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Abstract

High temporal resolution measurements of black carbon (BC) and organic carbon (OC)
covering the time period of 1956–2006 in an ice core over the southeastern Tibetan
Plateau show a distinct seasonal dependence of OC / BC ratio with higher values in the
non-monsoon season than during the summer monsoon. We use a global aerosol-5

climate model, in which BC emitted from different source regions can be explicitly
tracked, to quantify BC source-receptor relationships between four Asian source re-
gions and the southeastern Tibetan Plateau as a receptor. The model results show
that South Asia is a primary contributor during the non-monsoon season (October to
May) (81 %) and on an annual basis (74 %), followed by East Asia (14 % and 21 %,10

respectively). The ice-core record also indicates stable and relatively low BC and OC
deposition fluxes from late 1950s to 1980, followed by an overall increase to recent
years. This trend is consistent with the BC and OC emission inventories and the fuel
consumption of South Asia as the primary contributor. Moreover, the increasing trend
of OC / BC ratio since the early 1990s indicates a growing contribution of coal com-15

bustion and biomass burning to the emissions. The estimated radiative forcing induced
by BC and OC impurities in snow has increased since 1980, suggesting an increasing
influence of carbonaceous aerosols on the Tibetan glacier melting and the availability
of water resources in the surrounding regions. Our study indicates that more attention
to OC is merited because of its non-negligible light absorption and the recent rapid20

increases evident in the ice core record.

1 Introduction

Carbonaceous aerosol, released from fossil fuel, biofuel and/or biomass combustion,
contains both black carbon (BC, a.k.a, elemental carbon, EC), a strong light absorber,
and organic carbon (OC), which also absorbs in the near infrared, but more weakly than25

BC. Often mixed with other aerosol species, BC impacts human health, crop yields and
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regional climate (Auffhammer et al., 2006; Tie et al., 2009), and is believed to be the
second strongest climate warming forcing agent after carbon dioxide (Jacobson, 2001).

Because of their high population density and relatively low combustion efficiency, de-
veloping countries in South and East Asia such as India and China are hotspots of car-
bonaceous aerosol emissions (Ramanathan and Carmichael, 2008). During the cold5

and dry winter monsoon seasons, haze (heavily loaded with carbonaceous aerosols)
builds up over South Asia, and exerts profound influences on regional radiative forc-
ing (Ramanathan et al., 2007; Ramanathan and Carmichael, 2008), hydrologic cycles
(Menon et al., 2002; Ramanathan et al., 2005), and likely Himalaya-Tibetan glacier
melting that could be accelerated by the absorption of sunlight induced by BC in the air10

and deposited on the ice and snow surfaces (Ramanathan et al., 2007; Hansen and
Nazarenko, 2004).

Due to the lack of long-term observations of emissions and concentrations of at-
mospheric carbonaceous aerosols, it is difficult to evaluate the effects of BC and OC
on historical regional climate and environment before the satellite era. Some studies15

have evaluated historical anthropogenic emissions based on the consumption of fos-
sil fuels and biofuels (Novakov et al., 2003; Ito and Penner, 2005; Bond et al., 2007;
Fernandes et al., 2007). While fossil fuel is the major energy source in the urban ar-
eas of South Asia and East Asia, biomass combustion, such as fuel wood, agricultural
residue and dung cake, is prevalent in rural areas (Revelle, 1976; Venkataraman et al.,20

2010; Street and Waldhoff, 1998). Biomass is considered as the major source of black
carbon emissions (Reddy and Venkataraman, 2002; Venkataraman et al., 2005). How-
ever, as reliable biofuel consumption data are hard to obtain, estimates of BC and OC
emissions from biomass burning are ambiguous and incomplete.

Measurements of carbonaceous aerosol concentrations in glacier ice are an ideal25

means to reconstruct historical emissions and reveal long-term trends of anthropogenic
aerosol impacts on local climate. Greenland ice core measurements were previously
used to reconstruct the North American BC emission history and its effects on sur-
face radiative forcing back to the 1880s (McConnell et al., 2007). Himalayan ice cores
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retrieved from the Tibetan Plateau have revealed the mixed historical emissions from
South Asia, Central Asia and the Middle East and also been used to evaluate radiative
forcing from BC in snow (Ming et al., 2008; Kaspari et al., 2011). Using the Snow, Ice,
and Aerosol Radiative (SNICAR) model, Flanner et al. (2007) estimated an instanta-
neous regional forcing of exceeding 20 W m−2 by BC in snow/glaciers over the Tibetan5

Plateau during spring.
By using five ice core records, Xu et al. (2009a) elucidated an important contribution

of BC to the retreat of Tibetan glaciers in addition to greenhouse gases. Due to the
short atmospheric lifetime of carbonaceous aerosols compared to greenhouse gases,
emission reductions may be an effective way to mitigate their warming effects. Thus10

it is particularly important to identify the source regions and the combustion sources
of carbonaceous aerosols observed in Tibetan glaciers. Xu et al. (2009a) suggested
that BC deposited on Tibetan Plateau was broadly from Europe and Asia. However,
they did not discuss on more specific source regions and the combustion sources.
In this study, we use the ice core retrieved from the southeastern Tibetan Plateau,15

also known as the Zuoqiupu ice core in Xu et al. (2009a), to reconstruct the history of
atmospheric deposition of carbonaceous aerosols in this region, and to characterize
emissions and source-receptor relationships with the help of a global climate model
in which BC emitted from different source regions can be explicitly tracked. We also
estimate the respective contributions from BC and OC to radiative forcing in glaciers20

using the ice core measurements and the SNICAR model.

2 Methods

2.1 Measurements of carbonaceous aerosols in ice core

Zuoqiupu glacier is in the southeastern Kangri Karpo Mountains, located at the south-
eastern margin of the Tibetan Plateau (Fig. 1). In 2007, an ice core of 97 m in depth25

(9.5 cm in diameter) was retrieved within the accumulation zone of Zuoqiupu glacier at
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96.92◦ E, 29.21◦ N, 5600 m a.s.l. The ice core was kept frozen and transported to labo-
ratory facilities at the Institute of Tibetan Plateau Research (Lhasa branch) for analysis.
BC and OC concentrations were measured by using a Desert Research Institute (DRI)
Model 2001 Thermal/Optical Carbon Analyzer following the IMPROVE TOR protocol
(Chow et al., 1993; Chow and Watson 2002; Cao et al., 2008). Note that according5

to the thermal/optical measurement method, the analytical result is technically called
“EC”. Herein we use “BC” to be consistent with the notation in our model simulations
and in the literature. The reported OC concentrations from the ice-core measurements
can only account for water-insoluble part of OC from the aerosol emissions. Further de-
tails on the analysis methods, ice core dating and calculation of BC and OC seasonal10

deposition fluxes can be found in Xu et al. (2009a).

2.2 Model and experimental setup

We use the Community Atmosphere Model version 5 (CAM5; Neale et al., 2010) to help
understand the emissions, transport and dry/wet deposition of carbonaceous aerosols
in the atmosphere. In the default aerosol scheme of CAM5, BC and primary OC are15

emitted into an accumulation size mode, where they immediately mix with co-existing
hygroscopic species such as sulfate and sea salt (Liu et al., 2012). Hygroscopic aerosol
particles in the accumulation mode are subject to wet scavenging and removal by pre-
cipitation. Recent model improvements to the representation of aerosol transport and
wet removal in CAM5 by Wang et al. (2013) have substantially improved the global20

distribution of aerosols, particularly, over remote regions away from major sources. To
minimize the model biases in simulating meteorological conditions and, particularly, cir-
culations that are critical to aerosol transport, we configure the CAM5 model to run in an
offline mode (Ma et al., 2013) with wind, temperature, surface fluxes and pressure fields
constrained by observations. However, cloud/precipitation fields and interactions be-25

tween aerosol and clouds are allowed to evolve freely. A source tagging technique has
been recently implemented in the CAM5 model to allow for explicitly tracking aerosols
emitted from individual source regions and, therefore, assists in quantitatively charac-
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terizing source-receptor relationships (Wang et al., 2014). This capability is used in
the present study to do source attribution for carbonaceous aerosols deposited to the
Zuoqiupu glacier.

We conducted an 11 yr (1995–2005) CAM5 simulation at horizontal grid spacing of
1.9◦ ×2.5◦ and 56 vertical levels, with prescribed sea surface temperatures and sea5

ice distribution. Reanalysis products from NASA Modern Era Retrospective-Analysis
for Research and Applications (MERRA) (Rienecker et al., 2011) are used to constrain
the meteorological fields of CAM5. For aerosols (including OC, BC and other impor-
tant species), we use the year-2000 monthly mean emissions described by Lamarque
et al. (2010) that have been used in many global climate models for present-day climate10

simulations, included in the fifth assessment report (AR5) by the Intergovernmental
Panel on Climate Change (IPCC). The monthly mean emissions are repeatedly used
for the 11 yr simulation.

3 Results and discussion

3.1 Seasonal dependence of carbonaceous aerosols15

BC and OC concentrations in the Zuoqiupu ice core both exhibit statistically significant
seasonal variations at the 0.05 level corresponding to the stable oxygen isotope vari-
ability, which shows high values during the winter and low values during the summer
(Xu et al., 2009a). This seasonal dependence of BC and OC in ice core is consistent
with available observations of atmospheric aerosols in the south slope of the Himalayas20

and the southeastern Tibetan Plateau, and the high concentration of carbonaceous
aerosols during the cold and dry season was suggested to associate with the South
Asian haze (Cong et al., 2009; Marinoni et al., 2010; Kaspari et al., 2011; Zhao et al.,
2013).

As shown in Fig. 2, concentrations of OC and BC have distinct differences between25

the monsoon and non-monsoon seasons. The ratio of OC to BC also shows clear
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seasonal dependence. The slope of the fitted line to measured OC vs. BC concen-
trations during non-monsoon season is ∼6.3, which is twice the slope for monsoon
season (∼3.2). The analysis of covariance (ANCOVA) for slope differences of single
linear regressions of OC against BC between monsoon and non-monsoon seasons in-
dicates that the seasonal dependence of the relationship between the concentrations5

of OC and BC is significant (at the 0.05 significance level). This agrees with mea-
surements derived from the ice core drilled from the Palong-Zanbu No. 4 Glacier (Xu
et al., 2009b) and in atmospheric samples collected from Lulang, southeastern Tibetan
Plateau (Zhao et al., 2013). The seasonal dependence of the relationship between OC
and BC can be derived from the seasonal sources of carbonaceous particles and/or10

atmospheric sink processes. For instance, the emissions from forest fires and biomass
burning for heating are likely to increase in cold and dry non-monsoon seasons, and/or
wet deposition of atmospheric carbonaceous aerosols and biogenic matter emitted
from lush vegetation in the hot and wet monsoon seasons may increase. High concen-
trations of carbonaceous aerosols recorded in the ice core suggest an increased solar15

radiative forcing in non-monsoon seasons.

3.2 Source attribution

As the ice core drilling site was located at a remote and elevated area over the south-
eastern Tibetan Plateau, where local emissions are minimal. Deposition of carbona-
ceous aerosols is most likely contributed by the non-local major emission sources20

(e.g., BC emissions shown in Fig. 3) in South Asia and East Asia. The 10 yr average
wind fields (at the surface and 500 hPa from MERRA reanalysis datasets), as shown in
Fig. 3, indicate distinct circulation patterns during summer monsoon (June–September)
and non-monsoon (October–May) seasons, which in part determine the seasonal de-
pendence of transport of aerosols emitted from the different major sources.25

To quantitatively attribute the source of BC at the drilling site (as a receptor region),
we use the CAM5 model with the BC source tagging capability to conduct an 11 yr
simulation (Wang et al., 2014), with the last 10 yr (1996–2005) used for analysis. The
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surrounding area is divided into four source regions (see Table 1 and Fig. 4): South
Asia, East Asia, Southeast Asia and Central Asia. BC emissions from each of the four
regions and the rest of the world are explicitly tracked, so that the fractional contribu-
tions by emissions from the individual source regions to BC deposition at the receptor
region can be explicitly calculated. Figure 4 shows the spatial distribution of fractional5

contribution from the four source regions. BC deposition at the drilling site (indicated by
the pink box in Fig. 4), which has a consistent seasonal dependence (i.e., more during
the non-monsoon season; Fig. 5) with ice core measurements, is predominately (over
95 %) from South Asia and East Asia. The seasonal dependence of BC deposition is
also consistent with a recent regional climate modeling study on BC deposition on the10

Himalayan snow cover from 1998 to 2008 (Ménégoz et al., 2013).
During the non-monsoon season, strong westerly dominates the transport from west

to east at all levels. Emissions from northern India and central Asia can have influence
on BC in the direct downwind receptor region over southeastern Tibetan Plateau. Dur-
ing the summer monsoon season, the westerly moves northward and the monsoon15

flow from Bay of Bengal at the surface and middle levels (e.g., 500 hPa), coupled with
the monsoon from Indochina peninsula and South China Sea, exerts influence on BC
in the receptor area. The strong monsoon precipitation removes BC from the atmo-
sphere during the transport. The high Himalayas can partly block the further transport
of emissions from South Asia to Tibetan Plateau, although small local topographical20

features such as the Yarlung Tsangpo River valley can provide a gate for the pollution
to enter the inner Tibetan Plateau (Cao et al., 2010). Elevated emissions from the west
(or northern part of South Asia) can take the pathways at middle and upper levels but
they have minimal contribution to deposition. Therefore, BC emissions from East Asia
play a relatively more important role affecting deposition at the Zuoqiupu site during25

the monsoon season.
The fractional contributions to 10 yr mean BC deposition at the drilling site from the

four tagged regions are summarized in Table 1. Results show that South Asia is the
dominant contributor (∼81%) during the non-monsoon season with ∼14% from East
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Asia, while the contribution of East Asia (∼56%) is larger than that of South Asia
(∼39%) during the monsoon season. For the annual mean BC deposition, South Asia
(∼75%) is the biggest contributor, followed by East Asia (∼21%). Emissions from the
central Asia and Southeast Asia regions have much smaller contributions (< 3%) for
all seasons. These results agree well with the short-term source attribution study by Lu5

et al. (2012) using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model. Note that the BC emission inventory (Lamarque et al., 2010) used in
CAM5 does not consider seasonal variations in anthropogenic emissions, which is
likely to have introduced biases in the quantitative estimates by the model, but the
relative importance of source regions should be robust.10

3.3 Interannual variations and long-term trend

Based on annual snow accumulation and BC and OC concentrations derived from the
ice record, the annual BC and OC deposition fluxes can be estimated, which are then
used to examine the interannual variations and long-term trend in the fluxes and the
ratio of OC / BC, as well as the relationship with emissions from the major contrib-15

utor. As illustrated in Fig. 6, from late 1950s to 1980, the BC and OC fluxes in the
Zuoqiupu ice core are relatively low and stable in comparison to those after 1980. Dur-
ing the period 1956 to 1979, average fluxes are 9.1 and 28.7 mg m−2 a−1 for BC and
OC, respectively. Both BC and OC fluxes began to show increasing trends from early
1980s. These trends continued in the early 1990s but started to drop in the mid-1990s,20

reaching a minimum in 2002 followed by a rapid increase. In 2006, BC and OC fluxes
are 19.2 and 93.9 mg m−2 a−1, respectively, which are two and three times the respec-
tive average fluxes before 1980. The 5 yr average OC / BC flux ratio is steady before
1990; however, it shows a continual increase afterwards and has been higher than the
average value (3.2) for the period of 1956–1979 since mid-1990s (Fig. 6). The 10 yr25

CAM5 model simulation, in which emissions are fixed but meteorological conditions
vary, shows no increasing trend in BC and OC deposition fluxes (Fig. 5), indicating that
the increasing trend seen in the observations was not due to changes in meteorology.
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As shown in the CAM5 model simulation, the annual mean atmospheric deposition of
BC over southeastern Tibetan Plateau is mostly contributed by emissions from South
Asia, particularly, in the non-monsoon season. The BC and OC deposition fluxes de-
rived from the ice-core measurements may reflect changes in South Asian emissions
to some extent. The temporal variations of BC and OC deposition fluxes (see Fig. 6)5

are compared with the primary BC and OC emissions from fossil fuel and biofuel com-
bustion in South Asia from 1955–2000 (Bond et al., 2007). More recent (1996–2010)
BC and OC emissions (Lu et al., 2011) are also illustrated in Fig. 6 to extend the emis-
sion data to cover the entire time period having ice core data, but it is only for India, the
largest energy consumer and carbonaceous aerosol-emitting country in South Asia.10

There are differences between the emissions of Bond et al. and Lu et al. during the
overlap time period (1996–2000). However, good agreements on the increasing trend
can be found in the respective deposition fluxes and emissions of BC and OC (Fig. 6).
The OC / BC emission ratio also shows an increasing trend from the late 1990s to
2003, which is consistent with that of OC / BC ratio in the ice core record. The annual15

mean aerosol index over industrial and populated cities in the northern part of India in-
creased from 1982–1993 and more significantly from 2000–2003 (Sarka et al., 2006).
This trend is similar to that of carbonaceous aerosols in the ice core record, and it in-
dicates a causal relationship between BC and OC over southeastern Tibetan Plateau
and emissions from north part of South Asia.20

3.4 Emission source analyses

BC and OC in the atmosphere are co-emitted from a variety of natural and anthro-
pogenic sources, including combustion of fossil fuel, biofuel and biomass burning.
In general, open biomass burning typically produces more abundant OC (i.e., larger
OC / BC ratio) compared to fossil fuel combustion due to a lower process temperature25

(Ducret and Cachier, 1992). The OC / BC ratio has often been used to discriminate
fossil fuel combustion and biomass burning emissions in the atmosphere and in pre-
cipitation (Novakov et al., 2000; Stone et al., 2007; Ducret and Cachier, 1992; Xu et al.,
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2009b). For example, Cao et al. (2005) collected particulate matter samples from the
plumes of residential biomass burning, coal combustion, and motor-vehicle exhaust
sources, and analyzed OC and BC with DRI Thermal/Optical Carbon Analyzer (Model
2001). They reported average OC / BC ratios of 60.3, 12.0, and 4.1 for biomass burn-
ing, coal-combustion and vehicle exhaust, respectively. The increasing OC / BC ratios5

based on the ice core measurements since the early 1990s (Fig. 6) suggest an ex-
panded coal consumption and usage of biomass fuel although the ratios might have
low bias because water-soluble OC was not captured in the sample analyses. However,
such bias would have occurred to all the samples and had little impact on the trend,
unless including water-soluble OC could dominate the temporal variation of OC / BC ra-10

tio. Otherwise, our results indicate that the relative contribution of coal combustion and
biomass burning to the carbonaceous particles deposited into the ice core in south-
eastern Tibetan Plateau has been increasing faster than the contribution of fossil fuel
combustion since early 1990s. Improved combustion technologies could also increase
the OC / BC ratio, which was less likely to dominate the increasing trend in OC / BC15

ratio because BC emissions had the same trend.
The temporal variations of BC and OC in the Zuoqiupu ice core, along with the source

attribution analysis of the CAM5 model results, suggest an increasing trend in emis-
sions and altered emission sources in South Asia during the late 20th century. Coal has
been the primary energy source in South Asia. For example, in India coal accounted20

for 41 % of the total primary energy demand in 2007, followed by biomass (27 %) and
oil (24 %) (IEA, 2009). The consumption data of coal and crude oil in South Asia (BP
Group, 2009) is compared with the BC and OC fluxes in Fig. 6 (bottom right). Coal con-
sumption increased from 1965–2008, in particular from 1980–1995 and from 2003–
2008 after a level off during 1996–2002. This trend is consistent with the variations of25

BC and OC deposition fluxes in the Zuoqiupu ice core. The correlations between coal
consumption and BC (R2 = 0.43, p < 0.001) and OC (R2 = 0.62, p < 0.001) in the ice
core are both statistically significant. The oil consumption had a comparable increasing
trend as coal before it slowed down during 2000–2006.
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Biomass is the second largest energy resource in South Asia, and it is essential in ru-
ral areas. In India, 70 % of the population lives in rural areas, and depends substantially
on solid fuels (i.e., firewood, animal dung, and agriculture residues) for cooking and
heating (Heltberg et al., 2000). Even in urban areas, biomass contributes to 27 % of the
household cooking fuel (Venkataraman et al., 2010). Previous studies have concluded5

that carbonaceous aerosol emissions from biomass burning are the largest source in
South Asia (Venkataraman et al., 2005; Gustafsson et al., 2009). A general increase
in energy-intensive life-styles associated with accelerated growth of population and
economy puts pressure on energy resources, and induces energy transitions and use
of non-sustainable biomass in South Asia (Sathaye and Tyler, 1991; Pachauri, 2004;10

Fernandes et al., 2007). For instance, biofuel consumption in South Asia increases by
21 % per decade on average during 1950–2000 (Bond et al., 2007; Fernandes et al.,
2007). In addition, fuel wood, a more desirable biofuel option, contributed 68 % in 1978
to total energy demand by rural populations in India, and increased to 78 % in 2000
(Fernandes et al., 2007).15

3.5 Radiative forcing induced by carbonaceous aerosols in Tibetan Glaciers

BC is often the most important light-absorbing impurity in surface snow because of its
strong absorption of solar radiation. It can decrease snow surface albedo and results
in positive radiative forcing (Warren and Wiscombe, 1980; Clarke and Noone, 1985;
Hansen and Nazarenko, 2004; Hadley and Kirchstetter, 2012). We use the SNICAR-20

online model (available at http://snow.engin.umich.edu/; Flanner et al., 2007) to esti-
mate radiative forcing induced by the observed BC and OC as if they were present
in snow. Detailed description of the SNICAR model was given by Flanner and Zen-
der (2005; 2006) and Flanner et al. (2007). A mass absorption cross-section (MAC)
of 7.5 m2 g−1 at 550 nm for uncoated BC particle and 0.6 m2 g−1 for OC (Bond and25

Bergstrom, 2006; Kirchstetter et al., 2004) is assumed, and the MAC scaling factor of
1 within spectral broadband for BC and 0.08 for OC is used. According to the previ-
ous studies (Cuffey and Paterson, 2010; Wiscombe and Warren 1980) and measure-
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ments in Qiyi glacier and Zuoqiupu glacier, an effective radius of 100 µm with density of
60 kg m−3 for new snow, and the effective radius of 400 µm with density of 400 kg m−3

for aged snow are adopted for the forcing calculation. As we focus on the estimation of
radiative forcing by carbonaceous particles, other impurity contents, such as dust and
volcanic ash, are set to be zero. Based on the measured annual mean BC and OC5

concentrations, the in-snow BC and OC radiative forcing is calculated using SNICAR-
online. The annual mean BC and OC concentrations during 1956–1979 is 4.4 and
13.8 ng g−1, respectively, and they increase to 12.5 and 61.3 ng g−1 in 2006. As a con-
sequence, the annual mean radiative forcing derived from BC (OC) increases from
0.75 (0.20) to 1.95 (0.84) W m−2. Although BC concentration is one order of magnitude10

lower than OC, radiative forcing of BC is about two times larger than OC due to its
strong absorption of solar radiation.

Since BC and OC concentrations increased rapidly from 1980, the radiative forcing
rises as a consequence. The average BC radiative forcing had increased 43 % after
1980, and OC radiative forcing had an increase of 70 %. Because of the stronger in-15

creasing trend in OC than BC during 1990–2006 (Fig. 6), the contribution of OC to the
total radiative forcing cannot be neglected.

4 Summary and conclusions

Light-absorbing carbonaceous aerosols can induce significant warming in the atmo-
sphere and in snow and glaciers, which likely accelerates the melting of glaciers over20

Himalayas and Tibetan Plateau. Ice-core measurement of carbonaceous aerosols is
a useful mechanism for challenging historical emission inventories and revealing long-
term changes in anthropogenic aerosols and their impacts on local climate. In this
study, we use an ice core (97 m in depth and 9.5 cm in diameter) retrieved from the
Zuoqiupu glacier (96.92◦ E, 29.21◦ N, 5600 m a.s.l.) in the southeastern Tibetan Plateau25

to reconstruct the history of atmospheric deposition of carbonaceous aerosols in this
region. The glacier has a unique geographical location that is in close proximity to ma-
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jor Asian emission sources. With the help of a global climate model (CAM5) in which
black carbon (BC) emitted from different source regions can be explicitly tracked, we
are able to characterize BC source-receptor relationships between four Asian source
regions (i.e., South Asia, East Asia, Southeast Asia and Central Asia) and the south-
eastern Tibetan Plateau as a receptor. We also estimate the radiative forcing in snow5

due to BC and OC over the southeastern Tibetan Plateau using the ice core measure-
ments and an offline snow-ice-aerosol-radiation model (called SNICAR).

BC and OC concentrations in small segments of the Zuoqiupu ice core were mea-
sured using a thermal-optical method. Ice core dating based on significant seasonal
variations of oxygen isotope ratios (δ 18O) was used to construct the time series of BC10

and OC concentrations, which turned out to span the time period of 1956–2006. Not
only do the concentrations of OC and BC in the ice core exhibit significant differences
between the summer monsoon and non-monsoon seasons, but also the ratio of OC
to BC shows a clear seasonal dependence that might be due to seasonal change in
sources and/or atmospheric deposition processes. The CAM5 results show a similar15

seasonal dependence in the concentrations and the OC / BC ratio.
The CAM5 model simulation indicates distinct circulation patterns during summer

monsoon (June–September) and non-monsoon (October–May) seasons. Both circula-
tion patterns and seasonal changes in emissions influence the seasonal deposition of
aerosol at the Zuoqiupu site. The CAM5 simulation with tagged BC regional sources20

shows that South Asia is the dominant contributor (∼81%) to the 10 yr mean BC depo-
sition at the Zuoqiupu site during the non-monsoon season with ∼14% from East Asia,
while the contribution of East Asia (∼56%) is larger than that of South Asia (∼39%)
during the monsoon season. For the annual mean BC deposition, South Asia (∼75%)
is the biggest contributor, followed by East Asia (∼21%).25

The annual mean BC and OC deposition fluxes into the ice core are also estimated
to explore the interannual variations and long-term trends. Results show stable and
relatively low BC and OC fluxes from late 1950s to 1979, followed by a steady increase
through the mid-1990s. A more rapid increase occurred after the minimum in 2002.
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The BC and OC fluxes in 2006 were two and three times the respective average fluxes
before 1980.

The overall increasing trend in deposition fluxes since 1980 is consistent with the
BC and OC emissions in South Asia as the major contributor. Moreover, the increasing
trend of OC / BC ratio since early 1990s indicates a growth of the contribution of coal5

combustion and biomass burning to the carbonaceous aerosol emissions in the major
contributing source regions, which is also supported by the trends in the consumption
of coal, oil and biofuels in South Asia.

Our offline calculation using the SNICAR model shows an increase of radiative forc-
ing induced by the observed BC and OC in snow, with an average increase of 48 %10

since 1980. The rapid increase in radiative forcing has implications for the Tibetan
glacier melting and availability of water resources in the surrounding regions, and more
attention to OC is merited because of its non-negligible light absorption and the recent
rapid increases evident in the ice core record.
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Table 1. Source regions (South Asia, East Asia, Southeast Asia, and Central Asia) and cor-
responding fractional contributions ( %) to BC deposition flux at the Zuoqiupu site in monsoon
(June–September), non-monsoon (October–May), and all months from 1996–2005.

Source Regions Latitude Longitude Monsoon Non-monsoon Annual

South Asia 5–35 ◦ N 50–95 ◦ E 38.51 81.26 74.48
East Asia 15–50 ◦ N 95–150 ◦ E 56.24 13.91 20.66
Southeast Asia 0–15 ◦ N 95–130 ◦ E 0.05 0.16 0.15
Central Asia 35–50 ◦ N 50–95 ◦ E 2.62 0.86 1.14
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Figure 1. Site location of Zuoqiupu Glacier (top): black circle represents the location of Zuo-
qiupu Glacier and the warm colors illustrate the high elevations of Tibetan Plateau. Detailed
elevation contours of the Zuoqiupu Glacier are shown in the bottom pannel. Red circle illus-
trates the ice core drill site.
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Figure 2. Scatter plots for OC and BC concentrations and corresponding linear regressions for
the monsoon and non-monsoon seasons obtained from the ice core measurements
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Figure 3. 10 yr (1996–2005) mean wind vectors (denoted by arrows) at 500 hPa (top) and the
surface (bottom) during summer monsoon (June–September; left) and non-monsoon season
(October–May; right) from MERRA reanalysis datasets being used in the CAM5 simulation. The
background colors show mean BC emission rates based on the IPCC present-day scenario for
the corresponding months. The pink square indicates the model gridcell in which the ice core
drill site resides.
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Figure 4. Spatial distributions of fractional contribution from the four source regions (South
Asia, East Asia, Southeast Asia, and Central Asia) to monsoon and non-monsoon, and annual
mean BC deposition fluxes during 1996–2005. The black boxes are the boundary of source
regions, and the small pink box is the model gridcell where the Zuoqiupu glacier sampling site
is located.
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Figure 5. Seasonal dependence of BC deposition flux at the Zuoqiupu site from 1995 to 2005
simulated in CAM5. The dash line represents a linear regression of all data points.
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Figure 6. Time series of annual (dotted line with circles) and 5 yr averaged (solid line) OC / BC
ratios (top, left), BC (top, right) and OC deposition fluxes (bottom, left) in the Zuoqiupu ice core
for the time period of 1956–2006. The averages of OC / BC ratio, BC and OC during 1956–
1979 are denoted by dashed lines with numbers. BC and OC emissions in South Asia (Bond
et al., 2007) and corresponding BC/OC ratios are illustrated with gray triangles, and with gray
diamonds for emissions in India (Lu et al., 2011). Coal and oil consumption data are also
showed with black and gray lines respectively (bottom, right) (BP Group, 2009).
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