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Abstract 12 

In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four 13 

monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-14 

monsoon) based on data from the AErosol RObotic NETwork (AERONET) from 15 

February 2012 to November 2013. The aerosol distribution patterns in Penang for each 16 

monsoonal period were quantitatively identified according to the scattering plots of the 17 

aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on 18 

the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-19 

based measurements (i.e., visibility and air pollutant index) were used in the model as 20 

predictor data to retrieve the missing AOD data from AERONET because of frequent cloud 21 

formation in the equatorial region. The model coefficients were determined through multiple 22 

regression analysis using selected data set from in situ data. The predicted AOD of the model 23 

was generated based on the coefficients and compared against the measured data through 24 

standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of 25 

determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33 % 26 

compared with the real data. The results revealed that the proposed model efficiently 27 

predicted the AOD data. Prediction of our model was compared against selected LIDAR data 28 

to yield good correspondence. The predicted AOD can beneficially monitor short- and long-29 

term AOD and provide supplementary information in atmospheric corrections.  30 

1 Introduction 31 

Air quality issues in Asia can be attributed to unavoidable climate change impacts and the 32 

negative impact of human anthropogenic activities arising from rapid population growth, 33 

industrialization and urbanization (IPCC, 2007, 2013). Aerosol optical depth (AOD) derived 34 

from remote sensing has potential for assessing air quality under the right circumstances since 35 

the spatial and temporal variations in AOD are large due to production sources, transport and 36 

removal processes that are all modified by local and synoptic meteorological conditions. 37 

Many small-scale studies on the optical properties of aerosols have been conducted using sun 38 

and sky scanning radiometers of AErosol RObotic NETwork (AERONET) (Holben et al., 39 

1998). However, these methods are limited spatially relative to satellite imagery and therefore 40 
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are complementary for comprehensive studies on atmospheric aerosols.  Continuous 1 

measurements of AOD data is difficult because the atmosphere is frequently cloudy. To better 2 

monitor and understand the aerosol variation, sufficient measurements are necessary (Hansen 3 

et al., 1997; Tripathi et al., 2005; Kaskaoutis et al., 2007; Kaskaoutis and Kambezidis, 2008; 4 

Russell et al., 2010). 5 

Southeast Asia (SEA) stands out globally in this regard as it hosts one of the most complex 6 

meteorological and environmental conditions making remote sensing difficult both for 7 

AERONET and satellites (Reid et al., 2013). Cloud cleared data leave gaps in our remote 8 

sensing data record and conversely residual cloud contamination of remotely sensed data 9 

cause challenging tasks to scientists studying aerosols (Campbell et al., 2013). Moreover, 10 

anthropogenic biomass burning activities has increased dramatically in recent decades for land 11 

preparation and forest clearance (Field et al., 2009). These fire activities result in trans-12 

boundary and long-range transport of aerosols that often affect air quality in both source and 13 

surrounding regions (Hyer and Chew, 2010; Reid et al., 2013; Salinas et al., 2013; Lin et al., 14 

2014b), those aerosols will combine with locally generated aerosols. Therefore, it is important 15 

to develop a regional/local model to estimate and monitor the AOD.  16 

Development of an empirical model to produce reliable AOD estimates for temporal air 17 

quality monitoring at local scales is novel and necessary for SEA with potential global 18 

applications (Chen et al., 2013; Fan et al., 2013). Several researchers have used models as 19 

alternative tools to predict AOD values by using various ground based meteorology 20 

measurements (Wang et al., 2009; Qin et al., 2010; Lin et al., 2014a). However, this approach 21 

is new to Penang.  22 

Previous studies indicate that AOD is proportional to air quality parameters such as particulate 23 

matter (PM) with diameters less than 10 or 2.5 µm (PM10 or PM2.5) (Wang and Christopher, 24 

2003; Cordero et al., 2012; Mielonen et al., 2012; Mogo et al., 2012; Müller et al., 2012) but 25 

inversely proportional to visibility (Vis) (Horvath, 1995; Li and Lu, 1997; Peppler et al., 2000; 26 

Bäumer et al., 2008; Singh and Dey, 2012) assuming most of the aerosol is at the surface. 27 

However, there are studies stating that AOD is not always highly correlated to surface or 28 

horizontal measurements especially when an elevated layer of AOD from transported dust or 29 

biomass burning (Mahowald et al., 2007; Barladeanu et al., 2012; Chen et al., 2013; Toth et 30 

al., 2014).  31 

In this paper, we developed an AOD prediction model based on three types of measured data, 32 

namely (i) RH, (ii) Vis and (iii) air pollution index (API). It is important because the stated 33 

parameters have been measured routinely at many ground-based stations. The AOD prediction 34 

model based on these routine measurements is necessary to establish a long-term database for 35 

i) climatological studies, ii) providing continuous atmospheric columnar AOD data, and iii) 36 

monitoring aerosol variation. Meanwhile, it is important to understand the source of and 37 

dominant type of aerosol in this study. There is an absence of understanding these factors on a 38 

local scale.  39 

The AOD measurements were obtained through the AERONET site located in Universiti 40 

Sains Malaysia (USM) with geo-coordinates 5.36˚ N and 100.30˚ E. All AERONET data used 41 

were level 2 quality assured (Smirnov et al., 2000). The Vis and API data were taken from the 42 

meteorological stations at the Penang international airport and USM. All data were taken 43 

between 2012 and 2013. The aerosol characteristics in Penang were comprehensively 44 
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analyzed based on changes in seasonal monsoons. A near real-time AOD model was 1 

established based on multiple regression analysis of Vis and API. The accuracy and efficiency 2 

of the model were evaluated to assess air quality in Penang.  3 

2 Methodology and statistical model 4 

The present work was based on previous studies of Tan et al. (2014a, b). They predicted AOD 5 

using multiple regression analysis based on meteorological and air quality data. The AOD 6 

prediction model has been validated and successfully proven for the southwest monsoon 7 

period (June-September, 2012) in Penang Island. However, the following issues require 8 

reconciliation: (i) under- and overprediction of AOD were not validated because of the lack of 9 

available LIDAR data to monitor the variations in the vertical profile of the aerosol 10 

distribution, (ii) the algorithm was insufficiently robust because only a four month dataset 11 

were considered; and (iii) seasonal changes other than southwest monsoon were not included 12 

in their study. The present study uses a two-year dataset (2012, 2013) at Penang to efficiently 13 

validate the algorithms proposed by Tan et al. (2014a, b).  14 

Penang is an island located in the northwestern region of Peninsular Malaysia and lies within 15 

latitudes 5˚12′ to 5˚30′ N and longitudes 100˚09′ E to 100˚26′ E (Fig. 4). The weather is warm 16 

and humid year-round. However, two main monsoon seasons exist, northeast and southwest 17 

monsoons. Considering previous analyses on aerosol or air quality (Awang et al., 2000; 18 

Krishna Moorthy et al., 2007; Suresh Babu et al., 2007; Kumar and Devara, 2012; Chew et al., 19 

2013; Xian et al., 2013), the monsoon period in this study was classified as follows: (i) 20 

northeast monsoon (December–March), (ii) transition period of northeast to southwest 21 

monsoon or pre-monsoon (April–May), (iii) southwest monsoon (June–September), and (iv) 22 

transition period of southwest to northeast monsoon or post-monsoon (October–November).  23 

The AOD and Angstrom exponent were analyzed to identify the aerosol characteristics in 24 

Penang during each period. Meanwhile, the precipitable water (PW) was used to indicate the 25 

amount of the total water content in the atmosphere. The seasonal variations in AOD, 26 

Angstrom exponent, and precipitable water (PW) based on the frequency distribution patterns 27 

were identified. The aerosol types were seasonally discriminated from the scatter plot of AOD 28 

against the Angstrom exponent. Threshold values in the scatter plot for aerosol classification 29 

have been previously reported by Smirnov (2002b, 2003), Pace et al. (2006), Kaskaotis (2007), 30 

Toledano et al. (2007), Salinas et al. (2009), and Jalal et al. (2012). The data selection criteria 31 

proposed by Tan et al. (2014a) were used in this study. The seasonal back-trajectory 32 

frequency plot from the Hybrid Single-Particle Lagrangian Integrated Trajectory 33 

(HYSPLIT_4) model was used to identify the frequency occurrence of original sources of 34 

aerosol and transported pathways. Subsequently, the aforementioned datasets were used to 35 

examine the relation of the developed algorithm.   36 

AOD, API, and Vis data were selected according to the procedure of Tan et al. (2014a) to 37 

generate predicted AOD data. AOD is computed from the solar extinction measured at 340, 38 

380, 440, 500, 675, 1020, and 1640 nm, which using the automatic tracking sun and sky 39 

scanning radiometers (Holben et al., 1998). The AOD data can be obtained from AERONET 40 

(http://aeronet.gsfc.nasa.gov). AERONET data has three different levels. Level 1.0 is cloud-41 

unscreened data, and level 1.5 is cloud-screened data. Only level 2.0 was employed in this 42 

study because this data level is cloud screened and data assured (Smirnov et al. 2000). The 43 

Vis data were retrieved online from Weather Underground (http://www.wunderground.com) 44 

http://www.wunderground.com/
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or from NOAA satellite (http://www7.ncdc.noaa.gov/CDO/cdo). Hourly data free from 1 

rainfall, thunderstorms, or fog during the calculations were utilized to predict the AOD data. 2 

Air quality in Malaysia is reported in terms of API, which can be obtained from the 3 

Department of Environment in Malaysia (http://apims.doe.gov.my/apims/). API is calculated 4 

from carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide and PM10. The Malaysian 5 

Department of Environment provides a standardized procedure on how to calculate API 6 

values (DOE, 1997).  7 

A total of 790 data points from 2012 to 2013 were used. Initially, the datasets were separated 8 

into (4+1) sets as follows: (i) December–March, (ii) April–May, (iii) June–September, and (iv) 9 

October–November. The fifth or “overall” set comprised the annual data. The number of data 10 

points for December–March, April–May, June–September, and October–November were 257, 11 

132, 235, and 166, respectively. The data for each seasonal monsoon were further divided into 12 

two subsets. For example, consider that data with a particular seasonal monsoon period takes 13 

a sequential form of D1, D2, D3, D4, D5, …Dn where n is the total number of points. Thus, the 14 

subsets are in the form of (D1, D3, D5, …) and (D2, D4, D6,…). The first data subset was used 15 

to calibrate (Eq. 1) for AOD at 500 nm, given below:   16 

AOD = a0 +a1(RH)+a2(RH)2 +a 3(RH)3 +a 4(Vis)+a5(Vis)2 +a 6(Vis)3 +a7(API)+a8(API)2 +a 9(API)3  

 (1)  

where RH is the relative humidity (Tan et al., 2014a). 17 

The root mean square error (RMSE), coefficient of determination (R2), and percent mean 18 

relative error (%MRE) between the measured and predicted AOD for each seasonal model 19 

were calculated at 95 % confidence level. The %MRE parameter was used to quantify the 20 

systematic differences between the concentration levels. This parameter is given as 21 

follows: %MRE = [(mean predicted AOD - mean measured AOD)∕mean measured 22 

AOD]×100. The ability of the proposed model to produce reliable AOD estimates for 23 

temporal air quality monitoring can be quantitatively justified or falsified based on the value 24 

of the resultant %MRE.  25 

Aerosols can be hydrophilic or hydrophobic, and these properties can give rise to non-trivial 26 

contribution to AOD retrieval (Tang, 1996; Song et al., 2007; de Meij et al., 2012; Singh and 27 

Dey, 2012; Ramachandran and Srivastava, 2013; Wang et al., 2013; van Beelen et al., 2014). 28 

However, to discriminate between hydrophilic and hydrophobic aerosols requires addition 29 

resources beyond the reach of the present study. Most fine mode aerosols such as a sulfates 30 

(that likely dominate urban industrial aerosol composition) are hygrophilic and that one would 31 

expect RH to exert a significant influence on the measured AOD. Given that Penang is 32 

dominated by urban industrial aerosols, one would expect RH to be an important variable in 33 

the model. However, our pre-analysis showed that RH does not contribute significantly to 34 

AOD prediction in the proposed model. We suggest that the RH, which is very high year 35 

around in Penang, exerts a much less influence on AOD than we would see in drier climates. 36 

If RH was considered as a predictor, its related factors (e.g., aerosol stratification (dust or 37 

smoke aloft), convection, and hysteresis in particles) should be taken into account. The 38 

contribution of RH to the aerosol properties was integrated in the aerosol model (Srivastava 39 

et al., 2012) because the net effect of RH on aerosol and related factors were difficult to 40 

quantify. The RH contribution can be disregarded in the present model, yielding Eq. (2), given 41 

as follows: 42 

 43   44 

http://www7.ncdc.noaa.gov/CDO/cdo
http://apims.doe.gov.my/apims/
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 AOD = a0 +a1(Vis)+a2(Vis)2 +a 3(Vis)3 +a 4(API)+a5(API)2 +a 6(API)3  .                                      (2)  

The similar statistical measurements such as RMSE, R
2
, %MRE were calculated for Eq. (2) in 1 

each monsoon season. The second data subset was then used for cross-validation.  2 

Lee et al. (2012) excluded days when the deviation between the measured and predicted 3 

values was greater than RMSE, or when the estimated AOD slope was negative because of 4 

measurement errors and cloud-contaminated AOD. Given the previous findings, the potential 5 

outliers in our model were removed using the approach of (Lee et al., 2012). Then, the 6 

aforementioned procedures were repeated to calibrate and validate the AOD prediction model 7 

using new dataset (the potential outliers have been removed). The predicted AOD was again 8 

compared with the measured counterpart from AERONET to determine the accuracy of the 9 

generated model.   10 

Equation (2) was applied to retrieve the AOD for specific days when no AOD values were 11 

available. The features of predicted AOD were compared against those of the measured 12 

counterpart. The under- and overpredicted AOD were examined by RAYMETRICS LIDAR 13 

system. However, examination can only be performed when LIDAR data were available. 14 

When LIDAR data were available for examination, only the data that can clearly elucidate the 15 

under- and over-predicted AOD were selected. The LIDAR signals were pre-analyzed based 16 

on the published works of Tan et al. (2013, 2014c). The backscatter coefficients of the aerosol 17 

from LIDAR data were determined using the method of Fernald (1984). Using the obtained 18 

aerosol backscatter coefficient and an assumed LIDAR ratio, aerosol extinction coefficient 19 

can be calculated. Integrating over these aerosol extinction coefficient, AOD values were 20 

estimated. The estimated AOD values so obtained was then compared against those predicted 21 

by our developed AOD prediction model, Eq. (2). 22 

3 Results and discussion 23 

3.1 Climatology of Penang, Malaysia 24 

The climatological results derived from AERONET 25 

(http://aeronet.gsfc.nasa.gov/new_web/V2/climo_new/USM_Penang_500.html) based on the 26 

work of Holben et al., (2001) for USM Penang is tabulated in Table 1. The monthly AOD 27 

(referred to as AOD_500, second column) shows that the two lowest AOD values are 0.18 and 28 

0.19 during the inter-monsoon period (October–November and May). During the southwest 29 

monsoon period (June–September), the smoke emitted by the local area and large-scale open 30 

burning activities in Sumatra, Indonesia was transported to Malaysia and yielded the highest 31 

AOD at approximately 0.31–0.73. However, the AOD was 0.21–0.24 during the northeast 32 

monsoon period (December–February). Small aerosol particles primarily contributed to the air 33 

pollution in Penang, as the average Angstrom exponents (referred to as Angstrom440–870) 34 

were higher than 1.1 in humid atmospheres, because the precipitable water values (referred to 35 

as PW) were greater than 4.1 (Okulov et al., 2002).  36 

3.2 Seasonal variations of AOD, Angstrom exponent, and PW based on  37 

frequency distribution patterns 38 

AERONET parameters were plotted (Fig. 1) to reveal the relative frequency distributions at 39 

http://aeronet.gsfc.nasa.gov/new_web/V2/climo_new/USM_Penang_500.html
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Penang for each seasonal monsoon. Frequency histograms of AOD_500 and Angstrom440–870 1 

(Fig. 1a–b, respectively) indicate changes in the optical properties of aerosols, whereas Fig. 1c 2 

shows the amount of water content in atmosphere column for each season. These histograms 3 

here helped distinguish aerosol types (Pace et al., 2006; Salinas et al., 2009; Smirnov et al., 4 

2002a, 2011). Our results show that the distributed AOD mainly ranges from 0.2 to 0.4, 5 

contributing to approximately 71 % of the total occurrence (Fig. 1a). Fig. 1b shows that the 6 

Angstrom exponent is typically between 1.3 and 1.7, translating to ~ 72 % of the total. About 7 

67 % of the total occurrence of PW ranged from 4.5 cm to 5.0 cm (Fig. 1c).  8 

The maximum AOD frequency was centered near 0.2 for all seasons. The clearest season was 9 

between October and November (Fig. 1a). Penang was most polluted from June to September 10 

most likely due to the active open burning activities in Sumatra. The AOD peak was 11 

approximately 1.4, with three peaks distributed from AOD_500 = 0.1 to AOD_500 = 1.4 (Fig. 12 

1a). The multiple peaks imply the presence of various aerosol populations, because AOD 13 

histograms follow log-normal distribution patterns (Salinas et al., 2009). By contrast, a single 14 

peak was observed for the clearest season (October–November).  15 

The frequency distributions as function of Angstrom exponent display a trend (Fig. 1b), in 16 

which approximately 95% of the total occurrence fall within the range of 1 Å to 2 Å. This 17 

result implies that the effect of coarse particles (e.g., dust) on the study site was minimal. This 18 

statement is supported by Campbell et al. (2013) who showed that dust particles are 19 

uncommon in southeast Asia. However, sometimes dust particles concentration may increase 20 

above boundary layer in southeast Asia. Two noticeable peaks were observed for the 21 

Angstrom exponent during the northeast monsoon period (blue curve, Fig. 1b). These aerosols 22 

originated from the northern part of Southeast Asia, particularly Indochina, transported by the 23 

monsoon wind and mixed with locally emitted aerosols. Lin et al. (2013) analyzed the 24 

aerosols in the northern region of Southeast Asia. They found that biomass burning aerosols 25 

from Indochina were transported in high- and low-level pathways to the west, and then later 26 

shift to the southwest by northeast monsoons. Hence, these aerosols were transported in the 27 

southwest. The biomass burning aerosols were continuously transported to our study site as 28 

the wind circulation flows toward the southwest direction, according to the monthly mean 29 

streamline charts of Lin et al. (2013) from 1979 to 2010. During and before southwest 30 

monsoon, the Angstrom exponents in Penang ranged between 1.4 and 1.8, indicating the 31 

likely presence of biomass burning aerosols (Holben et al., 2001; Gerasopoulos et al., 2003; 32 

Toledano et al., 2007). They are likely to originate from local and neighboring countries. 33 

Indonesia is known to be very active in open burning during this season. Furthermore, 34 

southwest monsoon wind is likely to have transported these biomass burning aerosols to 35 

Penang. 36 

Although the southwest monsoon period is the driest season in Malaysia, PW frequency was 37 

approximately 20 % lower than that of the northeast monsoon period for PW < 4.0 (Fig. 1c). 38 

Marked variations in the PW frequency were observed during the northeast monsoon period. 39 

Almost no frequency data were obtained for PW < 3.5, except the northeast monsoon period 40 

with about 14 % less than this value. The most humid period took place in April–May, with 41 

PW ranging from 5.0 to 5.5 (approximately 74 % of the total occurrence).  42 
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3.3 Seasonal discrimination of aerosol types based on the relationship between AOD and 1 

Angstrom exponent 2 

Aerosol clusters have been developed using relative simple scatter plots of AOD and 3 

Angstrom exponent. Related studies have been analyzed using AERONET data; these datasets 4 

have been applied at different locations, such as the Persian Gulf (Smirnov et al., 2002a); 5 

several oceanic regions (Smirnov et al., 2002b); Brazil, Italy, Nauru, and Saudi Arabia 6 

(Kaskaoutis et al., 2007); Spain (Toledano et al., 2007); Singapore (Salinas et al., 2009); 7 

Kuching (Jalal et al., 2012); and the Multi-filter Rotating Shadowband Radiometer in Central 8 

Mediterranean (Pace et al., 2006). The scatter plot of AOD_500 or AOD_440 against 9 

Angstrom440–870 was used to identify the aerosol type. The wavelength range of 10 

Angstrom440–870 was used because of its nearness to the typical size range of aerosol based on 11 

spectral AOD (Eck et al., 1999). The relation between AOD values at 500 nm and Angstrom 12 

440–870 is usually used for aerosol classification in scatter plot diagram. Many studies used 13 

AOD values at 500 nm (Cachorro et al., 2001; Smirnov et al., 2002b, 2003; Pace et al., 2006; 14 

Kaskaoutis et al., 2007; Salinas et al., 2009) to study aerosol turbidity conditions. Optically, 15 

500 nm is an effective visible wavelength suitable for aerosol study (Stone, 2002). In 16 

this study, AOD_440–Angstrom440–870 and AOD_500–Angstrom440–870 plots were used.  17 

Aerosols were classified into five types, including dust, maritime, continental/urban/industrial, 18 

biomass burning, and mixed aerosols (Ichoku et al., 2004); mixed aerosols in practice 19 

represent an indistinguishable type that cannot be categorized into any of the previous types. 20 

To effectively identify the aerosol distribution types in our study sites, the results were 21 

compared using different threshold criteria (Table 2). The results are presented in Fig. 2.  22 

The thresholds proposed by Pace et al. (2006) and Kaskaoutis et al. (2007) failed to determine 23 

the maritime aerosol (MA) and dust aerosol (DA) for each season. Instead, they showed that 24 

mixed-type aerosols (MIXA) were dominant at Penang (50–72 %). Urban and industrial (UIA) 25 

and biomass burning (BMA) aerosols were grouped into a single class (28–50 % of the total 26 

occurrence). Meanwhile, the threshold suggested by Smirnov et al. (2002b, 2003) failed to 27 

identify DA, UIA, and BMA, but efficiently identified MA. As a result, a large amount of 28 

MIXA was obtained (> 80 % of the total occurrence). These results reveal the extent of 29 

uncertainty; the indistinguishable aerosol types in the study sites were large.  30 

Salinas et al. (2009) suggested that the determination of DA and BMA did not correspond 31 

entirely to the range of threshold used in our study, in which the amount of MIXA 32 

(approximately 43 % of the total occurrence) was large. Jalal et al. (2012) efficiently 33 

identified aerosol types using an alternative threshold criterion. Using their threshold, we 34 

yielded a low amount of MIXA, approximately 21 %. However, the determination of DA was 35 

unsatisfactory. The threshold criteria of Toledano et al. (2007) provided the least MIXA (< 36 

5 %; Fig. 2). All thresholds consistently increased from June to September (Fig. 2c) and 37 

coincided with the occurrence of haze. UIA was constantly and highly distributed over 38 

Penang. Overall, the thresholds provided by Toledano et al. (2007) were selected for our study.  39 

Based on the criteria suggested by Toledano et al. (2007), UIA class was determined as the 40 

highest frequency of occurrence in overall study period (Fig. 3). This could be as a result of 41 

Penang being an urban area. The next highest was the MA class because of its geolocation 42 

(i.e., surrounded by the sea). BMA is also one of the major pollutants in Penang which was 43 
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produced by active burning in local and neighboring countries. These results were in 1 

accordance with the records from our Department of Meteorological, DOE (2010). The study 2 

site was minimally affected by coarse particles and DA, which were less than 5 % in each 3 

seasonal monsoon. These results are supported by Campbell et al. (2013) who suggest UIA, 4 

MA, and BMA is likely the most common in southeast Asia and maritime continent.   5 

BMA, UIA, and MA obtained in our study during the southwest monsoon were about 45, 24, 6 

and 19 %, respectively. During the northeast monsoon period, UIA (approximately 38 %) was 7 

the major aerosol in Penang, followed by MA (30 %), BMA (20 %), dust (4 %), and 8 

unidentified substances (8 %). However, MIXA reached 17 % from April to May, which was 9 

the highest among the seasonal monsoons. MA and UIA were 38 %; the MA level was 10 

significant from October to November (51 %), followed by UIA (40 %) and BMA (< 1 %). 11 

The aerosol distribution in Penang was highly seasonal dependent.  12 

3.4 Seasonal flow patterns of air parcel from the HYSPLIT_4 model for 13 

identification of aerosol origins 14 

From seven-day seasonal plots of the back-trajectory frequency sourced from the HYSPLIT_4 15 

model, flow patterns reach in the Penang site were obtained (Fig. 4) for each monsoon season 16 

averaged between the ground surface up to an altitude of 5000 m. Residence time analysis 17 

was performed to generate the frequency plot and determine the time percentage of a specific 18 

air parcel in a horizontal grid cell across the domain.  19 

During the northeast monsoon period, air parcels flow southwestward from the northern part 20 

of southeast Asia (Fig. 4a), including Indochina, transported through the South China Sea to 21 

reach Penang. The aerosols during the northeast monsoon period were also locally produced, 22 

whereas those observed during the southwest monsoon period were from the Andaman Sea, 23 

Malacca Strait, Sumatra (site of open active burning), and other more local areas.  24 

Fig. 1b indicates the differences in the patterns (bimodal distribution pattern) of the seasonal 25 

relative frequency of occurrence for Angstrom440–870 during the northeast monsoon compared 26 

to other monsoon period. These differences are likely attributable to the mixing of various 27 

aerosol sources from the northern (e.g., Indochina, Philippines, Taiwan, and eastern China) 28 

and southern (e.g., Malaysia and Indonesia) parts of Southeast Asia (refer Fig. 4a). The 29 

biomass burning aerosol is likely different for northern and southern SEA because of different 30 

types of burning process. As a result, bimodal pattern was only observed for the northeast 31 

monsoon period from the frequency distribution pattern of Angstrom440-870 (Fig. 1b). 32 

Figure 1b reveals that the distribution patterns of Angstrom exponent between the post-33 

monsoon and northeast monsoon are similar. Figure 4a and d also indicate the similarities of 34 

the air flow patterns for these monsoon seasons. Hence, a clear correspondence was observed 35 

between Fig. 1b with Fig. 4a and d. The similarity in the patterns of Angstrom exponents for  36 

the post-monsoon and northeast monsoon maybe attributed to the mixture of aerosols from 37 

northern and southern parts of Southeast Asia. Given the classification results (Fig. 3), the 38 

occurrence frequency of MA was higher during the post-monsoon and northeast monsoon 39 

compared to the southwest and pre-monsoon period. The large amount of MA is originating 40 

from the South China Sea and Andaman Sea.  41 

For the pre-monsoon period, aerosols observed at Penang originated from the Malacca Strait, 42 
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Andaman Sea, the northern and some eastern areas of Sumatra, and the western part of 1 

peninsular Malaysia, especially the local regions marked in yellow (Fig. 4b). During this 2 

season, the air flow patterns were similar to those during the southwest monsoon (Fig. 4c). 3 

However, a small percentage of aerosols were transported from the northern part of southeast 4 

Asia to Penang. A clear correlation is observed between Fig. 1b with Fig. 4b and c during pre-5 

monsoon and southwest monsoon.  6 

The dominant aerosol types were UIA and MA (Fig. 3). The yellow portions in Fig. 4e 7 

indicate that Penang, the second largest city in Malaysia and one of the most industrially 8 

concentrated cities, therefore UIA is a major aerosol type in this area. MA contribution to the 9 

overall aerosol distribution is likely significantly influenced by proximity of the surrounding 10 

sea.  11 

3.5 Examination of predicted AOD values 12 

The optical properties of aerosol for each monsoonal season are obtained by analyzing the 13 

relative frequency occurrence of AOD_500 and Angstrom440–870. The relative frequency plot 14 

of PW value also shown for each monsoonal season has different precipitable water amounts. 15 

We hypothesize that the proposed AOD prediction model should exhibit different accuracies 16 

seasonally because the sensitivity for AOD prediction depends on the distribution patterns of 17 

the measured AOD; these values were used as inputs to derive the correlation parameters of 18 

the model. The sensitivity of AOD prediction is affected when the major occurrence 19 

frequency is clustered around small AOD values. The insensitivity of the aerosol models to 20 

clear atmospheric conditions was also previously observed (Zhong et al., 2007).  21 

The model performance for each monsoonal season was tested (Table 3). The pre-monsoon 22 

and southwest periods exhibited R2 of 0.65 (RMSE = 0.114) and 0.77 (RMSE = 0.172). 23 

However, for the transition period between post-monsoon to northeast monsoon, R2 < 0.45 24 

and RMSE ranged from 0.06 to 0.11. The increased amount of atmospheric aerosol enhanced 25 

the predicted AOD and vice versa. This result was in agreement with the aforementioned 26 

hypothesis. Overall, the 22 month data were satisfactory with R2 = 0.72 and RMSE = 0.133. 27 

The low value of %MRE (< 1) indicates that the model yielded accurate results for all seasons. 28 

Given the criteria that a low %MRE corresponded to a good prediction, the “overall” dataset 29 

yielded the least biased prediction.  30 

High correlation was observed between the measured and predicted AOD for pre-monsoon 31 

and southwest monsoon, in which similar air flow patterns occurred (Fig. 4b and c). Figure 1b 32 

displays the relative frequencies of occurrence of Angstrom440–870. The frequency spectra for 33 

pre-monsoon and southwest monsoon also indicated the same patterns for AOD (Fig. 4b and 34 

c). The spectrum of Angstrom frequency exhibited narrow peaks at 1.6 and 1.7 Å for pre-35 

monsoon and southwest monsoon, respectively.  36 

The accuracy of the prediction of the AOD model in post-monsoon and northeast monsoon 37 

was moderate when the aerosols in Penang were locally mixed with those from transported 38 

sources, because of the wind flow pattern during these two seasons (Fig. 4a and d).  39 

Correlation between Fig. 1b with Fig. 4a and d represent these monsoonal periods. The 40 

spectrum of the Angstrom frequency exhibited a broad region from 1.3 Å to 1.7 Å for post-41 

monsoon and northeast monsoon.  42 
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By comparing the types of dominant aerosol in each monsoon, we observed that the results as 1 

obtained in Table 3 are related with the information from Fig. 3. Table 3 shows higher 2 

coefficient of determination of the proposed AOD prediction model which can be associated 3 

with higher amount of BMA but lower UIA and MA during pre-monsoon and southwest 4 

monsoon period. Such observation implies that the aerosol types are possibly related to the 5 

AOD prediction model. This similar observation result was also noticed by Chen et al. (2013). 6 

However, the relationship between the predicted AOD and aerosol type as observed in our 7 

model is qualitative and preliminary. Further study is needed. In addition, as mentioned in Lee 8 

at al 2012 and Gupta et al 2013, the relationship between AOD and air quality at ground 9 

surface depends also on environmental factors such as extent of atmospheric mixing, chemical 10 

composition, relative humidity, aerosol size distribution, etc.  11 

3.6 Validation of the predicted AOD 12 

Optimized coefficients, ai (Eq. 2), were obtained from the first subset in the overall dataset. 13 

To validate the model accuracy, ai was used to predict AOD from the second subset (Fig. 5). 14 

The predicted AOD exhibited high correlation to the measured AOD (R2 = 0.68). In addition, 15 

the temporal characteristics of the predictions between 2012 and 2013 were similar to those of 16 

the measured AOD.  17 

To examine bias, the approach proposed by Lee et al. (2012) was performed to remove the 18 

outliers when the deviation of the predicted AOD was larger than the overall RMSE (0.133). 19 

Approximately 21 % of the total data were removed using this method. After filtering out 21 % 20 

of the potential outliers, the left over data were used to calibrate Eq. (2). R2 of this fitting 21 

significantly increased to 0.92 with RMSE = 0.059 and % MRE = 1.17×10-4. After filtering 22 

the outliers, R2 and RMSE were enhanced, but % MRE remained at 10-4 level.  23 

Subsequently, these new coefficients obtained were used to predict AOD data (subset 2), 24 

which were then compared against the measured counterpart for validation. The prediction 25 

failed to improve in terms of R2 between the predicted and measured AOD (compare the red 26 

and black line, in Fig. 5). The %MRE increased from 0.33 to 5.99. As a result, the removed 27 

data might not be the genuine outliers. In fact the errors were attributed to the non-uniformly 28 

loaded atmospheric aerosols at different altitudes. We believe that the non-uniform 29 

atmospheric mixing caused the high deviations in our predicted results, according to previous 30 

studies (Qiu and Yang, 2000). Considering that the proposed model was established based on 31 

ground-based sources, the aerosols are assumed to be well-mixed in the atmosphere to obey 32 

congruency with the columnar measurement of the sun photometer. The predicted AOD were 33 

subjected to some uncertainties, however, that were quantified in terms of RMSE because the 34 

atmosphere is not always well mixed.  35 

Figure 5 indicates that most of the predicted AOD values were lower than the measured 36 

counterparts. Tan et al. (2014c) analyzed the underprediction in these values. They used 37 

a LIDAR system to determine the vertical profile of aerosols in Penang and found that the 38 

aerosol concentration decreased with height up to the planetary boundary layer (PBL). This 39 

layer was less than 2 km during the study period. The large amount of transported aerosols 40 

above boundary layer yielded residual layers (Toth et al., 2014). Significant underestimation 41 

of AOD occurred for thick residual layers. Only a few points were significantly 42 

underpredicted because of the aerosol residual layer beyond PBL. Studies in Cyprus (Retalis 43 
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et al., 2010) suggested that the extent of atmospheric mixing was relatively homogeneous on 1 

scales of a few meters to tens of kilometers. Hence, the predicted results were representative 2 

of the large samples. The predicted AOD was underestimated because all measured data were 3 

taken from the ground. However, overprediction would be significant if local burning were to 4 

occur near the measurement station.  5 

To properly validate the prediction, these data should coincide in time with those measured 6 

from API, Vis, and AOD level 2. In our case, the LIDAR data coincided only once at 12 7 

July 2013 (Fig. 6). Figure 6a shows the vertical profile of the aerosol backscatter coefficient 8 

as a function of time (morning to evening). The brown vertical line represented the instance 9 

when both the measured and predicted AOD could be compared with the LIDAR data. 10 

Figure 6b illustrates the normalized range corrected signal (RCS) at different altitudes from 11 

10.00 a.m. and 11.00 a.m. local time. RCS was normalized through calibration based on the 12 

theoretical molecular backscatter (USSA976 standard atmospheric model) to calibrate the 13 

performance of the LIDAR system.   14 

Figure 6c displays the profiles of the aerosol backscatter coefficient obtained at 10:00 and 15 

11:00 a.m. local time. Aerosols had accumulated near the ground at 10:00 a.m., which was 16 

consistent with a slightly increased value in the predicted AOD of about 0.039. By contrast, 17 

most aerosols at 11.00 a.m. were at a higher level. This result corresponds with the lower 18 

value in the predicted AOD of approximately 0.044. Therefore, the predicted AOD values 19 

were acceptable because they exhibited small deviations against the measured AOD. This 20 

result was thus valid as long as the aerosols did not considerably differ at altitude levels 21 

beneath the planetary boundary layer. The LIDAR data should be therefore considered as an 22 

independent validation method for ground-based prediction models Aerosols are not always 23 

well mixed in the atmosphere over Penang. Several environmental factors can cause 24 

ambiguity in the predictions (Gupta et al., 2013; Lee et al., 2012). Propagating particles within 25 

the free troposphere is a factor (Toth et al., 2014). If a significant number of elevated aerosol 26 

plumes (equivalent to aerosol residual layer) occurred over the region, then a large deviation 27 

from the predicted will be produced. Therefore, it can be inferred that a small group of highly 28 

underpredicted results (Fig. 5) maybe attributed to a significant layer of high-level transported 29 

aerosol. 30 

   31 

3.7 Applications of the proposed model in the absence of measured AOD data 32 

Our proposed model generates AOD data when those from AERONET are unavailable. We 33 

described the procedure to predict AOD data. Only the API data for 7.00 a.m., 11.00 a.m., and 34 

5.00 p.m. (local time) were available (http://apims.doe.gov.my) before 24 June 2013. The API 35 

data were provided hourly beyond this date. In this study, approximately 5 % of the data were 36 

discarded due to fog, rain, or thunderstorms, and only 4493 data points were retained. Figure 7 37 

shows the predicted results from 2012 to 2013, which overlapped with the measured AOD 38 

data to simplify the comparison. The average AOD was 0.31 based on 4493 predicted data for 39 

the entire study period, which was near that of AERONET (about 0.29).  40 

As an illustration, we selectively examine into three separate data windows (28 September, 41 

17 October, and 30–31 October 2013; Fig. 8a–c) to analyze variations in the predicted and 42 

measured AOD values. The predicted AOD and CIMEL sun photometer data are shown as 43 

http://apims.doe.gov.my/
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blue and red dotted lines, respectively. AOD variations were continuously generated by the 1 

proposed model based on the hourly data from ground-based measurements. The unrecorded 2 

information by the sun photometer could be reproduced by the proposed method (Fig. 8). The 3 

model coefficients were trained under cloud-free conditions. Hence, the hourly AOD data 4 

could be generated anytime to compensate for the absence of measured AOD data during 5 

cloudy periods.  6 

The proposed model was independently verified using four selective sets of LIDAR data. We 7 

generated these data and compared them against the temporal plots of the aerosol 8 

backscattering coefficient signal (Fig. 9). The rectangles in Fig. 9a corresponded to the 9 

window periods for the LIDAR signal (Fig. 9b). The variability in the retrieved AOD for the 10 

given window periods (Fig. 9a) correspond well to the intensity variations in the aerosol 11 

backscattering coefficient signal (Fig. 9b). The LIDAR signals reveal the fidelity of our 12 

predicted AOD because the low (high) intensities of aerosol backscattering coefficient signal 13 

corresponded to low (high) AOD. The high intensities at 1–1.5 km altitudes (low cloud 14 

distributions) are represented by green ovals. Although clouds were present within the 15 

selected time windows, the retrieved AOD remained invariant.  16 

To strengthen our AOD prediction model, the variability in the retrieved AOD for the given 17 

window periods (Fig. 9a), were compared to AOD retrieved from the LIDAR signal. Our 18 

LIDAR uses a laser pulse of wavelength 355 nm, whereas the AERONET data are taken at a 19 

different wavelength. A conversion is performed to obtain AOD data from AERONET at 355 20 

nm as described in the following:  21 

Eq. (3) is derived from Angstrom power law showed by Ångström (1929). It is used for 22 

Angstrom exponent estimation (∝) in terms of AOD (τa) measured at wavelength λ1 = 340 nm 23 

and λ2 =380 nm. In principle, if AOD and Angstrom exponent at one wavelength are known, 24 

AOD at a different wavelength can be computed, within the range of validity of Eq. (3).    25 

∝        
   

   

      
  

  
                                                       (3) 26 

Therefore, AOD at wavelength 355 nm can be calculated as 27 

τa355 τa3 0   (
λ355

λ3 0
)
-∝

  .                                                        (4)                                                                28 

After the conversions, we repeat the procedure in Section 2 to obtain a new set of coefficients 29 

at 355 nm for the AOD predicting model. 30 

 31 

Next, AOD value is obtained from the LIDAR signal. A LIDAR ratio (L) is a constant, 32 

defined as the ratio of aerosol extinction coefficient ( a ) and backscatter coefficient ( 
a
), see 33 

Eq. (5). The value of L depends on the particle size distribution, shape and composition of the 34 

aerosols in the atmosphere. R in Eq. (5) is the range or altitude.  a can be obtained once  a and 35 

L are known. The value of L has to be assumed for an elastic LIDAR system (He et al., 2006; 36 

Lopes et al., 2012). Normally, L values can range from 20-40 sr for clean and polluted marine 37 

aerosol particles or dust, urban aerosols (40-60 sr), and biomass burning aerosols (60-80 sr) as 38 

suggested by Chew et al. (2013). In our case we set L = 70 sr, because this window period is 39 

commonly affected by the biomass burning aerosol (refer to the relative frequency of 40 



13 

 

dominant of aerosol types in the southwest monsoon, in Fig. 3). Additionally, other studies 1 

conducted by Tesche et al. (2011) and Lopes et al. (2012) also suggested L = 70 sr for 2 

biomass burning aerosols. AOD value (τa) can be obtained using Eq. (6), where Rmax is the 3 

maximum height of aerosol distribution, and R0 is height where the overlap function, O(R) = 1. 4 

Inaccurate assumption of L can lead to large errors in the retrieval of  a and τa (He et al., 2006) 5 

especially under inhomogeneous atmospheric conditions. Therefore, 10 % uncertainty of L 6 

and typical values of 7 % uncertainty for the 
a
are set to estimate potentially erroneous values 7 

of the  a at any given R in an atmospheric profile. Finally, all uncertainties in the profile are 8 

summed to obtain the uncertainty of the estimated columnar AOD.  9 

 10 

      
      

     
                                                               (5) 11 

      
    

  
                                                             (6) 12 

If the LIDAR signal is affected by cloud, the AOD data calculated from the LIDAR signal 13 

will be removed. Then the predicted AOD from our model and that calculated from LIDAR 14 

signal was compared. The result of comparison between the predicted AOD (by our model) 15 

and that derived from LIDAR is shown in Fig. 10a and b. Fig. 10a shows the correlation 16 

between these two sets of data is high, as R
2 

obtained is 0.86 with RMSE = 0.20. Fig. 10b also 17 

indicated that the predicted AOD values from our model are within the error bars of estimated 18 

AOD from the LIDAR signal. However, the AOD prediction model is less sensitive during 19 

clear atmospheric conditions on 13 Aug (as shown in Fig. 10b). The comparison indicated that 20 

the results agreed with the aforementioned hypothesis made in Section 3.5. Via this 21 

independent check, the robustness of the AOD prediction model has been further clarified.   22 

 23 

3.8 Comparison with other linear regression models 24 

The proposed model was compared against other AOD-predicting models in the literature. 25 

Table 4 shows the R2 values of selected AOD-predicting models calculated using the first data 26 

subset by our model (Sect. 2). The R2 values in Table 4 were compared with those of the 27 

overall dataset (Table 3). Retalis et al. (2010) suggest a simple linear regression analysis to 28 

predict AOD from the Vis data. Mahowald et al. (2007) suggest a similar linear regression 29 

model for the AOD prediction model, in which the Vis data were converted to surface 30 

extinction coefficients bext using the Koschmieder equation Vis = K∕bext, where K (= 3.912) is 31 

the Koschmieder constant (Koschmieder, 1924). Two other AOD-predicting models were also 32 

compared (Gao and Zha, 2010; Chen et al., 2013). In these models, linear regression analysis 33 

for AOD and PM10 was carried out to predict the surface air quality. The approaches can also 34 

be used to retrieve AOD after appropriate conversion procedures. Initially, we converted the 35 

API data into PM10 via the guidance on air pollutant index from DOE (1997). The obtained 36 

PM10 values were inputted into the linear regression formula to predict AOD. The linear 37 

regression yielded R2 ≤ 0.6 with RMSE approximately 0.16 and above, which was much 38 

lower than that of our model (≤ 0.72 with RMSE = 0.13) based on the comparison of R2 39 

values. This result implied the dominance of the proposed model in terms of R2 and RMSE. 40 
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4 Conclusions 1 

Seasonal variation in the primary aerosol types and their characteristics in Penang were 2 

analyzed from February 2012 to November 2013. The aerosol types for a specific monsoonal 3 

period were determined by applying threshold criteria on the scatter plots between aerosol 4 

optical depth (AOD) and Angstrom exponent. The threshold criteria from Smirnov at al. 5 

(2002b, 2003), Pace et at. (2006), Kaskaotis et al. (2007), Toledano et al. (2007), Salinas 6 

et al. (2009), and Jalal et al. (2012) determined the aerosol types. The testing results indicated 7 

that the threshold criteria by Toledano et al. (2007) were the most reliable because of the 8 

minimal occurrence value of the indistinguishable aerosols (referred as mixed-type aerosols, 9 

MIXA). For the entire study period, the biomass burning aerosols (BMA) abruptly increased 10 

during the southwest monsoon period because of active open burning activities in local areas 11 

and neighboring countries. During the northeast monsoon period, the optical properties (e.g., 12 

size distribution patterns) of the aerosols were unique. Two noticeable peaks were observed in 13 

the occurrence frequency of the Angstrom exponents compared with the single peaks for other 14 

monsoon seasons. These results were attributed to the mixing of aerosols from local sources 15 

with those from the northern part of Southeast Asia, caused by the northeast monsoon winds. 16 

Urban and industrial aerosols (UIA) and marine aerosol (MA) were the major aerosols in 17 

Penang throughout the year. Dust aerosols (DA) negligibly contributed to the emissions in 18 

Penang. The variation in aerosol types for different monsoon seasons yielded distinct optical 19 

properties.  20 

Previous models used simple regression analysis between AOD and meteorological 21 

parameters to predict the corresponding AOD data. In this study, multiple regression analysis 22 

was used in the proposed model. Two predictors (API and Vis) were introduced to increase 23 

the statistical reliability. To verify the high robustness of multiple regression analysis in 24 

contrast to the simple regression approach, AOD data based on previous simple models were 25 

retrieved (Mahowald et al., 2007; Gao and Zha, 2010; Retalis et al., 2010; Chen et al., 2013). 26 

The R
2
 and RMSE values in our model are ≤ 0.72 and 0.13. These figures are to be compared 27 

with the results of other relevant work which obtained R
2
 ≤ 0.60 and RMSE approximately 28 

0.16 and above (see Table 4). The comparison indicates that the quality of our AOD 29 

prediction is statistically better than those simple models. 30 

In addition, predicted AOD from our model was compared with the data derived from LIDAR 31 

system. The values of R
2
 and RMSE (0.86 and 0.20)indicate very favorable between our 32 

model and LIDAR-derived data at wavelength 355 nm. This has added additional weight to 33 

the robustness of the developed AOD prediction model. 34 

Our algorithm could properly predict the AOD data during non-retrieval days caused by the 35 

frequent occurrence of clouds in the equatorial region. The proposed model yielded reliable 36 

and aptly real-time AOD data despite the availability of the measured data for limited time 37 

points. The predicted AOD data are beneficial to monitor aerosols in short- and long-term 38 

behavior and provide supplementary information in atmospheric correction.  39 
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 1 

Tables  2 

 3 

Table 1. Average values of model-related parameters from the database collected from 4 

November 2011 to November 2013 in USM Penang (latitude, 05°21ʹ N; longitude, 100°18ʹ E; 5 

elevation, 51 m). 6 

Month AOD_500 sigma 

AOD_500 

Angstrom 

440–870 

sigma 

Angstrom 440–

870 

PW sigma 

PW 

N Month 

JAN 0.24 0.09 1.33 0.18 4.19 0.47 21 1 

FEB 0.21 0.09 1.39 0.23 4.44 0.58 18 2 

MAR 0.36 0.16 1.41 0.19 4.15 0.58 31 2 

APR 0.32 0.19 1.42 0.16 4.78 0.53 29 2 

MAY 0.19 0.07 1.10 0.33 4.48 0.43 11 2 

JUN 0.48 0.35 1.30 0.33 4.56 0.37 14 2 

JUL 0.31 0.18 1.39 0.21 4.50 0.49 14 2 

AUG 0.73 0.39 1.50 0.19 4.58 0.25 13 1 

SEP 0.35 0.23 1.40 0.17 4.78 0.45 14 2 

OCT 0.19 0.08 1.31 0.19 4.48 0.32 16 2 

NOV 0.18 0.07 1.31 0.20 4.72 0.41 24 3 

DEC 0.21 0.04 1.41 0.20 4.67 0.27 8 1 

YEAR 0.31 0.16 1.36 0.10 4.53 0.20 213 22 

 7 
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Table 2. Threshold values of AOD and Angstrom440–870 for aerosol classification. Abbreviations: MA = maritime, DA = dust, UIA = urban 1 

and industrial, BMA = biomass burning, MIXA = mixed-type aerosols. MIXA represents indistinguishable aerosol type that lies beyond the 2 

threshold ranges.  3 

 Jalal et al. (2012) 

 

Toledano et al. (2007) 

 

Salinas et al. (2009) 

 

Pace et at. (2006) and D. 

Kaskaotis (2007) 

Smirnov (2002b, 2003) 

 

Aerosol 

Type 

Angstrom440–

870 

AOD 

440 

Angstrom440–

870 

AOD 

440 

 

Angstrom440–

870 

AOD 

500 

 

Angstrom440–870 AOD 

500 

 

Angstrom440–870 AOD 

500 

 

MA 0.5–1.7 ≤ 0.3 0–2 ≤ 0.2 0.5–1.7 ≤ 0.15 ≤ 1.3 ≤ 0.06 ≤ 1.0 ≤ 0.15 

DA ≤ 1.0 ≥ 0.4 ≤ 1.05  ≥ 0.11 (only this value is for AOD_870) ≤ 1.0 ≥ 0.4 ≤ 0.5 ≥ 0.15 ≤ 0.7 ≥ 0.2 

UIA ≥ 1.0 0.2–0.4 ≥ 1.05 0.2–0.4 ≥ 1.0 0.2–0.4 

    ≥ 1.5       ≥ 0.1     ≥ 1.5       ≥ 0.4 

BMA ≥ 1.0 ≥ 0.7 ≥ 1.4 ≥ 0.35 ≥ 1.0 ≥ 0.8 

 4 
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Table 3. Calculated results for the AOD prediction model [Eq. (2)] from 2012 and 2013 data. 1 

Seasonal monsoon months R
2
 RMSE % MRE 

 

Northeast monsoon 0.41 0.110 8.34 × 10
–4

 

 

Pre-monsoon 0.64 0.114 8.33 × 10
–4

 

 

Southwest monsoon 0.77 0.172 –1.50 × 10
–3

 

 

Post-monsoon 0.42 0.061 –7.50 × 10
–4

 

Overall 0.72 0.133 –1.11 × 10
–4

 

  2 

  3 
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Table 4. R
2
 values of the AOD predicted by selected linear regression models from the literature. 1 

Model Author(s) R
2
 RMSE 

AOD = a0 + a1(Vis) (Retalis et al., 2010) 0.56 0.166 

AOD = a0 + a1(bext) (Mahowald et al., 2007) 0.58 0.162 

AOD = a0 + a1(PM10) (Gao and Zha, 2010;Chen et al., 2013) 0.60 0.159 

AOD = a0 +a1(Vis)+a2(Vis)2 

+a 3(Vis)3 +a 4(API)+a5(API)2 

+a 6(API)3 

Current Study 0.72 0.133 

 2 

 3 

  4 
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 1 

Figures 2 

 3 
a) 4 

 5 
b) 6 

 7 
c) 8 

 9 

Figure 1. Seasonal relative frequencies of occurrences of (a) AOD_500, (b) Angstrom440–870, and (c) PW in 10 

Penang for February 2012 to November 2013. Each curve was smoothed by using moving average technique.  11 
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 1 

a)                                    b) 2 

 3 

c)                                   d) 4 

 5 

Figure 2. Classification of aerosol types for a) December–March, b) April–May, c) June–September, and d) 6 

October–November based on AOD–Angstrom440–870 scatter plots by proposed thresholds.  7 
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 1 

 2 

Figure 3. Seasonal classification of aerosol types based on AOD–Angstrom440–870 scatter plots by the 3 

threshold proposed by Toledano et al. (2007).  4 
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 1 

a)                                 b) 2 

 3 

c)                                 d) 4 

 5 

e) 6 

 7 

Figure 4. Seasonal back-trajectory frequency plot by the HYSPLIT_4 model for a) northeast monsoon, b) 8 

pre-monsoon, c) southwest monsoon, d) post-monsoon, and e) overall study period at Penang, which was 9 

marked as a five-edged star. 10 
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 1 

 2 

Figure 5. Predicted and measured AOD at 500 nm against Julian days in 2012 and 2013.  3 
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 1 

a) 2 

 3 

b)                                   c) 4 

 5 

Figure 6. a) Profiles of the aerosol backscatter coefficients (km
-1

sr
-1

) recorded on 12 July 2013. No data were 6 

acquired from 12:00 PM to 2:00 PM. The brown lines represent the moment of acquisition of sun photometer; 7 

b) normalized range corrected signals at different altitudes; c) profiles of the aerosol backscatter coefficient 8 

(beta) obtained from 10 AM to 11 AM for the brown lines in a).  9 
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 1 

 2 

 3 

 4 

 5 

Figure 7. Predicted AOD_500 data plotted against the period from 2012 to 2013. Rectangles 1 and 2 6 

correspond to the data recorded on 24–25 July and 13–14 August 2013, respectively. These data were used 7 

for comparison with those obtained from LIDAR (Fig. 9).  8 
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   1 

a)                               b) 2 

 3 

c) 4 

 5 

Figure 8. Hourly AOD recorded on a) 28 September, b) 17 October, and c) 30–31 October 2013 from 6 

AERONET (red dotted line) and predicted AOD_500 (blue dotted line). The predicted graphs reveal 7 

temporal variations that tally with those of the measured data points.  8 
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 1 

a) 2 

 3 

 4 

 5 

 6 

b) 7 

 8 

Figure 9. Hourly retrieved AOD recorded on a) 24–25 July and 13–14 August 2013 (rectangles, Fig. 7). b) 9 

Temporal plots of the aerosol backscattering coefficient signal from the LIDAR system (morning to evening) 10 

for the corresponding periods in the rectangles of a). Green ovals represent low cloud distributions.  11 

  12 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 

1
2

:0
0

A
M

 

0
2

:0
0

A
M

 

0
4

:0
0

A
M

 

0
6

:0
0

A
M

 

0
8

:0
0

A
M

 

1
0

:0
0

A
M

 

1
2

:0
0

P
M

 

1
4

:0
0

P
M

 

1
6

:0
0

P
M

 

1
8

:0
0

P
M

 

2
0

:0
0

P
M

 

2
2

:0
0

P
M

 

1
2

:0
0

A
M

 

0
8

:0
0

A
M

 

1
0

:0
0

A
M

 

1
3

:0
0

P
M

 

1
5

:0
0

P
M

 

1
7

:0
0

P
M

 

1
9

:0
0

P
M

 

2
1

:0
0

P
M

 

2
3

:0
0

P
M

 

0
1

:0
0

A
M

 

0
3

:0
0

A
M

 

1
1

:0
0

A
M

 

1
3

:0
0

P
M

 

1
5

:0
0

P
M

 

1
7

:0
0

P
M

 

1
9

:0
0

P
M

 

2
1

:0
0

P
M

 

2
3

:0
0

P
M

 

0
1

:0
0

A
M

 

0
3

:0
0

A
M

 

0
5

:0
0

A
M

 

0
7

:0
0

A
M

 

0
9

:0
0

A
M

 

1
1

:0
0

A
M

 

1
6

:0
0

P
M

 

1
8

:0
0

P
M

 

2
0

:0
0

P
M

 

2
2

:0
0

P
M

 

7/24/2013 7/25/2013 8/13/2013 8/14/2013 

P
re

d
ic

te
d

_
A

O
D

_
5

0
0

 

Period 

 

 

 10:00 A.M 17:30 P.M 10:10 A.M 17:10 P.M 10:10 A.M 17:00 P.M 10:10 A.M 17:40 P.M 

Time (minute) 

D1 

D2 

 

D3 
D4 

 

D1 D2 

 
D3 D4 

 



36 

 

 1 

a) 2 

 3 

b) 4 

 5 

Figure 10. a) A scatter plot for AOD_355 predicted from our model versus the AOD calculated from 6 

Raymetrics LIDAR system. b) Predicted AOD from our model and estimated AOD from LIDAR was plot 7 

versus UTC time and date. Error bars for estimated AOD from LIDAR are shown.  8 
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