

Supplement of

Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US

R. Ahmadov et al.

Correspondence to: R. Ahmadov (ravan.ahmadov@noaa.gov)

1

2

3

Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western U.S.

Supplemental Information

4 1 Regression Slopes in the Top-Down Inventory

Details of the measurements of NO_y and the various VOCs during the winters of 2012 and 2013 5 at the Horse Pool site are presented in Edwards et al. (2013) and the report available at: 6 7 http://www.deq.utah.gov/locations/U/uintahbasin/studies/UBOS-2013.htm. Most VOC species were determined by GC-MS in 2012, and GC-FID in 2013 as in Gilman et al. (2013). Aromatics 8 9 and formaldehyde were determined by PTR-MS in both years (de Gouw and Warneke, 2007;Warneke et al., 2011). During 2012 one-minute average NO_v data were determined by 10 catalytic conversion of NO_v over heated gold and chemiluminescence detection of NO (Williams 11 et al., 2009), and in 2013 it was determined by molybdenum conversion and cavity ringdown 12 detection of NO₂ as described in Wild et al., (2014). One minute average CH₄ was determined 13 using a 3-channel Picarro instrument (Peischl et al., 2012). 14

Linear regressions of NO_v and VOCs with CH₄ are windowed between the hours of 1000 and 15 1600 MST to capture regionally representative conditions within the daytime boundary layers 16 and minimize effects from isolated plumes observed under more stable conditions. Half-hourly 17 resolution VOCs data from both years are included in the regressions. Table S1 summarizes the 18 linear regressions and slopes with respect to CH₄. VOC emissions are dominated by light alkanes 19 on a molar basis with higher correlations ($r^2 > 0.85$) for primary VOCs, and lower correlations 20 for secondary, oxygenated VOCs. The table also gives the recommended assignment of each 21 VOC into the Statewide Air Pollution Research Center (SAPRC-07) photochemical mechanism 22 (Carter, 2010) or the RACM mechanism (Stockwell et al., 1997), which is a basis for the 23 mechanism used in this study. The same lumped hydrocarbon and oxygenated VOC species are 24 25 emitted in both emission scenarios.

26 2 Comparison of the meteorological simulations

Figure S2a-c shows averaged diurnal time series for meteorological variables – temperature,
moisture, wind speed and direction measured at Horse Pool during the evaluation time period

January 29 – February 8, 2013. The wind speed and direction are reasonably well simulated during the daytime. However, at nights the model shows stronger easterly winds, whereas the observations indicate lighter winds from east and south-east. The comparisons also show that WRF captures the cold pool conditions with ~2 °C bias during daytime at Horse Pool (Figure S2a). The model shows a stronger katabatic flow at night, which could be due to the cold bias in the model in the evening hours (Figures S2a,c).

35 We also compared PBL height estimates from the model and the observations in order to assess the model's ability to simulate the cold pool and vertical mixing. Using tethersonde 36 measurements of temperature and relative humidity at 3 locations conducted by the NOAA 37 Global Monitoring Division between January 29 and February 8, 2013, PBL heights were 38 39 estimated from the vertical gradient of virtual potential temperature. The same method was applied to the model output at corresponding times and locations. The results are shown in 40 Figure S3. The majority of the daytime (0900-1700 MST) PBL height values fall within the 41 range of 50-200 m, with a median of all the measurements of 110 m. Although the model 42 43 simulates the observed range of the mixed layer depth, it has difficulty in capturing the timing of growth and collapse of the PBL observed within the UB (Figure S3). 44

- 45
- 46

47

48

- 49
- 50
- 51
- 52 53
- 54

56 Table S1. Linear regression slope (ppbv/ppmv), standard deviation of fit (StDv (ppbv/ppmv)), r^2

57 correlation coefficient, VOC species assignments to the SAPRC-07 and RACM chemical

58 mechanisms for 1000–1600 MST observations at Horse Pool during the winters of 2012 and

59 2013.

VOC	Slope	StDv	r^2	SAPRC-07 VOC	RACM VOC
				assignment	assignment
NO _v	3.026	0.56	0.65	-	-
Ethane	57.87	1.02	0.96	ALK1	ETH
Propane	26.47	0.38	0.97	ALK2	0.519*HC3
Methanol	9.152	1.67	0.34	МЕОН	0.402*HC3
n-butane	8.902	0.23	0.94	ALK3	1.11*HC3
i-butane	5.861	0.16	0.94	ALK3	1.11*HC3
i-pentane	3.897	0.11	0.94	ALK4	0.964*HC5
n-pentane	3.532	0.17	0.90	ALK4	0.964*HC5
2 and 3 methylpentane	2.942	0.21	0.86	ALK4	HC5
1-methyl cyclohexane	2.091	0.03	0.96	ALK5	HC8
n-hexane	1.613	0.06	0.92	ALK4	0.17*HC5+0.83*HC8
Acetone	1.541	0.25	0.71	ACET	0.253*KET
Cyclohexane	1.178	0.01	0.97	ALK5	HC8
1-methyl cyclopentane	0.966	0.02	0.95	ALK4	0.956*HC5
2,2 dimethylbutane	0.863	0.68	0.11	ALK3	0.964*HC3
Acetaldehyde	0.861	0.11	0.75	ССНО	ALD
n-heptane	0.807	0.06	0.86	ALK4	HC5
Toluene	0.758	0.03	0.90	ARO1	TOL
Formaldehyde	0.638	0.06	0.80	НСНО	НСНО
Benzene	0.593	0.00	0.97	0.295*ARO1	0.293*TOL
MEK	0.568	0.09	0.72	MEK	KET
n-octane	0.548	0.02	0.92	ALK5	0.945*HC8
1,3 dimetylcyclohexane	0.386	0.01	0.94	ALK5	HC8
Ethylene	0.353	0.02	0.85	ETHE	OL2
C8 aromatics	0.349	0.02	0.85	ARO2	XYL
n-nonane	0.216	0.01	0.87	ALK5	HC8
Ethanol	0.161	0.09	0.26	ALK3	1.198*HC3
Acetylene	0.146	0.06	0.41	ALK2	0.343*HC3
1,1,3	0.086	0.01	0.71	ALK5	HC8
2,2 dimethylpropane	0.085	0.02	0.56	ALK2	0.44*HC3
1,2 dimethylcyclohexane	0.078	0.00	0.94	ALK5	HC8
n-decane	0.075	0.00	0.85	ALK5	HC8
C9 aromatics	0.071	0.01	0.75	.0879*ARO1+.9121*A	.0879*TOL+.9121XY
2,2 dimethylbutane	0.059	0.00	0.91	ALK3	0.964*HC8
Propanal	0.057	0.01	0.59	RCHO	ALD
Ethylbenzene	0.051	0.00	0.92	ARO1	TOL

Ethylcyclohexane	0.049	0.00	0.92	ALK5	HC8
n-undecane	0.046	0.00	0.82	ALK5	HC8
1,3 dimethylcyclohexane	0.043	0.00	0.93	ALK5	HC8
1,2,4 trimethylbenzene	0.040	0.00	0.87	ARO2	XYL
Furan	0.035	0.03	0.00	ARO2	XYL
1,3,5 trimethylbenzene	0.030	0.00	0.86	ARO2	XYL
Naphthalene	0.030	0.00	0.59	ARO2	XYL
Propylene	0.028	0.00	0.71	OLE1	OLT
1-eth,3,4-methylbenzene	0.023	0.00	0.89	ARO2	XYL
C10 aromatics	0.014	0.00	0.78	.061*ARO1+.939*ARO	.061*TOL+.939*XY
Hexanal	0.013	0.00	0.33	RCHO	ALD
1,2,3 trimethylbenzene	0.012	0.00	0.81	ARO2	XYL
Butanal	0.009	0.00	0.51	RCHO	ALD
n-propylbenzene	0.007	0.00	0.88	ARO1	TOL
C11 aromatics	0.006	0.00	0.61	.0246*ARO1+.975*AR	.0246*TOL+.939*XY
i-propylbenzene	0.005	0.00	0.90	ARO1	TOL
1-eth,2-methylbenzene	0.005	0.00	0.88	ARO2	XYL
Benzaldehyde	0.004	0.00	0.71	BALD	ALD
Methacrolein	0.004	0.00	0.48	MACR	MACR
MVK	0.004	0.00	0.73	MVK	0.5*KET+0.5*OLT
C12 aromatics	0.003	0.00	0.47	ARO2	XYL
1,3 butadiene	0.002	0.00	0.60	OLE2	OLI
Vinylbenzene	0.002	0.00	0.19	OLE2	TOL
Isoprene	0.000	0.02	0.00	ISOP	ISO

- 67 Table S2. WRF-Chem model configuration. Full description of the model options can be found
- 68 in: www.wrf-model.org and http://ruc.noaa.gov/wrf/WG11/.

Horizontal resolution	12 and 4 km nested domains
Vertical resolution	60 layers (18 within lowest 500 m)
Meteorological input	NAM analysis
Surface layer	MYNN
Planetary boundary layer	MYNN level 2.5
Land Surface	Noah Land Surface Model
Microphysics	WRF Single-Moment 5-class
Shortwave and longwave radiation	RRTMG
Gas-phase chemistry	RACM_ESRL
Transport of species	advection and vertical mixing
Advection option for chemical variables	Monotonic

- 79 Figure S1. Weather maps from NOAA/HPC (<u>http://www.hpc.ncep.noaa.gov</u>); a) frontal passage,
- 1400 MST, January 28, 2013; b) stagnation episode, 1400 MST, February 5, 2013; 80

Figure S2. Averaged diurnal cycle of meteorological variables (modeled and measured) during January 29 – February 8, 2013. The shaded area on the plots depict the $\pm \sigma$ (standard deviation) of the observed values; a) Air temperature, b) water vapor mixing ratio, c) wind speed and d) wind direction

87

Figure S3. Mixing layer height estimates (3 hourly averaged) determined from vertical profiles
of virtual potential temperature from the model output and tethersonde measurements during
daytime (0900 -1700 MST), January 29 – February 8, 2013.

113 References

- 114 Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44,
- 115 5324-5335, 10.1016/j.atmosenv.2010.01.026, 2010.
- de Gouw, J., and Warneke, C.: Measurements of volatile organic compounds in the earth's
- atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, 26,
- 118 223-257, doi:210.1002/mas.20119, 2007.
- 119 Edwards, P. M., Young, C. J., Aikin, K., deGouw, J., Dube, W. P., Geiger, F., Gilman, J.,
- 120 Helmig, D., Holloway, J. S., Kercher, J., Lerner, B., Martin, R., McLaren, R., Parrish, D. D.,
- 121 Peischl, J., Roberts, J. M., Ryerson, T. B., Thornton, J., Warneke, C., Williams, E. J., and Brown,
- 122 S. S.: Ozone photochemistry in an oil and natural gas extraction region during winter:
- simulations of a snow-free season in the Uintah Basin, Utah, Atmos. Chem. Phys., 13, 8955-
- 124 8971, 10.5194/acp-13-8955-2013, 2013.
- 125 Gilman, J. B., Lerner, B. M., Kuster, W. C., and de Gouw, J. A.: Source Signature of Volatile
- 126 Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado, Environ.
- 127 Sci. Technol., 47, 1297-1305, 10.1021/es304119a, 2013.
- 128 Peischl, J., Ryerson, T. B., Holloway, J. S., Trainer, M., Andrews, A. E., Atlas, E. L., Blake, D.
- 129 R., Daube, B. C., Dlugokencky, E. J., Fischer, M. L., Goldstein, A. H., Guha, A., Karl, T.,
- 130 Kofler, J., Kosciuch, E., Misztal, P. K., Perring, A. E., Pollack, I. B., Santoni, G. W., Schwarz, J.
- 131 P., Spackman, J. R., Wofsy, S. C., and Parrish, D. D.: Airborne observations of methane
- emissions from rice cultivation in the Sacramento Valley of California, J. Geophys. Res.-Atmos.,
- 133 117, 10.1029/2012jd017994, 2012.
- 134 Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional
- atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102, 25847-25879, 1997.
- 136 Warneke, C., Veres, P., Holloway, J. S., Stutz, J., Tsai, C., Alvarez, S., Rappenglueck, B.,
- 137 Fehsenfeld, F. C., Graus, M., Gilman, J. B., and de Gouw, J. A.: Airborne formaldehyde
- 138 measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial
- results, Atmos. Meas. Tech., 4, 2345-2358, 10.5194/amt-4-2345-2011, 2011.
- 140 Wild, R., Edwards, P., Dube, W., Baumann, K., Edgerton, E., Quinn, P., Roberts, J., Rollins, A.,
- 141 Veres, P., Warneke, C., Williams, E., Yuan, B., Brown, S.: A Measurement of Total Reactive
- 142 Nitrogen, NO_y, together with NO₂, NO, and O₃ via Cavity Ring-down Spectroscopy, (accepted)
- 143 ES&T, 2014.

- 144 Williams, E. J., Lerner, B. M., Murphy, P. C., Herndon, S. C., and Zahniser, M. S.: Emissions of
- 145 NOx, SO2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study
- 146 (TexAQS) 2006, J. Geophys. Res.-Atmos., 114, 10.1029/2009jd012094, 2009.