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ABSTRACT 1 

In order to optimize surface CO2 fluxes at gird scales, a regional surface CO2 flux 2 

inversion system (Carbon Flux Inversion system and Community Multi-scale Air 3 

Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter 4 

(EnKF) to constrain the CO2 concentrations and applying the ensemble Kalman 5 

smoother (EnKS) to optimize the surface CO2 fluxes. The smoothing operator is 6 

associated with the atmospheric transport model to constitute a persistence dynamical 7 

model to forecast the surface CO2 flux scaling factors. In this implementation, the 8 

‘signal-to-noise’ problem can be avoided; plus, any useful observed information 9 

achieved by the current assimilation cycle can be transferred into the next assimilation 10 

cycle. Thus, the surface CO2 fluxes can be optimized as a whole at the grid scale in 11 

CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a 12 

set of Observing System Simulation Experiments (OSSEs) by assimilating CO2 13 

retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed 14 

that the CO2 concentration assimilation using EnKF could constrain the CO2 15 

concentration effectively, illustrating that the simultaneous assimilation of CO2 16 

concentrations can provide convincing CO2 initial analysis fields for CO2 flux 17 

inversion. In addition, the CO2 flux optimization using EnKS demonstrated that 18 

CFI-CMAQ could in general reproduce true fluxes at grid scales with acceptable bias. 19 

Two further sets of numerical experiments were conducted to investigate the 20 

sensitivities of the inflation factor of scaling factors and the smoother window. The 21 

results showed that the ability of CFI-CMAQ to optimize CO2 fluxes greatly relied on 22 



 3 

the choice of the inflation factor. However, the smoother window had a slight 1 

influence on the optimized results. CFI-CMAQ performed very well even with a short 2 

lag-window (e.g. 3 days). 3 

 4 

1 Introduction 5 

Considerable progress has been made in recent years to reduce the uncertainties of 6 

surface CO2 flux estimates through the use of an advanced data assimilation technique 7 

(e.g., Chevallier et al., 2005, 2007a and 2007b; Baker et al., 2006; Engelen et al., 2009; 8 

Liu et al., 2012). Feng et al. (2009) showed that the uncertainties of surface CO2 flux 9 

estimates can be reduced significantly by assimilating OCO XCO2 measurements. 10 

Peters et al. (2005, 2007, 2009) developed a surface CO2 flux inversion system, 11 

CarbonTracker, by incorporating the ensemble square-root filter (EnSRF) into the 12 

atmospheric transport TM5 model. And the inversion results obtained by assimilating 13 

in situ surface CO2 observations are in excellent agreement with a wide collection of 14 

carbon inventories that form the basis of the first North American State of the Carbon 15 

Cycle Report (SOCCR) (Peters et al., 2007). CarbonTracker is also well used to 16 

constrain the surface CO2 fluxes over Europe and Asia (eg., Zhang et al., 2014a, 17 

2014b). Kang et al. (2012) presented a simultaneous data assimilation of surface CO2 18 

fluxes and atmospheric CO2 concentrations along with meteorological variables using 19 

the Local Ensemble Transform Kalman Filter (LETKF). They indicated that an 20 

accurate estimation of the evolving surface fluxes can be gained even without any a 21 

priori information. Recently, Tian et al. (2013) developed a new surface CO2 flux data 22 
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assimilation system, Tan-Tracker, by incorporating a joint PODEn4DVar assimilation 1 

framework into the GEOS-Chem model on the basis of Peters et al. (2005, 2007) and 2 

Kang et al. (2011, 2012). They discussed in detail that the assimilation of CO2 surface 3 

fluxes could be improved though the use of simultaneous assimilation of CO2 4 

concentrations and CO2 surface fluxes. Despite the rigor of data assimilation theory, 5 

current CO2 flux-inversion methods still face many challenging scientific problems, 6 

such as: (1) the well-known ‘signal-to-noise’ problem (NRC, 2010); (2) large 7 

inaccuracies in chemical transport models (e.g., Prather et al., 2008); (3) vast 8 

computational expenses (e.g., Feng et al., 2009); and (4) the sparseness of observation 9 

data (e.g., Gurney et al., 2002). 10 

The ‘signal-to-noise’ problem is one of the most challenging issue for an 11 

ensemble-based CO2 flux inversion system due to the fact that surface CO2 fluxes are 12 

the model forcing (or boundary condition), rather than model states (like CO2 13 

concentrations), of the chemistry transport model (CTM). In the absence of a suitable 14 

dynamical model to describe the evolution of the surface CO2 fluxes, most CO2 15 

flux-inversion studies have traditionally ignored the uncertainty of anthropogenic and 16 

other CO2 emissions and focused on the optimization of natural (i.e., biospheric and 17 

oceanic) CO2 emissions at the ecological scale (e.g., Deng et al., 2007; Feng et al., 18 

2009; Peters et al., 2005, 2007; Jiang et al., 2013; Peylin et al., 2013).  19 

This compromise is acceptable to some extent. Indeed, the total amount of 20 

anthropogenic CO2 emissions can be estimated by relatively well-documented global 21 

fuel-consumption data with a small degree of uncertainty (Boden et al., 2011). And 22 
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the uncertainties involved in the total amount of anthropogenic CO2 emissions are 1 

much smaller than those related to natural emissions. However, their spatial 2 

distribution, strength and temporal development still remain elusive, because of their 3 

inherent non-uniformities (Andres et al., 2012; Gurney et al., 2009). Marland (2008) 4 

pointed out that even a tiny amount of uncertainty, i.e., 0.9%, in one of the leading 5 

emitter countries like the U.S. is equivalent to the total emissions of the smaller 6 

emitter countries in the world. Furthermore, the usual values of anthropogenic CO2 7 

emissions in chemical transport models have thus far been simply interpolated from 8 

very coarse monthly-mean fuel consumption data. Therefore, great uncertainty in the 9 

spatiotemporal distributions of anthropogenic emissions likely exists, which could 10 

reduce the accuracy of CO2 concentration simulations and subsequently increase the 11 

inaccuracy of natural CO2 flux inversion results. In addition, current research 12 

approaches tend only to assimilate natural CO2 emissions at the ecological scale, 13 

which is far from sufficient. Therefore, surface CO2 fluxes should be constrained as a 14 

whole at finer scale. 15 

In CarbonTracker (Peters at al., 2007), a smoothing operator is innovatively 16 

applied as the persistence forecast model. In that application, the surface CO2 fluxes 17 

can be treated as the model states and the observed information ingested by the 18 

current assimilation cycle can be used in the next assimilation cycle effectively. 19 

However, the ‘signal-to-noise’ problem is not yet resolved, and thus CarbonTracker 20 

also has to assimilate natural CO2 emissions at the ecological scale only. In 21 

Tan-Tracker (Tian et al., 2013), a 4-D moving sampling strategy (Wang et al., 2010) 22 
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is used to generate the flux ensemble members, and so the surface CO2 fluxes can be 1 

optimized as a whole at the grid scale. In the present reported work, the persistence 2 

dynamical model taken by Peters et al. (2005) was further developed for the purpose 3 

of resolving the ‘signal-to-noise’ problem to optimize the surface CO2 fluxes as a 4 

whole at the grid scale. This process is described in detail in section 2 of this paper. 5 

The surface CO2 flux inversion system presented in this paper was developed by 6 

simultaneous optimizing the surface CO2 fluxes and constraining the CO2 7 

concentrations. As we know, assimilating CO2 observations from multiple sources can 8 

improve the accuracy of simulation results (e.g., Miyazaki, 2009; Liu et al., 2009, 9 

2011, 2012; Tangborn et al, 2013; Huang et al., 2014). In addition, previous studies 10 

showed that the simultaneous assimilation of CO2 concentrations and surface CO2 11 

fluxes can largely eliminate the uncertainty in initial CO2 concentrations on the CO2 12 

evolution (Kang et al., 2012; Tian et al., 2013). Therefore, we also use the 13 

simultaneous assimilation framework and the ensemble Kalman filter (EnKF) was 14 

used to constrain CO2 concentrations and the ensemble Kalman smoother (EnKS) was 15 

used to optimize surface CO2 fluxes. Since the regional chemical transport models, 16 

compared to global models, have some advantages to reproduce the effects of 17 

meso–micro–scale transport on atmospheric CO2 distributions (Ahmadov et al., 2009, 18 

Pillai et al., 2010; Kretschmer et al., 2011), we choose a regional model, Regional 19 

Atmospheric Modeling System and Community Multi-scale Air Quality 20 

(RAMS-CMAQ) (Zhang et al. 2002, 2003, 2007; Kou et al. 2013; Liu et al., 2013; 21 

Huang et al. 2014), to develop this inversion system. For simplicity, this system is 22 
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referred to as CFI-CMAQ (Carbon Flux Inversion system and Community Multi-scale 1 

Air Quality). 2 

Since this is the first time of introducing CFI-CMAQ, we focus mainly on 3 

introducing the methodology in this paper. Nevertheless, in addition, Observing 4 

System Simulation Experiments (OSSEs) were designed to assess the system’s ability 5 

to optimize surface CO2 fluxes. The retrieval information of GOSAT XCO2 are used to 6 

generate artificial observations because of the sparseness and heterogeneity of 7 

ground-based measurements. 8 

 The remainder of the paper is organized as follows. Section 2 describes the 9 

details of the regional surface CO2 flux inversion system, CFI-CMAQ, including the 10 

developed persistence dynamical model, a simple review of the EnKS and EnKF 11 

assimilation approaches, and the process involved. The experimental designs are then 12 

introduced and the assimilation results shown in Sect. 3. Finally, a summary and 13 

conclusions are provided in Sect. 4. 14 

 15 

2 Framework of the regional surface CO2 flux inversion system 16 

Supposed we have the prescribed net CO2 surface flux, *( , , , )F x y z t , which can be 17 

released from a climate model or be generated by others methods, our ultimate goal is 18 

to optimize *( , , , )F x y z t  by assimilating CO2 observations from various platforms. 19 

As an ensemble-based assimilation system, CFI-CMAQ was also developed by 20 

applying a set of linear multiplication factors, similar to the approach by Peters et al. 21 

(2007) and Tian et al. (2013). The ith ensemble member of the surface 22 
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fluxes, ( , , , )iF x y z t , from an N-member ensemble can be described by 1 

*( , , , ) ( , , , ) ( , , , ),       ( 1, , )i iF x y z t x y z t F x y z t i N  ,               (1) 2 

where ( , , , )i x y z t  represents the ith ensemble member of the linear scaling factors 3 

(Peters et al., 2007; Tian et al., 2013) for each time and each grid to be optimized in 4 

the assimilation. The notations are standard: the subscript i  refers to the ith 5 

ensemble member. In the following, ( , , , )i x y z t  is referred to as 
,i t , *( , , , )F x y z t  6 

is referred to as *

tF , and ( , , , )iF x y z t  is referred to as ,i tF  for simplicity. 7 

At each optimization cycle, CFI-CMAQ includes the following four parts in turn 8 

(see Fig. 1): (1) forecasting of the linear scaling factors at time t , a

, | 1i t t ; (2) 9 

optimization of the scaling factors in the smoother window , 10 

a a a a a

, | 1 , 1| 1 , | 1 , 1| 1 , 1| 1( , , , , , , )i t M t i t M t i j t i t t i t t             , by EnKS, Where 11 

a

, | 1  ( 1 , , 1)i j t j t M t      refer to analyzed quantities from the previous 12 

assimilation cycle at time j (see Fig. 1), | 1t   means that these factors have been 13 

updated by using observations before time 1t  , and the superscript a  refers to the 14 

analyzed; (3) updating of the fluxes in the smoother window , 15 

a a a a a

, | 1 , 1| 1 , | 1 , 1| 1 , | 1( , , , , , , )i t M t i t M t i j t i t t i t t        F F F F F ; and (4) assimilation of the forecast 16 

CO2 concentration fields at time t, f ( , , , )iC x y z t ( referred to as f

,i tC , and the 17 

superscript f  refers to the forecast or the background), by EnKF. A flowchart 18 

illustrating CFI-CMAQ is presented in Fig. 2. The assimilation procedure is addressed 19 

in detail below. In addition, the observation operator is introduced, particularly for use 20 

of the GOSAT XCO2 data in Sect. 2.4. Furthermore, covariance inflation and 21 

localization techniques applied in CFI-CMAQ are introduced briefly in Sect. 2.5. 22 
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2.1 Forecasting the linear scaling factors at time t , a

, | 1i t t  1 

In the previous assimilation cycle t-1-M~t-1 (see Fig. 1), the optimized scaling factors 2 

in the smoother window are a a a a a

, 1 | 1 , | 1 , 1| 1 , | 1 , 1| 1( , , , , , )i t M t i t M t i t M t i j t i t t                and 3 

the assimilated CO2 concentration fields at time t-1 are a ( , , , 1)iC x y z t  ( referred to as 4 

a

, 1i tC ). In the current assimilation cycle t-M~t, the scaling factors in the current 5 

smoother window are a a a a a

, | 1 , 1| 1 , | 1 , 1| 1 , | 1( , , , , , , )i t M t i t M t i j t i t t i t t              and the forecast 6 

CO2 concentration fields at time t are f

,i tC .  7 

In order to pass the useful observed information onto the next assimilation cycle 8 

effectively, following Peters et al. (2007) the smoothing operator is applied as part of 9 

the persistence dynamical model to calculate the linear scaling factors a

, | 1i t t , 10 

 

1
a p

, | 1 , | 1

a

, | 1

( )

,       ( 1, , , , , )
1

t

i j t i t t

j t M

i t t i N j t M t
M



 

 





   


  

 ,       (2) 11 

where p

, | 1i t t  refers to the prior values of the linear scaling factors at time t. The 12 

superscript p  refers to the prior. This operation represents a smoothing over all the 13 

time steps in the smoother window (see Fig. 1), thus dampening variations in the 14 

forecast of a

, | 1i t t  in time.  15 

In order to generate p

, | 1i t t , the atmospheric transport model (CMAQ) is applied 16 

and a set of ensemble forecast experiments are carried out. It integrates from time 17 

1t   to t to produce the CO2 concentration fields fˆ ( , , , )iC x y z t  (referred to as 
f

,
ˆ

i tC  18 

hereafter to distinguish from f

,i tC ) forced by the prescribed net CO2 surface flux 19 

*

tF with a

, 1i tC  as initial conditions. Then, the ratio 
f f

, , ,
ˆ ˆ

i t i t i tC C  is calculated, 20 

where 
f f

, ,

1

1ˆ ˆ
N

i t i t

i

C C
N 

  . Supposed that p

, | 1 ,i t t i t    due to the fact that the surface 21 
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CO2 fluxes correlate with its concentrations, the values for p

, | 1i t t  are obtained and 1 

then a

, | 1i t t  can finally be calculated (see the part with red arrows in the flowchart in 2 

Fig. 2).  3 

The way the prior scaling factor p

, | 1i t t  is updated by associating with the 4 

atmospheric transport model is the main improvement over the one used in 5 

CarbonTracker (Peters et al, 2007). In CarbonTracker, all p

, | 1i t t  are set to 1 (Peters et 6 

al., 2007). The distribution of the ensemble members of the linear scaling factors at 7 

time t , p

, | 1i t t , are finally dependent on the distribution of the previous scaling factors 8 

because Eq. (2) is a linear smoothing operator. In this study, the values of p

, | 1i t t  are 9 

updated by associating with the atmospheric transport model. It is important to note 10 

that p

, | 1i t t  in this study are rand fields with mean 1. However, the distribution of 11 

a

, | 1i t t  are dependent on the distribution of all the scaling factors in the smoother 12 

window. An OSSE was designed to illustrate the difference between our method and 13 

the one where p

, | 1i t t  are set to 1 in Sect. 3 14 

It is also important to note that, similar to Peters et al. (2007), this dynamical 15 

model equation still does not include an error term in the dynamical model, and the 16 

model error cannot yet be estimated. However, the covariance inflation is applied to 17 

compensate for model errors before optimization, which is addressed in section 2.5. 18 

2.2 Optimizing the scaling factors in the smoother window by EnKS 19 

Substituting a

, | 1i t t  into Eq. (1), the ith member of the surface fluxes at time t , 20 

a

, | 1i t tF , can be generated. Then forced by a

, | 1i t tF , CMAQ was run from time 1t   to 21 

t  to produce the background concentration field f

,i tC  with a

, 1i tC  as initial 22 
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conditions. 1 

In the current assimilation cycle t-M~t (see Fig. 1), the scaling factors to be 2 

optimized in the smoother window are a a a a a

, | 1 , 1| 1 , | 1 , 1| 1 , | 1( , , , , , , )i t M t i t M t i j t i t t i t t             , 3 

as stated in the first paragraph of Sect. 2.1. Using the EnKS analysis technique, these 4 

scaling factors are updated in turn via 5 

a a e obs f

, | , | 1 , | 1 , ,( ),  ( 1, , , , , )i j t i j t j t t t i t i t i N j t M t       K y y   ,       (3) 6 

e e e 1

, | 1 , | 1 , | 1( )T T

j t t j t t t t tH H H 

   K S P R ,                               (4) 7 

a a a a

, | 1 , | 1 , | 1 , | 1 , | 1

1

1
[ ][ ]

1

N
e T

j t t i j t i j t i t t i t t

iN
    



  

S     ,                      (5) 8 

e a a a a

, | 1 , | 1 , | 1 , | 1 , | 1

1

1
[ ][ ]

1

N
T

t t t i t t i t t i t t i t t

iN
    



  

P     ,                       (6) 9 

f a f

, 1 , | 1 ,( ( )) ( )i t t t i t t i tH H   y C  ,                                  (7) 10 

where e

, | 1j t tK  is the Kalman gain matrix of EnKS, obs

ty  is the observation vector 11 

measured at time t  and f

,i ty  is the simulated values, ,i t  is a random normal 12 

distribution perturbation field with zero mean, e

, | 1j t tS  is the background error 13 

cross-covariance between the state vector a

, | 1i j t  and a

, | 1i t t , e

, | 1t t tP  is the 14 

background error covariance of the state vector a

, | 1i t t , ( )H  is the  observation 15 

operator that maps the state variable from model space into observation space, R  16 

standard deviation representing the measurement errors, and ( )  is the atmospheric 17 

transport model. 18 

In actual implementations, it is unnecessary to calculate e

, | 1j t tS  and e

, | 1t t tP  19 

separately. e

, | 1

T

j t t HS  and e

, | 1

T

t t tH HP  can be calculated as a whole by 20 

e a a f f

, | 1 , | 1 , | 1 ,

1

1
[ ][ ]

1

N
T T

j t t i j t i j t i t t

i

H
N

  



  

S   y y ,                       (8) 21 
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e f f f f

, | 1 , ,

1

1
[ ][ ]

1

TN
T

t t t i t t i t t

i

H H
N





  

P y y y y ,                           (9) 1 

f f f

,

1

1
( ) ( )

N

t t i t

i

H H
N 

  y C C .                                     (10) 2 

After EnKS, a a a a a

, | , 1| , | , 1| , |( , , , , , , )i t M t i t M t i j t i t t i t t         are gained. Then the 3 

corresponding fluxes in the smoother window 4 

a a a a a

, | , 1| , | , 1| , |( , , , , , , )i t M t i t M t i j t i t t i t t   F F F F F can be gained (see the part with green arrows 5 

in the flowchart in Fig. 2) by substituting a a a a a

, | , 1| , | , 1| , |( , , , , , , )i t M t i t M t i j t i t t i t t         into 6 

Eq. (1).   7 

Then the ensemble mean values of the assimilated fluxes in the smoother 8 

window can be calculated via, 9 

a a

, | , |

1

1
,  ( , , )

N

i j t i j t

i

j t M t
N 

  F F ,                             (11) 10 

Finally, those ensemble mean assimilated fluxes which are before the next 11 

smoother window and will not be updated by the succeeding observations are 12 

regarded as the final optimized fluxes. We referred them as a

tF  for simplicity. 13 

2.3 Assimilating the CO2 concentration fields at time t by EnKF 14 

The analysis of CO2 concentrations fields at time t in the EnKF scheme is updated via 15 

a f obs f

, , ,( )i t i t t t i t   K C C y y ,                                 (12) 16 

f f 1( )T TH H H  K P P R ,                                    (13) 17 

where K  is the Kalman gain matrix of EnKF, 
f

P  is the background error 18 

covariance among the background CO2 concentration fields f

,i tC . 19 

In actually application, 
f THP  and 

f TH HP  can be calculated as a whole by 20 
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f f f f f

, ,

1

1
[ ][ ]

1

N
T T

i t t i t t

i

H
N 

  

P C y yC  ,                            (14) 1 

f f f f f

, ,

1

1
[ ] [ ]

1

N
T T T

i t t i t t

i

H H
N 

  

P y y y y ,                           (15) 2 

f f

,

1

1 N

t i t

iN 

 C C                                                 (16) 3 

Finally, the ensemble mean values of the assimilated CO2 concentrations fields can be 4 

gained via, 5 

  
a a

,

1

1 N

t i t

iN 

 C C                                                (17) 6 

where a

tC  is regarded as the final analyzing concentration field.  7 

2.4 The observation operator 8 

As mentioned above, the observation operator ( )H   transforms the state variable 9 

from model space into observation space. Usually, it is the spatial bilinear interpolator 10 

for traditional ground-based observations. Since the GOSAT XCO2 retrieval is a 11 

weighted CO2 column average, the simulated XCO2 should be calculated with the same 12 

weighted column average method (Connor et al., 2008; Crisp et al., 2010, 2012; 13 

O’Dell et al, 2012). So, the observation operator to assimilate the GOSAT XCO2 14 

retrieval is  15 

f a f priori f priori

1 , | 1 , CO2 ,( ( )) ( ) ( ( ) )T

i,t t t i t t i t i tH H S      y C y h a C f  ,        (18) 16 

where f

i,ty  is the simulated XCO2; 
priori

y  is the a priori CO2 column average used in 17 

the GOSAT XCO2 retrieval process; ( )S   is the spatial bilinear interpolation operator 18 

that interpolates the simulated fields to the GOSAT XCO2 locations to obtain the 19 

simulated CO2 vertical profiles there; priorif  is the a priori CO2 vertical profile used 20 



 14 

in the retrieval process; h  is the pressure weighting function, which indicates the 1 

contribution of the retrieved value from each layer of the atmosphere; and 
2COa  is 2 

the normalized averaging kernel. 3 

2.5 Covariance inflation and localization 4 

In order to keep the ensemble spread of the CO2 concentrations at a certain level and 5 

compensate for transport model error to prevent filter divergence, covariance inflation 6 

is applied before updating the CO2 concentrations. So, 7 

f f f f

, new , , ,( ) ( )i t i t i t i t  C C C C ,                                       (19) 8 

where   is the inflation factor of CO2 concentrations and f

, new( )i tC  is the final field 9 

used for data assimilation. 10 

Similarly, covariance inflation is also used to keep the ensemble spread of the prior 11 

scaling factors at a certain level and compensate for dynamical model error. So,  12 

p p p p

, | 1 new , | 1 , | 1 , | 1( ) ( )i t t i t t i t t i t t         ,                               (20) 13 

where   is the inflation factor of scaling factors and p

, | 1 new( )i t t  is the final scaling 14 

factors used for data assimilation. 15 

In addition, the Schur product is utilized to filter the remote correlation resulting 16 

from the spurious long-range correlations (Houtekamer and Mitchell 2001). So, the 17 

Kalman gain matrix e

, | 1j t tK  and K  are updated via, 18 

e e e 1

, | 1 , | 1 , | 1[( ) ( ( ) )T T

j t t j t t t t tH H H 

   K S P R  ,                      (21) 19 

f f 1[( ) ][( ( ) ]T TH H H  K P P R  ,                            (22) 20 

where the filtering matrix   is calculated using the formula 21 
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where c  is the element of the localization Schur radius. The matrix   can filter the 2 

small background error correlations associated with remote observations through the 3 

Schur product (Tian et al., 2011). And the Schur product tends to reduce the effect of 4 

those observations smoothly at intermediate distances due to the smooth and 5 

monotonically decreasing of the filtering matrix. 6 

 7 

3 OSSEs for evaluation of CFI-CMAQ 8 

A set of OSSEs were designed to quantitatively assess the performance of 9 

CFI-CMAQ. The setup of the experiments and the results are described in this section. 10 

3.1 Experimental setup 11 

The chemical transport model utilized was RAMS-CMAQ (Zhang et al., 2002), in 12 

which CO2 was treated as an inert tracer. The model domain was 6654 × 5440 km
2
 on 13 

a rotated polar stereographic map projection centered at (35.0°N, 116.0°E), with a 14 

horizontal grid resolution of 64 × 64 km
2
 and 15 vertical layers in the σz-coordinate 15 

system, unequally spaced from the surface to approximately 23 km. The initial fields 16 

and boundary conditions of the CO2 concentrations were interpolated from the 17 

simulated CO2 fields of CarbonTracker 2011 (Peters, 2007). The prior surface CO2 18 
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fluxes included biosphere–atmosphere CO2 fluxes, ocean–atmosphere CO2 fluxes, 1 

anthropogenic emissions, and biomass-burning emissions (Kou et al., 2013), 2 

p

bio oce ff fire( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , )F x y z t F x y z t F x y z t F x y z t F x y z t    ,  (24) 3 

where p ( , , , )F x y z t  (referred to as p

tF ) was the prior surface CO2 flux; 4 

bio ( , , , )F x y z t  and 
oce ( , , , )F x y z t  were the biosphere–atmosphere and 5 

ocean–atmosphere CO2 fluxes, respectively, which were obtained from the optimized 6 

results of CarbonTracker 2011 (Peters, 2007); 
ff ( , , , )F x y z t  was fossil fuel emissions, 7 

adopted from the Regional Emission inventory in ASia (REAS, 2005 Asia monthly 8 

mean emission inventory) with a spatial resolution of 0.5° × 0.5° (Ohara et al., 2007); 9 

fire ( , , , )F x y z t  was biomass–burning emissions, provided by the monthly mean 10 

inventory at a spatial resolution of 0.5° × 0.5° from the Global Fire Emissions 11 

Database, Version 3 (GFED v3) (Van der Werf et al., 2010). Among all these fluxes, 12 

bio ( , , , )F x y z t , oce( , , , )F x y z t  and ff ( , , , )F x y z t  had nonzero values at model level 1, 13 

while they all were zeros at other 14 levels. However, fire ( , , , )F x y z t  had nonzero 14 

values at model level 2~5 except model level 1. So, all fluxes in this paper were the 15 

function of ( , , , )x y z t  for convenience. 16 

Firstly, the prior flux p

tF  was assumed as the true surface CO2 flux in all of the 17 

following OSSEs. Forced by p

tF , the RAMS-CMAQ model was run to produce the 18 

artificial true CO2 concentration results ( , , , )pC x y z t (refer to as p

tC  in the 19 

following). Then, the artificial GOSAT observations obs

ty  (or p

2COX ) were generated 20 

by substituting p

tC  into the observation operator in Eq. (18). The retrieval 21 

information of GOSAT XCO2(
priori

y , priorif , h  and 2COa ) needed in Eq. (18) were 22 
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gained from the v2.9 Atmospheric CO2 Observations from Space (ACOS) Level 2 1 

standard data products, which only utilized the SWIR observations. Only data 2 

classified into the “Good” category were utilized in this study. During the retrieval 3 

process, most of the soundings (such as data with a solar zenith angle greater than 85°, 4 

or data not in clear sky conditions, or data collected over ocean but not in glint, etc.) 5 

were not processed, so typically data products for the “Good” category contained only 6 

10-100 soundings per satellite orbit (Osterman et al., 2011), and there were only 0~60 7 

samples per orbit in the study model domain generally. Fig. 3 (a) also showed the total 8 

number of “good” GOSAT XCO2 observations for each model grid in February in 2010. 9 

There were relatively more observations over most continental regions of the study 10 

domain except some regions in North-East and South China. The total numbers 11 

ranged from 1 to 8. However, there were almost no data over oceans of the study 12 

domain.  13 

Secondly, the prescribed surface CO2 fluxes series *

tF  were created by 14 

* p(1.8 ( , , , ))t tx y z t F F ,                                 (25) 15 

where   was a random number. They were standard normal distribution time series 16 

at each grid in the integration period of our numerical experiment. Driven by *

tF , the 17 

RAMS-CMAQ model was integrated to obtain the CO2 simulations 18 

( , , , , )fC x y z t (referred to as f

tC  hereafter). Then, the column-averaged 19 

concentrations f

2COX  were obtained using Eq. (18). 20 

The performance of CFI-CMAQ was evaluated through a group of well-designed 21 

OSSEs. And the goal of each OSSE was to retrieve the true fluxes p

tF  from given 22 
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true observations p

2COX  and “wrong” fluxes *

tF . In all the OSSEs, we assimilated 1 

artificial observations p

2COX  about three times a day since GOSAT has about three 2 

orbits in the study model domain. If there were some observations, CFI-CMAQ 3 

paused to assimilate. Otherwise, it continued simulating. The default ensemble size N 4 

was 48, the measurement errors were 1.5 ppmv, the standard localization Schur radius 5 

c  was 1280 km (20 grid spacing), and the covariance inflation factor of 6 

concentrations   was 1.1. The referenced lag-window was 9 days and the 7 

covariance inflation factor of the prior scaling factors   was 70. Since the smoother 8 

window was very important for CO2 transportation and   was a newly introduced 9 

parameter, both these parameters were further investigated by several numerical 10 

sensitivity experiments. The primary focus of this paper was to describe the 11 

assimilation methodology, so all the numerical experiments started on 1 January 2010 12 

and ended on 30 March 2010. 13 

As for the initialization of CFI-CMAQ, only the ensemble of background 14 

concentration fields f

,0iC  needed to be initialized at the time 0t   because the 15 

values of a

, | 1i t t  were updated by using the persistence dynamical model. In practice, 16 

the mean concentration fields at 0t   are interpolated from the simulated CO2 fields 17 

of CarbonTracker 2011 (Peters, 2007). The ensemble members of the background 18 

concentration fields were created by adding random vectors. The mean values of the 19 

random vectors were zero and the variances were 2.5 percent of the mean 20 

concentration fields. Then the atmospheric transport model integrated from time 21 

0t   to 1t   driven by *

tF  with f

,0iC  as initial conditions to produce the CO2 22 
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concentration fields f

,1
ˆ

iC . And then the first prior linear scaling factors, p

,1|0i , could 1 

be calculated by applying f

,1
ˆ

iC . Assumed a p

,1|0 ,1|0i i  , a

,1|0i  are gained finally. For the 2 

first assimilation cycle, the lag-window was only one (that is, only a

,1|0i  needed to be 3 

optimized in the first assimilation cycle). And it increased for the first dozens of 4 

assimilation cycles until it reached M+1 as CFI-CMAQ continued to assimilate 5 

observations. Once the system was initialized, all future scaling factors could be 6 

created using the persistence dynamical model, which was associated the smoothing 7 

operator with the atmospheric transport model. 8 

In order to illustrate the limitation by only using the smoothing operator as the 9 

persistence dynamical model to generate all future scaling factors, another OSSE 10 

(referred to as the reference experiment to distinguish it from the above-mentioned 11 

CFI-CMAQ OSSEs) was designed to optimize the surface CO2 fluxes at grid scale. 12 

The reference experiment was under the same assimilation framework as CFI-CMAQ 13 

except that all p

, | 1i t t  were set to 1 (Peters et al., 2007). Besides, the initialization 14 

procedure of the reference experiment was different from that of the CFI-CMAQ. In 15 

practice, both the ensemble of background concentration fields at 0t  , f

,0iC , and the 16 

ensemble members of the scaling factors at 1t  , a

,1|0i , needed to be initialized 17 

because they could not generated by other ways (Peters et al., 2005). The initial 18 

concentration fields f

,0iC  were created using the same method as that was used to 19 

generate f

,0iC  for the CFI-CMAQ OSSEs. The ensemble members of the scaling 20 

factors a

,1|0i  were rand fields. Their mean values were 1 and their variances were 0.1. 21 

In addition, in order to keep the ensemble spread of the scaling factors 
a

, | 1i t t  at a 22 
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certain level and compensate for dynamical model error, covariance inflation was also 1 

used and the covariance inflation factor of the scaling factors a

, | 1i t t  was 1.6. All 2 

other parameters are the same as used in the CFI-CMAQ OSSEs. The ensemble size N 3 

was 48, the measurement errors were 1.5 ppmv, the standard localization Schur radius 4 

c  was 1280 km, the covariance inflation factor of concentrations   was 1.1, and 5 

the lag-window was 9 days. 6 

3.2 Experimental results 7 

Essentially, the assimilation part of CFI-CMAQ includes two subsections: one for the 8 

CO2 concentration assimilation with EnKF, which can provide a convincing CO2 9 

initial analysis fields for the next assimilation cycle; and the other for the CO2 flux 10 

optimization with EnKS, which can provide better estimation of the scaling factors for 11 

the next time though the persistence dynamical model except for optimized CO2 12 

fluxes. The performance of the EnKF subsection will be greatly influenced by the 13 

validation of the EnKS subsection, or vice versa. Firstly, the performance of 14 

CFI-CMAQ will be quantitatively assessed in detail by using the assimilated results of 15 

a CFI-CMAQ OSSE, in which the lag-window was 9 days and   was 70. Then the 16 

sensitivities of   and the lag-window will be discussed in the following two 17 

paragraphs. And finally, the assimilation results of the reference experiment in 18 

which p

, | 1i t t  were set to 1 will be described in brief at the end of this subsection. 19 

We begin by describing the impacts of assimilating artificial observations p

2COX  20 

on CO2 simulations by CFI-CMAQ. As shown in Figs. 4a, 4b and 4d, the monthly 21 

mean values of the background CO2 concentrations f

tC  produced by the magnified 22 
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surface CO2 fluxes *

tF  were much larger than those of the artificial true CO2 1 

concentrations p

tC  produced by the prior surface CO2 fluxes p

tF  near the surface in 2 

February 2010. In the east and south of China especially, the magnitude of the 3 

difference between p

tC  and f

tC  was at least 6 ppmv. Also, as expected, the monthly 4 

mean f

2COX  was much larger than the monthly mean artificial observations p

2COX , 5 

and the magnitude of the difference between p

2COX  and f

2COX  reached 2 ppmv in 6 

the east and south of China (see Figs. 3b, 3c and 3e). However, the impact of 7 

magnifying surface CO2 fluxes on the CO2 concentrations was primarily below the 8 

model-level 10 (approximately 6 km), and especially below model-level 7 9 

(approximately 1.6 km). And above model-level 10, the differences between p

tC  and 10 

f

tC  fell to zero (see Fig. 5a and 5b). After assimilating p

2COX , the analysis CO2 11 

concentrations a

tC  was much closer to p

tC  (see Figs. 4c, 4e and 4f). The monthly 12 

mean difference between p

tC  and a

tC  ranged from −2 to 2 ppmv and the relative 13 

error ( p

tC  — a

tC )/ p

tC  ranged from −1 to 1% in almost the entire model domain at 14 

model-level 1. The monthly mean differences between p

tC  and a

tC  were negligible 15 

above model-level 2 (see Fig. 5c and 5d). The monthly mean a

2COX  was also closer 16 

to p

2COX  and the difference between p

2COX  and a

2COX  ranged from −0.5 to 0.5 17 

ppmv. In order to evaluate the general impact of assimilating p

2COX  in the surface 18 

layer, time series of the daily mean CO2 concentration extracted from the background 19 

simulations and the assimilations were compared with the artificial true simulations at 20 

four national background stations in China and their nearest large cities. As shown in 21 

Fig. 3a, Waliguan is 150 km away from Xining, Longfengshan is 180 km away from 22 
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Haerbin, Shangdianzi is 150 km away from Beijing, and Linan is 50 km away from 1 

Hangzhou. The assimilated results are shown in Fig. 6. The background time series 2 

were much larger than the artificial true time series, especially at Shangdianzi, Beijing, 3 

Linan and Hangzhou, which are strongly influenced by local anthropogenic CO2 4 

emissions. After assimilating p

2COX , the assimilated time series were very close to the 5 

true time series with negligible bias, as expected, at Waliguan, Xining, Shangdianzi, 6 

Beijing, Linan and Hangzhou, especially after the first 10 days, which can be 7 

considered the spin-up period. Meanwhile, the improvements at Longfengshan and 8 

Haerbin were limited due to the absence of observation data at those locations (see 9 

Fig. 3a). Nevertheless, in general, the substantial benefits to the CO2 concentrations in 10 

the surface layer of assimilating GOSAT XCO2 with EnKF are clear. All the results 11 

illustrated that CFI-CMAQ can provide a convincing CO2 initial analysis fields for 12 

CO2 flux inversion. 13 

The impacts of assimilating p

2COX  on surface CO2 fluxes were also highly 14 

impressive by CFI-CMAQ. On the whole, the prescribed CO2 surface fluxes *

tF  15 

were much larger than the true surface CO2 fluxes p

tF  in February 2010, especially 16 

in the east and south of China. The monthly mean difference between *

tF  and p

tF  17 

reached 0.5 μmole m
−2

 s
−1

 in Jing-Jin-Ji, the Yangtze River Delta, and Pearl River 18 

Delta Urban Circle because of the strong local anthropogenic CO2 emissions (see Figs. 19 

7a, 7b and 7d). After assimilating p

2COX , the ensemble mean of the assimilated 20 

surface CO2 fluxes 
a

tF  decreased sharply. Thus, the monthly mean values of 
a

tF  21 

were much smaller than *

tF  in most of the model domain in February 2010. The 22 
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pattern of the difference between a

tF  and *

tF  was similar to that of the difference 1 

between p

tF  and *

tF  (see Figs. 7b-e). The ensemble mean of the assimilated 2 

surface CO2 fluxes a

tF  were also compared to the artificial true fluxes p

tF , 3 

revealing that a

tF  was equivalent to p

tF  in most of the model domain. The monthly 4 

mean difference between a

tF  and p

tF  ranged from −0.01 to 0.01 μmole m
−2

 s
−1

 5 

only (see Fig. 7f). In addition, the root-mean-square errors (RMSEs) of the 6 

assimilated flux members were analyzed. As shown in Fig. 8, the monthly mean 7 

RMSE was less than 0.05 μmole m
−2

 s
−1

 in most of the model domain, except in areas 8 

near to large cities such as Beijing, Shanghai and Guangzhou, indicating that the 9 

assimilated CO2 fluxes were reliable. 10 

In order to evaluate the ability of CFI-CMAQ to optimize the surface CO2 fluxes 11 

comprehensively, the ratios of the monthly mean p

tF  to the monthly mean 
*

tF were 12 

analyzed. In actual implementation, we only analyzed the ratios where the absolute 13 

values of the monthly mean *

tF  were larger than 0.01, to avoid random noise. As 14 

shown in Fig. 9a, the ratios of the monthly mean p

tF  to the monthly mean *

tF  15 

ranged from 0.5 to 0.65, which were consistent with 1 1.8 0.556 , in most of China, 16 

except in the Qinghai–Tibet Plateau, where the absolute values of the monthly mean 17 

*

tF  were very small in February. The ratios varied greatly in the Indo-China 18 

Peninsula because of strong diurnal variation of CO2 fluxes. The ratios of the monthly 19 

mean p

tF  to the monthly mean 
*

tF  was equal to  20 

p * p p

Feb Feb Feb Feb

1 (1.8 )t t t t    F F F F . So the values of the ratios were related to 21 

the ratios of 
p

Feb

t F  to 
p

Feb

tF . Imagining the extreme case that 
p

tF  was a constant, 22 
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the ratios would be 
Feb

1 1 (1.8 ) 1/1.8n   ( n  was the number of the flux) 1 

because   were standard normal distribution time series at each grid. In most china, 2 

the diurnal variation of CO2 fluxes were small in February, so the ratios of the 3 

monthly mean p

tF  to the monthly mean *

tF  were consistent with 1 1.8 0.556 . 4 

While in the Indo-China Peninsula, the CO2 fluxes there ranged from -1.5 to 1μmole 5 

m
−2

 s
−1

, because of strong photosynthesis in the day. So 
p

Feb

t F  varied greatly, which 6 

finally leaded to the great variation of the ratios there.  7 

In addition, the ratios of the monthly mean a

tF  to the monthly mean *

tF  and 8 

the ratios of the monthly mean a

tF  to the monthly mean p

tF  are shown in Fig. 9b 9 

and 9c, respectively. These two figures demonstrate that the impact of the assimilation 10 

of p

2COX  by CFI-CMAQ on CO2 fluxes was great in the east and south of China in 11 

general, but the influence was negligible in Northeast China due to the lack of 12 

observation data. 13 

Time series of daily mean surface CO2 fluxes extracted from *

tF  and a

tF  were 14 

also compared with that from p

tF  at four national background stations in China and 15 

their nearest large cities, similar to the CO2 concentration assimilation. The results are 16 

shown in Fig.10. The background time series were much larger than the artificial true 17 

time series, especially at Haerbin, Shangdianzi, Beijing, Linan and Hangzhou, which 18 

are strongly influenced by local anthropogenic CO2 emissions. After 19 

assimilating p

2COX , the assimilated time series were near to the true time series with 20 

acceptable bias, as expected, at Waliguan, Xining, Shangdianzi, Linan and Hangzhou 21 

after the 10-day spin-up period. However, the improvements at Longfengshan and 22 
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Haerbin were negligible because of a lack of observations at these locations. Also, this 1 

inversion system failed to show improvements at Beijing. One of the possible reasons 2 

was that the impact of advection transport of CO2 was ignored during the procedure of 3 

CO2 flux inversion. Beijing was located in the edge of Jing-Jin-Ji, which had strong 4 

local anthropogenic CO2 emissions during January to March. However, the CO2 5 

concentration observations at a given time t  near Beijing only had the fluxes 6 

information of the area around Beijing at time t  and the foregoing fluxes 7 

information of the upstream areas, which might had relatively small local CO2 8 

emissions. Therefore, the assimilated time series would be smaller than the true time 9 

series in Beijing when we constrained the surface CO2 fluxes by using the 10 

observations directly without considering the impact of advection transport of CO2. 11 

Later, CFI-CMAQ will be improved by considering the impact of advection transport 12 

of CO2. 13 

Since the impact of assimilation p

2COX  by CFI-CMAQ on CO2 fluxes was in 14 

general greater in the east and south of China than other model areas (see Figs.7e and 15 

9b), the time series of the daily mean CO2 fluxes in that area averaged from 
a

tF  was 16 

compared with those from *

tF  and p

tF , as well as their ratios (see Fig. 11). The two 17 

figures indicate that CFI-CMAQ could in general reproduce the true fluxes with 18 

acceptable bias. 19 

As stated in the above section,   was a newly introduced parameter. The prior 20 

scaling factors should have been inflated indirectly though the inflated CO2 21 

concentration forecast. However, the values of the ensemble spread of p

, | 1i t t  before 22 
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inflating were very small (ranging from 0 to 0.08 in most area at model-level 1, see 1 

Fig. 11b), though the values of the ensemble spread of f

,i tC  after inflating could 2 

reach 1 to 14 ppmv in most area at model-level 1 (see Fig. 11a). So we had to inflate 3 

them again before using them into Eq. (2) . Fig. 11c showed the distribution of the 4 

ensemble spread of a

, | 1i t t  at model-level 1 at 00 UT on 1 March 2010 when 70  . It 5 

showed that the values of the ensemble spread of a

, | 1i t t  ranged from 0.1 to 0.8 in 6 

most area. In order to investigate the sensitivity of the inflation factor of the scaling 7 

factors , a series of numerical experiments were conducted. As shown in Fig. 12, 8 

CFI-CMAQ worked rather well for   60, 70, 75, 80. However, if   was much 9 

smaller than 50 (e.g.   10), the impact of assimilation was small due to the small 10 

ensemble spread; or if   was much larger than 80 (e.g.   100), the assimilated 11 

CO2 fluxes deviated markedly from the “true” CO2 fluxes. In other words, the 12 

performance of CFI-CMAQ greatly relies on the choice of  .  13 

From the perspective of the lag-window, the differences among the four 14 

assimilation sensitivity experiments with lag-windows of 3, 6, 9 and 12 days were 15 

very small (see Fig. 13). Although Peters et al. (2007) indicated that the lag-window 16 

should be more than five weeks, it seemed that the smoother window had a slight 17 

influence on the assimilated results for CFI-CMAQ. It was clear that the assimilated 18 

results with a larger lag-window were better than those with a smaller lag-window; 19 

however, CFI-CMAQ performed very well even with a short lag-window (e.g. 3 20 

days). 21 

At the end of this subsection, the assimilation results of the reference experiment 22 
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in which p

, | 1i t t  were set to 1 will be addressed briefly. The impact of assimilation 1 

p

2COX  on CO2 fluxes was disordered. The monthly mean values of the difference 2 

between the prior true surface CO2 fluxes and the ensemble mean values of the 3 

assimilated surface CO2 fluxes were irregular noise (see Fig. 14). The main reason is 4 

that all the elements of the scaling factors to be optimized in the smoother window are 5 

only random numbers. As stated in the above section, only a

,1|0i  needed to be 6 

optimized in the first assimilation cycle. However, a

,1|0i  were rand fields (in other 7 

words, all the elements of a

,1|0i  are only random numbers) because they could not 8 

generated by other ways at the first time. So their spatial correlations were too small. 9 

The correlations between the scaling factors and the observations were also too small. 10 

Therefore it was impossible to systematically change the values of a

,1|0i  in large areas 11 

where the observations located after assimilating observations at 1t  . Thus the 12 

signal-to-noise problem arose. So the elements of 
a

,1|1i  are only random numbers too. 13 

Though a

,2|1i  could be generated automatically by the smoothing operator when all 14 

p

,2|1i  were set to 1, the elements of 
a

,2|1i  are random numbers too since the smoothing 15 

operator is only a linear operator. Similarly, it was impossible to systematically 16 

change the values of a

,1|1i  and a

,2|1i  in large areas after assimilating observations at 17 

2t  . As this inversion system continued assimilating observations, all future scaling 18 

factors could be created by the smoothing operator and then updated. But this 19 

inversion system could not ingest the observations effectively because all the elements 20 

of the scaling factors were always random numbers. However, all the elements of the 21 

scaling factors in CFI-CMAQ are state variable with spatial correlations because they 22 
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were created by the persistence dynamical model, which is associated the smoothing 1 

operator with the atmospheric transport model. Therefore, we could get effective 2 

values after assimilating the observations. 3 

 4 

4 Summary and conclusions 5 

A regional surface CO2 flux inversion system, CFI-CMAQ, has been developed 6 

to optimize CO2 fluxes at grid scales. It operates under a joint data assimilation 7 

framework by applying EnKF to constrain the CO2 concentrations and applying EnKS 8 

to optimize the surface CO2 flux, which is similar to Kang et al. (2011, 2012) and 9 

Tian et al. (2013). The persistence dynamical model, which was first introduced by 10 

Peters et al. (2007) by applying the smoothing operator to transport the useful 11 

observed information onto the next assimilation cycle, is further developed. We 12 

associated the smoothing operator with the atmospheric transport model to constitute 13 

the persistence dynamical model to forecast the surface CO2 flux scaling factors for 14 

the purpose of resolving the ‘signal-to-noise’ problem, as well as transporting the 15 

useful observed information onto the next assimilation cycle. In this application, the 16 

scaling factors to be optimized in the flux inversion system can be forecast at the grid 17 

scale without random noise. The OSSEs showed that the performance of CFI-CMAQ 18 

is effective and promising. In general, it could reproduce the true fluxes at the grid 19 

scale with acceptable bias. 20 

This study represents the first step in developing a regional surface CO2 flux 21 

inversion system to optimize CO2 fluxes over East Asia, particularly over China. In 22 



 29 

future, we intend to further develop the covariance localization techniques and 1 

inflation techniques to improve the performance of CFI-CMAQ. Furthermore, the 2 

uncertainty of the boundary conditions should be considered to improve the 3 

effectiveness of regional CO2 flux optimization. 4 
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Fig. 1. Schematic diagram of the smoother window. 2 

a a a a a

, 1 | 1 , | 1 , 1| 1 , | 1 , 1| 1( , , , , , )i t M t i t M t i t M t i j t i t t                are the optimized scaling factors in 3 

the smoother window and a

, 1i tC  are the assimilated CO2 concentrations fields at time 4 

1t   in the previous assimilation cycle t-1-M~t-1. 5 

a a a a f

, | 1 , 1| 1 , | 1 , 1| 1 ,( , , , , , , )i t M t i t M t i j t i t t i t             are the scaling factors in the smoother 6 

window and f

,i tC  are the forecast CO2 concentrations fields at time t  which need to 7 

be optimized in the current assimilation cycle t-M~t. 8 
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Fig. 2. Flowchart of the CFI-CMAQ system used to optimize surface CO2 fluxes at 10 

each assimilation cycle. The system includes the following four parts in turn: (1) 11 

forecasting of the linear scaling factors a

, | 1i t t  (red arrows); (2) optimization of the 12 

scaling factors in the smoother window by EnKS (see Fig. 1) (blue arrows); (3) 13 

updating of the flux in the smoother window (green arrows); and (4) assimilation of 14 

the CO2 concentration fields at time t by EnKF (black arrows). 15 

 16 

Fig. 3. (a) Total number of observations in February 2010 in the model grid. Each 17 

symbol indicates the total number of all GOSAT XCO2 measurements in the 18 

corresponding model grid. Monthly mean values in February 2010 of (b) p

2COX , 19 

column mixing ratio of p

tC ; (c) f

2COX , column mixing ratio of f

tC ; (d) 
a

2COX , 20 

column mixing ratio of 
a

tC ; (e) p f

2 2CO COX X ; and (f) 
p a

2 2CO COX X . All column 21 

mixing ratios are column-averaged with real GOSAT XCO2 averaging kernels at 22 

GOSAT XCO2 locations. Each symbol indicates the monthly average value of all XCO2 23 
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estimates in the model grid. a

tC  are the ensemble mean values of the assimilated 1 

CO2 concentrations fields of a CFI-CMAQ OSSE, in which the lag-window was 9 2 

days and   was 70. And they are the same OSSE in Fig. 3 to Fig. 6. 3 

 4 

Fig. 4. Monthly mean values of (a) p

tC , the artificial true simulations driven by the 5 

prior surface CO2 fluxes p

tF ; (b) f

tC , the background simulations driven by 6 

magnified surface CO2 fluxes * p(1.8 ( , , , ))t tx y z t F F ; (c) a

tC , the ensemble 7 

mean values of the assimilated CO2 concentrations fields; (d) p f

t tC C ; (e) p a

t tC C ; 8 

and (f) p a p100*( )t t tC C C  at model-level 1 in February 2010. Black lines EF and 9 

GH indicate the positions of the cross sections shown in Fig. 5. 10 

 11 

Fig. 5. Monthly mean cross sections of p f

t tC C  along line (a) EF and (b) GH, and 12 

monthly mean cross sections of p a

t tC C  along line (c) EF and (d) GH (cross section 13 

lines shown in Fig. 4d) in February 2010. 14 

 15 

Fig. 6. Daily mean time series of CO2 concentrations at national background stations 16 

in China and their nearest large cities from 1 Jan. to 20 Mar. 2010 extracted from the 17 

artificial true simulations p

tC  (black), background simulations f

tC  (red), and the 18 

ensemble mean values of the assimilated CO2 concentrations fields 
a

tC  (blue). All 19 

time series were interpolated to the observation locations by the spatial bilinear 20 

interpolator method. The sites used are (a) Waliguan (36.28°N, 100.91°E), (b) Xining 21 

(36.56°N, 101.74°E), (c) Longfengshan (44.73°N, 127.6°E), (d) Haerbin (45.75°N, 22 

126.63°E ), (e) Shangdianzi (40.65°N, 117.12°E), (f) Beijing (39.92°N, 116.46°E), (g) 23 
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Linan (30.3°N, 119.73°E), and (h) Hangzhou (30.3°N,120.2°E). 1 

 2 

Fig. 7. Monthly mean values in February 2010 of (a) p

tF , the prior true surface CO2 3 

fluxes; (b) *

tF , the prescribed CO2 surface fluxes, * p(1.8 ( , , , ))t tx y z t F F ; (c) 4 

a

tF , the ensemble mean values of the assimilated surface CO2 fluxes; (d) p *

t tF F ; (e) 5 

a *

t tF F ; and (f) a p

t tF F  (units: μmole m
−2

 s
-1

). a

tF are the assimilated results of 6 

an CFI-CMAQ OSSE, in which the lag-window was 9 days and   was 70. And they 7 

are the same in Fig. 7 to Fig. 10. 8 

 9 

Fig. 8. Monthly mean RMSEs of a

tF  in February 2010 (units: μmole m
−2

 s
−1

). 10 

 11 

Fig. 9. (a) Ratios of monthly mean p

tF  to monthly mean *

tF ; (b) ratios of monthly 12 

mean a

tF  to monthly mean *

tF ; and (c) ratios of monthly mean a

tF  to monthly 13 

mean p

tF  in Feb. 2010. The white part indicates the ratios where the absolute values 14 

of monthly mean *

tF  are larger than 0.01, not analyzed in this study. The black 15 

square labeled I indicates the domain where surface CO2 fluxes were used for the 16 

results presented in Fig. 12 and 13. 17 

 18 

Fig. 10. Daily mean time series of CO2 fluxes at national background stations in 19 

China and their nearest large cities from 1 Jan to 20 Mar. 2010 extracted from the 20 

prior true surface CO2 fluxes p

tF  (black), the prescribed CO2 surface fluxes *

tF  21 

(red), and the assimilated CO2 fluxes 
a

tF  (blue). All time series were interpolated to 22 

the observation locations by the spatial bilinear interpolator method. The sites used 23 
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are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin, (e) Shangdianzi, (f) 1 

Beijing, (g) Linan, and (h) Hangzhou. 2 

 3 

Fig. 11.  (a) Ensemble spread of f

,i tC  after inflating; (b) ensemble spread of p

,i t  4 

before inflating; (c) ensemble spread of f

,i t  at model-level 1 at 00 UT on 1 March 5 

2010 when 70  . 6 

 7 

Fig. 12. Time series of daily mean CO2 fluxes averaged in domain I (shown in Fig. 9b) 8 

from 1 Jan. to 20 Mar. 2010 with the inflation factor of scaling factors   70, 75 and 9 

80. The black dashed line is the time series averaged from *

tF  and the black solid 10 

line is the time series averaged from p

tF . 11 

 12 

Fig. 13. Time series of daily mean CO2 fluxes averaged in domain I (shown in Fig. 9b) 13 

from 1 Jan. to 20 Mar 2010 with different smoother windows (3, 6, 9 and 12 days). 14 

The black dashed line is the time series averaged from *

tF  and the black solid line is 15 

the time series averaged from p

tF . 16 

 17 

Fig. 14. Monthly mean values of the difference between the prior true surface CO2 18 

fluxes and the ensemble mean values of the assimilated surface CO2 fluxes (units: 19 

μmole m
−2

 s
-1

) of the reference experiment in which p

, | 1i t t  were set to 1. 20 

 21 

22 
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Fig. 1. Schematic diagram of the smoother window. 4 
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time t  which need to be optimized in the current assimilation cycle t-M~t. 9 

 10 
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Fig. 2. Flowchart of the CFI-CMAQ system used to optimize surface CO2 fluxes at each 3 

assimilation cycle. The system includes the following four parts in turn: (1) forecasting of the 4 

linear scaling factors 
a

, | 1i t t  (red arrows); (2) optimization of the scaling factors in the smoother 5 

window by EnKS (see Fig. 1) (blue arrows); (3) updating of the flux in the smoother window 6 

(green arrows); and (4) assimilation of the CO2 concentration fields at time t by EnKF (black 7 

arrows). 8 

 9 
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Fig. 3. (a) Total number of observations in February 2010 in the model grid. Each symbol 2 

indicates the total number of all GOSAT XCO2 measurements in the corresponding model grid. 3 

Monthly mean values in February 2010 of (b) p

2COX , column mixing ratio of 
p

tC ; (c) f

2COX , 4 

column mixing ratio of 
f

tC ; (d) 
a

2COX , column mixing ratio of 
a

tC ; (e) 
p f

2 2CO COX X ; and (f) 5 

p a

2 2CO COX X . All column mixing ratios are column-averaged with real GOSAT XCO2 averaging 6 

kernels at GOSAT XCO2 locations. Each symbol indicates the monthly average value of all XCO2 7 

estimates in the model grid. 
a

tC  are the ensemble mean values of the assimilated CO2 8 

concentrations fields of a CFI-CMAQ OSSE, in which the lag-window was 9 days and 9 

  was 70. And they are the same OSSE in Fig. 3 to Fig. 6. 10 

11 
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Fig. 4. Monthly mean values of (a) p

tC , the artificial true simulations driven by the prior surface 3 

CO2 fluxes
p

tF ; (b) 
f

tC , the background simulations driven by magnified surface CO2 fluxes 4 

* p(1.8 ( , , , ))t tx y z t F F ; (c) 
a

tC , the ensemble mean values of the assimilated CO2 5 

concentrations fields; (d) 
p f

t tC C ; (e) 
p a

t tC C ; and (f) 
p a p100*( )t t tC C C  at 6 

model-level 1 in February 2010. Black lines EF and GH indicate the positions of the cross sections 7 

shown in Fig. 5. 8 

9 



 43 

 1 

 2 

Fig. 5. Monthly mean cross sections of 
p f

t tC C  along line (a) EF and (b) GH, and monthly 3 

mean cross sections of 
p a

t tC C  along line (c) EF and (d) GH (cross section lines shown in Fig. 4 

4d) in February 2010. 5 

6 
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Fig. 6. Daily mean time series of CO2 concentrations at national background stations in China and 2 

their nearest large cities from 1 Jan. to 20 Mar. 2010 extracted from the artificial true simulations 3 

p

tC  (black), background simulations 
f

tC  (red), and the ensemble mean values of the 4 

assimilated CO2 concentrations fields 
a

tC  (blue). All time series were interpolated to the 5 

observation locations by the spatial bilinear interpolator method. The sites used are (a) Waliguan 6 

(36.28°N, 100.91°E), (b) Xining (36.56°N, 101.74°E), (c) Longfengshan (44.73°N, 127.6°E), (d) 7 

Haerbin (45.75°N, 126.63°E ), (e) Shangdianzi (40.65°N, 117.12°E), (f) Beijing (39.92°N, 8 

116.46°E), (g) Linan (30.3°N, 119.73°E), and (h) Hangzhou (30.3°N,120.2°E). 9 

10 
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Fig. 7. Monthly mean values in February 2010 of (a) p

tF , the prior true surface CO2 fluxes; (b) 3 

*

tF , the prescribed CO2 surface fluxes, * p(1.8 ( , , , ))t tx y z t F F ; (c) 
a

tF , the 4 

ensemble mean values of the assimilated surface CO2 fluxes; (d) 
p *

t tF F ; (e) 
a *

t tF F ; 5 

and (f) 
a p

t tF F  (units: μmole m
−2

 s
-1

). 
a

tF are the assimilated results of an CFI-CMAQ 6 

OSSE, in which the lag-window was 9 days and   was 70. And they are the same in 7 

Fig. 7 to Fig. 10. 8 

9 
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 3 

Fig. 8. Monthly mean RMSEs of 
a

tF  in February 2010 (units: μmole m
−2

 s
−1

). 4 

 5 

6 



 47 

 1 

Fig. 9. (a) Ratios of monthly mean 
p

tF  to monthly mean
*

tF ; (b) ratios of monthly mean 
a

tF  2 

to monthly mean
*

tF ; and (c) ratios of monthly mean 
a

tF  to monthly mean 
p

tF  in Feb. 2010. 3 

The white part indicates the ratios where the absolute values of monthly mean 
*

tF  are larger 4 

than 0.01, not analyzed in this study. The black square labeled I indicates the domain where 5 

surface CO2 fluxes were used for the results presented in Fig. 12 and 13. 6 

 7 

8 
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Fig. 10. Daily mean time series of CO2 fluxes at national background stations in China and their 2 

nearest large cities from 1 Jan to 20 Mar. 2010 extracted from the prior true surface CO2 fluxes 3 

p

tF  (black), the prescribed CO2 surface fluxes 
*

tF  (red), and the assimilated CO2 fluxes 
a

tF  4 

(blue). All time series were interpolated to the observation locations by the spatial bilinear 5 

interpolator method. The sites used are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin, 6 

(e) Shangdianzi, (f) Beijing, (g) Linan, and (h) Hangzhou.7 
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Fig. 11.  (a) Ensemble spread of 
f

,i tC  after inflating; (b) ensemble spread of 
p

,i t  before 3 

inflating; (c) ensemble spread of 
f

,i t  at model-level 1 at 00 UT on 1 March 2010 when 4 

70  . 5 

6 
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Fig. 12. Time series of daily mean CO2 fluxes averaged in domain I (shown in Fig. 9b) from 1 Jan. 3 

to 20 Mar. 2010 with the inflation factor of scaling factors   70, 75 and 80. The black dashed 4 

line is the time series averaged from 
*

tF  and the black solid line is the time series averaged 5 

from
p

tF . 6 

 7 

8 



 51 

 1 

 2 

Fig. 13. Time series of daily mean CO2 fluxes averaged in domain I (shown in Fig. 9b) from 1 Jan. 3 

to 20 Mar 2010 with different smoother windows (3, 6, 9 and 12 days). The black dashed line is 4 

the time series averaged from 
*

tF  and the black solid line is the time series averaged from 
p

tF . 5 

6 
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Fig. 14. Monthly mean values of the difference between the prior true surface CO2 fluxes and the 3 

ensemble mean values of the assimilated surface CO2 fluxes (units: μmole m
−2

 s
-1

) of the reference 4 

experiment in which 
p

, | 1i t t  were set to 1. 5 

 6 


