC) method	
87	(Denmead 2008; Molodovskaya et al. 2011). The chambers, either closed (static) or open	
88	(dynamic flow), are the traditional tools that have been used in different land management	
89	systems (farmland, forest, and grassland) (Tao et al. 2013; Liu et al. 2012; Arnolda et al. 2005;	

ormatted: Font: (Default) Times New oman, (Asian) Meiryo, 12 pt, Font color: Auto

90	Klemedtsson et al. 1996). The chamber method is simple in concept and operation, as well as
91	low in cost. However, several limitations may affect the data quality, such as small area
92	coverage, called the footprint, ($\leq 1 \text{ m}^2$), disturbance of the soil environment, and low sampling
93	frequency (Molodovskaya et al. 2011; Denmead 2008). The EC method calculates the spatial
94	averaged flux from a larger "field scale footprint ($10 \text{ m}^2 \sim 1 \text{ km}^2$) (Denmead 2008). Unlike the
95	chamber method, the EC method does not disturb the soil and crop ecosystem and provides a
96	continuous and real-time flux measurement.
97	The EC method is based on the Reynolds decomposition theory that a turbulent variable (x) can
98	be represented by a time-averaged component (\bar{x}) and a fluctuation component (x') (e.g.,
99	Famulari et al. 2010; Kaimal and Finnigan 1994; Stull 1988):
100	$x = \bar{x} + x' \qquad . \tag{1}$
101	In the EC method, the vertical flux of a gas is expressed as the covariance between the vertical
102	wind velocity and gas concentration-fluctuations:
103	$J = \overline{w\omega'c'} \tag{2}$
104	where J is the gas vertical flux, w_{ω} and c'_{τ} are the deviations of vertical wind velocity (w_{ω}) and
105	gas concentration (c), respectively, and the overbar represents a time average. The EC method
106	requires rapid, simultaneous (or near- simultaneous) measurements of gas concentration and
107	wind velocity at the same point in space. Previous N_2O analyzer instruments lacked the
108	necessary precision and their response times were too slow for use in EC measurements. With
109	the developments of fast-response N_2O analyzers in recent years, the EC method has become
110	more common (Jones et al. 2011; Mammarella et al. 2010; Eugster et al. 2007; Pihlatie et al.
111	2005; <u>Di</u> Marco et al. 2004; Edwards et al. 2003). In this project, an EC system for N_2O
112	measurement was assembled in a commercial cornfield in Nolensville (TN) with a newly

113 available fast-response N₂O analyzer. It was a quantum cascade laser (QCL) spectrometer (model

114 CW-QC-TILDAS-76-CS, Aerodyne Research Inc., Billerica MA).

- 115 The objectives of this study were to evaluate the performance of the new N_2O
- 116 spectrometer in the EC system, to measure the N_2O flux with the system, and finally to examine
- 117 relationships between the N₂O flux and soil temperature, soil moisture, precipitation, and
- 118 fertilization events.
- 119

120 2. MATERIALS AND METHODS

- 121 2.1. Site description
- 122 The experimental site was located in a commercial cornfield in Nolensville, Tennessee, 35 km
- 123 south of Nashville (Figure 1). The field was 300 m (east-west) by 500 m (south-north) with a 2%
- 124 | slope facing west. The soil type was Talbott silty clay loam (fFine, mixed, semi-active, thermic
- 125 Typic Hapludalfs; 32.5% sand, 53.8% silt, 13.8% clay)
- 126 (http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx). Soybeans were planted in the
- 127 previous year's rotation. Corn seeds (Roundup Ready BT Hybrid Corn, P1412 HR, Pioneer Hi-
- 128 Bred International Inc., Johnston, IA) were sown on April 9, 2012. Measurements were
- 129 continuous from April 4 to August 8, 2012, covering the entire corn-growing season.
- 130 The agricultural practice was no-till. A weather station (Vantage PRO2 Plus, Davis
- 131 Instruments, Vernon Hills, IL) was used to record 30-min precipitation, temperature, pressure,
- 132 wind speed and direction, relative humidity (RH), and solar radiation. The prevailing wind
- 133 direction was from the southwest during the growing season.

134

135 2.2. The EC instruments

136	A sonic anemometer (CSAT3-A, Campbell Sci, Logan, UT) located in the middle of the field,
137	measured three-dimensional wind velocities and virtual air temperatures at a sampling rate of 10
138	Hz. It was positioned 1.3 m above the canopy, and was raised as the corn plants grew taller. $N_2 O$
139	concentrations were measured by a quantum cascade laser (QCL) spectrometer (model CW-QC-
140	TILDAS-76-CS, Aerodyne Research Inc., Billerica, MA). The N ₂ O analyzer was housed in a
141	trailer where a stable working temperature (293-303 K) was maintained. The pressure of the
142	spectrometer sample cell was 4 kpa (30 Torr). The laser was operated at a wave number length of
143	2193 cm^{-1} .

144 The N₂O analyzer was located 50 m from the sonic anemometer. Following the specifications of Eugster et al. (2007), a sampling Teflon tube (6 mm inner diameter, 50 m length) was used to 145 146 sample the air at the EC sonic anemometer location in the middle of the field and was connected to the -N₂O analyzer. The tube intake was 20 cm from the sonic anemometer. Sample air was 147 drawn into the tube intake at a rate of 14 STD L min⁻¹. The analyzer provided 10 Hz 148 measurements of N2O and water vapor (H2O) concentrations. The analyzer automatically 149 150 corrected the H₂O effects on N₂O measurements (WPL and cross-sensitivity of H₂O on N₂O) in 151 real time (Nelson 2002). A Campbell Scientific CR3000 data logger was used to record all the 152 data collected at 10 Hz. The EC measurement footprint ranged from 25 to 90 m upwind, and was calculated using the software EddyPro (version 3.0, LI-COR Biosciences, Lincoln, NE). Soil 153 moisture and soil temperatures were measured with a water content reflectometer (CS616) and an 154 155 averaging soil thermocouple probe (TCAV, Campbell Sci, Logan, UT), which were buried vertically at a depth of 0-10 cm underground. The mineral NO_3^- and NH_4^+ concentrations in the 156 top 10 cm of soil were measured using a Lachat Flow Injection Auto-analyzer (Loveland, CO). 157

Formatted: Subscript

158 (The Auto-analyzer mixes the sample (liquid state) homogeneously with reagents; the sample and

159 reagents are merged to form a concentration gradient that yields analysis results.)

160 2.3. N_2O flux calculation and data corrections

The EddyPro version 3.0 was used to process and correct the N₂O flux. EC fluxes were
calculated as the covariance of the fluctuations of vertical wind velocity and N₂O concentration
over an averaging period:

164
$$J_{N_20} = \overline{w\omega' c'_{N_20}} \times \frac{\rho_a}{M_a} \times 3600 \times 28 \times 10^3 \quad , \tag{3}$$

where J_{N_2O} is the N₂O flux (µg N₂O-N m⁻² hr⁻¹), c_{N_2O} is the N₂O concentration in air (ppbv), the 165 component prime (') indicates a deviation from the mean, and the overbar denotes a time average, 166 ρ_a is the density of air (kg m⁻³) and M_a is the molar mass of air (0.028965 kg mol⁻¹), 3600 167 represents 3600 seconds per hour, and 28 is the molar mass of two N atoms in N₂O (g mole⁻¹). 168 The averaging period to determine eddy fluxes must be sufficient to adequately sample all the 169 motions that contribute to the fluxes, but an overly long averaging period might affect 170 171 measurements with irrelevant signals. According to Moncrieff et al. (2004), an averaging period 172 of 30 to 60 minutes is appropriate for gas flux calculations. In this study, a commonly used averaging period of 30 minutes was chosen (Mammarella et al. 2010; Eugster et al. 2007; Aubinet 173 et al. 2000). 174

EC measurements need several corrections before and after performing a flux calculation. Data spikes can be caused by random electronic spikes in the measuring or recording systems. The de-spike procedure was applied to the raw data (10 Hz) before the calculation of flux. The spike detection and removal method used in this study was similar to that of Vickers and Mahrt Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear Formatted: Font: (Default) Times New

Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

179	(1997). A spike was identified as up to 3 consecutive outliers with respect to a plausible range
180	within a certain time range, and the spike was replaced with the linear interpolation between
181	adjacent data points. The rationale is that if more consecutive values are found to exceed the
182	plausibility threshold, they might be a sign of an unusual yet physical trend (not an outlier). The
183	threshold was set to 3 to 8 times the standard deviation for a given averaging period (3 times for
184	wind velocity and air temperature, and 8 times for N_2O concentrations; these parameters represent
185	the default values in EddvPro).

The vertical axis of the sonic anemometer was not always aligned with the local normal to the surface. Therefore, there could be cross-contamination among components of the flux divergence. In order to avoid cross-contamination, an axis rotation was necessary. The EddyPro used a double rotation scheme, in which the u-component was aligned with a local streamline for each 30-min interval, and the v-component and <u>w</u> ω -component were forced to be zero on average.

191 The physical separation of the sonic anemometer and the N₂O analyzer caused a time lag (τ) 192 between the sonic data and N₂O data. Compensation for τ before the covariance calculation is 193 required in the EC technique. In this study, the τ for each 30-min averaging period was obtained 194 by searching for the maximum cross covariance between sonic variables and analyzer 195 measurements.

All EC systems <u>applied to trace gas measurements</u> tend to underestimate the true atmospheric fluxes due to physical limitations of the instruments which cause flux losses at high (e.g., damping effects from long intake tube) and low frequencies. The commonly used methods of addressing spectral attenuation have been described (<u>in-e.g.</u>, Ferrara et al., -(2012_a) and Moncrieff et al. (2004). The EddyPro software program provides several options for spectral correction. In Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

this study at the low frequency range, the analytic correction proposed by Moncrieff et al. (2004)
was used, and at the high frequency range, the spectral loss was corrected following Ibrom et al.
(2007) and Horst and Lenschow (2009).

204 The frequency loss ratio $\left(\frac{\Delta \emptyset}{\emptyset}\right)$ was calculated as:

$$205 \qquad \qquad \frac{\Delta\phi}{\phi} = 1 - \frac{\int_0^{+\infty} CO_M df}{\int_0^{+\infty} CO_T df} \tag{4}$$

206 where the CO_T is the theoretical N₂O flux cospectruma following Kaimal et al. (1972), CO_M is 207 the N₂O flux cospectra from the measured data, and *f* is the spectral frequency.

The EddyPro software outputs a frequency correction factor for N₂O (N₂O-cf) as the ratio of the frequency-corrected flux divided by the flux before the frequency correction. Therefore the frequency correction ratio by EddyPro ($\frac{\Delta\phi}{\phi}(EP)$) is:

211
$$\frac{\Delta \emptyset}{\emptyset}(EP) = 1 - \frac{1}{N_2 0 - cf}$$
(5)

212

213

214 2.4. Data for weak turbulence and precipitation conditions

215 It has been found that under weak wind conditions with no surface heating, turbulence may not

216	develop. Friction velocity $(u^*)u_*$ -) was used to measure the turbulent state of the atmosphere:	Field Code Changed
	<u>↓</u> ▲	 Formatted: Not Superscript/ Subscript
217	$u_* \overline{u^*} = \left(\overline{\omega' u'^2} + \overline{\omega' v'^2}\right)^{\frac{1}{4}},\tag{6}$	Field Code Changed

218	where u' and v' are the fluctuations in horizontal downwind and crosswind components.	
219	The determination of an adequate $u_* u^*$ -threshold for sufficient turbulent mixing was crucial.	Field Code Changed
220	The common method to determine the $u_* u^*$ threshold is to examine the scatter plot of night time	Field Code Changed
221	flux versus u_* , and the threshold is located at the point in which the flux begins to level of f as	Field Code Changed
222	$u_*^{*}u_*$ increases (Gu et al. 2005). There are also many statistic-based algorithms used to determine	Field Code Changed
223	$u_* u_*^*$ thresholds (Papale et al. 2006; Gu et al. 2005; Saleska et al. 2003). Mammarella (2010)	Field Code Changed
224	summarizes the appropriate range of the $\underline{-u^{*}}_{\underline{u_{*}}}$ threshold as 0.1 for grassland to 0.3 for forestIn	Field Code Changed
225	this study we used 0.2 as the threshold for the cornfield. A u_* threshold value (0.15 m s ⁻¹) was	Formatted: Font color: Text 1 Field Code Changed
226	obtained using the method in Barr et al., 2012. That value was similar to and slightly smaller than	Formatted: Font color: Text 1
227	our threshold value of 0.2 m s ⁻¹ . Therefore, our data processing using 0.2 m s ⁻¹ threshold value	Formatted: Font color: Text 1
228	was conservative and warranted to exclude all the lowturbulence data and even excluded some	
229	data just around the low- to normal-turbulence transition zone (u_* from 0.15 to 0.2 m s ⁻¹).	Field Code Changed
		Formatted: Font color: Text 1
230	During precipitation conditions, the sonic anemometer sensor heads could be wet, causing	
231	errors in the instantaneous measurements. Therefore in this study the N_2O flux data were	
232	excluded in low turbulence, $u_*, u^* < 0.2 \text{ m s}^{-1}$, and during rainfall.	Field Code Changed
233	2.5 Measurement periods	
234	As noted above, continuous measurements were carried out from April 4 to August 8, 2012. The	
235	corn was harvested one week after the study period ended. On August 8, the moisture content of	
236	the kernels was less than 25%; therefore the study period covered the entire growing season.	
237	Prior to planting and before the EC measurements were initiated, chicken litter (99 kg N ha^{-1}) was	

238	applied to the field on March 10. Two applications of fertilizers were subsequently supplied on	
239	April 10 (URAN-32-0-0 liquid nitrogen, 39 kg N ha ⁻¹) and May 14 (URAN-32-0-0 liquid	
240	nitrogen, 79 kg N ha ⁻¹). The experimental period was divided into four specific periods based on	
241	fertilization or precipitation events (Table 1). The first period started 24 days after the application	
242	of chicken litter, and the first liquid fertilizer application (URAN-32-0-0, at a rate of 39 kg ha ⁻¹)	
243	was within this period. The second period was characterized by the second fertilizer application	
244	and high precipitation. The third period was without fertilization and significant precipitation,	
245	and the fourth period had high relative precipitation but no fertilization. The data were further	
246	divided into two groups according to the measurement time: daytime (7 a.m. to 7 p.m.) and night	
247	time (7 p.m. to 7 a.m.). Mean and standard deviations of the N_2O flux, soil moisture, and soil	
248	temperature were obtained and regression and correlation analysis were conducted for day and	
249	night for different temporal periods. In the regression analysis, soil moisture and temperature	
250	were independent variables and N2O flux was the dependent variable. The regression equations	
251	were used for filling gaps at the missing data points. The N ₂ O flux was then integrated for the	
252	whole season to obtain the overall N ₂ O emission.	
253		
254		
255	3. RESULTS	
256	3.1 The performance of the N ₂ O analyzer	
257	The precision of the N ₂ O concentration measurements was characterized under field	
258	sampling conditions by the Allan variance technique (Figure 2). In the log-log plot, the	
259	measurement variance decreased with the integration time (t) with a slope of -1 when $t \le 10$ s,	

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

265	Figure 3 shows the frequency distribution of time lags during the experimental period. The
264	(integration time 10 s).
263	(integration time 0.1 s), 0.020 ppbv for 1 Hz (integration time 1 s), and 0.006 ppbv for 0.1 Hz
262	to 0.006 ppbv of standard deviation. The standard deviation was 0.066 ppbv for 10 Hz
261	to 10 s. The variance had a broad minimum between 10 and 100 s with a minimum corresponding
260	indicating that there were no correlations between noise sources (pink noise) at time scales of 0.1

peak value of the distribution appeared at $\tau = 6.3$ s, which represents the air flow time in the sampling tube between the field collection location and the QCL N₂O analyzer.

Figure 4 -shows sample cospectra of sensible heat and N₂O and the theoretical N₂O cospectra obtained during a windy day (Figure 4.a) and a windy night (Figure 4.b). A rather good performance of the N₂O cospectrum in the low frequencies was demonstrated. The N₂O cospectrum -fell off faster at higher frequencies than the theoretical cospectrum and the sensible heat cospectrum. The N₂O flux frequency loss ratios during the daytime and night time were low (1% and 2%). The frequency correction ratios by EddyPro for the daytime and night time were 18 and 19%, respectively.

Field Code Changed	
Field Code Changed	
Field Code Changed	

Field Code Changed

282 *3.2 Seasonal variations*

283	A total of 5,197 30-min data <u>points</u> were collected. After applying the two filters (u_*)
284	$(u^* \ge 0.2)$, precipitation free), 1,390 data <u>points</u> remained. In general, the concentration and
285	the flux of N_2O had higher values during and after the fertilizer application but gradually
286	decreased with time, as shown in Figure 5 and Figure 6. However, rainfall (soil moisture) was a
287	trigger for N_2O emissions, which is the reason the flux reached peak values on the day of the
288	largest application of URAN-32-0-0 (May 14), and the lack of peak values of N ₂ O flux just after
289	the first application with no rainfall. The growing season was characterized by a number of
290	precipitation events which appeared to increase the N ₂ O concentration as well as the N ₂ O flux.
291	Note the two general seasonal concentration levels in Figure 6. One was before a
292	continuous corn canopy was established in early June, and the second, with a continuous canopy
293	that extended from mid-June to August 8. These differences may have been caused by the high
294	applications of the fertilizer and less nitrogen use by the establishing crop before June which
295	resulted in higher soil N availability and more N2O emissions during that period as shown in
296	Figure 5.
297	3.3 Diurnal variations
298	Diurnal variations of the N ₂ O flux were detected (Figures 7 and 8). Figure 7 contains nearly \bullet
299	complete diurnal data for each day for five selected days (>20 hours data per day and $u_* \ge 0.2 \text{ m s}^{-1}$
300	<u>1</u>). The peak flux commonly appeared during the daytime, whereas the flux was low at night
301	except for the third sub-period in Figure 8 when soil moisture was high during the night time. The
302	average daytime and night time N ₂ O fluxes during the five days were 96.4 $\pm 11.7 \ \mu g \ N_2$ O-N m ⁻²
303	<u>hr⁻¹ and 59.0 ± 13.0 μg N₂O-N m⁻² hr⁻¹, respectively. The average flux was about 63% higher</u>

Field Code Changed

Formatted: Indent: First line: 0", Automatically adjust right indent when grid is defined, Space After: 10 pt, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Field Code Changed

304	during the daytime than during the night time (Figure 7). The average daytime and night time N_2O
305	fluxes during the whole season were $278.8 \pm 47.5 \times 865.8$ and $99.9 \pm 100.0 \pm 2109.80$ µg N ₂ O-N m ⁻² hr ⁻¹ ,
306	respectively- (All the 'mean + number' in this paper are 95% confidence intervals unless
307	otherwise noted) This diurnal response was most likely a temperature response-superimposed on
308	the longer term variations due to slowly changing soil moisture content as noted below in section
309	3.5 .
310	

311 *3.4 Result statistics*

312 The N₂O concentrations and fluxes were highly variable with time. The concentration was

313 322.98 \pm 04.03 -ppbv with a coefficient of variation (CV) of 1.24%. <u>unless</u> The N₂O flux ranged from 0.0 to event-related emissions as high as 11,100 μ g N2O-N m⁻² hr⁻¹ with a CV of 317.6% and a mean of 257.5 \pm 81742.79 μ g N₂O-N m⁻² hr⁻¹. The concentrations and fluxes exhibited skewed distributions with higher means than medians. As shown in Table 3, nearly 90% of the data were obtained during the daytime. Both concentrations and fFluxes were higher during the daytime than during the night (Table 3 and Figure 7). For the whole experimental period, the total emission was 6.87 kg N₂O-N ha⁻¹ (Figure 8Figure 9).

320

321 3.5 Effects of soil moisture, temperature, and N availability on N_2O emissions

Figure 9Figure 10 presents an overview of the measured concentration and flux for the whole
 experimental period, together with soil temperature and soil moisture. Generally, the variations of
 N₂O concentration and flux followed most closely the pattern of variation of soil moisture. As

expected, concentrations and fluxes were usually elevated immediately after precipitation events.
As shown in Table 1, there was no fertilization event or significant precipitation in the third
period, and thus the N₂O flux was constantly low.

In previous studies it has been difficult to generalize and interpret the relationships of N2O 328 329 emissions with soil temperature or soil moisture quantitatively because in each specific study the 330 determinants are different. In this study, for the entire experimental period, the N₂O flux was positively correlated to soil moisture with a Pearson correlation coefficient r of 0.42 (p < 0.001), 331 while the correlation with soil temperature was poor (r = -0.079, p = 0.003). Table 4 shows the 332 Pearson correlation coefficients for the periods defined in Table 1. The N₂O flux was significantly 333 correlated with soil moisture except for S1N, which was probably limited by the small sample 334 335 size. These correlations indicate that on this site the dominant driver of N_2O emissions was soil moisture in addition to substrate N availability (N fertilization). 336

337 Although the soil temperature did not positively correlate to the seasonal N₂O emission, it 338 was significantly and positively correlated to the diurnal (hourly) N₂O emission during the first 339 and second sub-periods (correlation coefficient $r_{st}=0.76$ and 0.56, p<0.001) when soil moisture was not strongly predictive ($r_{sm} < 0.36$, p > 0.05) (Figure 7 Figure 8). Therefore, the peak flux 340 341 during these sub-periods appeared most often during the day when the soil temperature was 342 relatively high compared to the night. However, during times of significant effects of soil moisture ($r_{sm}>0.45$, p<0.05) during the third and fourth sub-periods, the temperature effects on the 343 N_2O flux was not significant ($r_{st} < 0.2$, p>0.05). 344

Several studies have found that N₂O flux increased exponentially with soil temperature
(Dinsmore et al. 2009; Schindlbacher et al. 2004; Smith et al. 2003). At first we regressed the

347	observed N_2O flux with soil temperature and soil moisture following the exponential functions
348	given by Luo et al. (2013). However, for some periods the coefficients of determination (R^2)
349	were low (< 0.4). Then we regressed the N_2O flux with soil temperature and soil moisture using
350	exponential or polynomial functions (Table 5). The values of R^2 ranged from 0.45 to 0.70. For
351	most of the periods, soil moisture explained a significant amount of the variation in $\mathrm{N}_2\mathrm{O}$
352	emissions.

N availability was an important factor in N₂O emissions. The fertilizer amount of the second application was more than twice that of the first application; the large amount of fertilizer provided sufficient N⁺. The volume concentration of NO₃⁻ in the top 10 cm of soil was 5.5 parts per million (ppmv) on April 15, and was 8.5 ppmv on May 16. The concentrations of NH₄⁺ were 16 ppmv and 19.5 ppmv for these two days, respectively. The higher mineral N⁺ concentration most likely contributed to the dramatic increase in N₂O concentration and flux after the second application.

360

361 4. DISCUSSION

362 4.1. N₂O analyzer performance

Several studies have been performed for N₂O measurements using QCL spectrometers over grassland or forest (Neftel et al. 2010, 2007; Eugster et al. 2007; Kroon et al. 2007; Nelson et al. 2004, e.g.). Besides experimental locations, seasons, and/or crop types, the instruments utilized in these studies differed from each other in terms of absorption line and precision. For example, in the studies of Kroon et al. (2007) and Neftel et al. (2010), N₂O was measured at -wavelengths of 1271.1 cm⁻¹ and 1275.5 cm⁻¹, respectively, while in Neftel et al. (2007) and Eugster et al. (2007). Formatted: Subscript

 N_2O was measured at 2241.0 cm⁻¹ and 2243.1 cm⁻¹, respectively. The precision of the 369 instruments in these four studies, at a sampling rate of 1 Hz, was 0.5, 0.7, 0.3, and 0.3 ppbv, 370 respectively. In our study, the precision was 0.02 ppbv at 1 Hz. 371 372 The detection limits of the EC flux were calculated as the standard deviations of the cross 373 covariances between vertical wind fluctuations and gas concentration fluctuations far outside of 374 the true time lag (-200 s $\leq \tau \leq$ -50 s, and 50 s $\leq \tau \leq$ 200 s) (Neftel et al., 2010, Wienhold et al., 1995). Thus the EC detection limits derived from this method was not a constant value and was 375 dependent on the instruments and atmospheric conditions. The mean detection limit in this study 376 was $72.1056 \text{ ung N m}^{-2} \text{ hrs}^{-1}$, which was less than half of the N₂O flux detection limit of 377 <u>174.7613</u> \underline{u}_{mg} N m⁻² \underline{hrs}^{-1} as reported in Neftel et al. (2010) and <u>21.600</u> \underline{u}_{mg} N m⁻² \underline{hrs}^{-1} in Kroon 378 379 et al. (2007). 380 It has been shown that the sensible heat cospectrum calculated from sonic temperatures

381 experiences almost no damping (Neftel et al. 2010; Kroon et al. 2007) (Figure 4.a and 4.b). Therefore, an empirical correction approach can be used, based on a comparison of the sensible 382 heat cospectrum and N₂O cospectrum to correct the high frequency loss (Neftel et al. 2010; Kroon 383 et al. 2007). In this study at the low frequency range, the analytic correction procedure proposed 384 385 by Moncrieff et al. (2004) was used, and at the high frequency range the spectral loss was corrected using the methods of Ibrom et al. (2007) and Horst and Lenschow (2009) in EddyPro 386 3.0. 387 Neftel et al. (2010), under a wind speed of 0.8 to 2 m s⁻¹, reported a 14 to 30% frequency 388 loss correction ratio compared to a mean correction ratio of 16% by EddyPro in this study 389

(corresponding to u_* - u^* =0.2 to 0.5 m s⁻¹). Neftel et al., (2010) used a-vapor cospectra to correct Field

Field Code Changed

390

391	the frequency loss, whereas, this study used the methods in Ibrom et al. (2007), Horst and
392	Lenschow (2009), and Moncrieff et al. (2004), which may account for the difference in frequency

393 loss correction ratios.

About 93% of the valid data ($u_* u^* \ge 0.2 \text{ m s}^{-1}$) in this study were under wind conditions of 0.4 m s⁻¹> $u_* u^* \ge 0.2 \text{ m s}^{-1}$ and were in the daytime, when the corresponding mean frequency loss ratio was low, between 2% and 4%. Therefore, the flux may have been overestimated because the mean frequency correction ratio was 16-18% (Table 2).

Field Code Changed

Field Code Changed

Field Code Changed

The mean of the positive frequency loss ratios was greater than 22% and the mean of the negative loss ratios was smaller than -37% (for $u_* u^* \ge 0.2 \text{ m s}^{-1}$) (Table 2). The negative and the positive ratios cancelled out each other and resulted in the mean 2% to 4% frequency loss ratios. Therefore, for long-term N₂O flux measurements, the mean frequency loss may be low.

402

4.2. N_2O emission compared with the literature

A number of studies have been carried out to investigate N₂O emissions from soil to the 403 404 atmosphere, and the results reported in the literature show tremendous variation (Table 6). 405 Previous studies have shown that the N₂O emission depends on several factors, including 406 precipitation, fertilization, tillage, crop type, soil factor, and instrumentation (Ussiri et al. 2009; Wagner-Riddle et al. 2007). Fertilizer application was a prime factor causing a different N_2O 407 408 emission in previous studies. Generally, the measured flux and cumulative emission were larger 409 with a larger amount of fertilizer application (Table 6). In order to obtain a gross synthesization of these previous studies, shown in Table 6, and how this study fits into them, we plotted those 410 which reported both fertilizer applied and the integrated amount of N2O emissions. Figure 411

19

412	10 Figure 11, presents a simple linear plot of emissions (Kg N ₂ O-N Ha ⁻¹) (Table 6, column 9) as a
413	function of fertilizer applied (Kg N Ha ⁻¹) (Table $6_{\underline{1}}$ column 6). The graph demonstrates a general
414	linear trend (R ² =0.48, p<0.001) of increasing emissions with increased amounts of N fertilizer,
415	without regard to soil moisture, crop type, tillage, crop management, measurement techniques, or
416	length of time of the study. The simple linear regression shows the ratio of N_2O emissions to N
417	fertilizer to be 0.0143. Thus, in general, it appears that 1.43% of each unit of N fertilizer applied
418	is emitted to the atmosphere as N_2O .

Corn crops were reported in nine of the studies listed in Table 6. They fit the trends described above. Similar amounts of fertilizers were applied in Lee et al. (2009) and Laville et al. (1999) as in this study; and similar orders of N_2O emission were observed in all three. Where lower applications of fertilizer were reported for corn fields (Molodovskaya et al. 2011, Phillips et al. 2009, Ussiri et al. 2009, Wagner-Riddle et al. 2007, and Grant and Pattey 2003), lower N_2O emissions were measured.

In addition to fertilization, tillage also has played a role in governing N_2O emissions. Lee and colleagues (Lee et al. 2009) showed that with the same amounts of fertilizers for corn, sunflower, and chickpea, different tillage could cause differences in N_2O emissions. And fully tilled fields tended to release less N_2O .

In general, forest N₂O emissions have been lower than those from agriculture, which was probably due to the large amount of fertilizers applied to farmland. For example, compared to the flux rate 257.5 ± 42817.79 µg N₂O-N $\underline{m}^{-2} \underline{ha}^{-4} - hr^{-1}$ in this study, Mammarella et al. (2010) measured an averaged flux of ~10 µg N₂O-N $\underline{m}^{-2} \underline{hr}^{-1}$ during May 2 to June 5, 2003 in a beech forest of Denmark. They showed ~ 5 µg N₂O-N $\underline{m}^{-2} \underline{hr}^{-1}$ flux during the spring of 2007 in a

434	forest with pine, small-sized spruce, and birch in southern Finland, using both the EC and	
435	chamber methods. Eugster et al. (2007) measured N_2O from a forest mixed with beech and	
436	spruce using the EC method. The reported flux was 22.4 \pm 11.2 μ g N ₂ O-N m ⁻² hr ⁻¹ .	
437		
438	4.3 Effects of soil moisture, temperature, and N availability on N emissions	
439	Soil moisture is a major factor for N_2O emissions (Table 4). As indicated by Dobbie and Smith \leftarrow	Formatted: Line spacing: Double
440	(2003) and Davidson (1991), N_2O emitted from soil is caused principally by the microbial	
441	nitrogen transformations during both nitrification and denitrification. These processes are closely	
442	related to WFPS since denitrification is an anaerobic process, which depends on the balance	
443	between the amounts of water entering and leaving the soil. Several studies have confirmed that	
444	there are connections between increased N ₂ O emissions and precipitation (Zona et al. 2011;	
445	Jungkunst et al. 2008; Neftel et al. 2007, e.g.). In this study, after the first application of fertilizer,	
446	precipitation did not occur immediately and there was no significant change $\underline{in of N_2O}$ flux. On	
447	the day of the second application, the total precipitation was 3.02 mm and peak values of N_2O	
448	fluxes occurred immediately after the precipitation event (Figure 5). <u>Monitoring these events</u>	Formatted: Font color: Text 1
449	better captured the trigger effect of precipitation on the N_2O emission. The other notable feature	
450	of Figure 5 was the remarkable increases of N_2O for the days with precipitation. The variations in	
451	the increases were apparently caused by the changes in soil moisture content due to precipitation.	
452	The difference of N ₂ O emission response after first and second applications of fertilizer showed the trigger	
453	effect of precipitation on the N ₂ O emission. The other notable feature of Figure 5 was the remarkable	
454	increases of N ₂ O for the days with precipitation. The variations in the increases may have been mainly	
455	caused by the changes in soil moisture content due to precipitation.	
456		

457	During the whole season, soil temperature was not positively <u>cor</u> -related to N ₂ O flux (r=-	
458	0.084, p<0.01). Apparently soil temperature generally increased with time during the season,	
459	while the N_2O flux did not. Therefore the N_2O flux was correlated mainly with soil moisture	
460	(Figure 9 <u>Figure 10</u> and Table 4). Thus compared to the factors of soil moisture and N	
461	availability, soil temperature had rather weak effects on N2O emissions at this specific site (Table	
462	4).	
463	However, when looking at the diurnal cycles during the diurnal cycles, when soil moisture was not a-	Formatted: Line spacing: Double
464	predominant factor (r_{sm} < 0.4, p>0.05 in the first and second sub-periods), soil temperature was	
465	significantly and positively correlated to N ₂ O emissions ($r_{sm} \ge 0.56$, p<0.001) (Figure 7Figure 8).	
466	This indicates if soil moisture is not changed and other factors remain constant, the N_2O emission	
467	during the daytime is higher than during the night time. This was likely the reason that the	
468	average daytime fluxes were much higher than the night time N ₂ O fluxes during the whole	
469	season: 278.8 ± 865.8 vs. 100.0 ± 210.0 µg N ₂ O N m ⁻² hr ⁻¹ . The soil microorganisms were more	
470	active during the warmer daytime and produced more N_2O emissions, as pointed out in Maljanen	
471	et al. (2002). However, the daytime fluxes were not always higher through the whole season as	
472	shown on Figure 7;, i.e., the daytime fluxes were not higher during the third and the fourth periods	
473	because the soil moisture was a predominant factor ($r_{sm} > 0.4$).	
474	-	
475	As expected, mineral nitrogen availability was an important factor in N ₂ O emissions. The 4-	Formatted: Indent: First line: 0.25", Don't adjust right indent when grid is defined, Space
476	fertilizer applications before June may have caused higher soil N availabilities and higher N_2O	After: 0 pt, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: 0.06",
477	concentrations than after June (Figure 6). The fertilizer amount of the second application was	
478	more than twice that of the first application; it most likely contributed to the dramatic increase in	
479	N ₂ O concentration and flux after the second application (Figure 5).	

480 4.4 Response of N_2O emission to precipitation

481	Soil moisture was strongly dependent on precipitation events. For most precipitation events	
482	during the experimental period, the sonic anemometer sensor heads were wet and could not	
483	measure the instantaneous wind velocities precisely. Consequently, estimates of the reaction	
484	time of emissions to precipitation are lacking. However, there were two events with low rainfall	
485	amounts (< 5 mm for each 30-min measurement period), when the sensor heads were not affected	
486	(the diagnostic record from the datalogger showed the instruments functioned normally). During	
487	these <u>events</u> , the N_2O emissions increased within 30 minutes after rainfall, indicating soil N_2O	
488	emission likely responds to rainfall and a change of soil moisture very quickly, as noted	
489	previously by Phillips, et al. (2013) using dynamic chambers. Large emissions immediately after	
490	rain events have been shown in emission studies of other gases and vapors, for example, Mercury	
491	(Bash and Miller, 2009; Gillis and Miller, 2000), and have been attributed to the evacuation of	
492	high concentration gas in soil pores as they fill up with water. The same mechanism may be	
493	occurring here. In any case, further examination is necessary because the spikes are large and	
494	significant emissions during active rainfall may be missed in this and most other field studies.	
495	4.5 Uncertainty in the gap-filling	
496	The gap-filling method used in this study may bring uncertainty to the total N_2O flux	Formatted: Line spacing: Double
497	estimating. However, it is a common practice that regression model is developed using "good"	
498	<u>data (with $u_* \ge a$ threshold value); then the regression model is used to gap-fill the missing data</u>	Field Code Changed
499	and estimate the total value.	
500	We evaluated the uncertainty of the regression equations used in the gap-fillings by	
501	comparing the regressed and the measured flux data when $(u_* \ge 0.2 \text{ m s}^{-1})$ and found the average	Field Code Changed

502	error ratio was 14%. The regression equations were from the "good" eddy-covariance data($u_* \ge 0.2$	Field Code Changed
503	m s ⁻¹). The "good" data may have been overestimated about 12-16% (Table 2). Therefore, the	
504	total N_2O may be overestimated from the gap-filling by about 27% to 32% [e.g.,	
505	<u>27%=(1+14%)(1+12%)-1].</u>	
506	Based on the equation on Figure 11, the seasonal released N_2O should be 3.76 kg N_2O -N	
507	<u>Ha⁻¹</u> . However, from this study, it was 6.87 kg N_2 O-N Ha ⁻¹ . Therefore, the gap-filling and the EC	
508	measurement uncertainties may have partially contributed to the overestimated N2O release.	
509	4	Formatted: Indent: First line: 0.5", Line spacing: Double
510		
511		
512	5. CONCLUSIONS	
513	A new N_2O analyzer (quantum cascade laser spectrometer, model CW-QC-TILDAS-76-	
514	CS, Aerodyne Research Inc., Billerica, MA) was operated continuously for EC flux	
515	measurements of N ₂ O in a cornfield in Nolensville, TN during the period of April 4—August 8,	
516	2012. Based on Allan Variance analysis, the precision of the instrument was 0.066 ppbv for 10	
517	Hz measurements. The seasonal mean detection limit of the N ₂ O flux measurements was $7.562.10$	
518	<u>Hug N₂O-N</u> m ⁻² <u>hr</u> s ⁻¹ . The mean frequency loss ratio of the flux measurements was between 0.02	
519	(± 1.54) to $0.04(\pm 0.55)$ under the conditions of 0.4 m s ⁻¹ > $u_* \ge 0.2$ m s ⁻¹ during the day and	Field Code Changed
520	0.42 ± 0.27 under the conditions of 0.3 m s ⁻¹ > u^* $u_* \ge 0.2$ m s ⁻¹ during the night. We conclude that	Field Code Changed
521	this N ₂ O EC system can be used to provide reliable N ₂ O flux measurements.	

522	The cumulative N_2O emission from the experimental site during the entire growing season
523	was 6.87 kg N_2 O-N ha ⁻¹ . This study showed that in addition to N availability in soil, the seasonal
524	and diurnal N_2O emission was highly dependent on soil moisture, and extremely high fluxes
525	appeared -after an N fertilization event combined with precipitation. Soil moisture variation was a
526	dominant factor affecting N2O emissions compared to soil temperature, although a diurnal
527	variation in flux was in response to the diurnal soil temperature wave. Average daytime emissions
528	were much higher than night emissions (278.8 vs. 100.0 μ g N ₂ O N m ⁻² hr ⁻¹).
529	Combining these results with 9 previous studies in the literature allowed some preliminary
530	synthesization. It appears that approximately 1.43% of each unit of N fertilizer was emitted to the

532

533 6. FUTURE RESEARCH

We recommend that future studies focus on developing precision methods of minimizing N₂O 534 emissions by careful spatial and temporal control of fertilization amounts, water availability, and 535 tilling practices. These should include "mechanism" studies quantifying the N2O flux rates from 536 various interactions of water and N levels in soils. The effects of reducing the episodic nature of 537 fertilization and water availability should be quantified and methods developed to make such 538 reductions. Complete field-scale experiments designed to test application rates and application 539 timing and yields will likely produce more usable results than even complete monitoring of 540 commercial field operations. 541

542

543

544 ACKNOWLEDGMENTS

545

546	The authors gratefully acknowledge financial support for this research from USDA- Capacity	
547	Building Grant (2011-38821-30971), Evans-Allen grant, and the support from the Illinois State	
548	Water Survey at the University of Illinois at Urbana-Champaign. The authors thank Dr. Roger	
549	Sauve (Tennessee State University) for helping arrange the commercial farm for the experiment.	
550	We also thank Eddie Williams, -Daniel Doss, and Emeka Nwaneri for field experimental	
551	assistance. Opinions expressed are those of the authors and not necessarily those of the Illinois	
552	State Water Survey, the Prairie -Research Institute, or the University of Illinois.	
553	REFERENCES	
554 555 556 557 559 560 561 562 563 564 565 564 565 566 567 568 569	 Arnold, K., Nilsson, M., Hanell, B., Weslien, P., and Klemedtsson, L.: Fluxes of CO₂, CH₄ and N₂O from drained organic soils in deciduous forests, Soil Biol. Biochem., 37, 1059–1071, 2005. Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates 25 of the annual net carbon and water exchange of European forests: the EUROFLUX methodology, Adv. Ecol. Res., 30, 113–173, 2000. Barr, A.G., A.D. Richardson, D.Y. Hollinger, D. Papale, M.A. Arain, T.A. Black, G. Bohrer, D. Dragoni, M.L. Fischer, L. Gu, B.E. Law, H.A. Margolis, J.H. McCaughey, J.W. Munger, W. Oechel, and K. Schaeffer, 2013. Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies. Agricultural and Forest Meteorology, 171-172; 31-45. doi: 10.1016/j.agrformet.2012.11.023. Bash, J. O. and Miller, D. R.: Growing season total gaseous mercury (TGM) flux measurements 	Formatted: Font: (Default) MPHV, (Asian) +Body Asian (米体), 10 pt, Font color: Auto, Pattern: Clear
570 571 572 573	Over an acer rubrum forest, Atmos. Environ., 43, 5953–5961, 2009. Bouwman, A. F.: Direct emission of nitrous oxide from agricultural soils, Nutr. Cycl. Agroecosys., 46, 53–70, 1996.	Formatted: Left, Don't adjust right indent when grid is defined, Space After: 0 pt, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
575 576 577 578	Bouwman, A. F. Boumans, L., and Batjes, N. H.: Emissions of N2O and NO from fertilized fields: summary of available measurement data, Global Biogeochem. Cy., 16, 1–13, 2002. Davidson, E. A.: 5 Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Microbial	

579	production and consumption of greenhouse gases: methane, nitrogen oxides, and
580	halomethanes, American Society for Microbiology, Washington, DC, 219–235, 1991
581	
582	Davidson, E. A. and Swank, W. T.: Environmental parameters regulating gaseous nitrogen
583	losses from two forested ecosystems via nitrification and denitrification, Appl. Environ. Microb., 52, 1287–1292,
584	<u>1986.</u>
585	
586	Denmead, O. T.: Approaches to measuring fluxes of methane and nitrous oxide between landscapes
587	and the atmosphere, Plant Soil, 309, 5–24, 2008.
588	
589	Di Marco, C. D., Skiba, U., Weston, K., Hargreaves, K., and Fowler, D.: Field scale N2O flux measurements
590	from grassland using eddy covariance, Water Air Soil Poll., 4, 143–149, 2004.
591	
592	Dinsmore, K. J., Skiba, U. M., Billett, M. F., Rees, R. M., and Drewer, J.: Spatial and temporal
593	variability in CH4 and N ₂ O fluxes from a Scottish ombrotrophic pealland: implications for
594	modelling and up-scaling, Soil Biol. Biochem., 6, 1315–1323, 2009.
595	Debbin K. E. and Savida K. A. a Mission and a subscript for the optical work and a site in Court
590	Doble, K. E. and Smith, K. A.: Nitrous oxide emission factors for agricultural soils in Great
508	Change Rich Q. 2004 218 2003
599	Change Diol., 7, 204–216, 2003.
600	Eddynro Version 3.0: Eddynro Version 3.0 User's Guide & LLCOR Inc. Lincoln NE 68504-
601	2425 2012
602	
603	Edwards, G. C., Thurtell, G. W., Kidd, G. E., Dias, G. M., and Wagner-Riddle, C.: A diode laser
604	based gas monitor suitable for measurement of trace gas exchange using micrometeorological
605	technique, Agr. Forest Meteorol., 115, 71–89, 2003.
606	
607	Eugster, W., Zeyer, K., Zeeman, M., Michna, P., Zingg, A., Buchmann, N., and Emmenegger, L.:
608	Methodical study of nitrous oxide eddy covariance measurements using quantum cascade
609	laser spectrometery over a Swiss forest, Biogeosciences, 4, 927–939, doi:10.5194/bg-4-927-
610	2007, 2007.
611	
612	Famulari, D., Nemitz, E., Marco, C. D., Phillips, G. J., Thomas, R., House, E., and Fowler, D.:
613	Eddy-covariance measurements of nitrous oxide fluxes above a city, Agr. Forest Meteorol.,
614	130, 780–793, 2010.
616	Earrara P. M. Louhat P. Tommasi P. D. Bartolini T. Magliulo V. Calliar P. Eugstar W. and
617	Periata, K. Wh. Doubert, D., Tominiast, T. D., Dertonini, T., Magnulo, V., Center, T., Eugster, W., and Paga G. Eddy covariance measurement of any non-affures: comparison of high frequency
618	correction methodologies Agr Forest Meteorol 158-159 30-42 2012
619	
620	Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean,
621	J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.:
622	Changes in atmospheric constituents and in radiative forcing, in: Climate Change 2007: The
623	Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of
624	the 5 Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
625	<u>Chapt. 2, 2007.</u>
626	
627	Gillis, A. A. and Miller, D. R.: Some local environmental effects on mercury emission and absorption
628	at a soil surface. Sci. Total Environ., 260, 191–200, 2000.
629	
030	Grant, K. F. and Pattey, E.: Modelling variability in N2O emissions from fertilized agricultural
622	<u>Heids, Soli Biol. Biochem.</u> , 35, 223–243, 2003.
632	Gu L. Falge F. M. Roden T. Raldocchi D. D. and Rlack T. A.: Objective threshold determination
634	Sur, E., Farge, E. M., Douen, T., Baldocchi, D. D., and Diack, T. A., Objective uneshold determination for nightime addy flux filtering. Acr Ecoset Metaorol. 128, 170, 107, 2005
034	tor inglittline edgy fux filtering. Agr. Forest Meteoror., 126, 179–197, 2005.

Formatted: Left, Don't adjust right indent when grid is defined, Space After: 0 pt, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
635 636 637	Halvorson, A. D., Schweissing, F. C., Bartolo, M. E., and Reule, C. A.: Corn response to nitrogen fertilization in a soil with high residual nitrogen, Agron. J., 97, 1222–1229, 2005.	
638 639 640 641	Horst, T.W. and Lenschow, D. H.: Attenuation of scalar fluxes measured with spatially-displaced sensors, BoundLay. Meteorol., 130, 275–300, 2009.	
642 643 644	Ibrom, A., Dellwik, E., Larse, S. E., and Pilegaard, K.: On the use of the Webb–Pearman– Leuning theory for closed-path eddy correlation measurements, Tellus B, 59, 937–946, 2007.	
645 646 647 648	Jones, S. K., Famulari, D., Di Marco, C. F., Nemitz, E., Skiba, U. M., Rees, R. M., and Sutton, M. A.: Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements, Atmos. Meas. Tech., 4, 2179–2194, doi:10.5104/amt-4-2179-2011. 2011	
649 650 651	Jungkunst, H. F., Fless, H., Scherber, C., and Fiedler, S.: Groundwater level controls CO ₂ , N ₂ O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem.	
652 653 654	Soil Biol. Biochem., 40, 2047–2057, 2008. Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer Flows, 2nd edn., Oxford University Press, New York, 1994.	
656 657 658	Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R.: Deriving power spectra from a threecomponent sonic anemometer. J. Appl. Meteorol., 7, 827–837, 1972.	
659 660 661	Kitzler, B., Zechmeister-Boltenstern, S., Holtermann, C., Skiba, U., and Butterbach-Bahl, K.: Controls over N2O, NOx and CO2 fluxes in a calcareous mountain forest soil, Biogeosciences, 3, 383–395, doi:10.5194/bg-3-383-2006, 2006.	 Formatted: Left, Don't adjust right indent
662 663 664 665	Klemedtsson, L., Klemedtsson, A. K., Moldan, F., and Weslien, P.: Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition, Biol. Fert. Soils, 25, 290–295, 1996.	spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
666 667 668	Kroeze, C., Mosier, A., and Bouwman, L.: Closing the global warming budget: a retrospective analysis 1500–1994, Global Biogeochem. Cy., 13, 1–8, 1999.	
669 670 671 672	Kroon, P. S., Hensen, A., Jonker, H. J. J., Zahniser, M. S., van't Veen, W. H., and Vermeulen, A. T.: Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements, Biogeosciences, 4, 715–728, doi:10.5194/bg-4-715-2007.	
673 674 675	2007. Laville, P., Jambert, C., Cellier, P., and Delmas, R.: Nitrous oxide fluxes from a fertilized maize	
676 677 678 679	<u>crop using micrometeorological and chamber methods, Agr. Forest Meteorol., 96, 19–38,</u> <u>1999.</u> Lee, J., Hopmans, J. W., Kessel, C., King, A. P., Evatt., K. J., Louie, D., Rolston, D. E., and	
680 681 682	Six, J.: Tillage and seasonal emissions of CO ₂ , N ₂ O and NO across a seed bed and at the field scale in a Mediterranean climate, Agr. Ecosyst. Environ., 129, 378–390, 2009.	
683 684 685 686	Li, J., Tong, X., Yu, Q., Dong, Y., and Peng, C.: Micrometeorological measurements of nitrous oxide exchange in a cropland, Atmos. Environ., 42, 6992–7001, 2008.	
687 688 689	rates in an irrigated wheat-maize cropping system in northern China, Biogeosciences, 9, 839–850, doi:10.5194/bg-9-839-2012, 2012.	
690	Luo, G. J., Kiese, R., Wolf, B., and Butterbach-Bahl, K.: Effects of soil temperature and moisture	

691 on methane uptake and nitrous oxide emissions across three different ecosystem types, 692 Biogeosciences, 10, 3205-3219, doi:10.5194/bg-10-3205-2013, 2013. 693 694 Ma, B. L., Wu, T. Y., Tremblay, N., Deen, W., Morrison, M. J., Mclaughlin, N. B., Gregorich, E. G., 695 and Stewart, G.: Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and 696 timing of nitrogen fertilizer, Glob. Change Biol., 16, 156-170, 2010. 697 698 Maljanen, M., Martikainen, P. J., Aaltonen, H., and Silvola, J.: Short-term variation in fluxes of 699 carbon dioxide, nitrous oxide and methane in cultivated and forested organic boreal soils, Soil Biol. Biochem., 34, 577-584, 2002. 700 701 702 Mammarella, I.: Lecture 1 EC Method Background and Theory, available at: http://www.abba. 703 ethz.ch/committee/LECTURE_Mammarella.pdf (last access: 31 July 2014), ETH Zurich, 704 Zurich, Switzerland, 2011. 705 706 Mammarella, I., Werle, P., Pihlatie, M., Eugster, W., Haapanala, S., Kiese, R., Markkanen, T., 707 Rannik, Ü., and Vesala, T.: A case study of eddy covariance flux of N2O measured within 708 forest ecosystems: quality control and flux error analysis, Biogeosciences, 7, 427-440, 709 doi:10.5194/bg-7-427-2010, 2010. 710 711 712 Molodovskaya, M., Warland, J., Richards, B. K., Oberg, G., and Steenhuis, T. S.: Nitrous oxide 713 from heterogeneous agricultural landscapes: source contribution analysis by eddy covariance 714 and chambers, Soil Sci. Soc. Am. J., 75, 1829-1838, 2011. 715 716 Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, Detrending, and Filtering of 717 Eddy Covariance Time Series, Vol. 29, Chapt. 2, Kluwer Academic Publishers, Dordrecht, 718 Netherlands, 7-31, 2004. 719 720 Mosier, A., C., Kroeze, Nevison, C., Oenema, O., Seitzinger, S., and Cleemput, O.: Closing 721 the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cy15 722 cleOECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas 723 inventory methodology, Nutr. Cycl. Agroecosys., 52, 225-248, 1998. 724 Neftel, A., Flechard, C. R., Ammann, C., Conen, F., Emmenegger, L., and Zeyer, K.: Experimental 725 assessment of N2O background fluxes in grassland systems, Tellus B, 59, 470-482, 726 727 2007. 728 729 Neftel, A., Ammann, C., Fischer, C., Spirig, C., Conen, F., Emmenegger, L., Tuzson, B., and 730 Wahlen, S.: N2O exchange over managed grassland: application of a quantum cascade laser 731 spectrometer for micrometeorological flux measurements, Agr. Forest Meteorol., 150, 775-732 785, 2010. 733 734 735 Nelson, D.: TDLWintel User's Manual, Aerodyne Research, Inc, Billerica, MA, USA, 2002. 736 Nelson, D. D., McManus, B., Urbanski, S., Herndon, S., and Zahniser, M. S.: High precision 737 measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled 738 mid-infrared quantum cascade lasers and detectors, Spectrochim. Acta A, 60, 3325-3335, 739 2004. 740 741 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., 742 Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net 743 Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty 744 estimation, Biogeosciences, 3, 571-583, doi:10.5194/bg-3-571-2006, 2006. 745 746 Phillips, R. L., Tanaka, D. L., Archer, D. W., and Hanson, J. D.: Fertilizer application timing

Formatted: Left, Don't adjust right indent when grid is defined, Space After: 0 pt, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Formatted: Left, Don't adjust right indent when grid is defined, Space After: 0 pt, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

747	influences greenhouse gas fluxes over a growing season, J. Environ. Qual., 28, 1569-1579,
748	<u>2009.</u>
749	
750 751	Phillips, R., Griffith, D. W. I., Dijkstra, F., Lugg, G., Lawrie, K., and Macdonald, B.: Tracking
751 752	short-term effects 501 15N addition on N2O huxes using FTIK spectroscopy, J. Environ, Qual.
752	42, 1527-1540, 2015.
754	Pihlatie, M., Rinne, J., Ambus, P., Pilegaard, K., Dorsey, J. R., Rannik, Ü., Markkanen, T., Launiainen,
755	S., and Vesala, T.: Nitrous oxide emissions from a beech forest floor measured by eddy
756	covariance and soil enclosure techniques, Biogeosciences, 2, 377-387, doi:10.5194/bg-2-
757	<u>377-2005, 2005.</u>
758	
759	Kavishankara, A. K., Daniel, J. S., and Portmann, K. W.: Nitrous oxide (N2O): the dominant
760	ozone-depieting substance emitted in the 21st century, science, 320, 123–123, 2009.
762	Saleska S.R. Miller, S.D. Matross, D.M. Goulden, M.L. Wofsy, S.C. da Rocha, H.R.
763	de Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutvra, L., Keller, M., Kirchhoff,
764	V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H., and Silva, H.: Carbon in Amazon
765	forests: unexpected seasonal fluxes and disturbance-induced losses, Science, 302, 1554-
766	<u>1557, 2003.</u>
767	
768	Schindloacher, A., Zechmeister-Boltenstern, S., and Butterbach-Bant, K.: Effects of soil moisture and tomporture on NO. NO. and No. emissions from European forest soils. I. Goost
709	and temperature on two, two, and two emissions from European forest sons, J. Geow
771	ph/s. Kest, 107, 217, 502, Control 102, 100 (200 1070) 200 h
772	Simpson, I. J., Edwards, G. C., Thurtell, G. W., den Hartog, G., Neumann, H. H., and Staebler,
773	R. M.: Micrometeorological measurements of methane and nitrous oxide exchange
774	above a boreal aspen forest, J. Geophys. Res., 102, 29331–29341, 1997.
775	
//b 777	Smith, K. A., Ball, I., Conen, F., Dobble, K. E., Massheder, J., and Key, A.: Exchange of green ₂₅
778	noise gases between son and atmosphere, interactions of son physical factors and biological
779	processes, Eur. 5. Don Del., 54, 177-171, 2005.
780	Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht,
781	1988.
782	
783	Tao, L., Sun, K., Buglione, J., and Zondlo, M.: Flux chamber measurements of ni ₃₀
784 785	trous oxide emission at wetrands, available at: http://meri.njmeadowiands.gov/projects/
785	2014) Meadowlands Environmental Research Institute L vndhurst New Jersey 2013
787	201 A meddomando La monancia mescaren andrade, Dynamisk new Sener, 2015.
788	Ussiri, D. A. N., Lal, R., and Jarecki, M. K.: Nitrous oxide and methane emissions from longterm
789	tillage under a continuous corn cropping system in Ohio, Soil Till. Res., 104, 247-255,
790	<u>2009.</u>
791	
792	Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for lower and aircraft data,
795 794	J. Atmos Ocean. Tech., 14, 512–520, 1991.
795	Wagner-Riddle, C., Furon, A., McLaughlin, N. L., Lee, I., Barbeau, J., Javasundara, S., Parkin.
796	G., Von Bertoldi, P., and Warland, J.: Intensive measurement of nitrous oxide emissions from
797	a corn-soybean-wheat rotation under two contrasting management systems over 5 years,
798	<u>Glob. Change Biol., 8, 1722–1736, 2007.</u>
799	
800 801	wang, K. Zneng, X., Pinlatie, M., Vesala, T., Liu, C., Haapanala, S., Mammarella, I., Kannik, U.,
802	and Liu, H., Comparison between static chamber and tunable diode laser-based eddy covariance
502	teeningues for measuring intrus onde nuxes noin a couch neid, Agr. 1 0(cst Weberlein,

Formatted: Left, Don't adjust right indent when grid is defined, Space After: 0 pt, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

803	<u>171–172, 9–19, 2013.</u>	
804 805	Wigheld F. G. Wolling, M. and Harris, G.W. Migrometeorological measurements and source	
805	wielmour, P. O., weining, W., and Harris, C. W., Micrometeolongical measurements and source	
807	2227, 1995.	
808		
809	Zona, D., Janssens, I. A., Verlinden, M. S., Broeckx, L. S., Cools, J., Gioli, B., Zaldei, A., and	
810	Ceulemans, R.: Impact of extreme precipitation and water table change on N2O fluxes in	
811	a bio-energy poplar plantation, Biogeosciences Discuss., 8, 2057–2092, doi:10.5194/bgd-8-	
813	2037-2011, 2011.	
814	Zou, J. Huang, Y., Lu, Y., Zheng, X., and Wang, Y.: Direct emission factor for N ₂ O from rice-	
815	winter wheat rotation systems in southeast China, Atmos. Environ., 39, 4755–4765, 2005.	Formatted: Left, Don't adjust right indent
816		when grid is defined, Space After: 0 pt, Line
817	Ammann, C., A. Brunner, C. Spirig, and A. Neftel, 2006: Water vapor concentration and flux	spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
818	measurements with PTRMS. Atmospheric Chemistry and Physics, 6, 4643–4651.	Example Contraction Contraction
		+Body Asian (宋体), 10 pt, Not Bold
819	Arnold, K., M. Nilsson, B. Hanell, P. Weslien, and L. Klemedtsson, 2005: Pluxes of CO_2 , CH_4 and	
020	N.O. from designed correction soils in desiduous formate Sail Dielegy and Dieskamistry, 27, 1050, 1071	
820	$R_2 \odot$ from dramed organic sons in decideous forests, son biology and bioencimistry, 57 , 1039 -1071 .	
821		
822	Aubinet, M., A. Grelle, A. Ibrom, U. Rannik, et al., 2000: Estimates of the annual net carbon and water	Formatted: Default Paragraph Font, Font: Times New Roman
823	exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research 30, 113-	Formatted: Font: Times New Roman
025	exchange of European forests. the Eoror Eor methodology. Advances in Ecological Research, 50, 115	Formatted: Font: Times New Roman
824	173.	Formatted, Font: Times New Roman
825		Formatted: Default Paragraph Font, Font: Times New Roman
		Formatted: Font: Times New Roman
826	Bash, Jesse O. and David R. Miller, 2009: Growing season total gaseous mercury (TGM) flux	
027	42(27) 5052 50C1	
827	measurements over an -acer rubrum forest. Atmospheric Environment, $43(37)$, $3933-3961$.	
828		
829		
	Bouwman, A. F., 1996: Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in	
	Bouwman, A. F., 1996: Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in	
830	Bouwman, A. F., 1996: Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46, 53 – 70.	
830	Bouwman, A. F., 1996: Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46, 53–70.	
830	Bouwman, A. F., 1996: Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46, 53–70.	

832	Bouwman, A. F, L. Boumans, and N. H. Batjes, 2002: Emissions of N ₂ O and NO from fertilized fields:
833	summary of available measurement data. Global Biogeochemical Cycles, 16, 1–13.
834	
835	Davidson, E. A., 1991: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, 219–235.
836	American Society for Microbiology, Washington, D.C
837	Davidson, E. A. and W. T. Swank, 1986: Environmental parameters regulating gaseous nitrogen losses
838	from two forested ecosystems via nitrification and denitrification. Applied and Environmental
839	Microbiology, 52, 1287 1292.
840	
841	Denmead, O. T., 2008: Approaches to measuring fluxes of methane and nitrous oxide between landscapes
842	and the atmosphere. Plant Soil, 309, 5 – 24.
843	
844	Dinsmore, K. J., U. M. Skiba, M. F. Billett, R. M. R., and J. Drewer, 2009: Spatial and temporal
845	variability in CH_4 and N_2O fluxes from a Scottish ombrotrophic peatland: Implications for modelling and
846	up scaling. Soil Biology and Biochemistry, 6, 1315–1323.
847	
848	Dobbie, K. E. and K. A. Smith, 2003: Nitrous oxide emission factors for agricultural soils in Great Britain:
849	the impact of soil water filled pore space and other controlling variables. Global Change Biology, 9 (2),
850	204–218.
851	

852	Edwards, G. C., G. W. Thurtell, G. E. Kidd, G. M. Dias, and C. Wagner Riddle, 2003: A diode laser based
853	gas monitor suitable for measurement of trace gas exchange using micrometeorological technique.
854	Agricultural Forest Meteorology, 115, 71–89.
855	Eugster, M., K. Zeyer, M. Zeeman, P. Michna, A. Zingg, N. Buchmann, and L. Emmenegger, 2007:
856	Methodical study of nitrous oxide eddy covariance measurements using quantum caseade laser
857	spectrometery over a Swiss forest. Biogeosciences, 4, 927-939.
858	
859	Famulari, D., E. Nemitz, C. D. Marco, G. J. Phillips, R. Thomas, E. House, and D. Fowler, 2010: Eddy-
860	covariance measurements of nitrous oxide fluxes above a city. Agricultural and Forest Meteorology, 150,
861	786 793.
862	
863	Ferrara, R. M., B. Loubet, P. D. Tommasi, T. Bertolini, V. Magliulo, P. Cellier, W. Eugster, and G. Rana,
864	2012: Eddy covariance measurement of ammonia fluxes: Comparison of high frequency correction
865	methodologies. Agricultural and Forest Meteorology, 158–159, 30–42.
866	
867	Forster, P., V. Ramaswamy, P. Artaxo-et al., 2007: Changes-in atmospheric constituents and in radiative
868	forcing. In: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the
869	Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chap. 2, 141. Cambridge
870	University Press, Cambridge.
871	
872	Gillis, A. A. and D. R. Miller, 2000: Some local environmental effects on mercury emission and absorption
873	at a soil surface. Science of the Total Environment 260 191-200.

874	Grant, R. F. and E. Pattey, 2003: Modelling variability in N ₂ O emissions from fertilized agricultural
875	fields. Soil Biology & Biochemistry, 35,225-243
876	
877	Gu, L., E. M. Falge, TBoden , D. D. Baldoechi , and T.A. Black, 2005: Objective threshold
878	determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology, 128, 179-197.
879	
880	
881	Halvorson, A. D., F. C. Schweissing, M. E. Bartolo, and C. A. Reule, 2005: Corn
882	response to nitrogen fertilization in a soil with high residual nitrogen. Agronomy Journal, 97, 1222-
883	1229.
884	
885	Horst, T. W. and D. H. Lenschow, 2009: Attenuation of scalar fluxes measured with spatially displaced
886	sensors. Boundary Layer Meteorology, 130, 275–300.
887	
888	Ibrom, A., E. Dellwik, S. E. Larse, and K. Pilegaard, 2007: On the use of the Webb Pearman Leuning
889	theory for closed path eddy correlation measurements. Tellus Series B-Chemical and Physical
890	Meteorology, 59,937-946.
891	Jones, S. K., D. Famulari, C. F. D. Marco, E. Nemitz1, U. M. Skiba, R. M. Rees, and M. A.
892	Sutton, 2011: Nitrous oxide emissions from managed grassland: - a comparison of eddy covariance and
893	static chamber measurements. Atmospheric Measurement Techniques, 4,2179-2194.
894	
895	Jungkunst, H. F., H. Fless, C. Scherber, and S. Fiedler, 2008: Groundwater level controls
896	CO_2 , N_2O and CH_4 fluxes of three different hydromorphic soil types of a temperate forest
897	ecosystem. Soil Biology and Biochemistry, 40, 2047–2057.
898	

899	
900	Kaimal, J. C. and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. 2d ed., Oxford
901	
902	University Press.
903	
904	
905	
906	Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Deriving power spectra
907	from a three-component sonic anemometer. Journal of Applied Meteorology, 7, 827-837.
908	
909	Kitzler, B.,S. Zechmeister Boltenstern.,C. Holtermann,U. Skiba, and K. Butterbach Bahl, 2006: Control
910	over N2O, NOx and CO2 fluxes in a calcareous mountain forest soil. Biogeosciences, 3, 383-395,
911	doi:10.5194/bg 3 383 2006.
912	Klemedtsson, L., A. K. Klemedtsson, F. Moldan, and P. Weslien, 1996: Nitrous oxide emission from
913	Swedish forest soils in relation to liming and simulated increased N-deposition. Biology and Fertility of
914	Soils, 25, 290–295.
915	
916	Kroeze, C., A. Mosier, and L. Bouwman, 1999: Closing the global warming budget: A retrospective
917	analysis 1500–1994. Global Biogeochemical Cycles, 13, 1–8.
918	
919	

920	Kroon, P. S., A. Hensen, H. J. J. Jonker, M. S. Zahniser, W. H. van't Veen, and A. T. Vermeulen, 2007:
921	Suitability of quantum cascade laser spectroscopy for CH_4 and N_2O eddy covariance flux measurements.
922	Biogeosciences, 4, 715–728
923	
924	Laville, P., C. Jambert, P. Cellier, and R. Delmas, 1999: Nitrous oxide fluxes from a fertilized maize crop
925	using micrometeorological and chamber methods. Agricultural and Forest Meteorology, 96, 19-38.
926	
927	Lee, J., J. W. Hopmans, C. Kessel., A. P. King, K. J. Evatt., D. Louie, D. E. Rolston, and J. Six, 2009:
928	Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a
929	Mediterranean climate. Agriculture, Ecosystems and Environment, 129, 378-390.
930	
931	Li, J., X. Tong, Q. Yu, Y. Dong, and C. Peng, 2008: Micrometeorological measurements of nitrous oxide
932	exchange in a cropland. Atmospheric Environment, 42, 6992-7001.
933	
934	Liu, C., K. Wang, and X. Zheng, 2012: Responses of N ₂ O and CH ₄ fluxes to fertilizer nitrogen
935	addition rates in an irrigated wheat maize cropping system in northern China. Biogeosciences, 9, 839-
936	850.
937	
938	Luo, G. J., R. Kiese, B.Wolf, and K. Butterbach-Bahl, 2013: Effects of soil temperature and moisture on
939	methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences, 10,
940	3205-3219.

941	
942	Ma, B. L., T. Y. Wu, N. Tremblay, W. Deen, M. J. Morrison, N. B. Mclaughlin, E. G. Gregorich,
943	and G. Stewart, 2010: Nitrous oxide fluxes from corn fields: on farm assessment of the amount and
944	timing of nitrogen fertilizer. Global Change Biology, 16, 156-170.
945	MacKenzie, A. F., M. X. Fan, and F. Cadrin, 1997: Nitrous oxide emission as affected by tillage, corn-
946	soybean-alfalfa rotations and nitrogen fertilization. Canadian Journal of Soil Science, 77, 145–152.
947	
948	Mammarella, I., 2011: Lecture 1 EC method Background and theory. URL http://www.
949	abba.ethz.ch/committee/LECTURE_Mammarella.pdf.
950	
951	Mammarella, I., P. Werle, M. Pihlatie, W. Eugster, S. Haapanala, R. Kiese, T. Markkanen, Ü. Rannik, and
952	T. Vesala, 2010: A case study of eddy covariance flux of N ₂ O measured within forest ecosystems: quality
953	control and flux error analysis. Biogeosciences, 7, 427–440.
954	
955	Marco, C. D., U. Skiba, K. Weston, K. Hargreaves, and D. Fowler, 2004: Field scale N ₂ O flux
955 956	Marco, C. D., U. Skiba, K. Weston, K. Hargreaves, and D. Fowler, 2004: Field scale N ₂ O flux measurements from grassland using eddy covariance. Water, Air and Soil Pollution, 4, 143–149.
955 956 957	Marco, C. D., U. Skiba, K. Weston, K. Hargreaves, and D. Fowler, 2004: Field scale N ₂ O flux measurements from grassland using eddy covariance. Water, Air and Soil Pollution, 4, 143–149. Molodovskaya, M., J. Warland, B. K. Richards, G. Oberg, and T. S. Steenhuis, 2011: Nitrous oxide from
955 956 957 958	Marco, C. D., U. Skiba, K. Weston, K. Hargreaves, and D. Fowler, 2004: Field scale N ₂ O flux measurements from grassland using eddy covariance. Water, Air and Soil Pollution, 4, 143–149. Molodovskaya, M., J. Warland, B. K. Richards, G. Oberg, and T. S. Steenhuis, 2011: Nitrous oxide from heterogeneous agricultural landscapes: source contribution analysis by eddy covariance and chambers.
955 956 957 958 959	Marco, C. D., U. Skiba, K. Weston, K. Hargreaves, and D. Fowler, 2004: Field scale N ₂ O flux measurements from grassland using eddy covariance. Water, Air and Soil Pollution, 4, 143–149. Molodovskaya, M., J. Warland, B. K. Richards, G. Oberg, and T. S. Steenhuis, 2011: Nitrous oxide from heterogeneous agricultural landscapes: – source contribution analysis by eddy covariance and chambers. Soil Science Society of America Journal, 75, 1829–1838.

961	Moncrieff, J., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending, and filtering of eddy
962	covariance time series, Vol. 29, chap. 2, 7–31. Springer Netherlands.
963	
964	
965	Mosier, A., C., Krocze, C. Nevison, O. Oenema, S. Seitzinger, and O. Cleemput, 1998: Closing the
966	global N_2O budget: nitrous oxide emissions through the agricultural nitrogen cycleOECD/IPCC/IEA phase
967	II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutrient Cycling
968	in Agroecosystems, 52, 225–248.
969	
970	Neftel, A., C. Ammann, C. Fischer, C. Spirig, F. Conen, L. Emmenegger, B. Tuzson, and S. Wahlen,
971	$\frac{2010}{N_2O}$ exchange over managed grassland: Application of a quantum caseade laser spectrometer
972	for micrometeorological flux measurements. Agricultural and Forest Meteorology, 150, 775-785.
973	
974	Neftel, A., C. R. Flechard, C. Ammann, F. Conen, L. Emmenegger, and K. Zeyer, 2007: Experimental
975	assessment of N ₂ O background fluxes in grassland systems. Tellus, 59B, 470-482.
976	
977	Nelson, D. D., B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, 2004: High precision
978	measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared
979	quantum cascade lasers and detectors. Spectrochimica Acta Part A, 60, 3325-3335.
980	
981	Nelson, D., 2002: TDLWintel User's Manual, Aerodyne Research, Inc, Billerica, MA, USA.

982	
983	Papale, D., M. Reichstein, E. Canfora et al., 2006: Towards a more harmonized processing of eddy
984	covariance CO ₂ fluxes: algorithms and uncertainty estimation. Biogeosciences Discussions, 3, 961–992.
985	
986	Phillips, R. L., D. L. Tanaka, D. W. Archer, and J. D. Hanson, 2009: Fertilizer application timing
987	influences greenhouse gas fluxes over a growing season. Journal of Environmental Quality, 28, 1569
988	1579.
989	
990	Pihlatie, M., J. Rinne, P. Ambus et al., 2005: Nitrous oxide emissions from a beech forest floor measured
991	by eddy covariance and soil enclosure techniques. Biogeosciences, 2, 377-387.
992	
993	Ravishankara, A. R., J. S. Daniel, and R. W. Portmann, 2009: Nitrous oxide (N2O): The dominant ozone-
994	depleting substance emitted in the 21st Century. Science, 326, 123–125.
995	
996	Saleska, S. R., S. D. Miller, D. M. Matross et al., 2003: Carbon in Amazon forests: unexpected seasonal
997	fluxes and disturbance induced losses. Science, 302, 1554-1557.
998	
999	Schindlbacher, A., S. Zechmeister Boltenstern, and K. Butterbach Bahl, 2004: Effects of soil moisture and
1000	temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical Research,
1001	109, D17-302.

1002	Simpson, I. J., G. C. Edwards, G. W. Thurtell, G. den Hartog, H. H. Neumann, and R. M. Staebler ,1997:
1003	Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest.
1004	Journal of Geophysical Research., 102(D24), 29331–29341.
1005	Smith, K. A., T. Ball, F. Conen, K. E. Dobbie, J. Massheder, and A. Rey, 2003: Exchange of greenhouse
1006	gases between soil and atmosphere: interactions of soil physical factors and biological processes. European
1007	Journal of Soil Science, 54, 779-791.
1008	
1009	Stull,R.B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers,
1010	Dordrecht.
1011	
1012	Tao, L., K. Sun, J. Buglione, and M. Zondlo, 2013: Flux chamber measurements of nitrous oxide
1013	emission at Wetlands. URL http://meri.njmeadowlands.gov/projects/ flux-chamber-measurements-of-
1014	nitrous-oxide-emission-at-wetlands/.
1015	
1016	Ussiri, D. A. N., R. Lal, and M. K. Jarecki, 2009: Nitrous oxide and methane emissions from long term
1017	tillage under a continuous corn cropping system in Ohio. Soil and Tillage Research, 104, 247-255.
1018	
1019	Vickers, D. and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data.
1020	Journal of Atmospheric and Oceanic Technology, 14, 512-526.
1021	

1022	Wagner Riddle, C., A. Furon, N. Mclaughlin et al., 2007: Intensive measurement of nitrous oxide
1023	emissions from a corn soybean wheat rotation under two contrasting management systems over 5 years.
1024	Global Change Biology, 8, 1722–1736.
1025	Wang, K, X. Zheng, M. Pihlatie, T. Vesala, C. Liu, S. Haapanala, I. Mammarella, Ü. Rannik, and H. Liu,
1026	2013: Comparison between static chamber and tunable diode laser-based eddy covariance techniques for
1027	measuring nitrous oxide fluxes from a cotton field. Agricultural and Forest Meteorology, 171–172, 9-19.
1028	
1029	Wienhold, F. G., M. Welling, and G. W. Harris, 1995: Micrometeorological measurements and source
1030	region analysis of nitrous oxide fluxes from an agricultural soil. Atmospheric Environment, 29, 2219-
1031	2227.
1032	
1033	Zona, D., I. A. Janssens, M. S. Verlinden, L. S. Broeckx, J. Cools, B. Gioli, A. Zaldei, and R. Ceulemans,
1034	2011: Impact of extreme precipitation and water table change on N ₂ O fluxes in a bio-energy poplar
1035	plantation. Biogeosciences Discussion, 8, 2057-2092.
1036	Zou, J, Y. Huang, Y. Lu, X. Zheng, and Y. Wang, 2005: Direct emission factor for N ₂ O from rice-winter
1037	wheat rotation systems in southeast China. Atmospheric Environment, 39(26), 4755-4765.
1038	
1039	
1040	
1041	List of Tables
1042	
1043 1044	 Overview of four measurement periods characterized by precipitation and fertilization. Two fertilizer application events were on April 10 and May 14, 2012. Before the experiment, 99 kg N

1045 1046 1047 1048	 ha⁻¹ chicken litter was applied on March 10. Total precipitation was calculated as the sum of precipitation of each period. <u>N/A: not available.</u> 2. Variation of frequency loss ratio Δ// and frequency loss correction ratio by EddyPro 	
1049	$(\frac{\Delta \phi}{\Delta \phi}(Eddvpro))$ with friction velocity $(u^*, \text{m s}^{-1})$ for May 2012, N/A; not available. Numbers in	
1050	the cells are mean \pm standard deviations.	
1051		
1052	3. Descriptive statistics for 30-min N ₂ O concentration and flux for the period of experiment, April 44	Formatted: List Paragraph, Numbered +
1053	- August 8, 2012 ($u_* u^* \ge 0.2 \text{ m s}^{-1}$). Nonparametric boot-strapping procedure was used to	at: 1 + Alignment: Left + Aligned at: 0.25" +
1054	obtain the 95% confidence interval.	Indent at: 0.5"
1055	3.	Formatted: Font: Times New Roman
1056		Formatted: Indent: Left: 0.5" No bullets or
1057	Statistical 4 Statistical results of 30 min soil temperature (°C) soil moisture (%) and N-O flux (up	numbering
1057	N ₂ O-N m ⁻² h ⁻¹) (mean ±95% confidence interval), as well as Pearson correlation coefficients and p	Formatted: Indent: Left: 0.25", Hanging:
1059	value [r(p)] of N ₂ O flux with soil temperature or soil moisture ($u_* \ge 0.2 \text{ m s}^{-1}$). N/A: not available.	Field Code Changed
1060	4. results of 30 min soil temperature (°C), soil moisture (%) and N ₂ O flux (µg N ₂ O-N m ² -hr ⁻¹) (mean	Formatted: Font: Times New Roman
1061	\pm standard deviation), as well as Pearson correction coefficient (r) of N_2O flux with soil temperature or	Formatted: Normal, No bullets or numbering
1062	soil moisture ($u^* \ge 0.2 \text{ m s}^+$).	Formatted: Font: Times New Roman
1063	4	Formatted: Normal
1064	5. Thirty min N ₂ O flux (μ g N ₂ O-N m ⁻² hr ⁻¹) regression equations with soil moisture (%) and soil	Formatted: Font: Times New Roman
1065	temperature (°C) ($u_* \oplus \ge 0.2 \text{ m s}^{-1}$).	Formatted: Numbered + Level: 1 +
1066		Numbering Style: 1, 2, 3, + Start at: 5 + Alignment: Left + Aligned at: 0.25" + Indent
1067	6 Summary of N ₂ O measurements in literature FC indicates eddy covariance method $$ indicates 4	at: 0.5"
1068	data or information is not available directly from the reference.	Formatted: Font: Times New Roman
1069		Field Code Changed
1070		Formatted: Font: Times New Roman
		Formatted: Subscript
		Formatted: Font: Times New Roman
1071 1072	List of Figures	Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 5 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"
1073	1. Photo of the experimental site, Williamson County (Nolensville, TN).	
1074 1075 1076 1077	2. Time series of measured N2O concentrations (blue dots, ppbv, 10 Hz) under _field conditions and the associated Allan variance, downward sloping straight line shows the theoretical behavior of white noise (with a slope of -1, bracketed by dot dash lines showing the 95% confidence interval), provided by Dr. Mark Zahniser at Aerodyn.	

1079	3. Whole-season histogram of the frequency distribution of time lags of N_2O measurements from wind	
1080	velocity measurements, found by searching the maximum of cross-covariance.	
1081	4. Normalized cospecta, a. daytime (7 am to 7 pm May 22, 2012, $u_* \stackrel{\text{w}}{=} 0.2$, L < 0), b. night time (7	Field Code Changed
1082	pm May 16 to 7am May 17, 2012, $u^* u_* \ge 0.2$, L < 0). (L is the stability parameter: Obuekhov Length	Field Code Changed
1083 1084 1085 1086 1087 1088	(m) outputted from Eddypro; because under stable conditions (L > 0), the eddies may not have been well developed, the nighttime unstable conditions (L < 0) were chosen). The axis is normalized frequency, $n=fz/u$, f is natural frequency (Hz); z is measuring height (m); and u is wind speed (m s ⁻¹). The idealized undamped cospectrum according to Kaimal et al. (1972) and sensible heat cospectrum are also given. 1.	
1089	5. Daily average N_2O flux (µg N_2O -N m ⁻² hr ⁻¹) with rainfall and N fertilizer applications from April 4	
1090	to August 8, 2012. Error bars were the standard deviations of all data collected on each day ($u_* \ge$	Field Code Changed
1091	0.2 m s^{-1}).	
1092	6. Daily average N_2O concentration (ppbv) with rainfall and N fertilizer applications from April 4 to	
1093	August 8, 2012. Error bars were the standard deviations of all data collected on each day ($u^{\pm}u_{*} \ge 0.2$	Field Code Changed
1094	m s ⁻¹).	
1095	7. Diurnal variation of 30-min N ₂ O flux of five 4.5 days when day and night data were nearly complete	Formatted: Subscript
1096	(data points>20 hours/day and $u_* \ge 0.2 \text{ m s}^{-1}$). The five days were April 15, April 25, April 26, June 1	Field Code Changed
1097	and June 10. Bars are 95% confidence interval. Data were normalized by each day maximum.	
1098	$\underline{87}$. Diurnal variation of $\underline{30\text{-min}}N_2O$ flux for the four sub-periods defined in Table.1, a. the first period,	
1099	b. the second period, c. the third period, and d. the fourth period. r_{st} is the correlation coefficient of	
1100	N_2O flux and soil temperature; r_{sm} is the correlation coefficient of N_2O flux and soil moisture.	
1101	$\underline{98}$. Cumulative N ₂ O emission for the experimental site, during April 4 to August 8, 2012. Rainfall and	
1102	N fertilizer applications data were also shown, 24 days before the experiment (March 10) chicken litter	
1103	was applied at a rate of 99 kg N ha ⁻¹ (not shown on the figure)	
1104	<u>109</u> . Time series of <u>30-min</u> soil temperature, soil moisture, N ₂ O concentration, and flux for the whole	
1105	experimental period. The vertical dashed lines indicate the sub-periods defined in Table 1.	
1106 1107 1108 1109	110. Regression of cumulative N ₂ O emission on the total applied fertilizer N in 10 different studies (where both amount of fertilizer and cumulative N ₂ O emission are provided) listed in Table 6, the result of this study is indicated by the red square.	

1116	Table 1	Overview of four measurement	periods characterized	by precipitation	and fertilization	Two
1110	rable 1.	Overview of four measurement	perious characterized	by precipitation	and fertilization.	1 00

- 1117 fertilizer application events were on April 10 and May 14, 2012 respectively. Before the experiment 99 kg
- 1118 N ha⁻¹ chicken litter was applied on March 10, total precipitation was calculated as the sum of precipitation
 1119 of each period.

1171	Index	Date	Fertilization kg N ha ⁻¹	Total precipitation (mm)
1121	S1D	Apr 4 Apr 25, day	39 (URAN-32-0-0)	15.73
1122	S1N	Apr 4 Apr 25, night	-	28.68
1122	S2D	Apr 26 May 26, day	79 (URAN-32-0-0)	69.82
1123	S2N	Apr 26 May 26, night	-	96.23
	S3D	May 27 Jun 24, day	-	20.32
1124	S3N	May 27 Jun 24, night	-	8.62
	S4D	Jun 25 Aug 8, day	-	74.38
1125	S4N	Jun 25 Aug 8, night	-	53.56

- Table 2. Variation of frequency loss ratio $\frac{\Delta \emptyset}{\emptyset}$ and frequency loss correction ratio by EddyPro $\frac{\Delta \emptyset}{\emptyset}(EP)$ with friction velocity (u^* , m s⁻¹) for May 2012. N/A: not available. Numbers in the cells are mean \pm
- standard deviations.

				1									1		
<i>u</i> *	1	$0 \le u^* < 0.1$			$0.1 \le u^* < 0.2$		0.2	$2 \le u^* < 0.3$			$0.3 \le u^* < 0$.4		$0.4 \le u^* < 0.5$	
Rang of	≥ 0	<0	all	≥ 0	<0	all	≥ 0	<0	all	≥ 0	<0	all	≥ 0	<0	all
Loss ratio															
						D	aytime								
# of	16	18	34	84	65	149	113	140	253	27	22	49	2	N/A	2
samples															
ΔØ	0.43±0.48	-0.42±0.48	0.02±0.64	0.33±0.55	-0.45 ± 1.10	0.01 ± 0.91	0.43±1.29	-0.39±1.64	0.02 ± 1.54	0.22±0.22	-0.37±0.67	0.04±0.55	0.31±0.29	N/A	0.31±0.29
Ø															
$\frac{\Delta \emptyset}{\emptyset}(EP)$	0.16±0.01	0.16±0.01	0.16±0.01	0.16±0.00	0.15±0.00	0.16±0.01	0.16±0.01	0.16±0.01	0.16±0.01	0.18±0.01	0.17±0.01	0.18±0.01	0.16±0.01	N/A	0.16±0.01
						Ν	ighttime								
# of	145	91	236	47	12	59	4	N/A	4	N/A	N/A	N/A	N/A	N/A	N/A
samples															
$\frac{\Delta \phi}{\phi}$	0.76±1.35	-0.84±1.66	0.14±1.67	0.90±1.09	-0.23±0.26	0.66±1.08	0.42±0.27	N/A	0.42±0.27	N/A	N/A	N/A	N/A	N/A	N/A
$\frac{\Delta \phi}{\phi}(EP)$	0.16±0.01	0.16±0.01	0.16±0.01	0.16±0.01	0.16±0.00	0.16±0.01	0.16±0.01	N/A	0.16±0.01	N/A	N/A	N/A	N/A	N/A	N/A

1134

1135

1136

- 1137
- 1138
- 1139
- 1140
- 1141

1142 Table 3. Descriptive statistics for 30 min N2O concentration and flux for the period of experiment, April 4 1143 - August 8, 2012 ($u^* \ge 0.2 \text{ m s}^{-1}$).

			Number of	Concentration	n (ppbv)			Flux (µg N₂ €) N m ⁻² hr	±)		
			samples	Mean	Median	Standard deviation	Skewness	Mean	Median	Standard deviation	Skewness	
	Day	time	1224	322.9	324.5	4.04	0.396	278.8	91.1	865.8	7.075	Formatted: Font: (Asian) +Body Asian (宋体),
	Nig	httime	166	322.5	324.4	3.70	0.009	<u>99.9</u>	45.9	209.9	6.611	(Asian) Chinese (PRC)
	Tot	al	1390	322.8	324.5	4.00	0.364	257.5	83.4	817.7	7.482	Formatted: Font: (Asian) +Body Asian (宋体), (Asian) Chinese (PRC)
11 11	44 45	Table 3. Descriptive statistics for 30-min N ₂ O concentration and flux for the period of experiment, April 4 - August 8, 2012 ($\mu_s > 0.2 \text{ m s}^{-1}$). Nonparametric boot-strapping procedure was used to obtain the									<u>pril 4</u>	Formatted: Font: (Asian) +Body Asian (宋体), (Asian) Chinese (PRC)
				A	-		** *	A			// /	Formatted, Fonty (Acian) + Rody Acian (++++)

95% confidence interval. 1146

	Number of samples	Concent	ration (ppbv)	<u>Flux (μg N₂O-N m⁻² hr⁻¹)</u>		
		Mean	95% Confidence interval	<u>Mean</u>	95% Confidence interval	
Daytime	1224	322.9	<u>+0.2</u>	278.8	<u>+47.5</u>	
<u>Nighttime</u>	<u>166</u>	<u>322.5</u>	<u>+0.6</u>	<u>99.9</u>	<u>+29.8</u>	
Total	<u>1390</u>	322.8	<u>322.8 ±0.3</u>		<u>+42.9</u>	

Formatted: Font: (As (Asian) Chinese (PRC) (Asian) +Body Asian (宋体),

Formatted: Font: (Asian) +Body Asian (宋体), (Asian) Chinese (PRC)

Formatted: Font: (Asian) +Body Asian (宋体), (Asian) Chinese (PRC)

Formatted: Font: 12 pt

Field Code Changed

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Custom Color(RGB(0,0,204))

1147

1148

1149

1150

Date	Number	Soil temperature	Soil	Flux	Soil temperature	Soil
	of		moisture		r (p)	moisture
	samples					r (p)
Apr 4 Apr	274	$\frac{18.0 \pm 3.0}{2}$	11.8±2.9	$\frac{172.7 \pm 236.0}{2}$	0.175 (0.003)	0.606
25, day						(0.000)
Apr 4 Apr	4 8	$\frac{18.9 \pm 2.3}{2}$	12.1±3.2	62.7±72.8	0.449 (0.001)	0.067
25, night						(0.653)
Apr 26	392	$\frac{23.0 \pm 2.6}{23.0 \pm 2.6}$	15.0±4.3	603.2±1448.5	-0.195(0.000)	0.488
May 26, day						(0.000)
Apr 26	35	21.9 ±2.8	12.0±3.3	173.7 ±215.0	0.496 (0.002)	0.644
May 26,						(0.000)
night						
May 27	326	24.9 ± 2.2	$\frac{11.1 \pm 4.6}{11.1 \pm 4.6}$	60.2 ± 51.3	-0.192 0.000)	0.780
Jun 24, day						(0.000)
May 27	36	$\frac{26.8 \pm 2.4}{26.8 \pm 2.4}$	12.0 ±5.2	88.4 ±156.6	0.149 (0.385)	0.605
Jun 24, night						(0.000)
Jun 25	232	27.1 ± 1.6	$\frac{10.5 \pm 4.2}{10.5 \pm 4.2}$	162.4±273.6	-0.245(0.000)	0.571
Aug 8, day						(0.000)
Jun 25	47	28.8 ±1.2	$\frac{8.2 \pm 4.1}{100}$	92.1±306.8	-0.491 (0.000)	0.526
Aug 8, night						(0.000)
	1224	23.2 ±4.0	12.4 ±4.5	278.8±865.8	-0.084 (0.003)	0.424
						(0.000)
	166	23.9±4.5	10.2 ± 4.0	100.0 ± 210.0	0.045 (0.560)	0.500
						(0.000)

Formatted Table

1101	in) (incur = standard de flation), us wen us i cur
1165	temperature or soil moisture ($u^* \ge 0.2 \text{ m s}^+$)

1164	hr^+ (mean \pm standard deviation), as well as Pearson correlation coefficients (r) of N_2O flux with soil
------	--

1163 Table 4. Statistical results of 30 min soil temperature (°C), soil moisture (%) and N₂O flux (μg N₂O N m⁻²

1169 Table 4. Statistical results of 30-min soil temperature (°C), soil moisture (%) and N₂O flux (µg N₂O-N m⁻²

- **1170** hr^{-1} (mean $\pm 95\%$ confidence interval), as well as Pearson correlation coefficients and p value [r(p)] of
- 1171 <u>N₂O flux with soil temperature or soil moisture ($u_* \ge 0.2 \text{ m s}^{-1}$). N/A: not available.</u>

Field Code Changed

Date	Fertilizer application	Number	Soil temperature	Soil	Flux	Soil	Soil +	E
Date	retuizer application	of	<u>son emperature</u>	moisture	<u>1 10A</u>	temperature r	moisture	Formatted Table
		<u>on</u>		moisture		(p)	$\frac{1101sture}{r(p)}$	
	1 371 -	samples		0/	NON	<u>(p)</u>	<u>1(p)</u>	
	<u>kg N ha '</u>		<u>°C</u>	<u>%</u>	$\mu g N_2 O-N$			
					$m^{-2} hr^{-1}$			
March 10	99 (chicken litter)	<u>N/A</u>						
Apr 4 Apr	39 (URAN-32-0-0)	274	18.0 ± 0.4	11.8±0.3	173.3 ± 27.9	0.18 (0.00)	0.61 (0.00)	Formatted Table
25, day	<u>5) (ORTH 52 0 0)</u>							
Apr 4 Apr		48	18.9 ± 0.6	9.1±0.4	62.7±20.1	0.45 (0.00)	0.07(0.65)	
25, night		_						
Apr 26	79 (URAN-32-0-0)	<u>392</u>	23.2 ± 0.2	<u>15.0±0.4</u>	602.5±141.9	-0.20(0.00)	0.49 (0.00)	
May 26, day								
Apr 26		35	21.9 ±0.9	12.0±1.1	173.5 ±69.9	0.50 (0.00)	0.64(0.00)	
May 26,								
night								
May 27		326	24.9 ± 0.2	11.1 ± 0.5	60.8 ± 5.6	-0.19(0.00)	0.78 (0.00)	
Jun 24, day								
May 27		36	26.1 ± 0.4	12.0 ±1.7	88.4 ±49.6	0.15 (0.39)	0.61(0.00)	
Jun 24, night								
Jun 25		232	27.1 ± 0.2	10.5 ± 0.5	162.2±34.5	-0.25(0.00)	0.57 (0.00)	
Aug 8, day								
Jun 25		47	28.8 ±0.4	8.2 ± 1.1	92.3±75.4	-0.49 (0.00)	0.53 (0.00)	
Aug 8, night								
Whole		1224	<u>23.2 ±0.2</u>	<u>12.4 ±0.3</u>	279.0±48.1	-0.08 (0.00)	0.42 (0.00)	
experimental		_						
period, day								
Whole		166	23.9±0.7	10.2 ± 0.6	100.1 ± 36.4	0.05 (0.56)	0.50 (0.00)	
experimental								
period, night		1		1				

-2 - -1 . • • • • 0.1 with soil oisture

Table 5. Thirty-min N ₂ O flux (μ g N ₂ O-N m ² hr ³) regression equations -(p<0.01) with soil m
(SM, %) and soil temperature (ST, °C) ($u_* u \ge 0.2 \text{ m s}^{-1}$).

Field Code Changed

Date	Day Equation		\mathbf{R}^2	Night Equation		$\underline{\mathbf{R}}^2$		
April 4 -	<u>20.16e ^{19.398SM}</u>		<u>0.45</u>	-137.74+5.64SM+564.48ST		0.62		
April 25								
April 26	<u>209037600SM⁴-11612160SM³+2360304SM²</u>	2 <u>-</u>	0.68	$18e^{16.48SM}$		<u>0.45</u>		
<u>May 26</u>	<u>191720SM+66185.28</u>	<u>191720SM+66185.28</u>						
<u>May 27 -</u>	<u>66154.68SM³-137696.28SM²+967.68SM+10</u>	0.08	0.71	<u>6.048e^{16.31SM}</u>		0.70		
<u>June 24</u>								
June 25 -	$20.16e^{18.35SM}$		0.54	$0.5e^{23.118M}$		<u>0.54</u>		
August 8								
Date	Day Equation	\mathbf{R}^2	Nig	sht Equation	\mathbf{R}^2			
April 4	20.16e ^{19.398SM}	0.4	5 -13	7.736+5.6448SM+564.48ST	0.6	2		
April 25								
April 26 -	209037600SM⁴-11612160SM³+2360304SM²-	0.68	8 180	16.479SM	0.4	5		
May 26	191720SM+66185.28							
May 27 -	66154.68SM³-137696.28SM²+967.68SM+10.08	0.7	1 6.0	48e ^{16.308SM}	0.7	θ		
June 24								
June 25	20.16e ^{18.349SM}	0.54	4 0.5	e ^{23.113SM}	0.5	4		
August 8								

1194	Table 6. Summary of N ₂ O measurements in literature [{mean flux (-or flux range) and cumulative
------	---

1195 emission]), EC indicates eddy covariance method, '-' indicates data or information is not available directly

1196 from the reference.

Reference	Location	Period	Plant	Tillage	Fertilizer,	Method	Flux, µg	Cumulative]
					kg N ha ⁻¹		N ₂ O-N m ⁻²	emission, kg	
							hr-1	N ₂ O-N ha ⁻¹	
this study	Williamson	04.08.2012	Com	No till	217	EC	257.5	6.0	-
uns study	winnamson,	04-08.2012	Com	NO UII	217	EC	237.3	0.9	
	USA						±817.7		Formatted: Font: (Asian) +Body Asian (宋体) (Asian) Chinese (PRC)
Wang et al.	Shanxi, China	0110.2009	Cotton	Till	75	Chamber	1.2468.8	1.43	
(2013)			-						
		0112.2009	Cotton	1111	75	EC	-10.8—912.0	3.15	
Molodovskaya et	Hardford, New	0607.2008	Corn	Till	125	Chamber	30.0±48.0	-	-
al. (2011)	York								
			Alfalfa	Till	750	Chamber	66.0±42.0	-	
			Between	-	-	EC	78.0±420.0		-
			corn and						
			Alfalfa						
Neftel et al.	central	0609.2008	Grass	Till	230	Chamber	121.0	3.1	
(2010)	Switzerland Swiss					EC	56.5	1.5 ^{#<u>b</u>}	Formatted: Font: (Default) Times New Roman, 8 pt, Font color: Auto
Manager 11a at	Sand Dammark	05 2002	Deesh			Chamber	0.0.0.128		
al (2010)	Sorø, Denmark	05.2003	Beech	-	-	Chamber	9.9±0.12=	-	
al.(2010)									
						FG	7.0.0.408		
						EC	7.2±0.40≞	-	
	Kalevansuo,	0406.2007	Pine,	-	-	Chamber	4.5±0.03ª	-	-
	Finland		spruce,						-
			birch			EC	4.6±1.0ª	-	
Lee et al. (2009)	Yolo, California	0409.2004	Corn	Standard	244	Chamber	0- 100.8 ^{be}	3.8	
				till					
				minimum	244	Chamber	0- 412.0 ^{be}	8.5	
				tillage					
Phillips et al.	Mandan, North	0408.2008	Corn	No till	70 (early	Chamber	210.0 ^{<u>c</u>b}	0.6±0.31ª	
(2009)	Dakota				spring)				
	1	1	1	1	1	1		1	

					70 (late spring)	Chamber	270.0 ^{bc}	0.7±0.22ª	
Ussiri et al. (2009)	Clarleston, USA	11.2004- 11.2005	Corn	No till	200	Chamber	12.1	0.9	
				Chisel till	200	Chamber	30.8	2.0	
				Moldboard till	200	Chamber	27.9	1.8	
Li et al. (2008)	Luancheng	19951998	Corn		320.5	Gradient	-4410.0— 4840.0	-	
			Wheat	-	247	Gradient	-2820.0— 3590.0	-	
Eugster et al. (2007)	L ägeren mountain, Switzerland	1011.2005	Beech, spruce	-	-	EC	22.4±11.2 [±]	-	
Kroon et al. (2007)	Reeuwijk, Netherlands	0811.2006	Grass	-	337	EC	187.2±284.4 [±]	-	
Wagner-Riddle et al. (2007)	Ontario, Canada	20002001	Corn	Till	150	Gradient	24.0 ^{<u>de</u>}	1.2±0.08 ^a	
				No till	110	Gradient	17.8 ^{de}	1.0±0.07≞	
		2001-2002	Soybean	Till	-	Gradient	15.0 ^{<u>d</u>e}	0.7±0.06 [±]	
				No till	-	Gradient	10.0 ^{de}	0.5±0.01ª	
		20022003	Wheat	Till	90	Gradient	17.4 ^{<u>d</u>e}	3.0±0.39ª	
				No till	60	Gradient	8.1 ^{<u>d</u>e}	0.7 ±0.11 [±]	
		20032004	Corn	Till	150	Gradient	39.1 ^{₫¢}	1.8±0.20ª	
				No till	110	Gradient	10.1 ^{de}	1.6±0.16 [±]	
		20042005	Soybean	Till	-	Gradient	5.9 ^d e	0.3±0.08 [±]	Formatted: Superscrip
				No till	-	Gradient	3.6 ^{ed}	0.3±0.01ª	
Kitzler et al. (2006)	North Tyrol Limestone Alps, Austria	05.2002 04.2003	Spruce, fir, beech	-	-	Chamber	4.5	0.3±0.11ª	
		05.2003 04.2004	Spruce, fir, beech	-	-	Chamber	4.4	0.4±0.09ª	

Zou et al. (2005)	Nanjing, China	05.2002— 10.2002	Rice	-	0	Chamber	48.2	1.38±0.01ª
					150	chamber	100.0 ^{ª<u>b</u>}	2.67±0.07ª
					300	chamber	170.0 ^{<u>b</u>#}	4.44 ±0.16 ^a
					450	chamber	215.9	6.17±0.42ª
		11.2002— 06.2003	Winter wheat	-	0	chamber	53.8	2.84±0.03 ^a
					100	chamber	91.5	4.83±0.06ª
					200	chamber	110.0 ^{be}	6.44 ±0.08 ^a
					300	chamber	137.8	7.27±0.43ª
Grant and Pattey (2003)	Ottawa, Canada	0507.1998	Corn	Till	155	EC	-	2.2
					99	EC	-	1.2
Laville et al. (1999)	Landes de Gascogne,	06.1999	Corn	Till	200	Chamber	90—990	-
	France					EC	72—1440	-
Simpson et al. (1997)	Saskatehewan, Canada	0409.1994	Aspen	-	-	Gradient	5.04±2.5	-

1199 <u>a. Standard deviations.</u>

1200 a.<u>b.</u> Values are not given directly, calculated from known variables.

1201 b.c. The measurements were taken at 10:00-12:00h daily, and used as the daily flux.

1202 <u>e.d.</u>Median, instead of mean.

Figure 1: Photo of the experimental site, Williamson County (Nolensville, TN).

Figure 2: Time series of measured N_2O concentrations (blue dots, ppbv, 10 Hz) under field conditions and the associated Allan variance, downward sloping straight line shows the theoretical behavior of white noise (with a slope of -1, bracketed by dotdash lines showing the 95% confidence interval), provided by Dr. Mark Zahniser at Aerodyn.

Figure 3: Whole-season histogram of the frequency distribution of time lags of N_2O measurements from wind velocity measurements, found by searching the maximum of cross-covariance.

Figure 4: Normalized cospecta, (left) daytime (7 am to 7 pm May 22, 2012, $u_* \ge 0.2$, L < 0), (right) night time (7 pm May 16 to 7am May 17, 2012, $u_* \ge 0.2$, L < 0). (L is the stability parameter: Monin-Obukhov length (m) output from Eddypro; because under stable conditions (L > 0), the eddies may not have been well developed, the nighttime unstable conditions (L < 0) were chosen). The axis is normalized frequency, n=fz/u, f is natural frequency (Hz); z is measuring height (m); and u is wind speed (m s⁻¹). The idealized undamped cospectrum according to Kaimal et al. (1972) and sensible heat cospectrum are also given.

Figure 5: Daily average N₂O flux (μ g N₂O-N m⁻² hr⁻¹) with rainfall and N fertilizer applications from April 4 to August 8, 2012. Error bars were the standard deviations of all data collected on each day ($u_* \ge 0.2 \text{ m s}^{-1}$), the dates of fertilization were indicated by dashed lines.

Figure 6: Daily average N₂O concentration (ppbv) with rainfall and N fertilizer applications from April 4 to August 8, 2012. Error bars were the standard deviations of all data collected on each day ($u_* \ge 0.2 \text{ m s}^{-1}$), the dates of fertilization were indicated by dashed lines.

Figure 7: Diurnal variation of 30-min N₂O flux of five selected days when day and night were nearly complete (data points > 20 hours/day and $u_* \ge 0.2 \text{ m s}^{-1}$). The five days were April 15, April 25, April 26, June 1 and June 10. Bars are 95% confidence interval. Data were normalized by each day maximum.

Figure 8: Diurnal variation of 30-min N₂O flux for the four sub-periods defined in Table 1, a. the first period, b. the second period, c. the third period, and d. the fourth period. r_{st} is the correlation coefficient of N₂O flux and soil temperature; r_{sm} is the correlation coefficient of N₂O flux and soil moisture.

Figure 9: Cumulative N₂O emission for the experimental site, during April 4 to August 8, 2012. Rainfall and N fertilizer applications data were also shown, 24 days before the experiment (March 10) chicken litter was applied at a rate of 99 kg N ha⁻¹ (not shown on the figure).

Figure 10: Time series 30-min of soil temperature, soil moisture, N_2O concentration, and flux for the whole experimental period. The vertical dashed lines indicate the sub-periods defined in Table 1.

Figure 11: Regression of cumulative N_2O emission on the total applied fertilizer N in 10 different studies (where both amount of fertilizer and cumulative N_2O emission are provided) listed in Table 6, the result of this study is indicated by the red square.