

1 **A Regional Carbon Data Assimilation System and its Preliminary**

2 **Evaluation in East Asia**

3 Zhen Peng^{*1}, Meigen Zhang^{*2}, Xingxia Kou^{2,3}, Xiangjun Tian⁴, and Xiaoguang Ma⁴

4 *¹ School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China*

5 *² State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,
6 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China*

7 *³ University of Chinese Academy of Sciences, Beijing 100049, China*

8 *⁴ Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China*

9

^{*}Corresponding author: pengzhen@nju.edu.cn;
^{*}Corresponding author: mgzhang@mail.iap.ac.cn;

1

ABSTRACT

2 In order to optimize surface CO₂ fluxes at grid scales, a regional surface CO₂ flux
3 inversion system (Carbon Flux Inversion system and Community Multi-scale Air
4 Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter
5 (EnKF) to constrain the CO₂ concentrations and applying the ensemble Kalman
6 smoother (EnKS) to optimize the surface CO₂ fluxes. The smoothing operator is
7 associated with the atmospheric transport model to constitute a persistence dynamical
8 model to forecast the surface CO₂ flux scaling factors. In this implementation, the
9 ‘signal-to-noise’ problem can be avoided; plus, any useful observed information
10 achieved by the current assimilation cycle can be transferred into the next assimilation
11 cycle. Thus, the surface CO₂ fluxes can be optimized as a whole at the grid scale in
12 CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a
13 set of Observing System Simulation Experiments (OSSEs) by assimilating CO₂
14 retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed
15 that the CO₂ concentration assimilation using EnKF could constrain the CO₂
16 concentration effectively, illustrating that the simultaneous assimilation of CO₂
17 concentrations can provide convincing CO₂ initial analysis fields for CO₂ flux
18 inversion. In addition, the CO₂ flux optimization using EnKS demonstrated that
19 CFI-CMAQ could in general reproduce true fluxes at grid scales with acceptable bias.
20 Two further sets of numerical experiments were conducted to investigate the
21 sensitivities of the inflation factor of scaling factors and the smoother window. The
22 results showed that the ability of CFI-CMAQ to optimize CO₂ fluxes greatly relied on

1 the choice of the inflation factor. However, the smoother window had a slight
2 influence on the optimized results. CFI-CMAQ performed very well even with a short
3 lag-window (e.g. 3 days).

4

5 **1 Introduction**

6 Considerable progress has been made in recent years to reduce the uncertainties of
7 surface CO₂ flux estimates through the use of an advanced data assimilation technique
8 (e.g., Chevallier et al., 2005, 2007a and 2007b; Baker et al., 2006; Engelen et al., 2009;
9 Liu et al., 2012). Feng et al. (2009) showed that the uncertainties of surface CO₂ flux
10 estimates can be reduced significantly by assimilating OCO X_{CO₂} measurements.
11 Peters et al. (2005, 2007, 2009) developed a surface CO₂ flux inversion system,
12 CarbonTracker, by incorporating the ensemble square-root filter (EnSRF) into the
13 atmospheric transport TM5 model. And the inversion results obtained by assimilating
14 in situ surface CO₂ observations are in excellent agreement with a wide collection of
15 carbon inventories that form the basis of the first North American State of the Carbon
16 Cycle Report (SOCCR) (Peters et al., 2007). CarbonTracker is also well used to
17 constrain the surface CO₂ fluxes over Europe and Asia (eg., Zhang et al., 2014a,
18 2014b). Kang et al. (2012) presented a simultaneous data assimilation of surface CO₂
19 fluxes and atmospheric CO₂ concentrations along with meteorological variables using
20 the Local Ensemble Transform Kalman Filter (LETKF). They indicated that an
21 accurate estimation of the evolving surface fluxes can be gained even without any a
22 priori information. Recently, Tian et al. (2013) developed a new surface CO₂ flux data

1 assimilation system, Tan-Tracker, by incorporating a joint PODEn4DVar assimilation
2 framework into the GEOS-Chem model on the basis of Peters et al. (2005, 2007) and
3 Kang et al. (2011, 2012). They discussed in detail that the assimilation of CO₂ surface
4 fluxes could be improved though the use of simultaneous assimilation of CO₂
5 concentrations and CO₂ surface fluxes. Despite the rigor of data assimilation theory,
6 current CO₂ flux-inversion methods still face many challenging scientific problems,
7 such as: (1) the well-known ‘signal-to-noise’ problem (NRC, 2010); (2) large
8 inaccuracies in chemical transport models (e.g., Prather et al., 2008); (3) vast
9 computational expenses (e.g., Feng et al., 2009); and (4) the sparseness of observation
10 data (e.g., Gurney et al., 2002).

11 The ‘signal-to-noise’ problem is one of the most challenging issue for an
12 ensemble-based CO₂ flux inversion system due to the fact that surface CO₂ fluxes are
13 the model forcing (or boundary condition), rather than model states (like CO₂
14 concentrations), of the chemistry transport model (CTM). In the absence of a suitable
15 dynamical model to describe the evolution of the surface CO₂ fluxes, most CO₂
16 flux-inversion studies have traditionally ignored the uncertainty of anthropogenic and
17 other CO₂ emissions and focused on the optimization of natural (i.e., biospheric and
18 oceanic) CO₂ emissions at the ecological scale (e.g., Deng et al., 2007; Feng et al.,
19 2009; Peters et al., 2005, 2007; Jiang et al., 2013; Peylin et al., 2013).

20 This compromise is acceptable to some extent. Indeed, the total amount of
21 anthropogenic CO₂ emissions can be estimated by relatively well-documented global
22 fuel-consumption data with a small degree of uncertainty (Boden et al., 2011). And

1 the uncertainties involved in the total amount of anthropogenic CO₂ emissions are
2 much smaller than those related to natural emissions. However, their spatial
3 distribution, strength and temporal development still remain elusive, because of their
4 inherent non-uniformities (Andres et al., 2012; Gurney et al., 2009). Marland (2008)
5 pointed out that even a tiny amount of uncertainty, i.e., 0.9%, in one of the leading
6 emitter countries like the U.S. is equivalent to the total emissions of the smaller
7 emitter countries in the world. Furthermore, the usual values of anthropogenic CO₂
8 emissions in chemical transport models have thus far been simply interpolated from
9 very coarse monthly-mean fuel consumption data. Therefore, great uncertainty in the
10 spatiotemporal distributions of anthropogenic emissions likely exists, which could
11 reduce the accuracy of CO₂ concentration simulations and subsequently increase the
12 inaccuracy of natural CO₂ flux inversion results. In addition, current research
13 approaches tend only to assimilate natural CO₂ emissions at the ecological scale,
14 which is far from sufficient. Therefore, surface CO₂ fluxes should be constrained as a
15 whole at finer scale.

16 In CarbonTracker (Peters et al., 2007), a smoothing operator is innovatively
17 applied as the persistence forecast model. In that application, the surface CO₂ fluxes
18 can be treated as the model states and the observed information ingested by the
19 current assimilation cycle can be used in the next assimilation cycle effectively.
20 However, the ‘signal-to-noise’ problem is not yet resolved, and thus CarbonTracker
21 also has to assimilate natural CO₂ emissions at the ecological scale only. In
22 Tan-Tracker (Tian et al., 2013), a 4-D moving sampling strategy (Wang et al., 2010)

1 is used to generate the flux ensemble members, and so the surface CO₂ fluxes can be
2 optimized as a whole at the grid scale. In the present reported work, the persistence
3 dynamical model taken by Peters et al. (2005) was further developed for the purpose
4 of resolving the ‘signal-to-noise’ problem to optimize the surface CO₂ fluxes as a
5 whole at the grid scale. This process is described in detail in section 2 of this paper.

6 The surface CO₂ flux inversion system presented in this paper was developed by
7 simultaneous optimizing the surface CO₂ fluxes and constraining the CO₂
8 concentrations. As we know, assimilating CO₂ observations from multiple sources can
9 improve the accuracy of simulation results (e.g., Miyazaki, 2009; Liu et al., 2009,
10 2011, 2012; Tangborn et al, 2013; Huang et al., 2014). In addition, previous studies
11 showed that the simultaneous assimilation of CO₂ concentrations and surface CO₂
12 fluxes can largely eliminate the uncertainty in initial CO₂ concentrations on the CO₂
13 evolution (Kang et al., 2012; Tian et al., 2013). Therefore, we also use the
14 simultaneous assimilation framework and the ensemble Kalman filter (EnKF) was
15 used to constrain CO₂ concentrations and the ensemble Kalman smoother (EnKS) was
16 used to optimize surface CO₂ fluxes. Since the regional chemical transport models,
17 compared to global models, have some advantages to reproduce the effects of
18 meso–micro–scale transport on atmospheric CO₂ distributions (Ahmadov et al., 2009,
19 Pillai et al., 2010; Kretschmer et al., 2011), we choose a regional model, Regional
20 Atmospheric Modeling System and Community Multi-scale Air Quality
21 (RAMS-CMAQ) (Zhang et al. 2002, 2003, 2007; Kou et al. 2013; Liu et al., 2013;
22 Huang et al. 2014), to develop this inversion system. For simplicity, this system is

1 referred to as CFI-CMAQ (Carbon Flux Inversion system and Community Multi-scale
2 Air Quality).

3 Since this is the first time of introducing CFI-CMAQ, we focus mainly on
4 introducing the methodology in this paper. Nevertheless, in addition, Observing
5 System Simulation Experiments (OSSEs) were designed to assess the system's ability
6 to optimize surface CO_2 fluxes. The retrieval information of GOSAT X_{CO_2} are used to
7 generate artificial observations because of the sparseness and heterogeneity of
8 ground-based measurements.

9 The remainder of the paper is organized as follows. Section 2 describes the
10 details of the regional surface CO_2 flux inversion system, CFI-CMAQ, including the
11 developed persistence dynamical model, a simple review of the EnKS and EnKF
12 assimilation approaches, and the process involved. The experimental designs are then
13 introduced and the assimilation results shown in Sect. 3. Finally, a summary and
14 conclusions are provided in Sect. 4.

15

16 **2 Framework of the regional surface CO_2 flux inversion system**

17 Supposed we have the prescribed net CO_2 surface flux, $F^*(x, y, z, t)$, which can be
18 released from a climate model or be generated by others methods, our ultimate goal is
19 to optimize $F^*(x, y, z, t)$ by assimilating CO_2 observations from various platforms.

20 As an ensemble-based assimilation system, CFI-CMAQ was also developed by
21 applying a set of linear multiplication factors, similar to the approach by Peters et al.
22 (2007) and Tian et al. (2013). The i th ensemble member of the surface

1 fluxes, $F_i(x, y, z, t)$, from an N -member ensemble can be described by

2
$$F_i(x, y, z, t) = \lambda_i(x, y, z, t) F^*(x, y, z, t), \quad (i=1, \dots, N), \quad (1)$$

3 where $\lambda_i(x, y, z, t)$ represents the i th ensemble member of the linear scaling factors
4 (Peters et al., 2007; Tian et al., 2013) for each time and each grid to be optimized in
5 the assimilation. The notations are standard: the subscript i refers to the i th
6 ensemble member. In the following, $\lambda_i(x, y, z, t)$ is referred to as $\lambda_{i,t}$, $F^*(x, y, z, t)$
7 is referred to as F_t^* , and $F_i(x, y, z, t)$ is referred to as $F_{i,t}$ for simplicity.

8 At each optimization cycle, CFI-CMAQ includes the following four parts in turn
9 (see Fig. 1): (1) forecasting of the linear scaling factors at time t , $\lambda_{i,t|t-1}^a$;

10 optimization of the scaling factors in the smoother window ,
11 $(\lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a, \lambda_{i,t|t-1}^a)$, by EnKS, Where
12 $\lambda_{i,j|t-1}^a$ ($j = t-1-M, \dots, t-1$) refer to analyzed quantities from the previous
13 assimilation cycle at time j (see Fig. 1), $|t-1$ means that these factors have been
14 updated by using observations before time $t-1$, and the superscript a refers to the
15 analyzed;

16 (3) updating of the fluxes in the smoother window ,
17 $(F_{i,t-M|t-1}^a, F_{i,t-M+1|t-1}^a, \dots, F_{i,j|t-1}^a, \dots, F_{i,t-1|t-1}^a, F_{i,t|t-1}^a)$; and (4) assimilation of the forecast
18 CO₂ concentration fields at time t , $C_i^f(x, y, z, t)$ (referred to as $C_{i,t}^f$, and the
19 superscript f refers to the forecast or the background), by EnKF. A flowchart
20 illustrating CFI-CMAQ is presented in Fig. 2. The assimilation procedure is addressed
21 in detail below. In addition, the observation operator is introduced, particularly for use
22 of the GOSAT X_{CO₂} data in Sect. 2.4. Furthermore, covariance inflation and
localization techniques applied in CFI-CMAQ are introduced briefly in Sect. 2.5.

1 **2.1 Forecasting the linear scaling factors at time $t, \lambda_{i,t|t-1}^a$**

2 In the previous assimilation cycle $t-1-M \sim t-1$ (see Fig. 1), the optimized scaling factors
 3 in the smoother window are $(\lambda_{i,t-1-M|t-1}^a, \lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a)$ and
 4 the assimilated CO₂ concentration fields at time $t-1$ are $C_i^a(x, y, z, t-1)$ (referred to as
 5 $C_{i,t-1}^a$). In the current assimilation cycle $t-M \sim t$, the scaling factors in the current
 6 smoother window are $(\lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a, \lambda_{i,t|t-1}^a)$ and the forecast
 7 CO₂ concentration fields at time t are $C_{i,t}^f$.

8 In order to pass the useful observed information onto the next assimilation cycle
 9 effectively, following Peters et al. (2007) the smoothing operator is applied as part of
 10 the persistence dynamical model to calculate the linear scaling factors $\lambda_{i,t|t-1}^a$,

$$11 \quad \lambda_{i,t|t-1}^a = \frac{\left(\sum_{j=t-M}^{t-1} \lambda_{i,j|t-1}^a + \lambda_{i,t|t-1}^p \right)}{M+1}, \quad (i=1, \dots, N, j=t-M, \dots, t), \quad (2)$$

12 where $\lambda_{i,t|t-1}^p$ refers to the prior values of the linear scaling factors at time t . The
 13 superscript p refers to the prior. This operation represents a smoothing over all the
 14 time steps in the smoother window (see Fig. 1), thus dampening variations in the
 15 forecast of $\lambda_{i,t|t-1}^a$ in time.

16 In order to generate $\lambda_{i,t|t-1}^p$, the atmospheric transport model (CMAQ) is applied
 17 and a set of ensemble forecast experiments are carried out. It integrates from time
 18 $t-1$ to t to produce the CO₂ concentration fields $\hat{C}_i^f(x, y, z, t)$ (referred to as $\hat{C}_{i,t}^f$
 19 hereafter to distinguish from $C_{i,t}^f$) forced by the prescribed net CO₂ surface flux
 20 F_t^* with $C_{i,t|t-1}^a$ as initial conditions. Then, the ratio $\kappa_{i,t} = \hat{C}_{i,t}^f / \overline{\hat{C}_{i,t}^f}$ is calculated,

21 where $\overline{\hat{C}_{i,t}^f} = \frac{1}{N} \sum_{i=1}^N \hat{C}_{i,t}^f$. Supposed that $\lambda_{i,t|t-1}^p = \kappa_{i,t}$ due to the fact that the surface

1 CO₂ fluxes correlate with its concentrations, the values for $\lambda_{i,t|t-1}^p$ are obtained and
2 then $\lambda_{i,t|t-1}^a$ can finally be calculated (see the part with red arrows in the flowchart in
3 Fig. 2).

4 The way the prior scaling factor $\lambda_{i,t|t-1}^p$ is updated by associating with the
5 atmospheric transport model is the main improvement over the one used in
6 CarbonTracker (Peters et al, 2007). In CarbonTracker, all $\lambda_{i,t|t-1}^p$ are set to 1 (Peters et
7 al., 2007). The distribution of the ensemble members of the linear scaling factors at
8 time t , $\lambda_{i,t|t-1}^p$, are finally dependent on the distribution of the previous scaling factors
9 because Eq. (2) is a linear smoothing operator. In this study, the values of $\lambda_{i,t|t-1}^p$ are
10 updated by associating with the atmospheric transport model. It is important to note
11 that $\lambda_{i,t|t-1}^p$ in this study are rand fields with mean 1. However, the distribution of
12 $\lambda_{i,t|t-1}^a$ are dependent on the distribution of all the scaling factors in the smoother
13 window. An OSSE was designed to illustrate the difference between our method and
14 the one where $\lambda_{i,t|t-1}^p$ are set to 1 in Sect. 3

15 It is also important to note that, similar to Peters et al. (2007), this dynamical
16 model equation still does not include an error term in the dynamical model, and the
17 model error cannot yet be estimated. However, the covariance inflation is applied to
18 compensate for model errors before optimization, which is addressed in section 2.5.

19 **2.2 Optimizing the scaling factors in the smoother window by EnKS**

20 Substituting $\lambda_{i,t|t-1}^a$ into Eq. (1), the i th member of the surface fluxes at time t ,
21 $\mathbf{F}_{i,t|t-1}^a$, can be generated. Then forced by $\mathbf{F}_{i,t|t-1}^a$, CMAQ was run from time $t-1$ to
22 t to produce the background concentration field $\mathbf{C}_{i,t}^f$ with $\mathbf{C}_{i,t-1}^a$ as initial

1 conditions.

2 In the current assimilation cycle $t-M \sim t$ (see Fig. 1), the scaling factors to be
 3 optimized in the smoother window are $(\lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a, \lambda_{i,t|t-1}^a)$,
 4 as stated in the first paragraph of Sect. 2.1. Using the EnKS analysis technique, these
 5 scaling factors are updated in turn via

$$6 \quad \lambda_{i,j|t}^a = \lambda_{i,j|t-1}^a + \mathbf{K}_{j,t|t-1}^e (\mathbf{y}_t^{\text{obs}} - \mathbf{y}_{i,t}^f + \boldsymbol{\nu}_{i,t}), \quad (3)$$

$$7 \quad \mathbf{K}_{j,t|t-1}^e = \mathbf{S}_{j,t|t-1}^e H^T (H \mathbf{P}_{t,t|t-1}^e H^T + \mathbf{R})^{-1}, \quad (4)$$

$$8 \quad \mathbf{S}_{j,t|t-1}^e = \frac{1}{N-1} \sum_{i=1}^N [\lambda_{i,j|t-1}^a - \overline{\lambda_{i,j|t-1}^a}] [\lambda_{i,t|t-1}^a - \overline{\lambda_{i,t|t-1}^a}]^T, \quad (5)$$

$$9 \quad \mathbf{P}_{t,t|t-1}^e = \frac{1}{N-1} \sum_{i=1}^N [\lambda_{i,t|t-1}^a - \overline{\lambda_{i,t|t-1}^a}] [\lambda_{i,t|t-1}^a - \overline{\lambda_{i,t|t-1}^a}]^T, \quad (6)$$

$$10 \quad \mathbf{y}_{i,t}^f = H(\boldsymbol{\varphi}_{t-1 \rightarrow t}(\lambda_{i,t|t-1}^a)) = H(\mathbf{C}_{i,t}^f), \quad (7)$$

11 where $\mathbf{K}_{j,t|t-1}^e$ is the Kalman gain matrix of EnKS, $\mathbf{y}_t^{\text{obs}}$ is the observation vector
 12 measured at time t and $\mathbf{y}_{i,t}^f$ is the simulated values, $\boldsymbol{\nu}_{i,t}$ is a random normal
 13 distribution perturbation field with zero mean, $\mathbf{S}_{j,t|t-1}^e$ is the background error
 14 cross-covariance between the state vector $\lambda_{i,j|t-1}^a$ and $\lambda_{i,t|t-1}^a$, $\mathbf{P}_{t,t|t-1}^e$ is the
 15 background error covariance of the state vector $\lambda_{i,t|t-1}^a$, $H(\cdot)$ is the observation
 16 operator that maps the state variable from model space into observation space, \mathbf{R}
 17 standard deviation representing the measurement errors, and $\boldsymbol{\varphi}(\cdot)$ is the atmospheric
 18 transport model.

19 In actual implementations, it is unnecessary to calculate $\mathbf{S}_{j,t|t-1}^e$ and $\mathbf{P}_{t,t|t-1}^e$
 20 separately. $\mathbf{S}_{j,t|t-1}^e H^T$ and $H \mathbf{P}_{t,t|t-1}^e H^T$ can be calculated as a whole by

$$21 \quad \mathbf{S}_{j,t|t-1}^e H^T = \frac{1}{N-1} \sum_{i=1}^N [\lambda_{i,j|t-1}^a - \overline{\lambda_{i,j|t-1}^a}] [\mathbf{y}_{i,t}^f - \overline{\mathbf{y}_t^f}]^T, \quad (8)$$

1 $H\mathbf{P}_{t,t-1}^e H^T = \frac{1}{N-1} \sum_{i=1}^N [\mathbf{y}_{i,t}^f - \overline{\mathbf{y}}_t^f][\mathbf{y}_{i,t}^f - \overline{\mathbf{y}}_t^f]^T, \quad (9)$

2 $\overline{\mathbf{y}}_t^f = H(\overline{\mathbf{C}}_t^f) = H\left(\frac{1}{N} \sum_{i=1}^N \mathbf{C}_{i,t}^f\right). \quad (10)$

3 After EnKS, $(\lambda_{i,t-M|t}^a, \lambda_{i,t-M+1|t}^a, \dots, \lambda_{i,j|t}^a, \dots, \lambda_{i,t-1|t}^a, \lambda_{i,t|t}^a)$ are gained. Then the
4 corresponding fluxes in the smoother window
5 $(\mathbf{F}_{i,t-M|t}^a, \mathbf{F}_{i,t-M+1|t}^a, \dots, \mathbf{F}_{i,j|t}^a, \dots, \mathbf{F}_{i,t-1|t}^a, \mathbf{F}_{i,t|t}^a)$ can be gained (see the part with green arrows
6 in the flowchart in Fig. 2) by substituting $(\lambda_{i,t-M|t}^a, \lambda_{i,t-M+1|t}^a, \dots, \lambda_{i,j|t}^a, \dots, \lambda_{i,t-1|t}^a, \lambda_{i,t|t}^a)$ into
7 Eq. (1).

8 Then the ensemble mean values of the assimilated fluxes in the smoother
9 window can be calculated via,

10 $\overline{\mathbf{F}}_{i,j|t}^a = \frac{1}{N} \sum_{i=1}^N \mathbf{F}_{i,j|t}^a, (j = t-M, \dots, t), \quad (11)$

11 Finally, those ensemble mean assimilated fluxes which are before the next
12 smoother window and will not be updated by the succeeding observations are
13 regarded as the final optimized fluxes. We referred them as $\overline{\mathbf{F}}_t^a$ for simplicity.

14 **2.3 Assimilating the CO₂ concentration fields at time *t* by EnKF**

15 The analysis of CO₂ concentrations fields at time *t* in the EnKF scheme is updated via

16 $\mathbf{C}_{i,t}^a = \mathbf{C}_{i,t}^f + \mathbf{K}(\mathbf{y}_t^{\text{obs}} - \mathbf{y}_t^f + \mathbf{v}_{i,t}), \quad (12)$

17 $\mathbf{K} = \mathbf{P}^f H^T (H\mathbf{P}^f H^T + \mathbf{R})^{-1}, \quad (13)$

18 where \mathbf{K} is the Kalman gain matrix of EnKF, \mathbf{P}^f is the background error
19 covariance among the background CO₂ concentration fields $\mathbf{C}_{i,t}^f$.

20 In actually application, $\mathbf{P}^f H^T$ and $H\mathbf{P}^f H^T$ can be calculated as a whole by

1 $\mathbf{P}^f H^T = \frac{1}{N-1} \sum_{i=1}^N [\mathbf{C}_{i,t}^f - \bar{\mathbf{C}}_t^f] [\mathbf{y}_{i,t}^f - \bar{\mathbf{y}}_t^f]^T , \quad (14)$

2 $H \mathbf{P}^f H^T = \frac{1}{N-1} \sum_{i=1}^N [\mathbf{y}_{i,t}^f - \bar{\mathbf{y}}_t^f]^T [\mathbf{y}_{i,t}^f - \bar{\mathbf{y}}_t^f]^T , \quad (15)$

3 $\bar{\mathbf{C}}_t^f = \frac{1}{N} \sum_{i=1}^N \mathbf{C}_{i,t}^f \quad (16)$

4 Finally, the ensemble mean values of the assimilated CO₂ concentrations fields can be
 5 gained via,

6 $\bar{\mathbf{C}}_t^a = \frac{1}{N} \sum_{i=1}^N \mathbf{C}_{i,t}^a \quad (17)$

7 where $\bar{\mathbf{C}}_t^a$ is regarded as the final analyzing concentration field.

8 **2.4 The observation operator**

9 As mentioned above, the observation operator $H(\cdot)$ transforms the state variable
 10 from model space into observation space. Usually, it is the spatial bilinear interpolator
 11 for traditional ground-based observations. Since the GOSAT X_{CO_2} retrieval is a
 12 weighted CO₂ column average, the simulated X_{CO_2} should be calculated with the same
 13 weighted column average method (Connor et al., 2008; Crisp et al., 2010, 2012;
 14 O'Dell et al., 2012). So, the observation operator to assimilate the GOSAT X_{CO_2}
 15 retrieval is

16 $\mathbf{y}_{i,t}^f = H(\boldsymbol{\varphi}_{t-1 \rightarrow t}(\boldsymbol{\lambda}_{i,t|t-1}^a)) = H(\mathbf{C}_{i,t}^f) = \mathbf{y}^{\text{priori}} + \mathbf{h}^T \mathbf{a}_{\text{CO}_2}(S(\mathbf{C}_{i,t}^f) - \mathbf{f}^{\text{priori}}) , \quad (18)$

17 where $\mathbf{y}_{i,t}^f$ is the simulated X_{CO_2} ; $\mathbf{y}^{\text{priori}}$ is the a priori CO₂ column average used in
 18 the GOSAT X_{CO_2} retrieval process; $S(\cdot)$ is the spatial bilinear interpolation operator
 19 that interpolates the simulated fields to the GOSAT X_{CO_2} locations to obtain the
 20 simulated CO₂ vertical profiles there; $\mathbf{f}^{\text{priori}}$ is the a priori CO₂ vertical profile used

1 in the retrieval process; h is the pressure weighting function, which indicates the
 2 contribution of the retrieved value from each layer of the atmosphere; and a_{CO_2} is
 3 the normalized averaging kernel.

4 **2.5 Covariance inflation and localization**

5 In order to keep the ensemble spread of the CO₂ concentrations at a certain level and
 6 compensate for transport model error to prevent filter divergence, covariance inflation
 7 is applied before updating the CO₂ concentrations. So,

8
$$(\mathbf{C}_{i,t}^f)_{\text{new}} = \alpha(\mathbf{C}_{i,t}^f - \overline{\mathbf{C}_{i,t}^f}) + \overline{\mathbf{C}_{i,t}^f}, \quad (19)$$

9 where α is the inflation factor of CO₂ concentrations and $(\mathbf{C}_{i,t}^f)_{\text{new}}$ is the final field
 10 used for data assimilation.

11 Similarly, covariance inflation is also used to keep the ensemble spread of the prior
 12 scaling factors at a certain level and compensate for dynamical model error. So,

13
$$(\lambda_{i,t|t-1}^p)_{\text{new}} = \beta(\lambda_{i,t|t-1}^p - \overline{\lambda_{i,t|t-1}^p}) + \overline{\lambda_{i,t|t-1}^p}, \quad (20)$$

14 where β is the inflation factor of scaling factors and $(\lambda_{i,t|t-1}^p)_{\text{new}}$ is the final scaling
 15 factors used for data assimilation.

16 In addition, the Schur product is utilized to filter the remote correlation resulting
 17 from the spurious long-range correlations (Houtekamer and Mitchell 2001). So, the
 18 Kalman gain matrix $\mathbf{K}_{j,t|t-1}^e$ and \mathbf{K} are updated via,

19
$$\mathbf{K}_{j,t|t-1}^e = [(\rho \circ \mathbf{S}_{j,t|t-1}^e)H^T(H(\rho \circ \mathbf{P}_{t,t|t-1}^e)H^T + \mathbf{R})^{-1}, \quad (21)$$

20
$$\mathbf{K} = [(\rho \circ \mathbf{P}^f)H^T][(H(\rho \circ \mathbf{P}^f)H^T + \mathbf{R})^{-1}, \quad (22)$$

21 where the filtering matrix ρ is calculated using the formula

$$1 \quad C_0(r, c) = \begin{cases} -\frac{1}{4}\left(\frac{|r|}{c}\right)^5 + \frac{1}{2}\left(\frac{|r|}{c}\right)^4 + \frac{5}{8}\left(\frac{|r|}{c}\right)^3 - \frac{5}{3}\left(\frac{|r|}{c}\right)^2 + 1, & 0 \leq |r| \leq c \\ \frac{1}{12}\left(\frac{|r|}{c}\right)^5 - \frac{1}{2}\left(\frac{|r|}{c}\right)^4 + \frac{5}{8}\left(\frac{|r|}{c}\right)^3 + \\ \frac{5}{3}\left(\frac{|r|}{c}\right)^2 - 5\left(\frac{|r|}{c}\right) + 4 - \frac{2}{3}\left(\frac{c}{|r|}\right), & c \leq |r| \leq 2c \\ 0, & |r| > 2c \end{cases} \quad (23)$$

2 where c is the element of the localization Schur radius. The matrix ρ can filter the
 3 small background error correlations associated with remote observations through the
 4 Schur product (Tian et al., 2011). And the Schur product tends to reduce the effect of
 5 those observations smoothly at intermediate distances due to the smooth and
 6 monotonically decreasing of the filtering matrix.

7

8 **3 OSSEs for evaluation of CFI-CMAQ**

9 A set of OSSEs were designed to quantitatively assess the performance of
 10 CFI-CMAQ. The setup of the experiments and the results are described in this section.

11 **3.1 Experimental setup**

12 The chemical transport model utilized was RAMS-CMAQ (Zhang et al., 2002), in
 13 which CO₂ was treated as an inert tracer. The model domain was 6654 × 5440 km² on
 14 a rotated polar stereographic map projection centered at (35.0 °N, 116.0 °E), with a
 15 horizontal grid resolution of 64 × 64 km² and 15 vertical layers in the σ_z -coordinate
 16 system, unequally spaced from the surface to approximately 23 km. The initial fields
 17 and boundary conditions of the CO₂ concentrations were interpolated from the
 18 simulated CO₂ fields of CarbonTracker 2011 (Peters, 2007). The prior surface CO₂

1 fluxes included biosphere–atmosphere CO₂ fluxes, ocean–atmosphere CO₂ fluxes,
2 anthropogenic emissions, and biomass-burning emissions (Kou et al., 2013),

3 $F^p(x, y, z, t) = F_{\text{bio}}(x, y, z, t) + F_{\text{oce}}(x, y, z, t) + F_{\text{ff}}(x, y, z, t) + F_{\text{fire}}(x, y, z, t), \quad (24)$

4 where $F^p(x, y, z, t)$ (referred to as F_t^p) was the prior surface CO₂ flux;
5 $F_{\text{bio}}(x, y, z, t)$ and $F_{\text{oce}}(x, y, z, t)$ were the biosphere–atmosphere and
6 ocean–atmosphere CO₂ fluxes, respectively, which were obtained from the optimized
7 results of CarbonTracker 2011 (Peters, 2007); $F_{\text{ff}}(x, y, z, t)$ was fossil fuel emissions,
8 adopted from the Regional Emission inventory in ASia (REAS, 2005 Asia monthly
9 mean emission inventory) with a spatial resolution of 0.5° × 0.5°(Ohara et al., 2007);
10 $F_{\text{fire}}(x, y, z, t)$ was biomass–burning emissions, provided by the monthly mean
11 inventory at a spatial resolution of 0.5° × 0.5° from the Global Fire Emissions
12 Database, Version 3 (GFED v3) (Van der Werf et al., 2010). Among all these fluxes,
13 $F_{\text{bio}}(x, y, z, t)$, $F_{\text{oce}}(x, y, z, t)$ and $F_{\text{ff}}(x, y, z, t)$ had nonzero values at model level 1,
14 while they all were zeros at other 14 levels. However, $F_{\text{fire}}(x, y, z, t)$ had nonzero
15 values at model level 2~5 except model level 1. So, all fluxes in this paper were the
16 function of (x, y, z, t) for convenience.

17 Firstly, the prior flux F_t^p was assumed as the true surface CO₂ flux in all of the
18 following OSSEs. Forced by F_t^p , the RAMS-CMAQ model was run to produce the
19 artificial true CO₂ concentration results $C^p(x, y, z, t)$ (refer to as C_t^p in the
20 following). Then, the artificial GOSAT observations y_t^{obs} (or $X_{\text{CO}_2}^p$) were generated
21 by substituting C_t^p into the observation operator in Eq. (18). The retrieval
22 information of GOSAT X_{CO₂}(y^{priori} , f^{priori} , h and a_{CO_2}) needed in Eq. (18) were

1 gained from the v2.9 Atmospheric CO₂ Observations from Space (ACOS) Level 2
2 standard data products, which only utilized the SWIR observations. Only data
3 classified into the “Good” category were utilized in this study. During the retrieval
4 process, most of the soundings (such as data with a solar zenith angle greater than 85 °;
5 or data not in clear sky conditions, or data collected over ocean but not in glint, etc.)
6 were not processed, so typically data products for the “Good” category contained only
7 10-100 soundings per satellite orbit (Osterman et al., 2011), and there were only 0~60
8 samples per orbit in the study model domain generally. Fig. 3 (a) also showed the total
9 number of “good” GOSAT X_{CO₂} observations for each model grid in February in 2010.
10 There were relatively more observations over most continental regions of the study
11 domain except some regions in North-East and South China. The total numbers
12 ranged from 1 to 8. However, there were almost no data over oceans of the study
13 domain.

14 Secondly, the prescribed surface CO₂ fluxes series \mathbf{F}_t^* were created by

15
$$\mathbf{F}_t^* = (1.8 + \delta(x, y, z, t)) \mathbf{F}_t^p, \quad (25)$$

16 where δ was a random number. They were standard normal distribution time series
17 at each grid in the integration period of our numerical experiment. Driven by \mathbf{F}_t^* , the
18 RAMS-CMAQ model was integrated to obtain the CO₂ simulations
19 $C^f(x, y, z, t)$ (referred to as C_t^f hereafter). Then, the column-averaged
20 concentrations $X_{CO_2}^f$ were obtained using Eq. (18).

21 The performance of CFI-CMAQ was evaluated through a group of well-designed
22 OSSEs. And the goal of each OSSE was to retrieve the true fluxes \mathbf{F}_t^p from given

1 true observations $X_{CO_2}^p$ and “wrong” fluxes \mathbf{F}_t^* . In all the OSSEs, we assimilated
2 artificial observations $X_{CO_2}^p$ about three times a day since GOSAT has about three
3 orbits in the study model domain. If there were some observations, CFI-CMAQ
4 paused to assimilate. Otherwise, it continued simulating. The default ensemble size N
5 was 48, the measurement errors were 1.5 ppmv, the standard localization Schur radius
6 c was 1280 km (20 grid spacing), and the covariance inflation factor of
7 concentrations α was 1.1. The referenced lag-window was 9 days and the
8 covariance inflation factor of the prior scaling factors β was 70. Since the smoother
9 window was very important for CO₂ transportation and β was a newly introduced
10 parameter, both these parameters were further investigated by several numerical
11 sensitivity experiments. The primary focus of this paper was to describe the
12 assimilation methodology, so all the numerical experiments started on 1 January 2010
13 and ended on 30 March 2010.

14 As for the initialization of CFI-CMAQ, only the ensemble of background
15 concentration fields $C_{i,0}^f$ needed to be initialized at the time $t=0$ because the
16 values of $\lambda_{i,t-1}^a$ were updated by using the persistence dynamical model. In practice,
17 the mean concentration fields at $t=0$ are interpolated from the simulated CO₂ fields
18 of CarbonTracker 2011 (Peters, 2007). The ensemble members of the background
19 concentration fields were created by adding random vectors. The mean values of the
20 random vectors were zero and the variances were 2.5 percent of the mean
21 concentration fields. Then the atmospheric transport model integrated from time
22 $t=0$ to $t=1$ driven by \mathbf{F}_t^* with $C_{i,0}^f$ as initial conditions to produce the CO₂

1 concentration fields $\hat{C}_{i,1}^f$. And then the first prior linear scaling factors, $\lambda_{i,1|0}^p$, could
 2 be calculated by applying $\hat{C}_{i,1}^f$. Assumed $\lambda_{i,1|0}^a = \lambda_{i,1|0}^p$, $\lambda_{i,1|0}^a$ are gained finally. For the
 3 first assimilation cycle, the lag-window was only one (that is, only $\lambda_{i,1|0}^a$ needed to be
 4 optimized in the first assimilation cycle). And it increased for the first dozens of
 5 assimilation cycles until it reached $M+1$ as CFI-CMAQ continued to assimilate
 6 observations. Once the system was initialized, all future scaling factors could be
 7 created using the persistence dynamical model, which was associated the smoothing
 8 operator with the atmospheric transport model.

9 In order to illustrate the limitation by only using the smoothing operator as the
 10 persistence dynamical model to generate all future scaling factors, another OSSE
 11 (referred to as the reference experiment to distinguish it from the above-mentioned
 12 CFI-CMAQ OSSEs) was designed to optimize the surface CO_2 fluxes at grid scale.
 13 The reference experiment was under the same assimilation framework as CFI-CMAQ
 14 except that all $\lambda_{i,t|t-1}^p$ were set to 1 (Peters et al., 2007). Besides, the initialization
 15 procedure of the reference experiment was different from that of the CFI-CMAQ. In
 16 practice, both the ensemble of background concentration fields at $t=0$, $C_{i,0}^f$, and the
 17 ensemble members of the scaling factors at $t=1$, $\lambda_{i,1|0}^a$, needed to be initialized
 18 because they could not generated by other ways (Peters et al., 2005). The initial
 19 concentration fields $C_{i,0}^f$ were created using the same method as that was used to
 20 generate $C_{i,0}^f$ for the CFI-CMAQ OSSEs. The ensemble members of the scaling
 21 factors $\lambda_{i,1|0}^a$ were rand fields. Their mean values were 1 and their variances were 0.1.
 22 In addition, in order to keep the ensemble spread of the scaling factors $\lambda_{i,t|t-1}^a$ at a

1 certain level and compensate for dynamical model error, covariance inflation was also
2 used and the covariance inflation factor of the scaling factors $\lambda_{i,t|t-1}^a$ was 1.6. All
3 other parameters are the same as used in the CFI-CMAQ OSSEs. The ensemble size N
4 was 48, the measurement errors were 1.5 ppmv, the standard localization Schur radius
5 c was 1280 km, the covariance inflation factor of concentrations α was 1.1, and
6 the lag-window was 9 days.

7 **3.2 Experimental results**

8 Essentially, the assimilation part of CFI-CMAQ includes two subsections: one for the
9 CO_2 concentration assimilation with EnKF, which can provide a convincing CO_2
10 initial analysis fields for the next assimilation cycle; and the other for the CO_2 flux
11 optimization with EnKS, which can provide better estimation of the scaling factors for
12 the next time though the persistence dynamical model except for optimized CO_2
13 fluxes. The performance of the EnKF subsection will be greatly influenced by the
14 validation of the EnKS subsection, or vice versa. Firstly, the performance of
15 CFI-CMAQ will be quantitatively assessed in detail by using the assimilated results of
16 a CFI-CMAQ OSSE, in which the lag-window was 9 days and β was 70. Then the
17 sensitivities of β and the lag-window will be discussed in the following two
18 paragraphs. And finally, the assimilation results of the reference experiment in
19 which $\lambda_{i,t|t-1}^p$ were set to 1 will be described in brief at the end of this subsection.

20 We begin by describing the impacts of assimilating artificial observations $X_{\text{CO}_2}^p$
21 on CO_2 simulations by CFI-CMAQ. As shown in Figs. 4a, 4b and 4d, the monthly
22 mean values of the background CO_2 concentrations C_t^f produced by the magnified

1 surface CO₂ fluxes \mathbf{F}_t^* were much larger than those of the artificial true CO₂
2 concentrations \mathbf{C}_t^p produced by the prior surface CO₂ fluxes \mathbf{F}_t^p near the surface in
3 February 2010. In the east and south of China especially, the magnitude of the
4 difference between \mathbf{C}_t^p and \mathbf{C}_t^f was at least 6 ppmv. Also, as expected, the monthly
5 mean $X_{CO_2}^f$ was much larger than the monthly mean artificial observations $X_{CO_2}^p$,
6 and the magnitude of the difference between $X_{CO_2}^p$ and $X_{CO_2}^f$ reached 2 ppmv in
7 the east and south of China (see Figs. 3b, 3c and 3e). However, the impact of
8 magnifying surface CO₂ fluxes on the CO₂ concentrations was primarily below the
9 model-level 10 (approximately 6 km), and especially below model-level 7
10 (approximately 1.6 km). And above model-level 10, the differences between \mathbf{C}_t^p and
11 \mathbf{C}_t^f fell to zero (see Fig. 5a and 5b). After assimilating $X_{CO_2}^p$, the analysis CO₂
12 concentrations $\overline{\mathbf{C}}_t^a$ was much closer to \mathbf{C}_t^p (see Figs. 4c, 4e and 4f). The monthly
13 mean difference between \mathbf{C}_t^p and $\overline{\mathbf{C}}_t^a$ ranged from -2 to 2 ppmv and the relative
14 error $(\mathbf{C}_t^p - \overline{\mathbf{C}}_t^a) / \mathbf{C}_t^p$ ranged from -1 to 1% in almost the entire model domain at
15 model-level 1. The monthly mean differences between \mathbf{C}_t^p and $\overline{\mathbf{C}}_t^a$ were negligible
16 above model-level 2 (see Fig. 5c and 5d). The monthly mean $X_{CO_2}^a$ was also closer
17 to $X_{CO_2}^p$ and the difference between $X_{CO_2}^p$ and $X_{CO_2}^a$ ranged from -0.5 to 0.5
18 ppmv. In order to evaluate the general impact of assimilating $X_{CO_2}^p$ in the surface
19 layer, time series of the daily mean CO₂ concentration extracted from the background
20 simulations and the assimilations were compared with the artificial true simulations at
21 four national background stations in China and their nearest large cities. As shown in
22 Fig. 3a, Waliguan is 150 km away from Xining, Longfengshan is 180 km away from

1 Haerbin, Shangdianzi is 150 km away from Beijing, and Linan is 50 km away from
2 Hangzhou. The assimilated results are shown in Fig. 6. The background time series
3 were much larger than the artificial true time series, especially at Shangdianzi, Beijing,
4 Linan and Hangzhou, which are strongly influenced by local anthropogenic CO₂
5 emissions. After assimilating $X_{CO_2}^p$, the assimilated time series were very close to the
6 true time series with negligible bias, as expected, at Waliguan, Xining, Shangdianzi,
7 Beijing, Linan and Hangzhou, especially after the first 10 days, which can be
8 considered the spin-up period. Meanwhile, the improvements at Longfengshan and
9 Haerbin were limited due to the absence of observation data at those locations (see
10 Fig. 3a). Nevertheless, in general, the substantial benefits to the CO₂ concentrations in
11 the surface layer of assimilating GOSAT X_{CO_2} with EnKF are clear. All the results
12 illustrated that CFI-CMAQ can provide a convincing CO₂ initial analysis fields for
13 CO₂ flux inversion.

14 The impacts of assimilating $X_{CO_2}^p$ on surface CO₂ fluxes were also highly
15 impressive by CFI-CMAQ. On the whole, the prescribed CO₂ surface fluxes F_t^*
16 were much larger than the true surface CO₂ fluxes F_t^p in February 2010, especially
17 in the east and south of China. The monthly mean difference between F_t^* and F_t^p
18 reached 0.5 $\mu\text{mole m}^{-2} \text{ s}^{-1}$ in Jing-Jin-Ji, the Yangtze River Delta, and Pearl River
19 Delta Urban Circle because of the strong local anthropogenic CO₂ emissions (see Figs.
20 7a, 7b and 7d). After assimilating $X_{CO_2}^p$, the ensemble mean of the assimilated
21 surface CO₂ fluxes $\overline{F_t^a}$ decreased sharply. Thus, the monthly mean values of $\overline{F_t^a}$
22 were much smaller than F_t^* in most of the model domain in February 2010. The

1 pattern of the difference between $\overline{F_t^a}$ and F_t^* was similar to that of the difference
 2 between F_t^p and F_t^* (see Figs. 7b-e). The ensemble mean of the assimilated
 3 surface CO₂ fluxes $\overline{F_t^a}$ were also compared to the artificial true fluxes F_t^p ,
 4 revealing that $\overline{F_t^a}$ was equivalent to F_t^p in most of the model domain. The monthly
 5 mean difference between $\overline{F_t^a}$ and F_t^p ranged from -0.01 to 0.01 $\mu\text{mole m}^{-2} \text{s}^{-1}$
 6 only (see Fig. 7f). In addition, the root-mean-square errors (RMSEs) of the
 7 assimilated flux members were analyzed. As shown in Fig. 8, the monthly mean
 8 RMSE was less than $0.05 \mu\text{mole m}^{-2} \text{s}^{-1}$ in most of the model domain, except in areas
 9 near to large cities such as Beijing, Shanghai and Guangzhou, indicating that the
 10 assimilated CO₂ fluxes were reliable.

11 In order to evaluate the ability of CFI-CMAQ to optimize the surface CO₂ fluxes
 12 comprehensively, the ratios of the monthly mean F_t^p to the monthly mean F_t^* were
 13 analyzed. In actual implementation, we only analyzed the ratios where the absolute
 14 values of the monthly mean F_t^* were larger than 0.01 , to avoid random noise. As
 15 shown in Fig. 9a, the ratios of the monthly mean F_t^p to the monthly mean F_t^*
 16 ranged from 0.5 to 0.65 , which were consistent with $1/1.8 = 0.556$, in most of China,
 17 except in the Qinghai–Tibet Plateau, where the absolute values of the monthly mean
 18 F_t^* were very small in February. The ratios varied greatly in the Indo-China
 19 Peninsula because of strong diurnal variation of CO₂ fluxes. The ratios of the monthly
 20 mean F_t^p to the monthly mean F_t^* was equal to
 21 $\sum_{\text{Feb}} F_t^p / \sum_{\text{Feb}} F_t^* = 1 / (1.8 + \sum_{\text{Feb}} \delta F_t^p / \sum_{\text{Feb}} F_t^p)$. So the values of the ratios were related to
 22 the ratios of $\sum_{\text{Feb}} \delta F_t^p$ to $\sum_{\text{Feb}} F_t^p$. Imagining the extreme case that F_t^p was a constant,

1 the ratios would be $1 = 1 / (1.8 + \sum_{\text{Feb}} \delta / n) \rightarrow 1 / 1.8$ (n was the number of the flux)
2 because δ were standard normal distribution time series at each grid. In most china,
3 the diurnal variation of CO₂ fluxes were small in February, so the ratios of the
4 monthly mean \bar{F}_t^p to the monthly mean \bar{F}_t^* were consistent with $1 / 1.8 = 0.556$.
5 While in the Indo-China Peninsula, the CO₂ fluxes there ranged from -1.5 to 1 μmole
6 m⁻² s⁻¹, because of strong photosynthesis in the day. So $\sum_{\text{Feb}} \delta \bar{F}_t^p$ varied greatly, which
7 finally leaded to the great variation of the ratios there.

8 In addition, the ratios of the monthly mean \bar{F}_t^a to the monthly mean \bar{F}_t^* and
9 the ratios of the monthly mean \bar{F}_t^a to the monthly mean \bar{F}_t^p are shown in Fig. 9b
10 and 9c, respectively. These two figures demonstrate that the impact of the assimilation
11 of $X_{CO_2}^p$ by CFI-CMAQ on CO₂ fluxes was great in the east and south of China in
12 general, but the influence was negligible in Northeast China due to the lack of
13 observation data.

14 Time series of daily mean surface CO₂ fluxes extracted from \bar{F}_t^* and \bar{F}_t^a were
15 also compared with that from \bar{F}_t^p at four national background stations in China and
16 their nearest large cities, similar to the CO₂ concentration assimilation. The results are
17 shown in Fig.10. The background time series were much larger than the artificial true
18 time series, especially at Haerbin, Shangdianzi, Beijing, Linan and Hangzhou, which
19 are strongly influenced by local anthropogenic CO₂ emissions. After
20 assimilating $X_{CO_2}^p$, the assimilated time series were near to the true time series with
21 acceptable bias, as expected, at Waliguan, Xining, Shangdianzi, Linan and Hangzhou
22 after the 10-day spin-up period. However, the improvements at Longfengshan and

1 Haerbin were negligible because of a lack of observations at these locations. Also, this
2 inversion system failed to show improvements at Beijing. One of the possible reasons
3 was that the impact of advection transport of CO₂ was ignored during the procedure of
4 CO₂ flux inversion. Beijing was located in the edge of Jing-Jin-Ji, which had strong
5 local anthropogenic CO₂ emissions during January to March. However, the CO₂
6 concentration observations at a given time t near Beijing only had the fluxes
7 information of the area around Beijing at time t and the foregoing fluxes
8 information of the upstream areas, which might had relatively small local CO₂
9 emissions. Therefore, the assimilated time series would be smaller than the true time
10 series in Beijing when we constrained the surface CO₂ fluxes by using the
11 observations directly without considering the impact of advection transport of CO₂.
12 Later, CFI-CMAQ will be improved by considering the impact of advection transport
13 of CO₂.

14 Since the impact of assimilation $X_{CO_2}^p$ by CFI-CMAQ on CO₂ fluxes was in
15 general greater in the east and south of China than other model areas (see Figs.7e and
16 9b), the time series of the daily mean CO₂ fluxes in that area averaged from $\overline{F_t^a}$ was
17 compared with those from F_t^* and F_t^p , as well as their ratios (see Fig. 11). The two
18 figures indicate that CFI-CMAQ could in general reproduce the true fluxes with
19 acceptable bias.

20 As stated in the above section, β was a newly introduced parameter. The prior
21 scaling factors should have been inflated indirectly though the inflated CO₂
22 concentration forecast. However, the values of the ensemble spread of $\lambda_{i,t|t-1}^p$ before

1 inflating were very small (ranging from 0 to 0.08 in most area at model-level 1, see
2 Fig. 11b), though the values of the ensemble spread of $C_{i,t}^f$ after inflating could
3 reach 1 to 14 ppmv in most area at model-level 1 (see Fig. 11a). So we had to inflate
4 them again before using them into Eq. (2) . Fig. 11c showed the distribution of the
5 ensemble spread of $\lambda_{i,t|t-1}^a$ at model-level 1 at 00 UT on 1 March 2010 when $\beta = 70$. It
6 showed that the values of the ensemble spread of $\lambda_{i,t|t-1}^a$ ranged from 0.1 to 0.8 in
7 most area. In order to investigate the sensitivity of the inflation factor of the scaling
8 factors β , a series of numerical experiments were conducted. As shown in Fig. 12,
9 CFI-CMAQ worked rather well for $\beta = 60, 70, 75, 80$. However, if β was much
10 smaller than 50 (e.g. $\beta = 10$), the impact of assimilation was small due to the small
11 ensemble spread; or if β was much larger than 80 (e.g. $\beta = 100$), the assimilated
12 CO₂ fluxes deviated markedly from the “true” CO₂ fluxes. In other words, the
13 performance of CFI-CMAQ greatly relies on the choice of β .

14 From the perspective of the lag-window, the differences among the four
15 assimilation sensitivity experiments with lag-windows of 3, 6, 9 and 12 days were
16 very small (see Fig. 13). Although Peters et al. (2007) indicated that the lag-window
17 should be more than five weeks, it seemed that the smoother window had a slight
18 influence on the assimilated results for CFI-CMAQ. It was clear that the assimilated
19 results with a larger lag-window were better than those with a smaller lag-window;
20 however, CFI-CMAQ performed very well even with a short lag-window (e.g. 3
21 days).

22 At the end of this subsection, the assimilation results of the reference experiment

1 in which $\lambda_{i,t|t-1}^p$ were set to 1 will be addressed briefly. The impact of assimilation
 2 $X_{CO_2}^p$ on CO₂ fluxes was disordered. The monthly mean values of the difference
 3 between the prior true surface CO₂ fluxes and the ensemble mean values of the
 4 assimilated surface CO₂ fluxes were irregular noise (see Fig. 14). The main reason is
 5 that all the elements of the scaling factors to be optimized in the smoother window are
 6 only random numbers. As stated in the above section, only $\lambda_{i,1|0}^a$ needed to be
 7 optimized in the first assimilation cycle. However, $\lambda_{i,1|0}^a$ were rand fields (in other
 8 words, all the elements of $\lambda_{i,1|0}^a$ are only random numbers) because they could not
 9 generated by other ways at the first time. So their spatial correlations were too small.
 10 The correlations between the scaling factors and the observations were also too small.
 11 Therefore it was impossible to systematically change the values of $\lambda_{i,1|0}^a$ in large areas
 12 where the observations located after assimilating observations at $t=1$. Thus the
 13 signal-to-noise problem arose. So the elements of $\lambda_{i,1|1}^a$ are only random numbers too.
 14 Though $\lambda_{i,2|1}^a$ could be generated automatically by the smoothing operator when all
 15 $\lambda_{i,2|1}^p$ were set to 1, the elements of $\lambda_{i,2|1}^a$ are random numbers too since the smoothing
 16 operator is only a linear operator. Similarly, it was impossible to systematically
 17 change the values of $\lambda_{i,1|1}^a$ and $\lambda_{i,2|1}^a$ in large areas after assimilating observations at
 18 $t=2$. As this inversion system continued assimilating observations, all future scaling
 19 factors could be created by the smoothing operator and then updated. But this
 20 inversion system could not ingest the observations effectively because all the elements
 21 of the scaling factors were always random numbers. However, all the elements of the
 22 scaling factors in CFI-CMAQ are state variable with spatial correlations because they

1 were created by the persistence dynamical model, which is associated the smoothing
2 operator with the atmospheric transport model. Therefore, we could get effective
3 values after assimilating the observations.

4

5 **4 Summary and conclusions**

6 A regional surface CO₂ flux inversion system, CFI-CMAQ, has been developed
7 to optimize CO₂ fluxes at grid scales. It operates under a joint data assimilation
8 framework by applying EnKF to constrain the CO₂ concentrations and applying EnKS
9 to optimize the surface CO₂ flux, which is similar to Kang et al. (2011, 2012) and
10 Tian et al. (2013). The persistence dynamical model, which was first introduced by
11 Peters et al. (2007) by applying the smoothing operator to transport the useful
12 observed information onto the next assimilation cycle, is further developed. We
13 associated the smoothing operator with the atmospheric transport model to constitute
14 the persistence dynamical model to forecast the surface CO₂ flux scaling factors for
15 the purpose of resolving the ‘signal-to-noise’ problem, as well as transporting the
16 useful observed information onto the next assimilation cycle. In this application, the
17 scaling factors to be optimized in the flux inversion system can be forecast at the grid
18 scale without random noise. The OSSEs showed that the performance of CFI-CMAQ
19 is effective and promising. In general, it could reproduce the true fluxes at the grid
20 scale with acceptable bias.

21 This study represents the first step in developing a regional surface CO₂ flux
22 inversion system to optimize CO₂ fluxes over East Asia, particularly over China. In

1 future, we intend to further develop the covariance localization techniques and
2 inflation techniques to improve the performance of CFI-CMAQ. Furthermore, the
3 uncertainty of the boundary conditions should be considered to improve the
4 effectiveness of regional CO₂ flux optimization.

5

6 *Acknowledgments.* This work was supported by the Strategic Priority Research Program–Climate Change: Carbon Budget
7 and Relevant Issues (XDA05040404), the National High Technology Research and Development Program of China
8 (2013AA122002). CarbonTracker results used to generate the initial condition are provided by NOAA ESRL, Boulder, Colorado,
9 USA from the website at <http://carbontracker.noaa.gov>. The numerical calculations in this paper have been done on the IBM
10 Blade cluster system in the High Performance Computing Center (HPCC) of Nanjing University.

11

12 **References**

13 Andres, R. J., Boden, T. A., Br éon, F. M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson,
14 A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P. and
15 Treanton, K.: A synthesis of carbon dioxide emissions from fossil-fuel combustion,
16 Biogeosciences, 9, 1845–1871. doi:10.5194/bg-9-1845-2012, 2012.

17 Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric CO₂,
18 Tellus B, 58, 359–365, 2006.

19 Boden, T. A., Marland, G., and Andres, R. J.: Global, regional, and national fossil-fuel CO₂
20 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory,
21 U.S. Department of Energy, Oak Ridge, Tenn., U.S.A, doi:10.3334/CDIAC/00001_V2011,
22 2011.

23 Chevallier, F. M. F., Peylin, P., Bousquet, S. S. P., Br éon, F.-M., Ch édin, A., and Ciais, P.:
24 Inferring CO₂ sources and sinks from satellite observations: Method and application to TOVS
25 data, J. Geophys. Res., 110, D24309, doi:10.1029/2005JD006390, 2005.

26 Chevallier, F., Br éon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon Observatory
27 to the estimation of CO₂ sources and sinks: Theoretical study in a variational data
28 assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375, 2007a.

1 Chevallier, F.: Impact of correlated observation errors on inverted CO₂ surface fluxes from OCO
2 measurements, *Geophys. Res. Lett.*, 34, L24804, doi:10.1029/2007GL030463, 2007b.

3 Connor, B. J., Bösch, H., Toon, G., Sen, B., Miller, C., and Crisp, D.: Orbiting Carbon
4 Observatory: Inverse method and prospective error analysis, *J. Geophys. Res.*, 113, D05305,
5 doi:10.1029/2006JD008336, 2008.

6 Crisp, D., Bösch, H., Brown, L., Castano, R., Christi, M., Connor, B., Frankenberg, C., McDuffie,
7 J., Miller, C. E., Natraj, V., O'Dell, C., O'Brien, D., Polonsky, I., Oyafuso, F., Thompson, D.,
8 Toon, G., and Spurr, R.: OCO (Orbiting Carbon Observatory)-2 Level 2 Full Physics
9 Retrieval Algorithm Theoretical Basis, Tech. Rep. OCO D-65488, NASA Jet Propulsion
10 Laboratory, California Institute of Technology, Pasadena, CA, version 1.0 Rev 4,
11 http://disc.sci.gsfc.nasa.gov/acdisc/documentation/OCO-2_L2_FP_ATBD_v1_rev4_Nov10.pdf
12 (last access: August 4, 2014), 2010.

13 Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R.,
14 Castano, R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A.,
15 Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V.,
16 Notholt, J., O'Brien, D. M., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R.,
17 Sherlock, V., Smyth, M., Suto, H., Taylor, T. E., Thompson, D. R., Wennberg, P. O.,
18 Wunch, D., and Yung, Y. L.: The ACOS CO₂ retrieval algorithm – Part II: Global X_{CO₂} data
19 characterization, *Atmos. Meas. Tech.*, 5, 687–707, doi:10.5194/amt-5-687-2012, 2012.

20 Deng, F., Chen, J. M., Ishizawa, M., YUEN, C. W. A. I., Mo, G., Higuchi, K., Chan, D., and
21 Maksyutov, S.: Global monthly CO₂ flux inversion with a focus over North America, *Tellus*
22 B, 59, 179–190, 2007.

23 Engelen, R. J., Serrar, S., and Chevallier, F.: Four-dimensional data assimilation of atmospheric
24 CO₂ using AIRS observations, *J. Geophys. Res.*, 114, D03303, doi:10.1029/2008JD010739,
25 2009.

26 Feng, L., Palmer, P. I., Bösch, H., and Dance, S.: Estimating surface CO₂ fluxes from space-borne
27 CO₂ dry air mole fraction observations using an ensemble Kalman Filter, *Atmos. Chem.*
28 *Phys.*, 9, 2619–2633, 2009.

29 Feng, L., Palmer, P. I., Yang, Y., Yantosca, R. M., Kawa, S. R., Paris, J.-D., Matsueda, H., and
30 Machida, T.: Evaluating a 3-D transport model of atmospheric CO₂ using ground-based,

1 aircraft, and space-borne data, *Atmos. Chem. Phys.*, 11, 2789–2803, doi:
2 10.5194/acp-11-2789-2011, 2011.

3 Gurney, K. R., Law, R. L., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L.,
4 Chen, Y. H, Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J.,
5 Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J.,
6 Sarmiento, J., Taguchi, S., Takahashi, T., Yuen, C. W.: Towards robust regional estimates of
7 CO₂ sources and sinks using atmospheric transport models, *Nature*, 415, 626–630, 2002

8 Gurney, K. R., Mendoza, D. L., Zhou, Y. Y., Fischer, M. L., Miller, C. C., Geethakumar, S. and
9 Du Can, S. D.: High resolution fossil fuel combustion CO₂ emission fluxes for the United
10 States, *Environ. Sci. & Technol.*, 43, 5535-5541. doi:10.1021/es900806c, 2009.

11 Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data
12 assimilation, *Mon. Wea. Rev.* 129: 123-137, 2001.

13 Huang, Z. K., Peng, Z., Liu, H. N., Zhang, M. G.: Development of CMAQ for East Asia CO₂ data
14 assimilation under an EnKF framework: a first result, *Chinese Science Bulletin*, 59:
15 3200-3208, doi: 10.1007/s11434-014-0348-9, 2014.

16 Jiang, F., Wang, H. W., Chen, J. M., Zhou, L. X., Ju, W. M., Ding, A. J., Liu, L. X., and
17 Peters, W.: Nested atmospheric inversion for the terrestrial carbon sources and sinks in China,
18 *Biogeosciences*, 10, 5311-5324, doi:10.5194/bg-10-5311-2013, 2013.

19 Kang, J.-S., Kalnay, E., Liu, J., Fung, I., Miyoshi, T., and Ide, K.: “Variable localization” in an
20 ensemble Kalman filter: application to the carbon cycle data assimilation, *J. Geophys. Res.*,
21 116, D09110, doi:10.1029/2010JD014673, 2011.

22 Kang, J.-S., Kalnay, E., Miyoshi, T., Liu, J., and Fung, I.: Estimation of surface carbon fluxes with
23 an advanced data assimilation methodology, *J. Geophys. Res.*, 117, D24101,
24 doi:10.1029/2012JD018259, 2012.

25 Kou, X., Zhang, M., Peng, Z.: Numerical Simulation of CO₂ Concentrations in East Asia with
26 RAMS-CMAQ, *Atmos. Oceanic Sci Lett*, 6, 179-184, 2013.

27 Kretschmer, R., Gerbig, C., Karstens, U., Koch, F.-T.: Error characterization of CO₂ vertical
28 mixing in the atmospheric transport model WRF-VPRM, *Atmos. Chem. Phys.*, 12,
29 2441–2458, 2012.

30 Liu, J., Fung, I., Kalnay, E., Kang, J.: CO₂ transport uncertainties from the uncertainties in

1 meteorological fields, *Geophys. Res. Lett.*, 38, L12808, doi: 10.1029/2011GL047213,
2 2011.

3 Liu, J., Fung, I., Kalnay, E., Kang, J.-S., Olsen, E. T., and Chen, L.: Simultaneous assimilation of
4 AIRS $X\text{CO}_2$ and meteorological observations in a carbon climate model with an ensemble
5 Kalman filter, *J. Geophys. Res.*, 117, D05309, doi: 10.1029/2011JD016642, 2012.

6 Liu Z., Bambha, R. P., Pinto, J. P.: Toward verifying fossil fuel CO_2 emissions with the
7 Community Multi-scale Air Quality (CMAQ) model: motivation, model description and
8 initial simulation. *J. Air & Waste Management Assoc.*, 64, 419-435, doi:
9 10.1080/10962247.2013.816642, 2013.

10 Marland, G.: Uncertainties in accounting for CO_2 from fossil fuels, *J. of Indust. Ecol.* 12, 136-139,
11 doi:10.1111/j.1530-9290.2008.00014.x, 2008.

12 Miyazaki K.: Performance of a local ensemble transform Kalman filter for the analysis of
13 atmospheric circulation and distribution of long-lived tracers under idealized conditions, *J.*
14 *Geophys. Res.*, 114, D19304, doi: 10.1029/2009JD011892, 2009.

15 O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M.,
16 Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F.,
17 Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The
18 ACOS CO_2 retrieval algorithm – Part 1: Description and validation against synthetic
19 observations, *Atmos. Meas. Tech.*, 5, 99–121, doi:10.5194/amt-5-99-2012, 2012.

20 Osterman, G., Martinez, E., Eldering, A., Avis, C.: ACOS Level 2 Standard Product Data User's
21 Guide, v2.9, 2011.

22 Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., Zupanski, D.,
23 Bruhwiler, L., and Tans, P. P.: An ensemble data assimilation system to estimate CO_2 surface
24 fluxes from atmospheric trace gas observations, *J. Geophys. Res.*, 110, D24304, doi:
25 10.1029/2005JD006157, 2005.

26 Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J.
27 B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G.
28 R., Randerson, J. T., Wennberg, P. O., Krol, M. C., Tans, P. P.: An atmospheric perspective
29 on North American carbon dioxide exchange: CarbonTracker, *P. Natl. Acad. Sci. USA*, 104,
30 18925–18930, 2007.

1 Peters, W., KROL, M. C., Van Der WERF, G. R., Houwling, S., Jones, C. D., Hughes, J.,
2 Schaefer, K., Masarie, K. A., Jacobson, A. R., Miller, J. B., Cho, C. H., Ramonet, M.,
3 Schmidt, M., Ciattaglia, L., Apadula, F., Heltai, D., Meinhardt, F., Di Sarra, A. G.,
4 Piachentina, S., Sferlazzo, D., Aalto, T., Hatakka, J., Ström, J., Haszpra, L., Meijer, H. A. J.,
5 Van Der Laan, S., Neubert, R. E. M., Jordan, A., Rodo, X., Morgui, J. –A., Vermeulen, A. T.,
6 Popa, E., Rozanski, M., Manning, A. C., Leuenberger, M., Uglietti, C., Dolman, A. J., Ciais,
7 P., Heimann, M., Tans, P. P.: Seven years of recent European net terrestrial carbon dioxide
8 exchange constrained by atmospheric observations, *Global Change Biology*, 16(4),
9 1365-2486, 2009.

10 Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P.
11 K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.:
12 Global atmospheric carbon budget: results from an ensemble of atmospheric CO₂ inversions,
13 *Biogeosciences*, 10, 6699–6720, doi:10.5194/bg-10-6699-2013, 2013.

14 Pillai, D., Gerbig, C., Ahmadov, R., Rödenbeck, C., Kretschmer, R., Koch, T., Thompson, R.,
15 Neininger, B., and Lavrić, J. V.: High-resolution simulations of atmospheric CO₂ over
16 complex terrain – representing the Ochsenkopf mountain tall tower, *Atmos. Chem. Phys.*, 11,
17 7445-7464, doi:10.5194/acp-11-7445-2011, 2011.

18 Prather, M., Zhu, X., Strahan, S.E., Steenrod, S., D., and Rodriguez, J., M.: Quantifying errors in
19 trace species transport modeling. *Proc. Natl. Acad. Sci. U. S. A.* 105:19617-19621.
20 doi:10.1073/pnas.0806541106, 2008.

21 National Research Council: Verifying greenhouse gas emissions: Methods to support international
22 climate agreements, The National Academies Press, Washington, D.C. 2010.

23 Tian, X., Xie, Z., Sun, Q.: A POD-based ensemble four-dimensional variational assimilation
24 method, *Tellus A*, 63, 805-816, 2011.

25 Tian, X., Xie, Z., Liu, Y., Cai, Z., Fu, Y., Zhang, H., and Feng, L.: A joint data assimilation
26 system (Tan-Tracker) to simultaneously estimate surface CO₂ fluxes and 3-D atmospheric
27 CO₂ concentrations from observations, *Atmos. Chem. Phys. Discuss.*, 13, 24755-24784,
28 2013.

29 van der Werf, G. R., Randerson, J. T.: Global fire emissions and the contribution of deforestation,
30 savanna, forest, agricultural, and peat fires (1997–2009). *Atmos. Chem. Phys.*, **10**,

1 11707–11735, doi: 10.5194/acp-10-11707-2010, 2010.

2 Wang, B., Liu, J., Wang, S., Cheng, W., Liu, J., Liu, C., Xiao Q., and Kuo, Y.: An economical
3 approach to four-dimensional variational data assimilation, *Adv. Atmos. Sci.*, 27, 715–727,
4 doi:10.1007/s00376-009-9122-3, 2010.

5 Zhang, H. F., B. Z. Chen, I. T. van der Laan-Luijkx, J. Chen, G. Xu, J. W. Yan, L. X. Zhou, Y.
6 Fukuyama, P. P. Tans, and W. Peters, Net terrestrial CO₂ exchange over China during
7 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO₂, *J.*
8 *Geophys. Res. Atmos.*, 119, 3500–3515, doi:10.1002/2013JD021297, 2014.

9 Zhang, H. F., Chen, B. Z., Machida, T., Matsueda, H., Sawa, Y., Fukuyama, Y., Langenfelds, R.,
10 van der Schoot, M., Xu, G., Yan, J. W., Cheng, M. L., Zhou, L. X., Tans, P. P., and Peters, W.:
11 Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO₂
12 observations for the period 2006–2010, *Atmos. Chem. Phys.*, 14, 5807–5824,
13 doi:10.5194/acp-14-5807-2014, 2014.

14 Zhang, M., Uno, I., Sugata, S., Wang, Z., Byun, D., Akimoto, H.: Numerical study of boundary
15 layer ozone transport and photochemical production in East Asia in the wintertime, *Geophys.*
16 *Res. Lett.*, 29(11), 40-1-40-4, doi: 10.1029/2001GL014368, 2002.

17 Zhang, M., Uno, I., Carmichael, G. R., Akimoto, H., Wang, Z., Tang, Y., Woo, J., Streets, D. G.,
18 Sachse, G. W., Avery, M. A., Weber, R. J., Talbot, R. W.: Large-scale structure of trace gas
19 and aerosol distributions over the western Pacific Ocean during the Transport and Chemical
20 Evolution Over the Pacific (TRACE-P) experiment, *J. Geophys. Res.*, 108(D21), 8820, doi:
21 10.1029/2002JD002946, 2003.

22 Zhang, M., Gao, L., Ge, C., Xu, Y.: Simulation of nitrate aerosol concentrations over East Asia
23 with the model system RAMS-CMAQ, *Tellus B*, 59, 372–380, 2007.

24

25

26

27

1 **List of Figures**

2 Fig. 1. Schematic diagram of the smoother window.
3 $(\lambda_{i,t-1-M|t-1}^a, \lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a)$ are the optimized scaling factors in
4 the smoother window and $C_{i,t-1}^a$ are the assimilated CO₂ concentrations fields at time
5 $t-1$ in the previous assimilation cycle $t-1-M \sim t-1$.
6 $(\lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a, \lambda_{i,t}^f)$ are the scaling factors in the smoother
7 window and $C_{i,t}^f$ are the forecast CO₂ concentrations fields at time t which need to
8 be optimized in the current assimilation cycle $t-M \sim t$.

9
10 Fig. 2. Flowchart of the CFI-CMAQ system used to optimize surface CO₂ fluxes at
11 each assimilation cycle. The system includes the following four parts in turn: (1)
12 forecasting of the linear scaling factors $\lambda_{i,t|t-1}^a$ (red arrows); (2) optimization of the
13 scaling factors in the smoother window by EnKS (see Fig. 1) (blue arrows); (3)
14 updating of the flux in the smoother window (green arrows); and (4) assimilation of
15 the CO₂ concentration fields at time t by EnKF (black arrows).

16
17 Fig. 3. (a) Total number of observations in February 2010 in the model grid. Each
18 symbol indicates the total number of all GOSAT X_{CO₂} measurements in the
19 corresponding model grid. Monthly mean values in February 2010 of (b) $X_{CO_2}^p$,
20 column mixing ratio of C_t^p ; (c) $X_{CO_2}^f$, column mixing ratio of C_t^f ; (d) $\overline{X_{CO_2}^a}$,
21 column mixing ratio of $\overline{C_t^a}$; (e) $X_{CO_2}^p - X_{CO_2}^f$; and (f) $X_{CO_2}^p - \overline{X_{CO_2}^a}$. All column
22 mixing ratios are column-averaged with real GOSAT X_{CO₂} averaging kernels at
23 GOSAT X_{CO₂} locations. Each symbol indicates the monthly average value of all X_{CO₂}

1 estimates in the model grid. $\overline{C_t^a}$ are the ensemble mean values of the assimilated
2 CO₂ concentrations fields of a CFI-CMAQ OSSE, in which the lag-window was 9
3 days and β was 70. And they are the same OSSE in Fig. 3 to Fig. 6.

4

5 Fig. 4. Monthly mean values of (a) C_t^p , the artificial true simulations driven by the
6 prior surface CO₂ fluxes F_t^p ; (b) C_t^f , the background simulations driven by
7 magnified surface CO₂ fluxes $F_t^* = (1.8 + \delta(x, y, z, t))F_t^p$; (c) $\overline{C_t^a}$, the ensemble
8 mean values of the assimilated CO₂ concentrations fields; (d) $C_t^p - C_t^f$; (e) $C_t^p - \overline{C_t^a}$;
9 and (f) $100 * (C_t^p - \overline{C_t^a}) / C_t^p$ at model-level 1 in February 2010. Black lines EF and
10 GH indicate the positions of the cross sections shown in Fig. 5.

11

12 Fig. 5. Monthly mean cross sections of $C_t^p - C_t^f$ along line (a) EF and (b) GH, and
13 monthly mean cross sections of $C_t^p - \overline{C_t^a}$ along line (c) EF and (d) GH (cross section
14 lines shown in Fig. 4d) in February 2010.

15

16 Fig. 6. Daily mean time series of CO₂ concentrations at national background stations
17 in China and their nearest large cities from 1 Jan. to 20 Mar. 2010 extracted from the
18 artificial true simulations C_t^p (black), background simulations C_t^f (red), and the
19 ensemble mean values of the assimilated CO₂ concentrations fields $\overline{C_t^a}$ (blue). All
20 time series were interpolated to the observation locations by the spatial bilinear
21 interpolator method. The sites used are (a) Waliguan (36.28 °N, 100.91 °E), (b) Xining
22 (36.56 °N, 101.74 °E), (c) Longfengshan (44.73 °N, 127.6 °E), (d) Haerbin (45.75 °N,
23 126.63 °E), (e) Shangdianzi (40.65 °N, 117.12 °E), (f) Beijing (39.92 °N, 116.46 °E), (g)

1 Linan (30.3 °N, 119.73 °E), and (h) Hangzhou (30.3 °N, 120.2 °E).

2

3 Fig. 7. Monthly mean values in February 2010 of (a) \mathbf{F}_t^p , the prior true surface CO₂
4 fluxes; (b) \mathbf{F}_t^* , the prescribed CO₂ surface fluxes, $\mathbf{F}_t^* = (1.8 + \delta(x, y, z, t))\mathbf{F}_t^p$; (c)
5 $\overline{\mathbf{F}_t^a}$, the ensemble mean values of the assimilated surface CO₂ fluxes; (d) $\mathbf{F}_t^p - \mathbf{F}_t^*$; (e)
6 $\overline{\mathbf{F}_t^a} - \mathbf{F}_t^*$; and (f) $\overline{\mathbf{F}_t^a} - \mathbf{F}_t^p$ (units: $\mu\text{mole m}^{-2} \text{ s}^{-1}$). $\overline{\mathbf{F}_t^a}$ are the assimilated results of
7 an CFI-CMAQ OSSE, in which the lag-window was 9 days and β was 70. And they
8 are the same in Fig. 7 to Fig. 10.

9

10 Fig. 8. Monthly mean RMSEs of $\overline{\mathbf{F}_t^a}$ in February 2010 (units: $\mu\text{mole m}^{-2} \text{ s}^{-1}$).

11

12 Fig. 9. (a) Ratios of monthly mean \mathbf{F}_t^p to monthly mean \mathbf{F}_t^* ; (b) ratios of monthly
13 mean $\overline{\mathbf{F}_t^a}$ to monthly mean \mathbf{F}_t^* ; and (c) ratios of monthly mean $\overline{\mathbf{F}_t^a}$ to monthly
14 mean \mathbf{F}_t^p in Feb. 2010. The white part indicates the ratios where the absolute values
15 of monthly mean \mathbf{F}_t^* are larger than 0.01, not analyzed in this study. The black
16 square labeled I indicates the domain where surface CO₂ fluxes were used for the
17 results presented in Fig. 12 and 13.

18

19 Fig. 10. Daily mean time series of CO₂ fluxes at national background stations in
20 China and their nearest large cities from 1 Jan to 20 Mar. 2010 extracted from the
21 prior true surface CO₂ fluxes \mathbf{F}_t^p (black), the prescribed CO₂ surface fluxes \mathbf{F}_t^*
22 (red), and the assimilated CO₂ fluxes $\overline{\mathbf{F}_t^a}$ (blue). All time series were interpolated to
23 the observation locations by the spatial bilinear interpolator method. The sites used

1 are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin, (e) Shangdianzi, (f)
2 Beijing, (g) Linan, and (h) Hangzhou.

3

4 Fig. 11. (a) Ensemble spread of $C_{i,t}^f$ after inflating; (b) ensemble spread of $\lambda_{i,t}^p$
5 before inflating; (c) ensemble spread of $\lambda_{i,t}^f$ at model-level 1 at 00 UT on 1 March
6 2010 when $\beta = 70$.

7

8 Fig. 12. Time series of daily mean CO₂ fluxes averaged in domain I (shown in Fig. 9b)
9 from 1 Jan. to 20 Mar. 2010 with the inflation factor of scaling factors $\beta = 70, 75$ and
10 80. The black dashed line is the time series averaged from F_t^* and the black solid
11 line is the time series averaged from F_t^p .

12

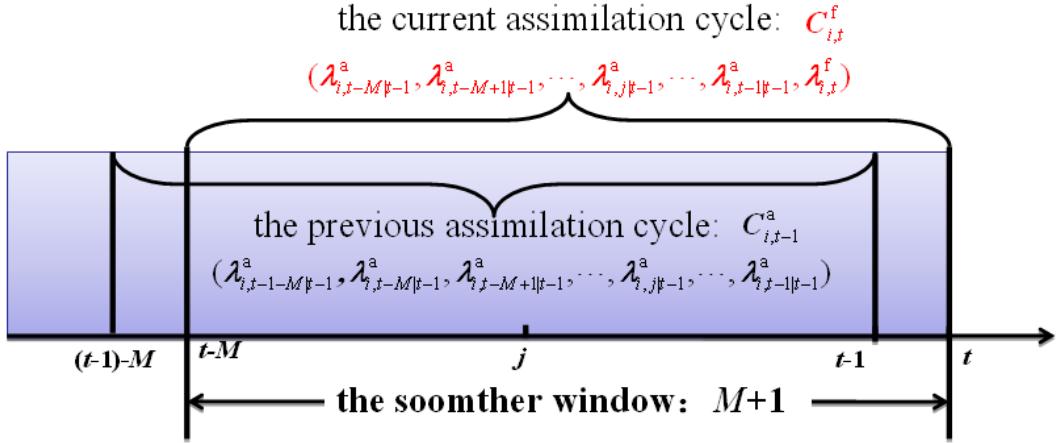
13 Fig. 13. Time series of daily mean CO₂ fluxes averaged in domain I (shown in Fig. 9b)
14 from 1 Jan. to 20 Mar 2010 with different smoother windows (3, 6, 9 and 12 days).
15 The black dashed line is the time series averaged from F_t^* and the black solid line is
16 the time series averaged from F_t^p .

17

18 Fig. 14. Monthly mean values of the difference between the prior true surface CO₂
19 fluxes and the ensemble mean values of the assimilated surface CO₂ fluxes (units:
20 $\mu\text{mole m}^{-2} \text{s}^{-1}$) of the reference experiment in which $\lambda_{i,t|t-1}^p$ were set to 1.
21

22

1

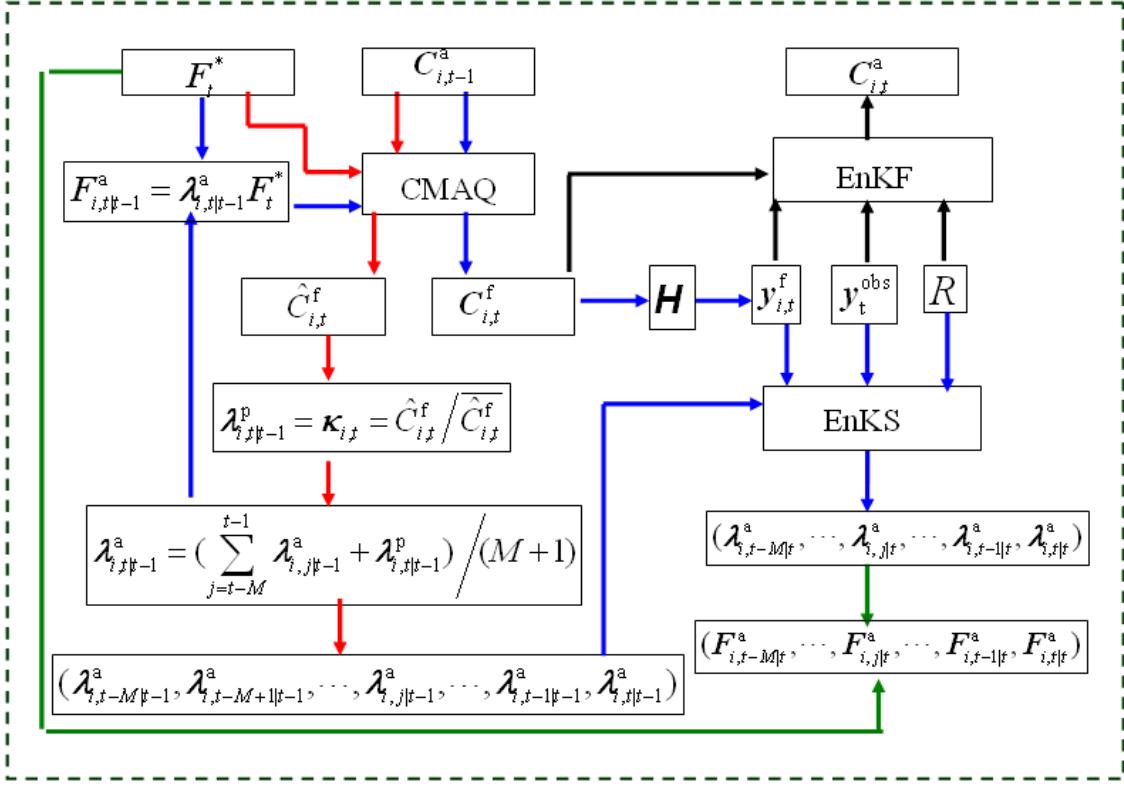
2
3

4 Fig. 1. Schematic diagram of the smoother window.

5 $(\lambda_{i,t-1-M|t-1}^a, \lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a)$ are the optimized scaling factors in the
6 smoother window and $C_{i,t-1}^a$ are the assimilated CO₂ concentrations fields at time $t-1$ in the
7 previous assimilation cycle $t-1-M \sim t-1$. $(\lambda_{i,t-M|t-1}^a, \lambda_{i,t-M+1|t-1}^a, \dots, \lambda_{i,j|t-1}^a, \dots, \lambda_{i,t-1|t-1}^a, \lambda_{i,t}^f)$ are the
8 scaling factors in the smoother window and $C_{i,t}^f$ are the forecast CO₂ concentrations fields at
9 time t which need to be optimized in the current assimilation cycle $t-M \sim t$.

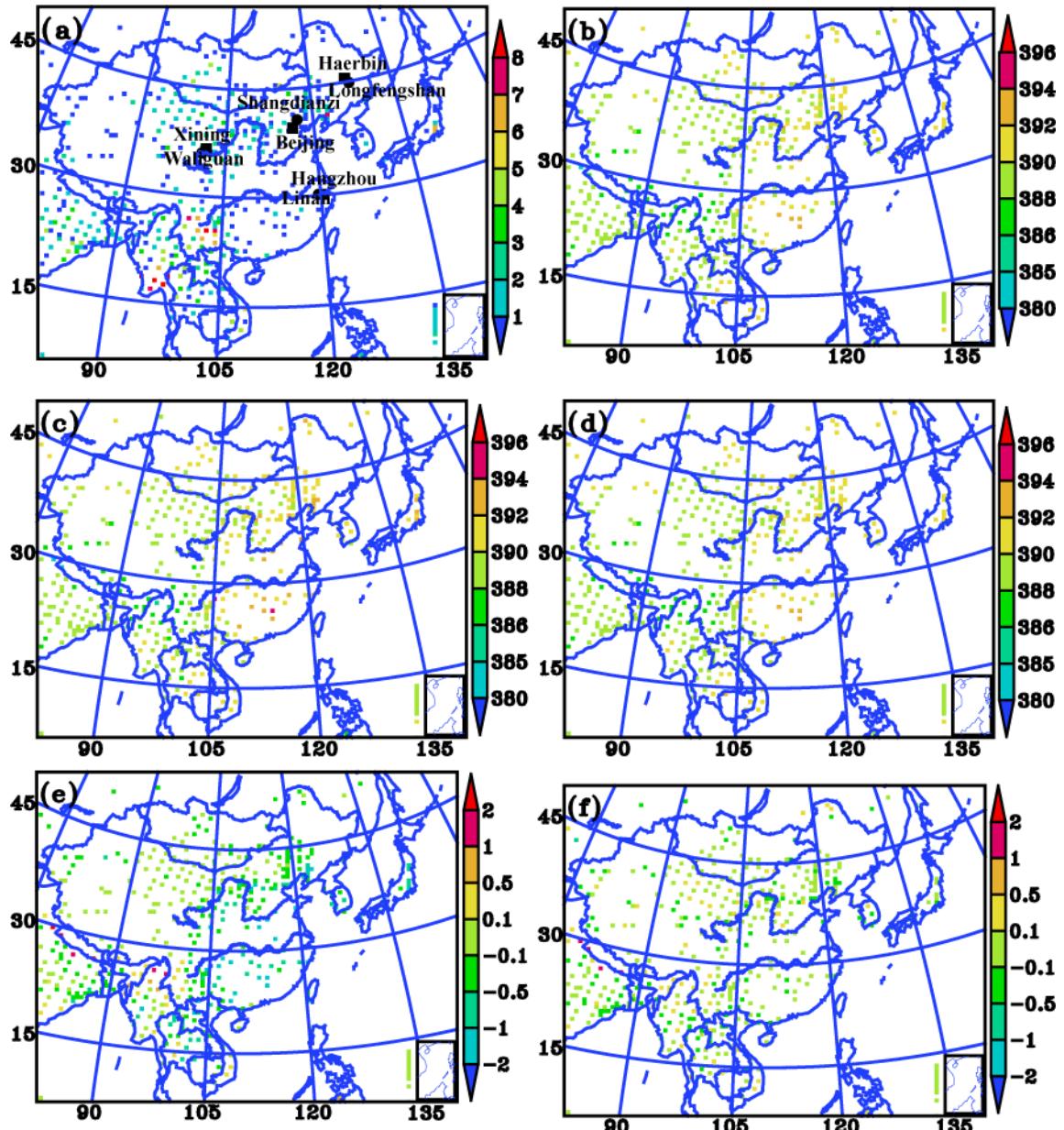
10
11

1



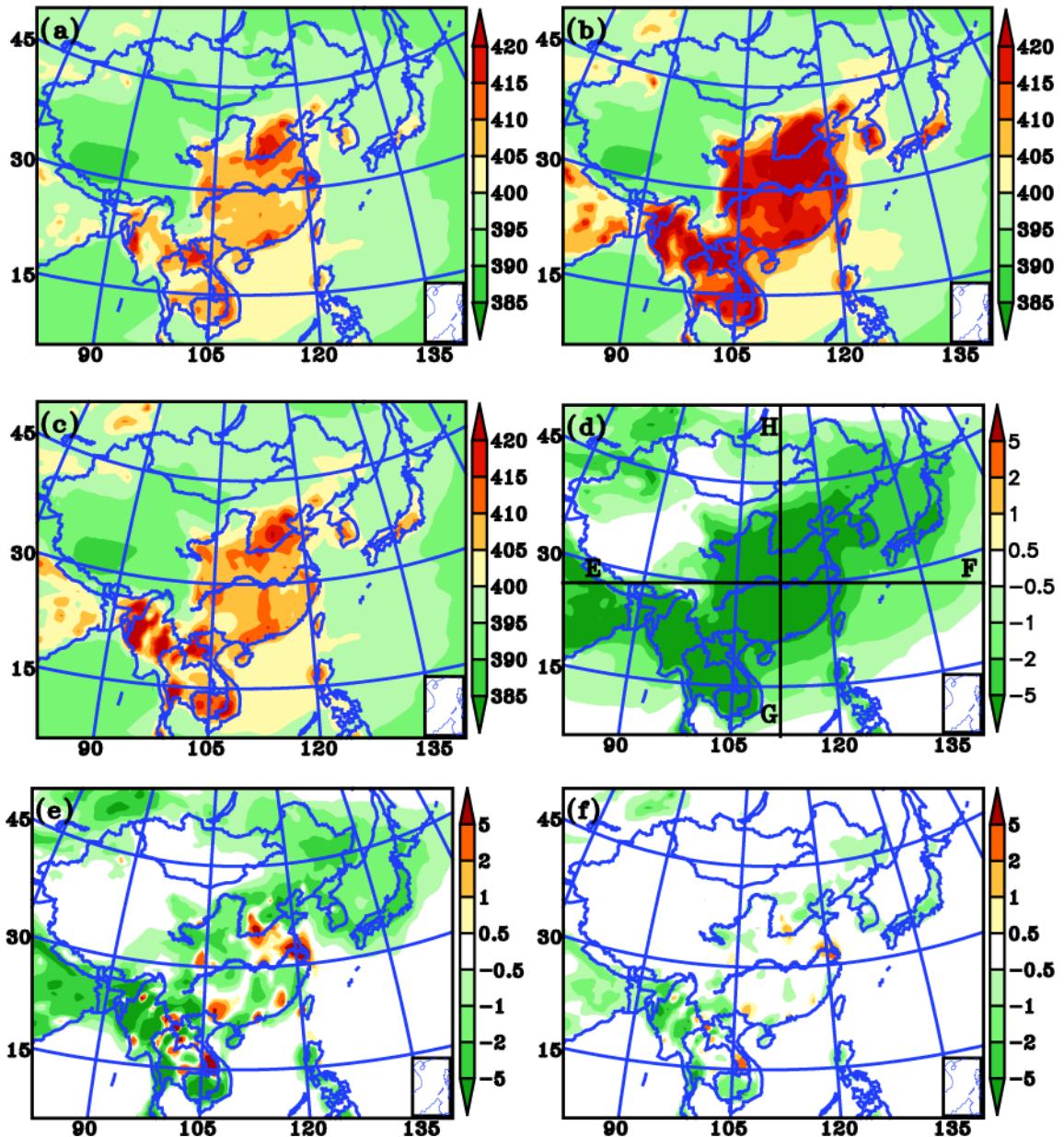
2

3 Fig. 2. Flowchart of the CFI-CMAQ system used to optimize surface CO₂ fluxes at each
4 assimilation cycle. The system includes the following four parts in turn: (1) forecasting of the
5 linear scaling factors $\lambda_{i,t|t-1}^a$ (red arrows); (2) optimization of the scaling factors in the smoother
6 window by EnKS (see Fig. 1) (blue arrows); (3) updating of the flux in the smoother window
7 (green arrows); and (4) assimilation of the CO₂ concentration fields at time t by EnKF (black
8 arrows).
9



1 Fig. 3. (a) Total number of observations in February 2010 in the model grid. Each symbol
2 indicates the total number of all GOSAT X_{CO_2} measurements in the corresponding model grid.
3 Monthly mean values in February 2010 of (b) $X_{CO_2}^p$, column mixing ratio of C_t^p ; (c) $X_{CO_2}^f$,
4 column mixing ratio of C_t^f ; (d) $\overline{X_{CO_2}^a}$, column mixing ratio of $\overline{C_t^a}$; (e) $X_{CO_2}^p - X_{CO_2}^f$; and (f)
5 column mixing ratio of $X_{CO_2}^p - \overline{X_{CO_2}^a}$. All column mixing ratios are column-averaged with real GOSAT X_{CO_2} averaging
6 kernels at GOSAT X_{CO_2} locations. Each symbol indicates the monthly average value of all X_{CO_2}
7 estimates in the model grid. $\overline{C_t^a}$ are the ensemble mean values of the assimilated CO_2
8 concentrations fields of a CFI-CMAQ OSSE, in which the lag-window was 9 days and
9 β was 70. And they are the same OSSE in Fig. 3 to Fig. 6.
10

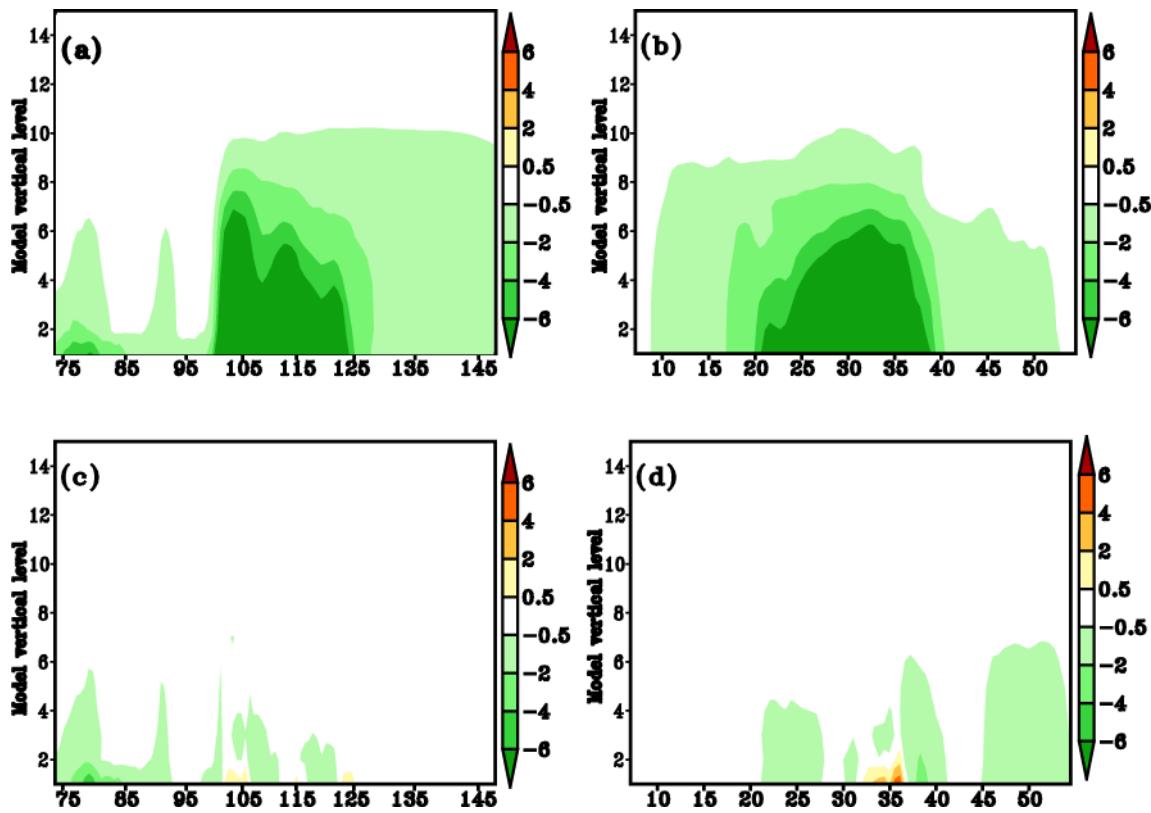
1



3 Fig. 4. Monthly mean values of (a) \mathbf{C}_t^p , the artificial true simulations driven by the prior surface
4 CO₂ fluxes \mathbf{F}_t^p ; (b) \mathbf{C}_t^f , the background simulations driven by magnified surface CO₂ fluxes
5 $\mathbf{F}_t^* = (1.8 + \delta(x, y, z, t))\mathbf{F}_t^p$; (c) $\overline{\mathbf{C}}_t^a$, the ensemble mean values of the assimilated CO₂
6 concentrations fields; (d) $\mathbf{C}_t^p - \mathbf{C}_t^f$; (e) $\mathbf{C}_t^p - \overline{\mathbf{C}}_t^a$; and (f) $100 * (\mathbf{C}_t^p - \overline{\mathbf{C}}_t^a) / \mathbf{C}_t^p$ at
7 model-level 1 in February 2010. Black lines EF and GH indicate the positions of the cross sections
8 shown in Fig. 5.

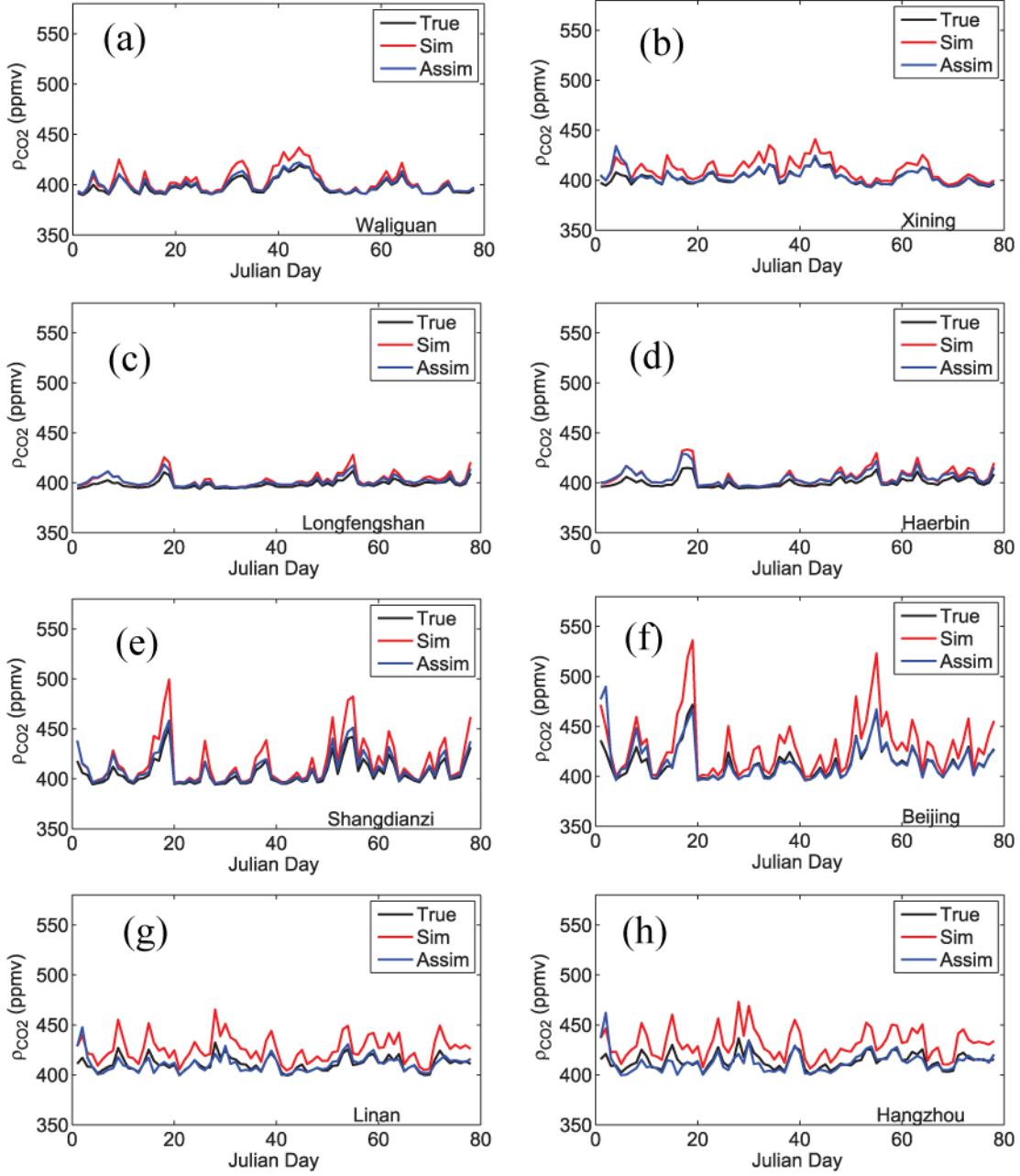
9

1



2 Fig. 5. Monthly mean cross sections of $C_t^p - C_t^f$ along line (a) EF and (b) GH, and monthly
 3 mean cross sections of $C_t^p - \overline{C_t^a}$ along line (c) EF and (d) GH (cross section lines shown in Fig.
 4
 5 4d) in February 2010.

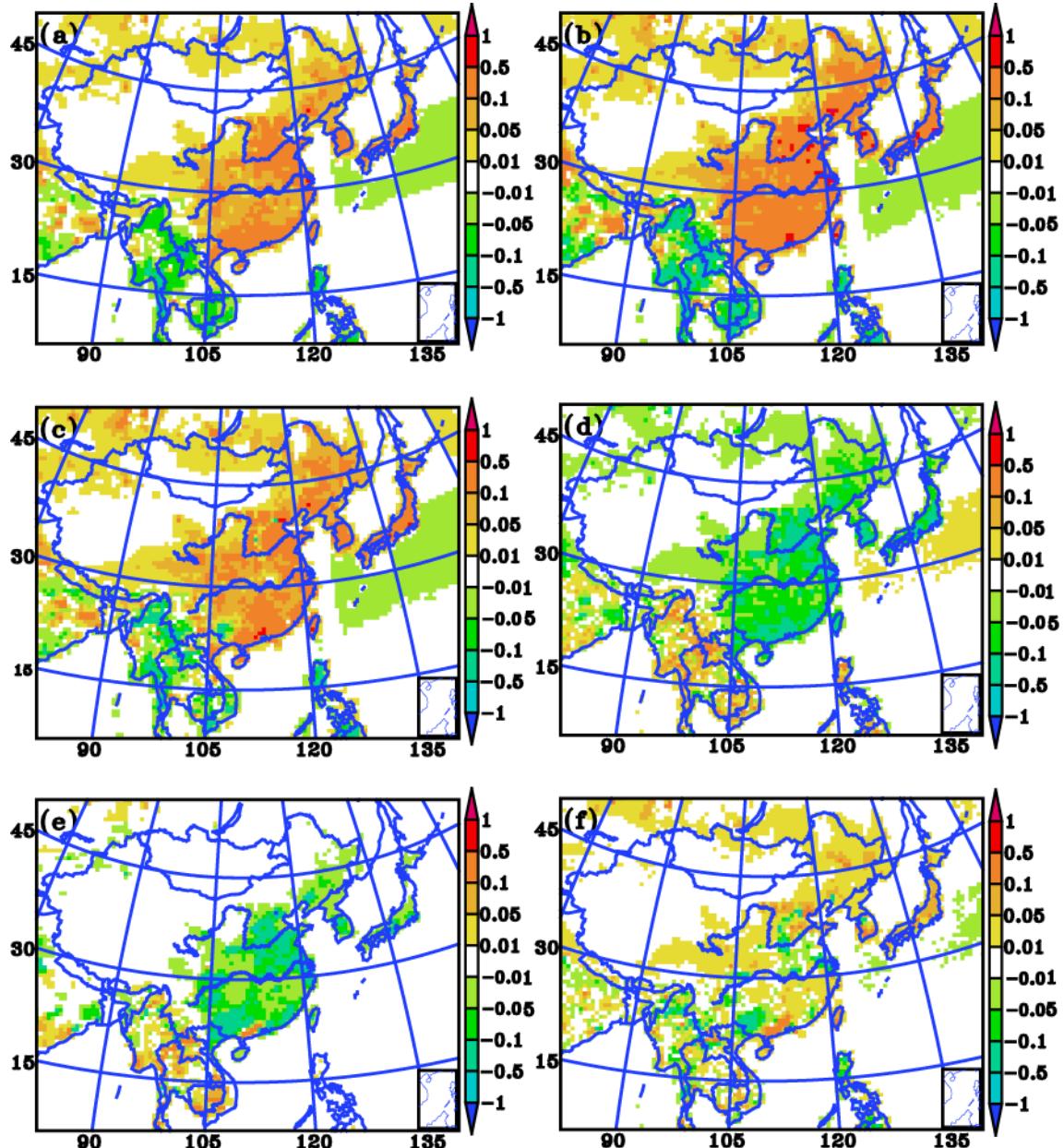
6



1

2 Fig. 6. Daily mean time series of CO₂ concentrations at national background stations in China and
 3 their nearest large cities from 1 Jan. to 20 Mar. 2010 extracted from the artificial true simulations
 4 C_t^p (black), background simulations C_t^f (red), and the ensemble mean values of the
 5 assimilated CO₂ concentrations fields \bar{C}_t^a (blue). All time series were interpolated to the
 6 observation locations by the spatial bilinear interpolator method. The sites used are (a) Waliguan
 7 (36.28 °N, 100.91 °E), (b) Xining (36.56 °N, 101.74 °E), (c) Longfengshan (44.73 °N, 127.6 °E), (d)
 8 Haerbin (45.75 °N, 126.63 °E), (e) Shangdianzi (40.65 °N, 117.12 °E), (f) Beijing (39.92 °N,
 9 116.46 °E), (g) Linan (30.3 °N, 119.73 °E), and (h) Hangzhou (30.3 °N, 120.2 °E).
 10

1



2

3 Fig. 7. Monthly mean values in February 2010 of (a) \mathbf{F}_t^p , the prior true surface CO₂ fluxes; (b)

4 \mathbf{F}_t^* , the prescribed CO₂ surface fluxes, $\mathbf{F}_t^* = (1.8 + \delta(x, y, z, t))\mathbf{F}_t^p$; (c) $\overline{\mathbf{F}_t^a}$, the

5 ensemble mean values of the assimilated surface CO₂ fluxes; (d) $\mathbf{F}_t^p - \mathbf{F}_t^*$; (e) $\overline{\mathbf{F}_t^a} - \mathbf{F}_t^*$;

6 and (f) $\overline{\mathbf{F}_t^a} - \mathbf{F}_t^p$ (units: $\mu\text{mole m}^{-2} \text{s}^{-1}$). $\overline{\mathbf{F}_t^a}$ are the assimilated results of an CFI-CMAQ

7 OSSE, in which the lag-window was 9 days and β was 70. And they are the same in

8 Fig. 7 to Fig. 10.

9

1

2

3

4

5

6

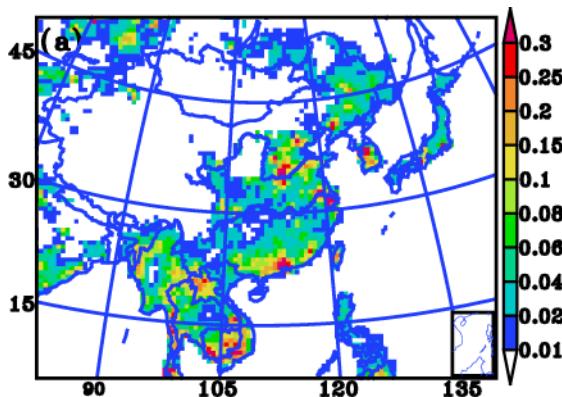
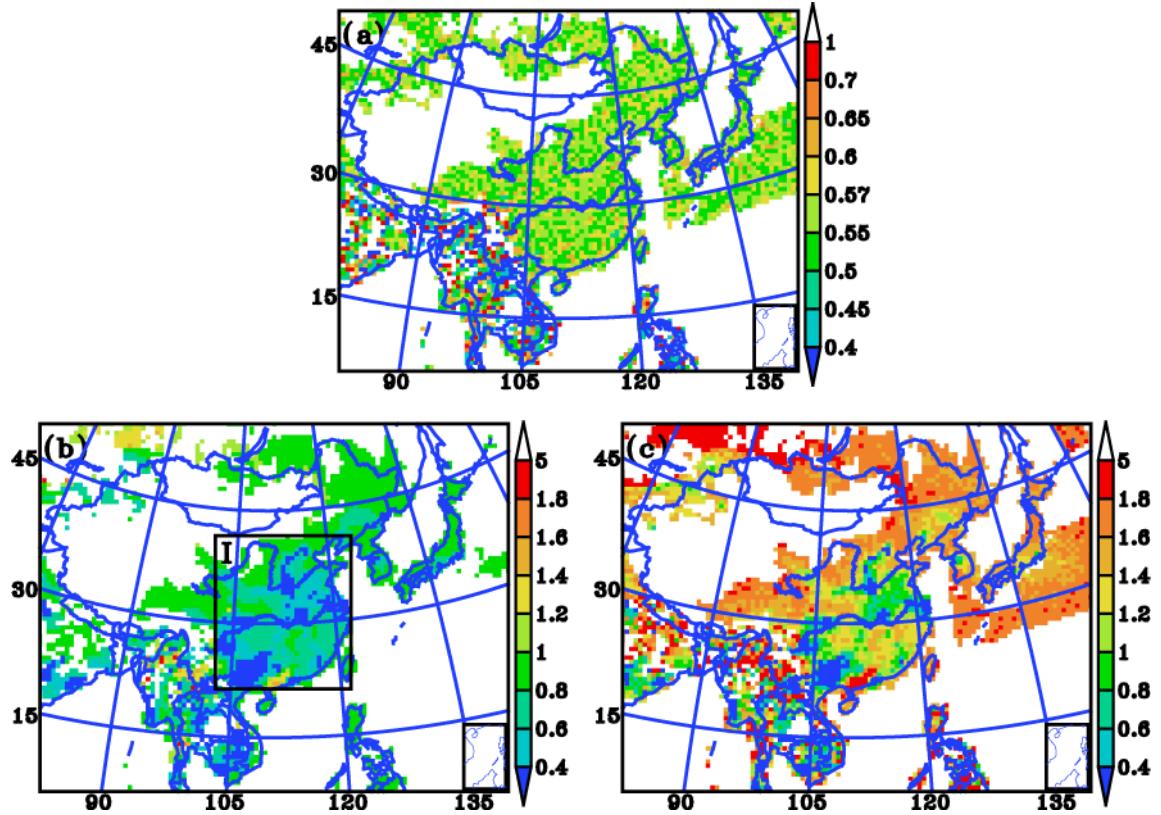
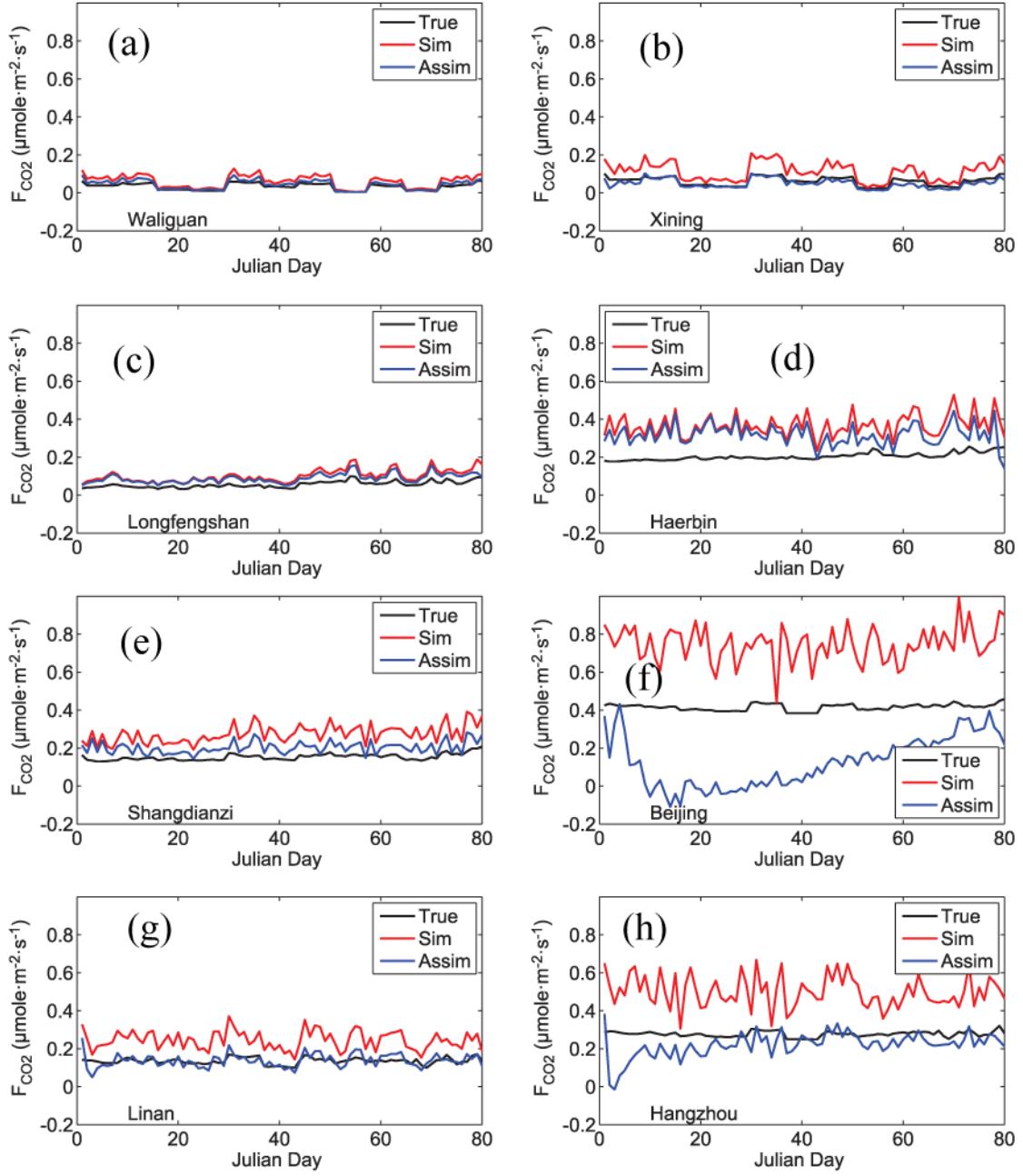


Fig. 8. Monthly mean RMSEs of $\overline{F_t^a}$ in February 2010 (units: $\mu\text{mole m}^{-2} \text{s}^{-1}$).



1 Fig. 9. (a) Ratios of monthly mean \bar{F}_t^p to monthly mean \bar{F}_t^* ; (b) ratios of monthly mean \bar{F}_t^a
2 to monthly mean \bar{F}_t^* ; and (c) ratios of monthly mean \bar{F}_t^a to monthly mean \bar{F}_t^p in Feb. 2010.
3 The white part indicates the ratios where the absolute values of monthly mean \bar{F}_t^* are larger
4 than 0.01, not analyzed in this study. The black square labeled I indicates the domain where
5 surface CO₂ fluxes were used for the results presented in Fig. 12 and 13.
6
7
8



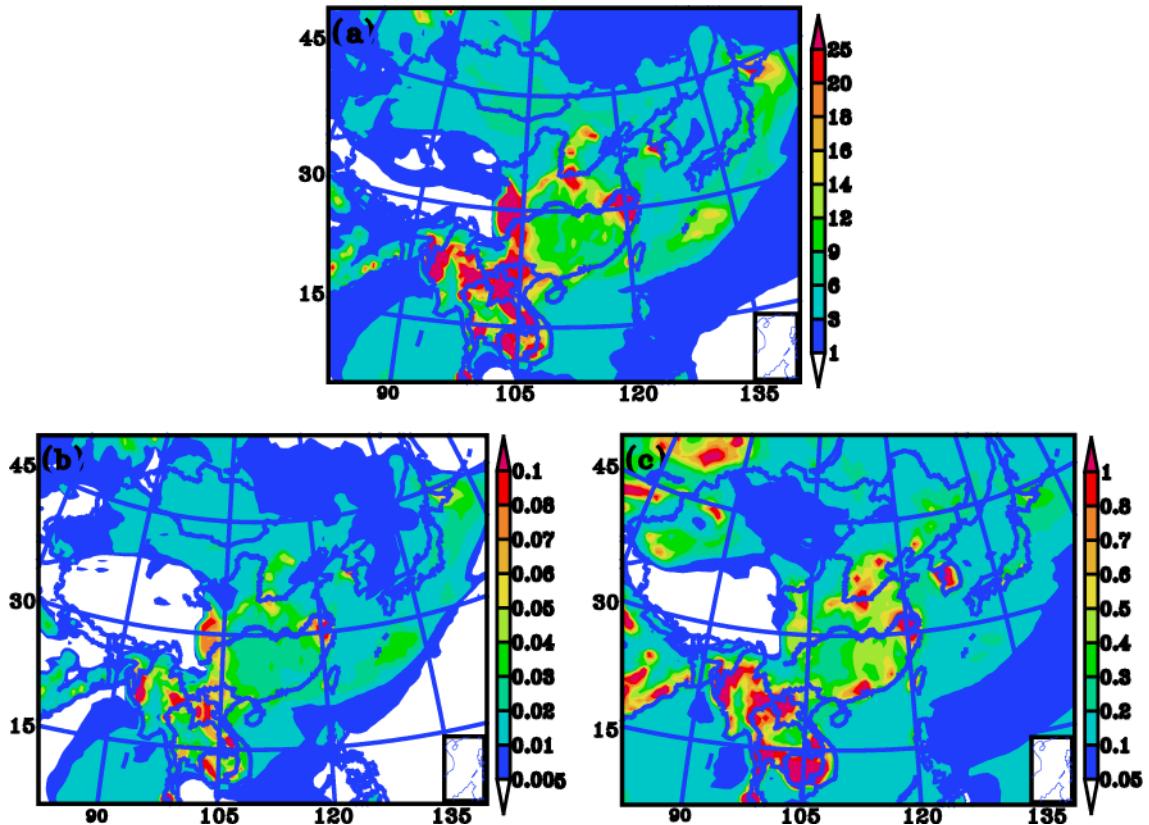
1

2 Fig. 10. Daily mean time series of CO₂ fluxes at national background stations in China and their
 3 nearest large cities from 1 Jan to 20 Mar. 2010 extracted from the prior true surface CO₂ fluxes

4 \mathbf{F}_t^p (black), the prescribed CO₂ surface fluxes \mathbf{F}_t^* (red), and the assimilated CO₂ fluxes $\overline{\mathbf{F}}_t^a$

5 (blue). All time series were interpolated to the observation locations by the spatial bilinear
 6 interpolator method. The sites used are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin,
 7 (e) Shangdianzi, (f) Beijing, (g) Linan, and (h) Hangzhou.

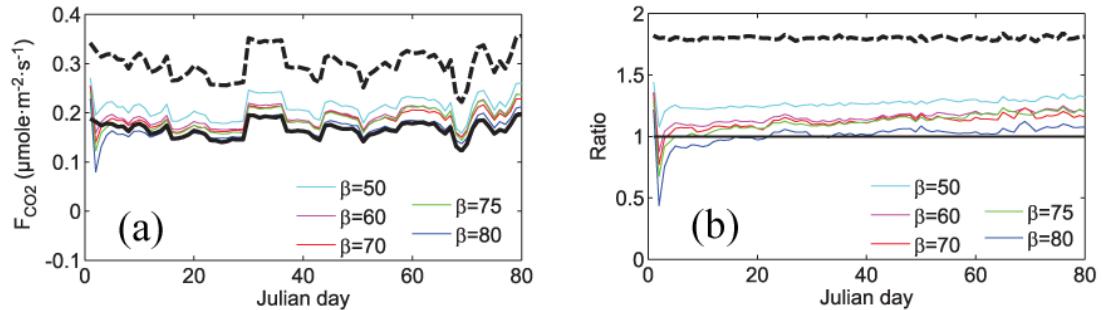
1



2 Fig. 11. (a) Ensemble spread of $C_{i,t}^f$ after inflating; (b) ensemble spread of $\lambda_{i,t}^p$ before
 3 inflating; (c) ensemble spread of $\lambda_{i,t}^f$ at model-level 1 at 00 UT on 1 March 2010 when
 4 $\beta = 70$.
 5

6

1



2

3 Fig. 12. Time series of daily mean CO_2 fluxes averaged in domain I (shown in Fig. 9b) from 1 Jan.
 4 to 20 Mar. 2010 with the inflation factor of scaling factors $\beta = 70, 75$ and 80. The black dashed
 5 line is the time series averaged from \mathbf{F}_t^* and the black solid line is the time series averaged
 6 from \mathbf{F}_t^P .

7

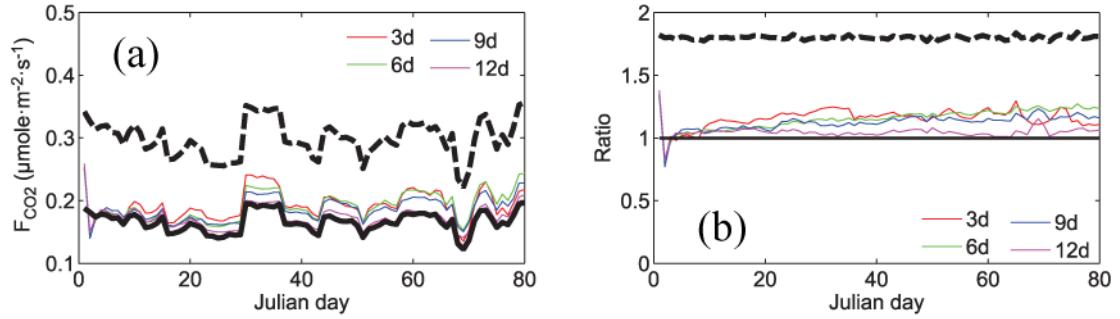
8

1

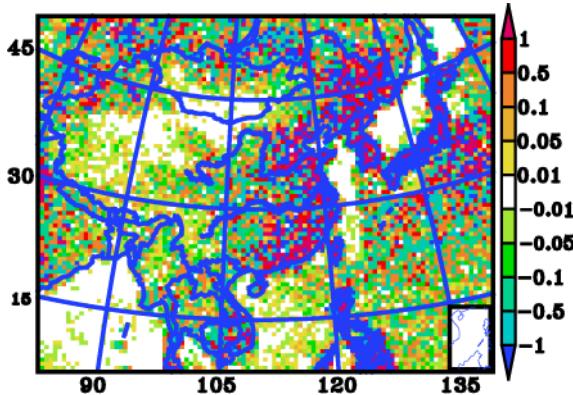
2

3 Fig. 13. Time series of daily mean CO₂ fluxes averaged in domain I (shown in Fig. 9b) from 1 Jan.
4 to 20 Mar 2010 with different smoother windows (3, 6, 9 and 12 days). The black dashed line is
5 the time series averaged from \mathbf{F}_t^* and the black solid line is the time series averaged from \mathbf{F}_t^p .

6



1



2

3 Fig. 14. Monthly mean values of the difference between the prior true surface CO₂ fluxes and the
4 ensemble mean values of the assimilated surface CO₂ fluxes (units: $\mu\text{mole m}^{-2} \text{s}^{-1}$) of the reference
5 experiment in which $\lambda_{i,t|t-1}^p$ were set to 1.

6