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Abstract  10 

To identify major sources of ambient fine particulate matter (PM2.5, dp< 2.5 µm) and 11 

quantify their contributions in the state of California, positive matrix factorization (PMF) 12 

receptor model was applied on Speciation Trends Network (STN) data, collected between 2002 13 

and 2007 at 8 distinct sampling locations, including El Cajon, Rubidoux, Los Angeles, Simi 14 

Valley, Bakersfield, Fresno, San Jose, and Sacramento. Between five to nine sources of fine PM 15 

were identified at each sampling site, several of which were common among multiple locations. 16 

Secondary aerosols, including secondary ammonium nitrate and ammonium sulfate, were the 17 

most abundant contributor to ambient PM2.5 mass at all sampling sites, except for San Jose, with 18 

an annual average cumulative contribution of 26 to 63%, across the state. On an annual average 19 

basis, vehicular emissions (including both diesel and gasoline vehicles) were the largest primary 20 

source of fine PM at all sampling sites in southern California (17-18% of total mass), whereas in 21 

Fresno and San Jose, biomass burning was the most dominant primary contributor to ambient 22 
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PM2.5 (27 and 35% of total mass, respectively), in general agreement with the results of previous 23 

source apportionment studies in California. In Bakersfield and Sacramento, vehicular emissions 24 

and biomass burning displayed relatively equal annual contributions to ambient PM2.5 mass (12 25 

and 25%, respectively). Other commonly identified sources at all sites included aged and fresh 26 

sea salt as well as soil, which contributed to 0.5-13%, 2-27%, and 1-19% of the total mass, 27 

respectively, across all sites and seasons. In addition, few minor sources were exclusively 28 

identified at some of the sites (e.g. chlorine sources, sulfate-bearing road dust, and different types 29 

of industrial emissions). These sources overall accounted for a small fraction of the total PM 30 

mass across the sampling locations (1 to 15%, on an annual average basis).  31 

  32 

1. Introduction 33 

Exposure to ambient airborne particulate matter (PM) is one of the leading causes of 34 

morbidity and mortality, contributing to more than 3 million premature deaths in the world 35 

annually, based on a recent global burden of disease study (Lim et al., 2013). PM inhalation has 36 

been linked to a wide range of adverse health effects, such as respiratory inflammation (Araujo et 37 

al., 2008), cardiovascular diseases (Delfino et al., 2005;Ostro et al., 2014), and most recently 38 

neurodegenerative and neurodevelopmental disorders (Davis et al., 2013b;Davis et al., 2013a). 39 

During the past few decades, California has been constantly suffering from high concentrations 40 

of ambient PM, among the highest levels recorded within the United States, with estimated rates 41 

of PM-related morbidity and mortality exceeding any other state in the country (Fann et al., 42 

2012).  43 
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Ambient PM in California originates from a large number of diverse sources (Hu et al., 44 

2014) and is a complex mixture of different chemical components, the composition of which 45 

may change drastically with PM size (Hu et al., 2008), location, and season (Cheung et al., 46 

2011;Daher et al., 2013). Current PM regulations in California target PM10 and PM2.5 (particles 47 

with aerodynamic diameter less than 10 and 2.5 µm, respectively) mass concentrations, with 48 

PM2.5 being of major concern due to the higher rate of PM2.5-related morbidity and mortality in 49 

the state compared to PM10 (Ostro et al., 2006;Woodruff et al., 2006). These regulations only 50 

target PM mass concentration, regardless of their sources of emission and/or toxico-chemical 51 

characteristics. There is, however, strong evidence that the level of toxicity and health-related 52 

characteristics of PM are significantly affected by their chemical composition and therefore by 53 

their emission sources (Rohr and Wyzga, 2012;Stanek et al., 2011;Zhang et al., 2008;Saffari et 54 

al., 2013). Recently, there has been growing interest in using source apportionment data in 55 

epidemiological health studies (Sarnat et al., 2008;Özkaynak and Thurston, 1987;Laden et al., 56 

2000;Mar et al., 2000;Ostro et al., 2011). These studies have provided significant evidence that 57 

exposure to PM from certain sources is linked to mortality. In a recent study in Barcelona, Ostro 58 

et al. (2011) found that exposure to several sources, including traffic emissions, sulfate from ship 59 

emissions and long-range transport, as well as construction dust, is statistically significantly 60 

associated with all-cause and cardiovascular mortality. Nonetheless, to draw firm conclusions 61 

and develop more effective control strategies to reduce population exposure to harmful sources 62 

of airborne PM, further epidemiological studies that use source apportionment data are 63 

warranted. 64 

To date, several source apportionment studies have been conducted in California, using 65 

source-oriented (Hu et al., 2014;Kleeman and Cass, 2001;Zhang et al., 2014;DeNero, 2012) and 66 
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receptor models (Hasheminassab et al., 2013;Hwang and Hopke, 2006;Ham and Kleeman, 67 

2011;Kim and Hopke, 2007;Kim et al., 2010;Schauer and Cass, 2000). Source-oriented models 68 

focus on the transport, dilution, and transformation of pollutants from the source of emission to 69 

the receptor site; thereby providing an overall estimation regarding the spatial distribution of 70 

source contributions. Receptor models, on the other hand, focus on the behavior of ambient 71 

environments at the point of impact (Hopke, 2003). Even though these studies have provided 72 

important insights on the characteristics of sources of ambient PM as well as their relative 73 

contributions, they have been mostly conducted in a limited number of sampling locations and/or 74 

within a relatively short period of time. As a result, spatial and temporal variability of the 75 

identified sources have not been extensively examined. For instance, Kim et al. (2010) analyzed 76 

the PM2.5 speciation data collected between 2003 and 2005 at two sampling sites in southern 77 

California (i.e. Los Angeles (LA) and Rubidoux) to identify and quantify major PM2.5 sources, 78 

by application of a PMF model. Using similar source apportionment approach, Hwang and 79 

Hokpe (2006) evaluated the sources of ambient PM2.5 at two sampling sites in San Jose during a 80 

large period of time between 2000 and 2005. In a more comprehensive study, Chen et al. (2007) 81 

applied several receptor models to the chemically speciated PM2.5 measurements collected for 82 

one year (between 2000 and 2001) at 23 sites, all located in California’s San Joaquin Valley 83 

(SJV), to estimate PM2.5 source contributions. 84 

In this study, positive matrix factorization (PMF), one of the most widely-used receptor-85 

oriented source apportionment techniques (Paatero and Tapper, 1994), was employed in order to 86 

provide a detailed and long-term (from 2002 to 2007) quantification of the contributions of 87 

different emission sources to ambient PM2.5 mass concentration in California, at 8 distinct 88 

locations spanning southern, central, and northern regions of the state. The association between 89 



5 
 

PM-related mortality and PM2.5 mass concentration as well as individual PM2.5 chemical 90 

components has been investigated in previous epidemiological studies in California (Ostro et al., 91 

2006;Ostro et al., 2007). The results of this study will be used as an input for future 92 

epidemiological studies conducted by California Environmental Protection Agency (Cal EPA), 93 

in order to further expand the current epidemiological knowledge, by establishing the 94 

relationship between PM-related adverse health effects and specific source contributions. These 95 

findings will be crucial in establishing targeted and cost-effective regulations on PM2.5 emissions 96 

in the state of California.  97 

 98 

2. Methodology 99 

2.1. Sampling sites 100 

Sampling was conducted at eight Speciation Trends Network (STN) sampling sites, 101 

established by the United States Environmental Protection Agency (U.S. EPA), located in 102 

distinctly different cities all over California, including El Cajon, Rubidoux, Los Angeles, Simi 103 

Valley, Bakersfield, Fresno, San Jose and Sacramento. The studied sampling sites comprise a 104 

mixture of urban and semi-rural communities, with El Cajon and Rubidoux being located in 105 

semi-rural areas, while the rest of sampling sites being situated in densely developed urban 106 

regions of the state. Figure S1 shows the location of all sampling sites. 107 

The Sacramento sampling site is located next to a park in a residential area with 108 

commercial establishments and high-density residential homes in the surrounding neighborhood. 109 

It is also about 3 km southeast of a major freeway (I-80). The sampling site in San Jose is located 110 

46 km east of the Pacific Ocean and 14 km southeast of the San Francisco Bay. It is also 111 

surrounded by primary commercial facilities (Hwang and Hopke, 2006). Cities of Fresno and 112 
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Bakersfield are located in California’s heavily SJV (Zhao et al., 2011). These two cities are 113 

relatively far from the Pacific Ocean and are mostly impacted by secondary aerosols formed by 114 

emissions from upwind areas (Ying and Kleeman, 2006). Moreover, this part of the state usually 115 

suffers from severe particulate pollution, especially during the colder seasons (Kleeman et al., 116 

2009). The northern parts of the SJV are dominated by agricultural activities, while the southern 117 

regions are mostly impacted by oil production (Held et al., 2004). The sampling site in 118 

Bakersfield is located about 6.5 km southwest of downtown, in a residential neighborhood and 2 119 

km away from the nearest freeway (State Route (SR) 99). The sampling site in Fresno is about 120 

5.5 km northeast of the downtown commercial district (Watson et al., 2000), next to a four-lane 121 

artery with moderate traffic level. Simi Valley is located 50 km northwest of downtown LA, in 122 

Ventura county, and the sampling site in this city is situated 500 m south of SR 118 (Kim and 123 

Hopke, 2007). Two sampling locations in the South Coast Air Basin were considered in this 124 

study; Los Angeles and Rubidoux. The sampling site in downtown LA is surrounded by three 125 

major freeways (i.e. I-110, I-5, and US-101) and is 30 km away from the ports of LA and Long 126 

Beach, both of which are the busiest ports in the U.S. (Minguillón et al., 2008). This sampling 127 

site is therefore heavily impacted by primary emissions. Rubidoux is situated 60 km inland from 128 

downtown LA and is typically subject to aged and photo-chemically processed particulate 129 

plumes advected from upwind regions (Sardar et al., 2005). Previous studies have reported high 130 

concentration of ammonium nitrate in this region, which is mostly formed by the atmospheric 131 

reaction of nitric acid with ammonia from Chino dairy farms and livestock in upwind regions 132 

(Hughes et al., 1999). Lastly, the El Cajon sampling site is located in an inland valley, downwind 133 

of a heavily populated coastal zone, in San Diego County. This site is also impacted by 134 

emissions from I-8 freeway, situated 500 m to its north. 135 
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2.2. Sampling schedule and chemical analysis 136 

Time-integrated 24 h PM2.5 samples were collected between 2002 and 2007 at all 137 

sampling sites, except for LA and Rubidoux, at which a combined chemical dataset from 2002 to 138 

2013 was used as the input file when running the PMF model (Hasheminassab et al., 2014). In 139 

the present study, in order to compare the results with those obtained for the rest of sampling 140 

sites, we calculated the average source contributions between 2002 and 2007 from the output of 141 

the same PMF runs which were originally conducted using the 2002-2013 chemical dataset. By 142 

performing a sensitivity analysis, Hasheminassab et al. (2014) showed that the results of the 143 

PMF model performed on the entire chemical dataset (i.e. 2002-2013) is comparable to the 144 

output of the PMF model conducted separately on 2002-2006 and 2008-2012 datasets, in terms 145 

of the sources identified (similar number of sources with almost identical compositions) and the 146 

absolute source contributions (less than 18% difference in average source contributions among 147 

all sources). The outcome of the sensitivity analysis thus indicated that the daily-resolved source 148 

contributions between 2002 and 2007 are not significantly biased when the chemical data 149 

between 2008 and 2013 are also included into the PMF input file. 150 

During the studied period (i.e. 2002 to 2007), PM2.5 samples were collected every third 151 

day in Sacramento, San Jose, Fresno, Bakersfield, Rubidoux, and El Cajon sites, while every 152 

sixth day in Simi Valley and Los Angeles sites. 153 

 Filter weighing and chemical analyses were performed according to the U.S. EPA 154 

Quality Assurance Project Plan (QAPP) (EPA-454/R-01-001) adopted for the STN field 155 

sampling. According to the QAPP, filters are tested, equilibrated, and weighted in the U.S. EPA 156 

contract laboratories, and then they are shipped to the field. After sampling, filters bearing PM2.5 157 

deposits are promptly shipped back to the laboratories for weight determination and other 158 
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chemical analyses. PM2.5 mass concentration was determined gravimetrically by pre- and post-159 

weighing the Teflon filters. Concentration of elements on Teflon filter samples was quantified by 160 

energy-dispersive X-ray fluorescence (ED-XRF) (RTI, 2009c). Major ions, including nitrate, 161 

sulfate, ammonium, sodium, and potassium, were measured by Ion Chromatography (IC) (RTI, 162 

2009a, b). Elemental carbon (EC) and organic carbon (OC) were quantified from quartz filters, 163 

using Thermal Optical Transmittance (TOT) NIOSH 5040 carbon method (Birch and Cary, 164 

1996). 165 

2.3. Source apportionment 166 

In this study, the EPA PMF receptor model (version 3.0.2.2) was performed at each 167 

sampling site separately to identify the major sources of ambient PM2.5 and quantify their relative 168 

contributions to total PM2.5 mass. PMF is a factor analysis model that solves the chemical mass 169 

balance equations using a weighted least-squares algorithm and by imposing non-negativity 170 

constrains on the factors (Reff et al., 2007). 171 

2.3.1. Data screening 172 

The first step of data screening was correcting the OC data to account for sampling 173 

artifacts, caused by adsorption and/or desorption of organic vapors on quartz filters (Chow et al., 174 

2010). For each sampling site, the OC artifact was estimated using the intercept of the linear 175 

regression of OC against PM2.5 mass concentration (Kim et al., 2005). OC concentrations were 176 

then corrected by subtracting the OC artifact concentrations. The estimated OC artifact values (± 177 

standard errors) at each site are presented in Table S1.  178 

To avoid double-counting of species, the linear correlations in each pair of S/SO4
2-

, 179 

Na/Na
+
, and K/K

+
 were examined. Depending on the goodness of fit and the percent number of 180 

samples below detection limit (BDL) (threshold of 70%), either IC SO4
2-

,
 
Na

+
, K

+
 or ED-XRF S, 181 
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Na, K data were included in the PMF analyses. Measured BDL concentrations were replaced by 182 

half of the detection limit (DL) values, and their uncertainties were set as 5/6 of the DL values 183 

(Polissar et al., 1998). Missing values were replaced by the geometric mean of the existing 184 

concentrations, and their accompanying uncertainties were set as four times this geometric mean 185 

concentration. Species with more than 70% BDL values as well as samples with missing mass 186 

and/or all of the elemental concentrations were excluded from the model. Lastly, occasional 187 

samples with unusually high concentrations of a few chemical species, such as those collected 188 

around July 4th and/or New Year eves with extremely high concentrations of K and/or K
+
 were 189 

discarded. 190 

2.3.2. PMF model 191 

The uncertainties used in the PMF model were the estimated uncertainties reported in the 192 

Air Quality System (AQS) for the PM2.5 chemical speciation network. The uncertainties reported 193 

by STN include both the analytical uncertainties and uncertainties associated with the field 194 

sampling component (Flanagan et al., 2006). The uncertainties of elements, measured by the ED-195 

XRF method, go through a comprehensive calculation procedure that harmonizes the 196 

uncertainties between different instruments and accounts for filter matrix effect, in addition to 197 

the field sampling and handling uncertainty (Gutknecht et al., 2010). For the other species, 198 

uncertainty is estimated as the analytical uncertainty of the instrument, augmented by 5% of the 199 

calculated concentration, assuming that this 5% is representing the total “field” variability 200 

(Flanagan et al., 2006). 201 

Species with a signal-to-noise (S/N) ratio between 0.2-2, as well as those that have BDL 202 

values more than 50% of total samples were considered as weak variables and their uncertainties 203 

were increased by a factor of 3. In order to directly apportion the total PM mass, PM2.5 mass 204 
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concentrations were included in the data matrix as a “total variable” in the PMF model (Lee et 205 

al., 2011). To ensure that the inclusion of total PM mass concentration does not affect the 206 

resulting PMF solution, their uncertainties were increased by a factor of 3, similarly to a weak 207 

variable (Reff et al., 2007). The model was performed in the default robust mode to diminish the 208 

influence of extreme values on the PMF solution, and the FPEAK parameter was applied to 209 

control rotational ambiguity (Paatero et al., 2002). Furthermore, a value of 5% extra modeling 210 

uncertainty was applied.  211 

Uncertainties in the source profiles were estimated by a bootstrap procedure (Norris et 212 

al., 2008). 500 runs were considered for the bootstrap analysis in this study, and a solution was 213 

considered valid when the occurrence of unmapped factors was less than 10% of the total runs. 214 

The final solutions were chosen based on the evaluation of the deduced source profiles and the 215 

quality of the chemical species fits by testing different numbers of factors. 216 

 217 

3. Meteorology  218 

Select meteorological parameters data, including temperature, relative humidity (RH), 219 

precipitation, as well as vector-average wind speed and direction were acquired from the online 220 

database of the California Air Resources Board (CARB). Table S2 presents the seasonal 221 

averages of these parameters at all studied sampling sites. In this study, seasons were defined as 222 

spring (March–May), summer (June–August), fall (September–November) and winter 223 

(December–February), and seasonal/annual averages of all parameters reported in the following 224 

sections and shown in the figures and tables were calculated over all 6 years (i.e. 2002 to 2007). 225 

In addition, the standard errors accompanying the seasonal averages were calculated based on all 226 

daily-resolved source contributions that fall within a given season. Lastly, in all of the figures 227 
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and tables presented in this study, sampling sites were ranked according to their latitude, from 228 

south to north (i.e. from El Cajon to Sacramento). 229 

 Most intense seasonality in temperature and RH was observed at the inland areas of the 230 

SJV, in Fresno and Bakersfield. These two sites experience the hottest and driest summertime 231 

weather across the state (temperature over 25
o
C and RH below 40%), while during winter, the 232 

mean temperature in these cities is within the lowest levels among all sites (below 10
o
C) and the 233 

RH reaches about 75%, comparable to levels in other sites in the northern region of the state (i.e. 234 

San Jose and Sacramento). Unlike northern areas, RH exhibited more moderate seasonality in 235 

southern California, displaying minima in fall/winter (50-71%) and maxima in spring/summer 236 

(59-77%). At all sampling locations, the average of yearly total precipitation was negligible in 237 

summer, but greatest in winter. During the studied period, Sacramento showed the highest total 238 

precipitation in winter, followed by LA, San Jose, and Simi Valley (23.4±7.1, 21.7±17.1, 239 

16.3±3.9, and 14.1±13.0 cm, respectively). Additionally, wind speeds were generally much 240 

stronger in summer compared with fall/winter. During spring and summer, wind blows mostly 241 

from coast to inland in the southern part of the state (i.e. El Cajon, Rubidoux, LA, and Simi 242 

Valley), with a predominant westerly/southwesterly direction, while it shifts in winter and has a 243 

predominantly northerly origin at all sites, with the exception of El Cajon. In Bakersfield and 244 

Fresno, wind constantly blows from northwest throughout the year, except for Fresno in winter, 245 

when wind has an easterly direction. Lastly, in Sacramento, the prevailing wind direction is 246 

southerly/southwesterly throughout the year. 247 

 248 

4. Results and discussion 249 

4.1. Particulate mass 250 



12 
 

Seasonal average mass concentration of ambient PM2.5 at each sampling site is presented 251 

in Table 1. Overall, mass concentrations spanned a broad range of 8.2 to 36.6 µg/m
3
 across the 252 

studied sites and all seasons. PM2.5 mass concentration showed a very strong seasonality in 253 

central and northern parts of the state (i.e. Bakersfield, Fresno, San Jose, and Sacramento), with 254 

2 to 4 times higher concentrations in winter compared with summer. This trend is typical of the 255 

California’s Central Valley, which usually experiences the most severe particulate pollution 256 

during winter in the U.S. (Ying and Kleeman, 2009). In winter, ambient PM2.5 mass 257 

concentrations peaked at Bakersfield and Fresno (32.0±1.8 and 36.6±1.5 µg/m
3
, respectively). 258 

Severe stagnation periods and decreased mixing height are mostly responsible for elevated 259 

particulate pollution during winter in this part of the state. As it will be discussed in the 260 

following section, secondary ammonium nitrate and emissions from biomass burning were 261 

mainly responsible for elevated PM2.5 mass concentrations in these two cities during winter. In 262 

summer, on the other hand, highest mass concentrations were observed in sampling sites located 263 

in the Los Angeles Basin (i.e. LA and Rubidoux). Rubidoux displayed highest mass 264 

concentration in fall, followed by summer and spring. In addition to local sources, this region of 265 

the state is typically subject to transported plumes from upwind regions in west and central LA 266 

(Daher et al., 2013; Sardar et al., 2005), particularly during the warm seasons when the westerly 267 

wind prevails (Table S2). 268 

4.2. Source characterization and apportionment 269 

4.2.1. Overview 270 

Between five to nine particle sources were identified at each sampling site. Resolved 271 

source profiles along with the explained variation (EV) of each species are shown in Figure S2 a-272 

h, for all studied sampling sites. Gray bars represent the normalized concentration of each 273 
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species to the mass concentration of PM2.5 apportioned to that factor, while the black dots 274 

represent the percent of each species apportioned to that factor (Lee et al., 1999). Table 2 275 

summarizes the marker species which were used to identify each source profile. Several sources, 276 

including secondary ammonium nitrate, secondary ammonium sulfate, vehicular emissions, 277 

biomass burning, soil, fresh and aged sea salt were commonly identified at multiple sites. Few 278 

minor sources were exclusively identified at some of the sites, depending on the site location and 279 

nearby emission sources. These sources, however, accounted for a small fraction of the total 280 

mass (1 to 15% across the state, on an annual average basis).  281 

Table 3 presents the slope, intercept, and R
2
 of the linear regressions between daily-282 

resolved measured ambient PM2.5 and estimated PM2.5 mass concentrations, calculated by the 283 

sum of PM mass apportioned to each identified factor. It can be inferred that the PMF model was 284 

able to effectively estimate the measured PM2.5 mass concentrations at all sites (slope varying 285 

from 0.83 to 0.91 and R
2
 ranging from 0.85 to 0.96).  286 

Year-to-year variability in the source contributions was overall quite small for almost all 287 

identified sources. This can be deduced from the relatively small standard errors in the 6-year 288 

seasonal average source contributions, as shown in Table S3 a-d (median relative standard error 289 

of 8%, across all sites, seasons, and sources). Identified sources, on the other hand, displayed 290 

distinct seasonal and spatial variability. The percent contributions from these sources to PM2.5 291 

mass are presented in Figure 1. Overall, secondary aerosols (including secondary ammonium 292 

nitrate and ammonium sulfate) collectively comprised the largest fraction of ambient PM2.5 at all 293 

sampling sites (except for San Jose), accounting for 26 to 63% of total mass across all sites, on 294 

an annual average basis. Vehicular emissions were the second major contributor to PM2.5 at all 295 

sites (11 to 25% annual average contribution, across the state), except for San Jose and Fresno, at 296 
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which biomass burning was the dominant primary source of PM2.5 (35 and 27% annual average 297 

contribution, respectively). “Other sources” in Figure 1 are associated with those sources which 298 

were exclusively identified at some specific locations. These contributed to < 15% of the mass, 299 

on an annual average basis. The unapportioned mass, which is the difference between the 300 

seasonal average PM2.5 mass and the sum of the seasonal average source contributions from each 301 

factor, accounted for 3 to 6% of total mass across the state, on an annual average basis. The 302 

unapportioned mass represents the fraction that could not be resolved by the model.  303 

4.2.2. Vehicular emissions 304 

Vehicular emissions source profiles were identified by high concentrations of 305 

carbonaceous species (i.e. EC and OC). Elevated loadings of several non-exhaust PM tracers 306 

(e.g. Fe, Cu, Zn, Pb, Mn) indicate that these sources are affected by particles emitted from brake 307 

and tire wear, road surface abrasion, and resuspension of road surface dust (Pant and Harrison, 308 

2013;Dall'sto et al., 2014). Only at Rubidoux, the PMF model was able to determine two 309 

separate source profiles for diesel and gasoline vehicles (Figure S2 b). These source profiles are 310 

characterized by high loadings of EC and OC, respectively, with EC/OC ratios being 0.4 in 311 

gasoline source profile, while 2.2 in diesel vehicles source profile. These ratios are within the 312 

ranges reported in previous studies (Liu et al., 2006;Fujita et al., 1998;Watson et al., 1998;Heo et 313 

al., 2009). Diesel vehicles operating at very low speed and in stop-and-go traffic usually produce 314 

similar EC/OC ratios to typical gasoline vehicles (Shah et al., 2004). As a result, the diesel 315 

emissions source profile that was obtained in Rubidoux may represent only diesel vehicles 316 

driving in relatively constant speed in fluid traffic conditions and the diesel emissions from stop-317 

and-go traffic could be apportioned into the gasoline vehicles category. To overcome this 318 

uncertainty and also be able to compare the results with those obtained at other sampling sites, 319 
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the contributions from diesel and gasoline vehicles were combined together at Rubidoux and 320 

referred to as vehicular emissions throughout the discussion. 321 

As can be seen in Figure 2, across the state, estimated PM2.5 mass attributed to vehicular 322 

sources (including diesel and gasoline vehicles) displayed highest levels at Rubidoux, LA, and 323 

Sacramento, with annual average (±standard error) contributions of 4.3±0.1, 3.6±0.1, and 324 

3.5±0.1 µg/m
3
, respectively. Spatial pattern of PM2.5 emissions from mobile sources across the 325 

state is in a good agreement with the findings of a recent study by Hu et al. (2014), in which they 326 

applied a source-oriented air quality model to predict primary PM2.5 source contributions across 327 

the state of California between 2000 and 2006. 328 

Vehicular emissions displayed similar seasonal patterns at all sampling sites, with higher 329 

contributions in fall and winter compared to spring and summer. In spring, summer, and fall, 330 

highest vehicular emissions source contributions were observed at Rubidoux. In contrast, during 331 

winter, when particulate pollution is confined within the emission area due to higher atmospheric 332 

stability and lower mixing height, vehicular source contribution exhibited the highest value in 333 

downtown LA. This trend is typical of the LA Basin, in which downwind “receptor” areas are 334 

generally impacted by emissions from upwind “source” regions, when westerly/south-westerly 335 

onshore winds prevail (Table S2) (Daher et al., 2013). Several previous studies have reported 336 

similar trends in the LA Basin (Hasheminassab et al., 2013;Heo et al., 2013). It should be noted 337 

that after 2007 until 2012, contributions of vehicular emissions to ambient PM2.5 in the LA Basin 338 

statistically significantly decreased by 20 to 25%, following the implementation of major federal, 339 

state, and local regulations on vehicular emissions, particularly on diesel trucks (Hasheminassab 340 

et al., 2014). 341 
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Among the studied locations in the California’s Central Valley, vehicular emissions 342 

displayed the highest levels in Sacramento, while lowest in San Jose, accounting for nearly 30 343 

and 10% of total mass, respectively, on an average over 6 years. Vehicular emissions were 344 

comparable at Bakersfield and Fresno during spring and summer, whereas levels were slightly 345 

higher at Bakersfield in fall and winter. Schauer and Cass (2000) conducted a 4-day sampling in 346 

Bakersfield during the winter of 1995 to quantify the sources of ambient PM2.5, using chemical 347 

mass balance receptor model. Average wintertime level of vehicular emissions in our study at 348 

Bakersfield (3.0±0.2 µg/m
3
) was about half of that reported by Schauer and Cass (2000) (6.3±0.4 349 

µg/m
3
), whereas the percent contributions of this source to total mass were comparable in both 350 

studies (10 and 12%, respectively). This finding suggests that vehicular emissions have 351 

decreased by almost half after almost a decade in Bakersfield.  352 

4.2.3. Secondary aerosols 353 

Secondary ammonium nitrate source profile was identified by high concentrations of 354 

NO3
-
 and NH4

+
 (Figure S2 a-h). Its contribution ranged from 0.2 to 16.8 µg/m

3
, accounting for 3 355 

to 55% of ambient PM2.5 mass, among all sites and seasons, as displayed in Figure 3 and 356 

tabulated in Table S3 a-d. Seasonally, the contribution of secondary ammonium nitrate was 357 

largest in winter while lowest during summer, with statewide average contribution of 8.4 and 3.2 358 

µg/m
3
, respectively. Elevated concentration of secondary ammonium nitrate during the cold 359 

seasons is mainly due to the increased partitioning of ammonium nitrate into the particle phase, 360 

favored by lower wintertime temperatures and higher RH (Ying, 2011). This source displayed 361 

considerably higher contribution at Fresno and Bakersfield in winter (16.8±1.3 and 15.8±1.0 362 

µg/m
3
, respectively). Ying and Kleeman (2006) stated that diesel engines and catalyst equipped 363 

gasoline vehicles are important local sources that contribute to secondary nitrate in the SJV. 364 
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Unlike all other sites, the seasonal trend of secondary ammonium nitrate was reverse at 365 

Rubidoux, with higher concentration in summer compared to winter (12.5±0.8 and 8.9±0.8 366 

µg/m
3
, respectively). This is probably due to increased advection of ammonia from the upwind 367 

Chino area, caused by stronger westerly/southwesterly wind speed during summer in the LA 368 

Basin (Hasheminassab et al., 2013) combined with the increased photochemical production of 369 

nitric acid in summer, which reacts with fugitive ammonia to produce high concentrations of 370 

ammonium nitrate in summer in this area (Hughes et al., 2002;Sardar et al., 2005).  371 

The characterized secondary ammonium sulfate source profiles have high loadings of 372 

SO4
2-

 and NH4
+
 (Figure S2 a-h). This source was identified at all sites, except at Fresno, where 373 

sulfate largely partitioned in a source named “sulfate-bearing road dust” along with a few other 374 

components, which will be discussed in further detail below. Annual average contributions of 375 

this source ranged from 1.3 to 4.6 µg/m
3
 (or 10 to 24% of total mass) among all sites, indicating 376 

that this source is a smaller contributor to total mass compared with secondary ammonium 377 

nitrate. Secondary ammonium sulfate exhibited a similar seasonal trend at all monitoring sites, 378 

displaying wintertime minima while summertime peaks due to increased photochemical activity 379 

that forms this species. Levels were also overall higher in the southern part of the state, 380 

compared to the upper regions (Figure 4). As argued by Ying and Kleeman (2006), the majority 381 

of secondary aerosols formed in southern California are formed from locally emitted precursors, 382 

whereas in the SJV secondary PM is mostly impacted by emissions from upwind areas (i.e. 383 

regional sources). 384 

4.2.4. Biomass burning 385 

Identified biomass burning source profiles consisted primarily of EC, OC, and either K or 386 

K
+
 (Figure S2 a-h). Biomass burning includes emissions from wildfires and residential wood 387 
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combustion. This source showed distinct seasonal and spatial variability, with highest levels 388 

observed during winter and also in upper parts of the state. Higher concentrations associated with 389 

biomass burning in winter are mainly due to the higher residential wood burning during the 390 

colder seasons. Central and northern parts of the state usually experience colder winters 391 

compared to southern regions (Table S2), therefore higher biomass burning is expected in these 392 

geographical locations, as shown in many previous studies (Hu et al., 2014;Chen et al., 2007). 393 

Biomass burning was the major primary source of ambient PM2.5 at Fresno and San Jose during 394 

all seasons, with levels ranging from 2.4 to 10.4 µg/m
3
 (or 22 to 30% of PM2.5) at Fresno and 395 

from 2.2 to 8.0 µg/m
3
 (or 22 to 43% of PM2.5) in San Jose (Figure 5). This source was also the 396 

dominant primary contributor to ambient PM2.5 in Bakersfield and Sacramento during winter (12 397 

and 31% of PM2.5, respectively), consistent with the findings of many previous studies in this 398 

area (Chow et al., 2007;Gorin et al., 2006;Schauer and Cass, 2000). 399 

4.2.5. Soil 400 

Resolved soil source profiles were dominated by crustal elements such as Al, Ca, Fe, Si, 401 

and Ti (Figure S2 a-h). These profiles generally lacked the contributions from EC and OC, 402 

indicating that they are not majorly impacted by emissions of road dust. As stated above, road 403 

dust was partially apportioned in the resolved vehicular emissions source profiles. A distinct 404 

source profile attributable to soil was not identified at Fresno. Instead, crustal elements 405 

partitioned in a separate source profile, along with high loadings of sulfate, EC, and OC, which 406 

was characterized as “sulfate-bearing road dust”. Across the state, soil exhibited lower 407 

concentrations in northern regions, namely at San Jose and Sacramento (Figure 6). This is likely 408 

attributed to increased precipitation and higher RH in this part of the state (Table S2), which 409 

limit the wind-induced resuspension of soil (Harrison et al., 2001). Soil, in contrast, accounted 410 
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for a large fraction of PM2.5 at Bakersfield, in concert with the findings of Chen et al. (2007). 411 

During summer, in particular, contribution of soil to total mass was near 20% at Bakersfield, 412 

which could be mainly due to the lack of precipitation and low RH in this area (Table S2). As 413 

discussed by Chen et al. (2007), farm lands, pasture lands, and unpaved roads are major sources 414 

of soil and windblown dust in the SJV. 415 

4.2.6. Fresh and aged sea salt 416 

Sources with high concentrations of Na
+
 and Cl

- 
were characterized

 
as fresh sea salt 417 

(Figure S2 a-h). Aged sea salt source profiles, on the other hand, were dominated by loadings of 418 

Na
+
, SO4

2-
, and NO3

-
. Unlike fresh sea salt, chlorine has a negligible or near-zero contribution to 419 

aged sea salt source profile. Chlorine is typically depleted due to reactions of sea salt with acidic 420 

gases during the long range transport of sea salt aerosols from the point of emission (Song and 421 

Carmichael, 1999). Aged sea salt overall accounted for a lager fraction (2 to 27%) of ambient 422 

PM2.5 compared to fresh sea salt (1 to 13%), in all sites and seasons (Figures 1, S3, and S4). 423 

Aged sea salt showed a clear seasonal pattern at all sites, with higher concentrations in summer, 424 

consistent with increasing onshore winds (Table S 1), while lowest during winter. 425 

It is also noteworthy that the PMF model did not apportion a separate factor for ship 426 

emissions or a source related to ocean goods transport. However, high loadings of Ni and V 427 

(tracers of ship emissions (Arhami et al., 2009)) in secondary ammonium sulfate and aged sea 428 

salt source profiles for the sampling sites in the LA Basin, suggest that these sources are affected 429 

in part by emissions from ships serving the ports of LA and Long Beach (Hwang and Hopke, 430 

2007). 431 

 432 

4.2.7. Other sources 433 
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As noted above, few sources were exclusively identified at some sites, with relatively low 434 

annual contributions to total mass (1 to 15%, across the sites). At Rubidoux, a source profile was 435 

deduced with high loadings of Zn, Pb, EC, and OC (Figure S2 b), which is most likely attributed 436 

to local “mixed industrial” emissions in the surrounding areas. A similar source profile was also 437 

obtained in previous studies in this area (Kim and Hopke, 2007;Kim et al., 2010). At San Jose, a 438 

source profile dominated by Ni was identified, which likely indicates the contribution from 439 

nearby Ni-related industrial sources. Hwang and Hopke (2006) reported similar findings at the 440 

same sampling location, by application of the PMF model on STN data, collected between 2002 441 

and 2005. This source, nonetheless, accounted for less than 2% of the total mass, on an annual 442 

average basis. Copper smelters source profile, with a very high loading of Cu (>80%) and a 443 

slight contribution of EC, was identified in El Cajon and Bakersfield sampling sites (Figure S2 444 

a,e). This source accounted for about 1 and 4% of total mass, over all years, in Bakersfield and 445 

El Cajon, respectively. 446 

Figure 7 shows the seasonal trends of industrial emissions in locations where these 447 

sources were identified. In El Cajon and Rubidoux, contributions of the identified industrial 448 

sources peaked in winter, while in Bakersfield and San Jose, maximum emissions from copper 449 

smelters and Ni-related sources were observed in summer. It is important to note that although 450 

the contributions from the identified industrial sources to total PM mass were overall trivial 451 

(<4%), these sources and the related elements may be important contributors to the overall 452 

particle toxicity (Toledo et al., 2008;von Schneidemesser et al., 2010;Dall'osto et al., 453 

2008;Saffari et al., 2013).  454 

At Fresno, a source profile with a high loading of sulfate along with road dust tracers, 455 

such as OC, EC, Fe, Ca, Mn, Si and Ti, was resolved (Figure S2 f). These road dust tracers most 456 
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likely originate from the re-suspension of deposited soil and road dust enriched with vehicular 457 

emissions and lubricating oils (Pant and Harrison, 2013;Dall'sto et al., 2014). This source was 458 

therefore named “sulfate-bearing road dust” (Katrinak et al., 1995). As mentioned above, 459 

separate source profiles for secondary ammonium sulfate and soil were not identified at Fresno. 460 

Nonetheless, the relatively high loadings of sulfate and a few crustal elements (e.g. Al, Ca, Fe, 461 

Si), along with the modest contribution of ammonium, suggest that these two sources are 462 

partially apportioned into this source profile. On an average basis over all 6 years, “sulfate-463 

bearing road dust” accounted for about 15% of total mass at Fresno and its contribution was 464 

highest in summer among all seasons (2.7±0.1 µg/m
3
).  465 

Relatively similar source profiles, with high loadings of chlorine, were obtained at 466 

Fresno, Bakersfield, and Sacramento, with annual average contributions of about 5, 2, and 1% to 467 

total mass, respectively (Figure S2 e, f, and h). This source, which was denoted as “chlorine 468 

sources”, was mostly detected during fall and winter at Fresno and Bakersfield, in the SJV, while 469 

it displayed the maximum seasonal average value in summer at Sacramento (Figure 8).  470 

 471 

5. Summary and conclusions  472 

Source apportionment analyses were conducted using PMF receptor model applied on 473 

chemical speciation datasets, obtained from 8 different STN sampling sites throughout the state 474 

of California, between 2002 and 2007. Five-to-nine major sources contributing to ambient PM2.5 475 

were identified at each site, with several of which being common in multiple locations. Overall, 476 

secondary aerosols (including secondary ammonium nitrate and ammonium sulfate) were 477 

collectively the main contributor to PM2.5 mass at all sampling sites. Annual average source 478 
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contribution of secondary ammonium nitrate and ammonium sulfate ranged from 3.1 to 12 µg/m
3
 479 

(or 16 to 50% of total mass) and 1.3 to 4.6 µg/m
3
 (or 10 to 23% of total mass) across the state, 480 

respectively. On an annual average basis, vehicular emissions (including both diesel and gasoline 481 

vehicles) were the largest primary sources of PM2.5 at all sampling sites in the southern part of 482 

the state (i.e. El Cajon, Rubidoux, LA, and Simi Valley), with 17-18% contribution total PM 483 

mass. In Fresno and San Jose, on the other hand, biomass burning was the dominant primary 484 

source of ambient PM2.5, contributing to 27 and 35% of total mass, on average over all years. In 485 

Bakersfield and Sacramento, biomass burning and vehicular emissions equally contributed to 486 

PM2.5 mass with near 12 and 25% annual contributions, respectively. Other sources commonly 487 

identified at all sites were minor contributors to PM2.5, including aged and fresh sea salt as well 488 

as soil, which contributed to 0.5-13%, 2-27%, and 1-19% of total mass, respectively, across all 489 

sites and seasons. Furthermore, a few sources (including chlorine sources, sulfate-bearing road 490 

dust, and different types of industrial emissions), which overall accounted for a small fraction of 491 

total mass (1 to 15%, on an annual average basis), were solely identified at some of the sites. 492 
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Tables and Figures 

 

Table 1. Seasonal average mass concentration (± standard error) (µg/m
3
) of ambient PM2.5 

at the 8 sampling sites in the period between 2002 and 2007. 

  El Cajon Rubidoux Los Angeles Simi Valley Bakersfield Fresno San Jose Sacramento 

Spring 12.0 ± 0.5 23.6 ± 1.3 18.1 ± 1.5 12.8 ± 0.8 11.8 ± 0.5 16.4 ± 1.1 9.7 ± 0.4 8.2 ± 0.3 
Summer 13.1 ± 0.4 25.6 ± 0.9 20.2 ± 0.7 15.9 ± 0.5 13.5 ± 0.4 9.7 ± 0.3 9.6 ± 0.4 9.2 ± 0.4 
Fall 14.5 ± 0.5 27.4 ± 1.5 20.8 ± 1.2 14.4 ± 0.9 24.6 ± 1.7 13.7 ± 0.6 14.8 ± 0.8 15.1 ± 0.9 
Winter 17.1 ± 0.7 20.0 ± 1.1 20.4 ± 1.6 9.8 ± 0.8 32.0 ± 1.8 36.6 ± 1.5 18.6 ± 1.2 23.5 ± 1.2 
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Table 2. Summary of the marker species for identified PM2.5 sources, resolved by the PMF 

model. 

Source Marker species 

Vehicular emissions EC, OC, Fe, Cu, Zn, Pb, Mn 
Secondary ammonium nitrate NO3

+, NH4
+ 

Secondary ammonium sulfate SO4
2-, NH4

+ 
Soil Al, Si, Ca, Fe, Ti 
Fresh sea salt Na+, Cl- 
Aged sea salt Na+, NO3

+, SO4
2- 

Biomass burning EC, OC, K/K+ 
Copper smelters Cu, EC 

Mixed industrial EC, OC, Zn, Pb 
Chlorine sources Cl- 
Sulfate-bearing road dust EC, OC, SO4

2-,Fe, Ca, Mn, Si, Ti 
Ni-related industrial sources Ni, Mn, Mg 
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Table 3. Summary statistics of the linear regressions between daily-resolved measured 

ambient PM2.5 and estimated PM2.5 mass concentrations obtained from the PMF model. 

Errors correspond to one standard error. 

  R2 Slope Intercept (µg/m3) 

El Cajon 0.85 0.91 ± 0.02 0.89 ± 0.26 

Rubidoux 0.96 0.91 ± 0.01 1.30 ± 1.22 

Los Angeles 0.86 0.88 ± 0.02 1.58 ± 0.47 

Simi Valley 0.91 0.91 ± 0.02 0.84 ± 0.23 

Bakersfield 0.95 0.91 ± 0.01 0.95 ± 0.24 

Fresno 0.94 0.91 ± 0.01 1.01 ± 0.23 

San Jose 0.88 0.85 ± 0.01 1.35 ± 0.23 

Sacramento 0.91 0.83 ± 0.01 1.47 ± 0.18 
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Figure 1 a-d. Seasonal variation in the percent contribution of identified sources to 

ambient PM2.5, by site. 
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Figure 2. Seasonal average source contribution (µg/m
3
) of vehicular emissions to ambient 

PM2.5, by site. Error bars correspond to one standard error. 
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Figure 3. Seasonal average source contribution (µg/m
3
) of secondary ammonium nitrate to 

ambient PM2.5, by site. Error bars correspond to one standard error. 
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Figure 4. Seasonal average source contribution (µg/m
3
) of secondary ammonium sulfate to 

ambient PM2.5, by site. Error bars correspond to one standard error. 
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Figure 5. Seasonal average source contribution (µg/m
3
) of biomass burning to ambient 

PM2.5, by site. Error bars correspond to one standard error. 
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Figure 6. Seasonal average source contribution (µg/m
3
) of soil to ambient PM2.5, by site. 

Error bars correspond to one standard error. 
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Figure 7. Seasonal average source contribution (µg/m
3
) of industrial emissions to ambient 

PM2.5, by site. Error bars correspond to one standard error. 
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Figure 8. Seasonal average contribution (µg/m
3
) of chlorine sources to ambient PM2.5, by 

site. Error bars correspond to one standard error. 
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