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ABSTRACT

In order to optimize surface CO, fluxes at gird scales, a regional surface CO; flux
inversion system (Carbon Flux Inversion system and Community Multi-scale Air
Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter
(EnKF) to constrain the CO, concentrations and applying the ensemble Kalman
smoother (EnKS) to optimize the surface CO, fluxes. The smoothing operator is
associated with the atmospheric transport model to constitute a persistence dynamical
model to forecast the surface CO; flux scaling factors. In this implementation, the
‘signal-to-noise’ problem can be avoided; plus, any useful observed information
achieved by the current assimilation cycle can be transferred into the next assimilation
cycle. Thus, the surface CO, fluxes can be optimized as a whole at the grid scale in
CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a
set of Observing System Simulation Experiments (OSSEs) by assimilating CO;
retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed
that the CO, concentration assimilation using EnKF could constrain the CO,
concentration effectively, illustrating that the simultaneous assimilation of CO,
concentrations can provide convincing CO; initial analysis fields for CO, flux
inversion. In addition, the CO, flux optimization using EnKS demonstrated that
CFI-CMAQ could in general reproduce true fluxes at grid scales with acceptable bias.
Two further sets of numerical experiments were conducted to investigate the
sensitivities of the inflation factor of scaling factors and the smoother window. The

results showed that the ability of CFI-CMAQ to optimize CO, fluxes greatly relied on



10

11

12

13

14

15

16

17

18

19

20

21

22

the choice of the inflation factor. However, the smoother window had a slight
influence on the optimized results. CFI-CMAQ performed very well even with a short

lag-window (e.g. 3 days).

1 Introduction

Considerable progress has been made in recent years to reduce the uncertainties of
surface CO, flux estimates through the use of an advanced data assimilation technique
(e.g., Chevallier et al., 2005, 2007a and 2007b; Baker et al., 2006; Engelen et al., 2009;
Liu et al., 2012). Feng et al. (2009) showed that the uncertainties of surface CO; flux
estimates can be reduced significantly by assimilating OCO Xco, measurements.
Peters et al. (2005, 2007, 2009) developed a surface CO, flux inversion system,
CarbonTracker, by incorporating the ensemble square-root filter (EnSRF) into the
atmospheric transport TM5 model. And the inversion results obtained by assimilating
in situ surface CO; observations are in excellent agreement with a wide collection of
carbon inventories that form the basis of the first North American State of the Carbon
Cycle Report (SOCCR) (Peters et al., 2007). CarbonTracker is also well used to
constrain the surface CO, fluxes over Europe and Asia (eg., Zhang et al., 2014a,
2014b). Kang et al. (2012) presented a simultaneous data assimilation of surface CO,
fluxes and atmospheric CO, concentrations along with meteorological variables using
the Local Ensemble Transform Kalman Filter (LETKF). They indicated that an
accurate estimation of the evolving surface fluxes can be gained even without any a

priori information. Recently, Tian et al. (2013) developed a new surface CO; flux data
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assimilation system, Tan-Tracker, by incorporating a joint PODEn4DVar assimilation
framework into the GEOS-Chem model on the basis of Peters et al. (2005, 2007) and
Kang et al. (2011, 2012). They discussed in detail that the assimilation of CO, surface
fluxes could be improved though the use of simultaneous assimilation of CO.,
concentrations and CO, surface fluxes. Despite the rigor of data assimilation theory,
current CO; flux-inversion methods still face many challenging scientific problems,
such as: (1) the well-known ‘signal-to-noise’ problem (NRC, 2010); (2) large
inaccuracies in chemical transport models (e.g., Prather et al., 2008); (3) vast
computational expenses (e.g., Feng et al., 2009); and (4) the sparseness of observation
data (e.g., Gurney et al., 2002).

The ‘signal-to-noise’ problem is one of the most challenging issue for an
ensemble-based CO, flux inversion system due to the fact that surface CO, fluxes are
the model forcing (or boundary condition), rather than model states (like CO,
concentrations), of the chemistry transport model (CTM). In the absence of a suitable
dynamical model to describe the evolution of the surface CO, fluxes, most CO,
flux-inversion studies have traditionally ignored the uncertainty of anthropogenic and
other CO; emissions and focused on the optimization of natural (i.e., biospheric and
oceanic) CO, emissions at the ecological scale (e.g., Deng et al., 2007; Feng et al.,
2009; Peters et al., 2005, 2007; Jiang et al., 2013; Peylin et al., 2013).

This compromise is acceptable to some extent. Indeed, the total amount of
anthropogenic CO, emissions can be estimated by relatively well-documented global

fuel-consumption data with a small degree of uncertainty (Boden et al., 2011). And



10

11

12

13

14

15

16

17

18

19

20

21

22

the uncertainties involved in the total amount of anthropogenic CO, emissions are
much smaller than those related to natural emissions. However, their spatial
distribution, strength and temporal development still remain elusive, because of their
inherent non-uniformities (Andres et al., 2012; Gurney et al., 2009). Marland (2008)
pointed out that even a tiny amount of uncertainty, i.e., 0.9%, in one of the leading
emitter countries like the U.S. is equivalent to the total emissions of the smaller
emitter countries in the world. Furthermore, the usual values of anthropogenic CO,
emissions in chemical transport models have thus far been simply interpolated from
very coarse monthly-mean fuel consumption data. Therefore, great uncertainty in the
spatiotemporal distributions of anthropogenic emissions likely exists, which could
reduce the accuracy of CO, concentration simulations and subsequently increase the
inaccuracy of natural CO, flux inversion results. In addition, current research
approaches tend only to assimilate natural CO, emissions at the ecological scale,
which is far from sufficient. Therefore, surface CO, fluxes should be constrained as a
whole at finer scale.

In CarbonTracker (Peters at al., 2007), a smoothing operator is innovatively
applied as the persistence forecast model. In that application, the surface CO, fluxes
can be treated as the model states and the observed information ingested by the
current assimilation cycle can be used in the next assimilation cycle effectively.
However, the ‘signal-to-noise’ problem is not yet resolved, and thus CarbonTracker
also has to assimilate natural CO, emissions at the ecological scale only. In

Tan-Tracker (Tian et al., 2013), a 4-D moving sampling strategy (Wang et al., 2010)
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is used to generate the flux ensemble members, and so the surface CO, fluxes can be
optimized as a whole at the grid scale. In the present reported work, the persistence
dynamical model taken by Peters et al. (2005) was further developed for the purpose
of resolving the ‘signal-to-noise’ problem to optimize the surface CO, fluxes as a
whole at the grid scale. This process is described in detail in section 2 of this paper.
The surface CO, flux inversion system presented in this paper was developed by
simultaneous optimizing the surface CO, fluxes and constraining the CO;
concentrations. As we know, assimilating CO, observations from multiple sources can
improve the accuracy of simulation results (e.g., Miyazaki, 2009; Liu et al., 2009,
2011, 2012; Tangborn et al, 2013; Huang et al., 2014). In addition, previous studies
showed that the simultaneous assimilation of CO, concentrations and surface CO,
fluxes can largely eliminate the uncertainty in initial CO, concentrations on the CO,
evolution (Kang et al.,, 2012; Tian et al., 2013). Therefore, we also use the
simultaneous assimilation framework and the ensemble Kalman filter (EnKF) was
used to constrain CO, concentrations and the ensemble Kalman smoother (EnKS) was
used to optimize surface CO, fluxes. Since the regional chemical transport models,
compared to global models, have some advantages to reproduce the effects of
meso—micro-scale transport on atmospheric CO; distributions (Ahmadov et al., 2009,
Pillai et al., 2010; Kretschmer et al., 2011), we choose a regional model, Regional
Atmospheric  Modeling System and Community Multi-scale Air Quality
(RAMS-CMAQ) (Zhang et al. 2002, 2003, 2007; Kou et al. 2013; Liu et al., 2013;

Huang et al. 2014), to develop this inversion system. For simplicity, this system is
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referred to as CFI-CMAQ (Carbon Flux Inversion system and Community Multi-scale
Air Quality).

Since this is the first time of introducing CFI-CMAQ, we focus mainly on
introducing the methodology in this paper. Nevertheless, in addition, Observing
System Simulation Experiments (OSSEs) were designed to assess the system’s ability
to optimize surface CO; fluxes. The retrieval information of GOSAT Xco; are used to
generate artificial observations because of the sparseness and heterogeneity of
ground-based measurements.

The remainder of the paper is organized as follows. Section 2 describes the
details of the regional surface CO, flux inversion system, CFI-CMAQ, including the
developed persistence dynamical model, a simple review of the EnKS and EnKF
assimilation approaches, and the process involved. The experimental designs are then
introduced and the assimilation results shown in Sect. 3. Finally, a summary and

conclusions are provided in Sect. 4.

2 Framework of the regional surface CO, flux inversion system

Supposed we have the prescribed net CO, surface flux, F'(x,y,z,t), which can be
released from a climate model or be generated by others methods, our ultimate goal is
to optimize F’(x,y,z,t) by assimilating CO, observations from various platforms.
As an ensemble-based assimilation system, CFI-CMAQ was also developed by
applying a set of linear multiplication factors, similar to the approach by Peters et al.

(2007) and Tian et al. (2013). The ith ensemble member of the surface
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fluxes, F (x,y, z,t), from an N-member ensemble can be described by

Ry, zt) =4y, 2,)F (xy,z1), (@[=1--N), (1)
where A (x,Y,z,t) represents the ith ensemble member of the linear scaling factors
(Peters et al., 2007; Tian et al., 2013) for each time and each grid to be optimized in
the assimilation. The notations are standard: the subscript i refers to the ith

ensemble member. In the following, A (x,y,zt) isreferredtoas A, F (X V,21t)

it
isreferredtoas F.,and F(x,Y,zt) isreferred to as F,. for simplicity.

At each optimization cycle, CFI-CMAQ includes the following four parts in turn
(see Fig. 1): (1) forecasting of the linear scaling factors at time t, A7, ,; (2)
optimization of the scaling factors in the smoother window
A M A A Ags) by EnkKs, Where
Aljpa (=t=1-M,..-;t-1) refer to analyzed quantities from the previous
assimilation cycle at time j (see Fig. 1), |t—1 means that these factors have been
updated by using observations before time t—1, and the superscript a refers to the
analyzed; (3) wupdating of the fluxes in the smoother window
(R Fomeaear s P o Fitgn Fpa) s @nd (4) assimilation of the forecast

CO, concentration fields at time t, C'(x,y,z,t)( referred to as C/ , and the

it
superscript f refers to the forecast or the background), by EnKF. A flowchart
illustrating CFI-CMAQ is presented in Fig. 2. The assimilation procedure is addressed
in detail below. In addition, the observation operator is introduced, particularly for use

of the GOSAT Xco» data in Sect. 2.4. Furthermore, covariance inflation and

localization techniques applied in CFI-CMAQ are introduced briefly in Sect. 2.5.
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2.1 Forecasting the linear scaling factors at time t, 4", ,

In the previous assimilation cycle t-1-M~t-1 (see Fig. 1), the optimized scaling factors
in the smoother window are (A’ y w1 At mpsr Atmeaear A jpar - Aeges) @nd
the assimilated CO, concentration fields at time t-1 are C?(X, Y, z,t —1)( referred to as
C/1)- In the current assimilation cycle t-M~t, the scaling factors in the current
smoother window are (47 i1 A w5 A jrar A As) @nd the forecast
CO; concentration fields at time tare C/,.

In order to pass the useful observed information onto the next assimilation cycle

effectively, following Peters et al. (2007) the smoothing operator is applied as part of

the persistence dynamical model to calculate the linear scaling factors 47, ,,

t-1

( Z Z’I?jltfl-i_ﬂ’ll,)ﬂt—l)

s = =M I , (@=L N,j=t—-M,---,1), (2)

where A°

ria refers to the prior values of the linear scaling factors at time t. The

superscript p refers to the prior. This operation represents a smoothing over all the

time steps in the smoother window (see Fig. 1), thus dampening variations in the

forecast of A7, intime.

In order to generate Af, ,, the atmospheric transport model (CMAQ) is applied
and a set of ensemble forecast experiments are carried out. It integrates from time
t—1 to t to produce the CO, concentration fields C,f (x,y,z,t) (referred to as Cift
hereafter to distinguish from Cift) forced by the prescribed net CO, surface flux

F with C_, as initial conditions. Then, the ratio xi’t:é{t/éf’t is calculated,

= N .
where C/, :%ZCL. Supposed that A, , =x;, due to the fact that the surface
i=1
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CO,, fluxes correlate with its concentrations, the values for AP are obtained and

i,tt-1

then A°

iy can finally be calculated (see the part with red arrows in the flowchart in

Fig. 2).

The way the prior scaling factor A"

i 1S updated by associating with the

atmospheric transport model is the main improvement over the one used in

CarbonTracker (Peters et al, 2007). In CarbonTracker, all A",

fia aresetto 1 (Peters et

al., 2007). The distribution of the ensemble members of the linear scaling factors at

time t,A°

Fis» are finally dependent on the distribution of the previous scaling factors

because Eg. (2) is a linear smoothing operator. In this study, the values of A"

i are

updated by associating with the atmospheric transport model. It is important to note
that A’ , in this study are rand fields with mean 1. However, the distribution of
A are dependent on the distribution of all the scaling factors in the smoother

window. An OSSE was designed to illustrate the difference between our method and

the one where AP

i aresettolin Sect. 3

It is also important to note that, similar to Peters et al. (2007), this dynamical
model equation still does not include an error term in the dynamical model, and the
model error cannot yet be estimated. However, the covariance inflation is applied to
compensate for model errors before optimization, which is addressed in section 2.5.

2.2 Optimizing the scaling factors in the smoother window by EnKS

Substituting A7, into Eq. (1), the ith member of the surface fluxes at time t,
Fir1, can be generated. Then forced by F7, ,, CMAQ was run from time t-1 to

t to produce the background concentration field C/, with C?_, as initial

10
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conditions.

In the current assimilation cycle t-M~t (see Fig. 1), the scaling factors to be
optimized in the smoother window are (A4 _y 1 A wgesr s Aecgen Age) o
as stated in the first paragraph of Sect. 2.1. Using the EnKS analysis technique, these

scaling factors are updated in turn via

/11aj|t ﬂ'ua”t 1+K t 1( - y|ft 'H)i,t)’ (I :L"" N, J =t-M ,”-,t), (3)
Ki tit—1 _ST tt— 1H (H t,tjt— 1HT +R)_ll (4)
e 1 & a a a a T
Smt E N 12”’. jit-1 /’i’l,j|t—1][ﬂ’|,t|t—1 _/’i’l,t|t—l] ) (5)
i=1
e 1 L a a a a T
Pt,t|t—l = m Z[/L At ﬂ’l,t|t—1][ﬂ’|,t|t—l _ﬂ’l,t|t—1] ' (6)
—dLia
ylt =H (¢t—l%t( |t|t—1)) =H (Cif,t) , (7)

obs

where Kj, , is the Kalman gain matrix of EnKS, y™ is the observation vector

measured at time t and y/, is the simulated values, v,, is a random normal
distribution perturbation field with zero mean, Sf, , is the background error
P is the

t,tt-1

and A

cross-covariance between the state vector A’ i

i, jit-1
background error covariance of the state vector A7, ,, H() is the observation
operator that maps the state variable from model space into observation space, R
standard deviation representing the measurement errors, and ¢@() is the atmospheric
transport model.

In actual implementations, it is unnecessary to calculate Sf,, , and Pj,,

separately. S, ,H' and HP, ,H" can be calculated as a whole by

e 1 > a a f
Sj,t|t—1HT = mzmﬁ,nu _ﬂ’l,j|t—l][yif,t - th ]T ) (8)

i=1

11
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HPt,t|t—1HT :mZ[yif,t - ytf][yif,t - ytf] ) (9)
—La

W =HE)=H Y Cl). (10)

After EnKS, (A’ wpoAiemae Ao AiegeAig) are gained. Then the

1 e i
corresponding fluxes in the smoother window
(Fimpe B Fje s R Fiye) €an be gained (see the part with green arrows
in the flowchart in Fig. 2) by substituting (A7, v, A v Ao Aege ) INEO
Eq. ().

Then the ensemble mean values of the assimilated fluxes in the smoother

window can be calculated via,

a 1 A a H
Fi,j|t:W;Fi,j|tv (J:t_M,"'1t), (11)

Finally, those ensemble mean assimilated fluxes which are before the next
smoother window and will not be updated by the succeeding observations are
regarded as the final optimized fluxes. We referred them as F_ta for simplicity.

2.3 Assimilating the CO, concentration fields at time t by EnKF
The analysis of CO, concentrations fields at time t in the EnKF scheme is updated via

Ciy =Cle+K(y™ — ¥, +0,,). (12)

K=P'H"(HP'"H" +R)™, (13)
where K is the Kalman gain matrix of EnKF, P" is the background error

covariance among the background CO, concentration fields Cift :

In actually application, P"H" and HP'HT can be calculated as a whole by

12
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PfHT:N :LZ[Cif,t_C'tf][yif,t_ytf]T ’ (14)
—Lia
fgr 1 N TR e A
HPTHT === D Vi % T IV = w1, (15)
—Lia

J— N
Cl = 2C, (16)
i=1

Finally, the ensemble mean values of the assimilated CO, concentrations fields can be

gained via,
R 1 N
Cta1 = chiﬁt (17)
i=1

where C_f is regarded as the final analyzing concentration field.

2.4 The observation operator

As mentioned above, the observation operator H(:) transforms the state variable
from model space into observation space. Usually, it is the spatial bilinear interpolator
for traditional ground-based observations. Since the GOSAT Xco, retrieval is a
weighted CO, column average, the simulated Xco, should be calculated with the same
weighted column average method (Connor et al., 2008; Crisp et al., 2010, 2012;
O’Dell et al, 2012). So, the observation operator to assimilate the GOSAT Xco2
retrieval is

Vie = H(@a (A 0)) = H(C) = Y™ +hTa, (S(C,) - ™), (18)

priori

where yift is the simulated Xcoz; Y is the a priori CO, column average used in
the GOSAT Xco> retrieval process; S(-) is the spatial bilinear interpolation operator

that interpolates the simulated fields to the GOSAT Xco, locations to obtain the

simulated CO, vertical profiles there; ™" is the a priori CO, vertical profile used

13
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in the retrieval process; h is the pressure weighting function, which indicates the
contribution of the retrieved value from each layer of the atmosphere; and a.,, is
the normalized averaging kernel.
2.5 Covariance inflation and localization
In order to keep the ensemble spread of the CO, concentrations at a certain level and
compensate for transport model error to prevent filter divergence, covariance inflation
is applied before updating the CO, concentrations. So,

(Cl e =(Cl ~Cl)+CY,. (19)

where ¢ is the inflation factor of CO, concentrations and (C/ is the final field

i,t)new
used for data assimilation.

Similarly, covariance inflation is also used to keep the ensemble spread of the prior

scaling factors at a certain level and compensate for dynamical model error. So,

(Ao = B = M) + M (20)
where g is the inflation factor of scaling factors and (4 )., Iis the final scaling
factors used for data assimilation.

In addition, the Schur product is utilized to filter the remote correlation resulting
from the spurious long-range correlations (Houtekamer and Mitchell 2001). So, the
Kalman gain matrix K, ;, and K are updated via,

K =[(poSS g )H (H(poPL )HT +R) ™, (21)

K=[(p-P )H I[(H(p-P")H™ +R]™, (22)

where the filtering matrix p is calculated using the formula

14
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3\ ¢ c 3Ur]

0, cqr|

C,(r,c)= (23)

where c¢ is the element of the localization Schur radius. The matrix p can filter the
small background error correlations associated with remote observations through the
Schur product (Tian et al., 2011). And the Schur product tends to reduce the effect of
those observations smoothly at intermediate distances due to the smooth and

monotonically decreasing of the filtering matrix.

3 OSSEs for evaluation of CFI-CMAQ

A set of OSSEs were designed to quantitatively assess the performance of
CFI-CMAQ. The setup of the experiments and the results are described in this section.
3.1 Experimental setup

The chemical transport model utilized was RAMS-CMAQ (Zhang et al., 2002), in
which CO, was treated as an inert tracer. The model domain was 6654 %5440 km?” on
a rotated polar stereographic map projection centered at (35.0N, 116.0E), with a
horizontal grid resolution of 64 x 64 km” and 15 vertical layers in the o,-coordinate
system, unequally spaced from the surface to approximately 23 km. The initial fields
and boundary conditions of the CO, concentrations were interpolated from the

simulated CO; fields of CarbonTracker 2011 (Peters, 2007). The prior surface CO;

15
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fluxes included biosphere—atmosphere CO, fluxes, ocean—atmosphere CO; fluxes,
anthropogenic emissions, and biomass-burning emissions (Kou et al., 2013),

FP(Xy,2,t) =R, (X, Y, Z,) + F,. (X, ¥, Z,t) + B (X, ¥, Z,1) + R o (X, Y, 2,1) . (24)
where FP(x,y,z,t) (referred to as F" ) was the prior surface CO, flux;
Fio(Xyzt) and F_(x,y,z,t) were the biosphere-atmosphere and
ocean—atmosphere CO; fluxes, respectively, which were obtained from the optimized
results of CarbonTracker 2011 (Peters, 2007); F,(x,Yy,z,t) was fossil fuel emissions,
adopted from the Regional Emission inventory in ASia (REAS, 2005 Asia monthly
mean emission inventory) with a spatial resolution of 0.5°%0.5<(Ohara et al., 2007);
Fi. (X, y,2,t) was biomass—burning emissions, provided by the monthly mean
inventory at a spatial resolution of 0.5° x 0.5° from the Global Fire Emissions
Database, Version 3 (GFED v3) (Van der Werf et al., 2010). Among all these fluxes,
Fio (X, y,z,t), F.(Xy zt) and F;(X y,2z1t) had nonzero values at model level 1,
while they all were zeros at other 14 levels. However, F,.(X,Y,z,t) had nonzero
values at model level 2~5 except model level 1. So, all fluxes in this paper were the
function of (Xx,y,z,t) for convenience.

Firstly, the prior flux F” was assumed as the true surface CO; flux in all of the
following OSSEs. Forced by F’, the RAMS-CMAQ model was run to produce the
artificial true CO, concentration results CP(x,y,z,t) (refer to as C! in the
following). Then, the artificial GOSAT observations y™ (or X2,,) were generated
by substituting C into the observation operator in Eqg. (18). The retrieval

information of GOSAT Xcoo( y*™", P, h and a.,,) needed in Eq. (18) were

16
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gained from the v2.9 Atmospheric CO, Observations from Space (ACOS) Level 2
standard data products, which only utilized the SWIR observations. Only data
classified into the “Good” category were utilized in this study. During the retrieval
process, most of the soundings (such as data with a solar zenith angle greater than 85<
or data not in clear sky conditions, or data collected over ocean but not in glint, etc.)
were not processed, so typically data products for the “Good” category contained only
10-100 soundings per satellite orbit (Osterman et al., 2011), and there were only 0~60
samples per orbit in the study model domain generally. Fig. 3 (a) also showed the total
number of “good” GOSAT Xco, observations for each model grid in February in 2010.
There were relatively more observations over most continental regions of the study
domain except some regions in North-East and South China. The total numbers
ranged from 1 to 8. However, there were almost no data over oceans of the study
domain.

Secondly, the prescribed surface CO, fluxes series F,” were created by

F =18+5(x,y,21)F’, (25)

where & was a random number. They were standard normal distribution time series
at each grid in the integration period of our numerical experiment. Driven by F,”, the
RAMS-CMAQ model was integrated to obtain the CO;, simulations
C'(x,y,,z,t) (referred to as C/ hereafter). Then, the column-averaged
concentrations  X(/,, were obtained using Eq. (18).

The performance of CFI-CMAQ was evaluated through a group of well-designed

OSSEs. And the goal of each OSSE was to retrieve the true fluxes F° from given

17
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true observations X2, and “wrong” fluxes F, . In all the OSSEs, we assimilated
artificial observations XZ,, about three times a day since GOSAT has about three
orbits in the study model domain. If there were some observations, CFI-CMAQ
paused to assimilate. Otherwise, it continued simulating. The default ensemble size N
was 48, the measurement errors were 1.5 ppmv, the standard localization Schur radius
c was 1280 km (20 grid spacing), and the covariance inflation factor of
concentrations « was 1.1. The referenced lag-window was 9 days and the
covariance inflation factor of the prior scaling factors £ was 70. Since the smoother
window was very important for CO, transportation and £ was a newly introduced
parameter, both these parameters were further investigated by several numerical
sensitivity experiments. The primary focus of this paper was to describe the
assimilation methodology, so all the numerical experiments started on 1 January 2010
and ended on 30 March 2010.

As for the initialization of CFI-CMAQ, only the ensemble of background
concentration fields C, needed to be initialized at the time t=0 because the
values of A7, , were updated by using the persistence dynamical model. In practice,
the mean concentration fields at t=0 are interpolated from the simulated CO2 fields
of CarbonTracker 2011 (Peters, 2007). The ensemble members of the background
concentration fields were created by adding random vectors. The mean values of the
random vectors were zero and the variances were 2.5 percent of the mean

concentration fields. Then the atmospheric transport model integrated from time

t=0 to t=1 driven by F~ with C/, as initial conditions to produce the CO,
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concentration fields Cifl. And then the first prior linear scaling factors, A, could

= AP

be calculated by applying é{l. Assumed A’ 110

10 Ao are gained finally. For the

first assimilation cycle, the lag-window was only one (that is, only A°, needed to be

1,110
optimized in the first assimilation cycle). And it increased for the first dozens of
assimilation cycles until it reached M+1 as CFI-CMAQ continued to assimilate
observations. Once the system was initialized, all future scaling factors could be
created using the persistence dynamical model, which was associated the smoothing
operator with the atmospheric transport model.

In order to illustrate the limitation by only using the smoothing operator as the
persistence dynamical model to generate all future scaling factors, another OSSE
(referred to as the reference experiment to distinguish it from the above-mentioned
CFI-CMAQ OSSEs) was designed to optimize the surface CO, fluxes at grid scale.

The reference experiment was under the same assimilation framework as CFI-CMAQ

except that all A"

ria Were set to 1 (Peters et al.,, 2007). Besides, the initialization

procedure of the reference experiment was different from that of the CFI-CMAQ. In
practice, both the ensemble of background concentration fields at t=0, Cifo, and the
ensemble members of the scaling factors at t=1,4%,, needed to be initialized
because they could not generated by other ways (Peters et al., 2005). The initial
concentration fields C/, were created using the same method as that was used to
generate Cifo for the CFI-CMAQ OSSEs. The ensemble members of the scaling

factors A%, were rand fields. Their mean values were 1 and their variances were 0.1.

1,10

In addition, in order to keep the ensemble spread of the scaling factors A7, , at a
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certain level and compensate for dynamical model error, covariance inflation was also

used and the covariance inflation factor of the scaling factors A%, , was 1.6. All

itit—1
other parameters are the same as used in the CFI-CMAQ OSSEs. The ensemble size N
was 48, the measurement errors were 1.5 ppmv, the standard localization Schur radius
¢ was 1280 km, the covariance inflation factor of concentrations « was 1.1, and
the lag-window was 9 days.

3.2 Experimental results

Essentially, the assimilation part of CFI-CMAQ includes two subsections: one for the
CO; concentration assimilation with EnKF, which can provide a convincing CO,
initial analysis fields for the next assimilation cycle; and the other for the CO, flux
optimization with EnKS, which can provide better estimation of the scaling factors for
the next time though the persistence dynamical model except for optimized CO,
fluxes. The performance of the EnKF subsection will be greatly influenced by the
validation of the EnKS subsection, or vice versa. Firstly, the performance of
CFI-CMAQ will be quantitatively assessed in detail by using the assimilated results of
a CFI-CMAQ OSSE, in which the lag-window was 9 days and g was 70. Then the
sensitivities of £ and the lag-window will be discussed in the following two
paragraphs. And finally, the assimilation results of the reference experiment in

which AP

ria were set to 1 will be described in brief at the end of this subsection.

We begin by describing the impacts of assimilating artificial observations Xg,

on CO, simulations by CFI-CMAQ. As shown in Figs. 4a, 4b and 4d, the monthly

mean values of the background CO, concentrations C. produced by the magnified

20



10

11

12

13

14

15

16

17

18

19

20

21

22

surface CO, fluxes F° were much larger than those of the artificial true CO,
concentrations C! produced by the prior surface CO, fluxes F" near the surface in
February 2010. In the east and south of China especially, the magnitude of the
difference between C” and C/ was at least 6 ppmv. Also, as expected, the monthly
mean X.,, was much larger than the monthly mean artificial observations X2,
and the magnitude of the difference between X2,, and X/,, reached 2 ppmv in
the east and south of China (see Figs. 3b, 3c and 3e). However, the impact of
magnifying surface CO, fluxes on the CO; concentrations was primarily below the
model-level 10 (approximately 6 km), and especially below model-level 7
(approximately 1.6 km). And above model-level 10, the differences between C/ and
C/ fell to zero (see Fig. 5a and 5b). After assimilating X?2,,, the analysis CO,
concentrations C_f was much closer to C? (see Figs. 4c, 4e and 4f). The monthly
mean difference between C/ and C_f ranged from —2 to 2 ppmv and the relative
error (C! —C_f)/ C? ranged from —1 to 1% in almost the entire model domain at

model-level 1. The monthly mean differences between C! and C_f were negligible

a

above model-level 2 (see Fig. 5¢ and 5d). The monthly mean XZ,, was also closer
to X&, and the difference between XZ,, and XZ,, ranged from —0.5 to 0.5
ppmv. In order to evaluate the general impact of assimilating XZ,, in the surface
layer, time series of the daily mean CO, concentration extracted from the background
simulations and the assimilations were compared with the artificial true simulations at
four national background stations in China and their nearest large cities. As shown in

Fig. 3a, Waliguan is 150 km away from Xining, Longfengshan is 180 km away from
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Haerbin, Shangdianzi is 150 km away from Beijing, and Linan is 50 km away from
Hangzhou. The assimilated results are shown in Fig. 6. The background time series
were much larger than the artificial true time series, especially at Shangdianzi, Beijing,
Linan and Hangzhou, which are strongly influenced by local anthropogenic CO;
emissions. After assimilating X¢Z,,, the assimilated time series were very close to the
true time series with negligible bias, as expected, at Waliguan, Xining, Shangdianzi,
Beijing, Linan and Hangzhou, especially after the first 10 days, which can be
considered the spin-up period. Meanwhile, the improvements at Longfengshan and
Haerbin were limited due to the absence of observation data at those locations (see
Fig. 3a). Nevertheless, in general, the substantial benefits to the CO, concentrations in
the surface layer of assimilating GOSAT Xco, with EnKF are clear. All the results
illustrated that CFI-CMAQ can provide a convincing CO; initial analysis fields for
CO,, flux inversion.

The impacts of assimilating X£,, on surface CO, fluxes were also highly
impressive by CFI-CMAQ. On the whole, the prescribed CO, surface fluxes F’
were much larger than the true surface CO, fluxes F.” in February 2010, especially
in the east and south of China. The monthly mean difference between F~ and F”

reached 0.5 umole m2 s™*

in Jing-Jin-Ji, the Yangtze River Delta, and Pearl River
Delta Urban Circle because of the strong local anthropogenic CO, emissions (see Figs.
7a, 7b and 7d). After assimilating XZ,,, the ensemble mean of the assimilated

surface CO, fluxes F_ta decreased sharply. Thus, the monthly mean values of F_ta

were much smaller than F,” in most of the model domain in February 2010. The
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pattern of the difference between F* and F. was similar to that of the difference
between F” and F~ (see Figs. 7b-e). The ensemble mean of the assimilated
surface CO; fluxes F_ta were also compared to the artificial true fluxes F',
revealing that F_ta was equivalentto F" in most of the model domain. The monthly
mean difference between F_ta and F” ranged from —0.01 to 0.01 pmole m? s*
only (see Fig. 7f). In addition, the root-mean-square errors (RMSEs) of the
assimilated flux members were analyzed. As shown in Fig. 8, the monthly mean
RMSE was less than 0.05 pmole m s ™! in most of the model domain, except in areas
near to large cities such as Beijing, Shanghai and Guangzhou, indicating that the
assimilated CO, fluxes were reliable.

In order to evaluate the ability of CFI-CMAQ to optimize the surface CO, fluxes
comprehensively, the ratios of the monthly mean F.” to the monthly mean F, were
analyzed. In actual implementation, we only analyzed the ratios where the absolute
values of the monthly mean F,” were larger than 0.01, to avoid random noise. As
shown in Fig. 9a, the ratios of the monthly mean FP° to the monthly mean F’
ranged from 0.5 to 0.65, which were consistent with 1/1.8 =0.556, in most of China,
except in the Qinghai-Tibet Plateau, where the absolute values of the monthly mean
F~ were very small in February. The ratios varied greatly in the Indo-China
Peninsula because of strong diurnal variation of CO; fluxes. The ratios of the monthly

mean FP the monthly mean F was equal to

t

to
ZFK"/Z F =]//(1.8+Z§Ftp/z FP?). So the values of the ratios were related to
Feb

Feb Feb Feb

the ratios of 25 F’ to Z F." . Imagining the extreme case that F,” was a constant,
Feb Feb
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the ratios would be 1=]//(1.8+25/n)—>1/1.8(n was the number of the flux)

Feb

because & were standard normal distribution time series at each grid. In most china,
the diurnal variation of CO, fluxes were small in February, so the ratios of the
monthly mean F” to the monthly mean F,~ were consistent with 1/1.8=0.556.

While in the Indo-China Peninsula, the CO, fluxes there ranged from -1.5 to lumole

m s, because of strong photosynthesis in the day. So > SF varied greatly, which

Feb

finally leaded to the great variation of the ratios there.

In addition, the ratios of the monthly mean F_ta to the monthly mean F,” and
the ratios of the monthly mean F_ta to the monthly mean F.” are shown in Fig. 9b
and 9c, respectively. These two figures demonstrate that the impact of the assimilation
of X&, by CFI-CMAQ on CO; fluxes was great in the east and south of China in
general, but the influence was negligible in Northeast China due to the lack of
observation data.

Time series of daily mean surface CO, fluxes extracted from F,~ and F_f were
also compared with that from F” at four national background stations in China and
their nearest large cities, similar to the CO, concentration assimilation. The results are
shown in Fig.10. The background time series were much larger than the artificial true
time series, especially at Haerbin, Shangdianzi, Beijing, Linan and Hangzhou, which
are strongly influenced by local anthropogenic CO, emissions. After
assimilating XZ,,, the assimilated time series were near to the true time series with
acceptable bias, as expected, at Waliguan, Xining, Shangdianzi, Linan and Hangzhou

after the 10-day spin-up period. However, the improvements at Longfengshan and
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Haerbin were negligible because of a lack of observations at these locations. Also, this
inversion system failed to show improvements at Beijing. One of the possible reasons
was that the impact of advection transport of CO, was ignored during the procedure of
CO, flux inversion. Beijing was located in the edge of Jing-Jin-Ji, which had strong
local anthropogenic CO; emissions during January to March. However, the CO;
concentration observations at a given time t near Beijing only had the fluxes
information of the area around Beijing at time t and the foregoing fluxes
information of the upstream areas, which might had relatively small local CO,
emissions. Therefore, the assimilated time series would be smaller than the true time
series in Beijing when we constrained the surface CO, fluxes by using the
observations directly without considering the impact of advection transport of CO..
Later, CFI-CMAQ will be improved by considering the impact of advection transport
of CO..

Since the impact of assimilation X¢Z,, by CFI-CMAQ on CO; fluxes was in
general greater in the east and south of China than other model areas (see Figs.7e and
9b), the time series of the daily mean CO; fluxes in that area averaged from F_f was
compared with those from F” and F”, as well as their ratios (see Fig. 11). The two
figures indicate that CFI-CMAQ could in general reproduce the true fluxes with
acceptable bias.

As stated in the above section, £ was a newly introduced parameter. The prior

scaling factors should have been inflated indirectly though the inflated CO2

concentration forecast. However, the values of the ensemble spread of A7, , before
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inflating were very small (ranging from O to 0.08 in most area at model-level 1, see
Fig. 11b), though the values of the ensemble spread of Cift after inflating could
reach 1 to 14 ppmv in most area at model-level 1 (see Fig. 11a). So we had to inflate
them again before using them into Eq. (2) . Fig. 11c showed the distribution of the

a
ensemble spread of A7, ,

at model-level 1 at 00 UT on 1 March 2010 when S =70. It
showed that the values of the ensemble spread of A7, , ranged from 0.1 to 0.8 in
most area. In order to investigate the sensitivity of the inflation factor of the scaling
factors £, a series of numerical experiments were conducted. As shown in Fig. 12,
CFI-CMAQ worked rather well for g =60, 70, 75, 80. However, if £ was much
smaller than 50 (e.g. /£ =10), the impact of assimilation was small due to the small
ensemble spread; or if £ was much larger than 80 (e.g. S =100), the assimilated
CO; fluxes deviated markedly from the “true” CO, fluxes. In other words, the
performance of CFI-CMAQ greatly relies on the choice of £.

From the perspective of the lag-window, the differences among the four
assimilation sensitivity experiments with lag-windows of 3, 6, 9 and 12 days were
very small (see Fig. 13). Although Peters et al. (2007) indicated that the lag-window
should be more than five weeks, it seemed that the smoother window had a slight
influence on the assimilated results for CFI-CMAQ. It was clear that the assimilated
results with a larger lag-window were better than those with a smaller lag-window;
however, CFI-CMAQ performed very well even with a short lag-window (e.g. 3
days).

At the end of this subsection, the assimilation results of the reference experiment
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in which A°

ria were set to 1 will be addressed briefly. The impact of assimilation

X, 0on CO; fluxes was disordered. The monthly mean values of the difference
between the prior true surface CO, fluxes and the ensemble mean values of the
assimilated surface CO; fluxes were irregular noise (see Fig. 14). The main reason is
that all the elements of the scaling factors to be optimized in the smoother window are

only random numbers. As stated in the above section, only A°, needed to be

1,10
optimized in the first assimilation cycle. However, A7, were rand fields (in other

words, all the elements of A2

ry0 are only random numbers) because they could not

generated by other ways at the first time. So their spatial correlations were too small.
The correlations between the scaling factors and the observations were also too small.
Therefore it was impossible to systematically change the values of A7), inlarge areas

where the observations located after assimilating observations at t=1. Thus the

signal-to-noise problem arose. So the elements of A’

1y are only random numbers too.

Though A7, could be generated automatically by the smoothing operator when all
Ay were setto 1, the elements of A7, are random numbers too since the smoothing

operator is only a linear operator. Similarly, it was impossible to systematically

change the values of A’

p and A7, inlarge areas after assimilating observations at

t =2. As this inversion system continued assimilating observations, all future scaling
factors could be created by the smoothing operator and then updated. But this
inversion system could not ingest the observations effectively because all the elements
of the scaling factors were always random numbers. However, all the elements of the

scaling factors in CFI-CMAQ are state variable with spatial correlations because they
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were created by the persistence dynamical model, which is associated the smoothing
operator with the atmospheric transport model. Therefore, we could get effective

values after assimilating the observations.

4 Summary and conclusions

A regional surface CO; flux inversion system, CFI-CMAQ, has been developed
to optimize CO; fluxes at grid scales. It operates under a joint data assimilation
framework by applying EnKF to constrain the CO, concentrations and applying EnKS
to optimize the surface CO; flux, which is similar to Kang et al. (2011, 2012) and
Tian et al. (2013). The persistence dynamical model, which was first introduced by
Peters et al. (2007) by applying the smoothing operator to transport the useful
observed information onto the next assimilation cycle, is further developed. We
associated the smoothing operator with the atmospheric transport model to constitute
the persistence dynamical model to forecast the surface CO2 flux scaling factors for
the purpose of resolving the ‘signal-to-noise’ problem, as well as transporting the
useful observed information onto the next assimilation cycle. In this application, the
scaling factors to be optimized in the flux inversion system can be forecast at the grid
scale without random noise. The OSSEs showed that the performance of CFI-CMAQ
is effective and promising. In general, it could reproduce the true fluxes at the grid
scale with acceptable bias.

This study represents the first step in developing a regional surface CO, flux

inversion system to optimize CO; fluxes over East Asia, particularly over China. In
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future, we intend to further develop the covariance localization techniques and
inflation techniques to improve the performance of CFI-CMAQ. Furthermore, the
uncertainty of the boundary conditions should be considered to improve the

effectiveness of regional CO; flux optimization.
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List of Figures
Fig. 1. Schematic diagram of the smoother window.
s mpas Aempar Aemagra A jear Ay pa) are the optimized scaling factors in

the smoother window and C?

i1 are the assimilated CO, concentrations fields at time

t-1 in the previous assimilation cycle t-1-M~t-1.
A w5 A e A A') are the scaling factors in the smoother
window and C/, are the forecast CO, concentrations fields at time t which need to

be optimized in the current assimilation cycle t-M~t.

Fig. 2. Flowchart of the CFI-CMAQ system used to optimize surface CO; fluxes at
each assimilation cycle. The system includes the following four parts in turn: (1)
forecasting of the linear scaling factors A7, , (red arrows); (2) optimization of the
scaling factors in the smoother window by EnKS (see Fig. 1) (blue arrows); (3)

updating of the flux in the smoother window (green arrows); and (4) assimilation of

the CO, concentration fields at time t by EnKF (black arrows).

Fig. 3. (a) Total number of observations in February 2010 in the model grid. Each
symbol indicates the total number of all GOSAT Xco, measurements in the

corresponding model grid. Monthly mean values in February 2010 of (b) X&,,

column mixing ratio of C?; (c) X.,,, column mixing ratio of C'; (d) XZ&,,

column mixing ratio of C ;(8) X, —Xlop: and () X2y, —X&, . All column
mixing ratios are column-averaged with real GOSAT Xco, averaging kernels at

GOSAT Xcoz locations. Each symbol indicates the monthly average value of all Xco;
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estimates in the model grid. C; are the ensemble mean values of the assimilated
CO; concentrations fields of a CFI-CMAQ OSSE, in which the lag-window was 9

daysand £ was 70. And they are the same OSSE in Fig. 3 to Fig. 6.

Fig. 4. Monthly mean values of (a) C”, the artificial true simulations driven by the

f
t

prior surface CO, fluxes K ; (b) C,, the background simulations driven by
magnified surface CO, fluxes F =(1.8+05(x,Y,z1)F"; (c) C_f the ensemble
mean values of the assimilated CO, concentrations fields; (d) C”-C/; (e) C! —C_f;

and (f) 100*(C? —C?)/C? at model-level 1 in February 2010. Black lines EF and

GH indicate the positions of the cross sections shown in Fig. 5.

Fig. 5. Monthly mean cross sections of C?—C/ along line (a) EF and (b) GH, and

monthly mean cross sections of CP —C/ along line (c) EF and (d) GH (cross section

lines shown in Fig. 4d) in February 2010.

Fig. 6. Daily mean time series of CO, concentrations at national background stations
in China and their nearest large cities from 1 Jan. to 20 Mar. 2010 extracted from the
artificial true simulations C (black), background simulations C/ (red), and the
ensemble mean values of the assimilated CO, concentrations fields C_f (blue). All
time series were interpolated to the observation locations by the spatial bilinear
interpolator method. The sites used are (a) Waliguan (36.28 N, 100.91 <), (b) Xining

(36.56N, 101.74<E), (c) Longfengshan (44.73N, 127.6E), (d) Haerbin (45.75N,

126.63E ), (e) Shangdianzi (40.65N, 117.12<E), (f) Beijing (39.92N, 116.46E), (g)
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Linan (30.3N, 119.73E), and (h) Hangzhou (30.3N,120.2E).

Fig. 7. Monthly mean values in February 2010 of (a) F, the prior true surface CO,
fluxes; (b) F, the prescribed CO, surface fluxes, F~=(1.8+35(x,Y,zt)F’; (c)
F_f‘, the ensemble mean values of the assimilated surface CO, fluxes; (d) F°-F"; (€)
F_f—Ft*; and (f) F_f—Ftp (units: pmole m > s™). F_taare the assimilated results of

an CFI-CMAQ OSSE, in which the lag-window was 9 daysand g was 70. And they

are the same in Fig. 7 to Fig. 10.

Fig. 8. Monthly mean RMSEs of F_ta in February 2010 (units: pmole m s ™).

Fig. 9. (a) Ratios of monthly mean F to monthly meanF,"; (b) ratios of monthly
mean F_ta to monthly meanF,"; and (c) ratios of monthly mean F_ta to monthly
mean F" in Feb. 2010. The white part indicates the ratios where the absolute values
of monthly mean F. are larger than 0.01, not analyzed in this study. The black
square labeled | indicates the domain where surface CO, fluxes were used for the

results presented in Fig. 12 and 13.

Fig. 10. Daily mean time series of CO, fluxes at national background stations in
China and their nearest large cities from 1 Jan to 20 Mar. 2010 extracted from the
prior true surface CO, fluxes F° (black), the prescribed CO, surface fluxes F,
(red), and the assimilated CO, fluxes F_ta (blue). All time series were interpolated to

the observation locations by the spatial bilinear interpolator method. The sites used
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are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin, (¢) Shangdianzi, (f)

Beijing, (g) Linan, and (h) Hangzhou.

Fig. 11. (a) Ensemble spread of Cift after inflating; (b) ensemble spread of A,
before inflating; (c) ensemble spread of ﬂift at model-level 1 at 00 UT on 1 March

2010 when g =70.

Fig. 12. Time series of daily mean CO, fluxes averaged in domain I (shown in Fig. 9b)
from 1 Jan. to 20 Mar. 2010 with the inflation factor of scaling factors £ =70, 75 and
80. The black dashed line is the time series averaged from F,” and the black solid

line is the time series averaged fromF” .

Fig. 13. Time series of daily mean CO, fluxes averaged in domain I (shown in Fig. 9b)
from 1 Jan. to 20 Mar 2010 with different smoother windows (3, 6, 9 and 12 days).
The black dashed line is the time series averaged from F,” and the black solid line is

the time series averaged from F".
Fig. 14. Monthly mean values of the difference between the prior true surface CO,

fluxes and the ensemble mean values of the assimilated surface CO, fluxes (units:

umole m* s™) of the reference experiment in which Al Weresetto 1.
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Fig. 1. Schematic diagram of the smoother window.

Aeampas Arempar Armagear o A jrar Ay ypa) @re the optimized scaling factors in the

smoother window and C? . are the assimilated CO, concentrations fields at time t—1 inthe

it-1

previous assimilation cycle t-1-M~t-1. (&?t_Mlt_l,/lf‘t_Mm_l,--~,21f‘j|t_l,---,ﬂ,f‘t_m_l,/l,f’t) are the

scaling factors in the smoother window and Cif] . are the forecast CO, concentrations fields at

time t which need to be optimized in the current assimilation cycle t-M~t.
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Fig. 2. Flowchart of the CFI-CMAQ system used to optimize surface CO, fluxes at each
assimilation cycle. The system includes the following four parts in turn: (1) forecasting of the
linear scaling factors A iy (redarrows); (2) optimization of the scaling factors in the smoother

window by EnKS (see Fig. 1) (blue arrows); (3) updating of the flux in the smoother window
(green arrows); and (4) assimilation of the CO, concentration fields at time t by EnKF (black

arrows).
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Fig. 3. (a) Total number of observations in February 2010 in the model grid. Each symbol
indicates the total number of all GOSAT Xco, measurements in the corresponding model grid.

Monthly mean values in February 2010 of (b) X&,, column mixing ratio of CP; (c) X(g,,

column mixing ratio of C/; (d) X&g,, column mixing ratio of C?; (e) X2, — X{o,: and (f)

X802 — X&oz - All column mixing ratios are column-averaged with real GOSAT Xco, averaging
kernels at GOSAT Xco2 locations. Each symbol indicates the monthly average value of all Xco2
estimates in the model grid. C_f are the ensemble mean values of the assimilated CO,
concentrations fields of a CFI-CMAQ OSSE, in which the lag-window was 9 days and

£ was 70. And they are the same OSSE in Fig. 3 to Fig. 6.
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Fig. 4. Monthly mean values of (a) C/, the artificial true simulations driven by the prior surface

CO; fluxes F*; (b) th, the background simulations driven by magnified surface CO, fluxes
F =@08+5(x,Y,2,t)F’; () C_f , the ensemble mean values of the assimilated CO,

concentrations fields; (d) C”-C/; (e) Ctp—C_f; and (f) 100*(Ct"—C_f’)/Ctp at

model-level 1 in February 2010. Black lines EF and GH indicate the positions of the cross sections
shown in Fig. 5.
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Fig. 5. Monthly mean cross sections of C? —th along line (a) EF and (b) GH, and monthly

mean cross sections of Ctp —Cf along line (c) EF and (d) GH (cross section lines shown in Fig.

4d)

in February 2010.
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Fig. 6. Daily mean time series of CO, concentrations at national background stations in China and

their nearest large cities from 1 Jan. to 20 Mar. 2010 extracted from the artificial true simulations

C? (black), background simulations C/ (red), and the ensemble mean values of the

assimilated CO, concentrations fields C; (blue). All time series were interpolated to the

observation locations by the spatial bilinear interpolator method. The sites used are (a) Waliguan

(36.28N, 100.91E), (b) Xining (36.56 N, 101.74E), (c) Longfengshan (44.73N, 127.6 E), (d)
Haerbin (45.759N, 126.63E ), (¢) Shangdianzi (40.65N, 117.12<E), (f) Beijing (39.92N,
116.46E), (g) Linan (30.3N, 119.73E), and (h) Hangzhou (30.3N,120.2E).
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Fig. 7. Monthly mean values in February 2010 of (a) F,”, the prior true surface CO, fluxes; (b)
F.", the prescribed CO; surface fluxes, F." = (1.8+05(X,Y,z1))F"; (c) E? the
ensemble mean values of the assimilated surface CO, fluxes; (d) F” —F."; (e) F_ta -F;

and (f) F_ta —FP (units: pmole m2s™). F_taare the assimilated results of an CFI-CMAQ

OSSE, in which the lag-window was 9 days and £ was 70. And they are the same in

Fig. 7 to Fig. 10.
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Fig. 8. Monthly mean RMSEs of F? in February 2010 (units: pmole m s™).
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Fig. 9. (a) Ratios of monthly mean F,” to monthly mean F."; (b) ratios of monthly mean F_ta

to monthly mean F,”; and (c) ratios of monthly mean F® to monthly mean F in Feb. 2010.

The white part indicates the ratios where the absolute values of monthly mean Ft* are larger

than 0.01, not analyzed in this study. The black square labeled | indicates the domain where
surface CO, fluxes were used for the results presented in Fig. 12 and 13.
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Fig. 10. Daily mean time series of CO, fluxes at national background stations in China and their
nearest large cities from 1 Jan to 20 Mar. 2010 extracted from the prior true surface CO; fluxes

F" (black), the prescribed CO, surface fluxes Ft* (red), and the assimilated CO, fluxes F_ta

(blue). All time series were interpolated to the observation locations by the spatial bilinear
interpolator method. The sites used are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin,
(e) Shangdianzi, (f) Beijing, (g) Linan, and (h) Hangzhou.
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Fig. 11. (a) Ensemble spread of Cift after inflating; (b) ensemble spread of A, before
inflating; (c) ensemble spread of ﬂif’t at model-level 1 at 00 UT on 1 March 2010 when

B=T0.
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Fig. 12. Time series of daily mean CO, fluxes averaged in domain | (shown in Fig. 9b) from 1 Jan.

to 20 Mar. 2010 with the inflation factor of scaling factors £ =70, 75 and 80. The black dashed

line is the time series averaged from F.” and the black solid line is the time series averaged

fromF,”.
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Fig. 13. Time series of daily mean CO, fluxes averaged in domain | (shown in Fig. 9b) from 1 Jan.
to 20 Mar 2010 with different smoother windows (3, 6, 9 and 12 days). The black dashed line is

the time series averaged from F,” and the black solid line is the time series averaged from FP.
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Fig. 14. Monthly mean values of the difference between the prior true surface CO, fluxes and the
ensemble mean values of the assimilated surface CO, fluxes (units: pmole m 2 s™) of the reference

experiment in which A, , were set to 1.
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