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Supporting information. 

Mass transfer diffusion model.  

From Fick’s first law of diffusion, the rate of change of mass of a single, spherical, 

homogeneous drop of compound A can be described with = 4        Eq. (S1) 

where m is the mass of the drop (g), R is the radial distance from the center of the 

drop (cm), Dv is the molecular diffusion coefficient of A in air (cm2 s-1), V is the 

density of the vapor of A (g cm-3), and dV/dR is the radial gradient of vapor density. 

When latent heat is taken into consideration during evaporation, Eq. (S1) finally 

becomes into = ,,    Eq. (S2) 

Where pv and pv,s is the vapor pressure of A in bulk gas phase and on the particle 

surface, respectively (Pa), Le is the latent heat of evaporation of A (J g-1), κa is the 

thermal conductivity of moist air (J cm-1 s-1 K-1), Rv is ideal gas constant (8.314 J K-1 

mol-1). Details regarding the derivation are also given elsewhere (Jacobson, 2005). 

According to a partition model (Kroll and Seinfeld, 2008;Pankow, 1994), the vapor 

pressure of A in bulk gas phase is calculated as = ,,                 Eq. (S3) 

Where T is the total density of A in both gas and particle phase (g cm-3), and M is the 

mass loading of organic aerosol in the atmosphere (g cm-3). Both curvature and solute 

effects are corrected for pv and pv,s. The Molecular diffusion coefficient (Dv) for OPEs 

and OA are calculated and corrected according to (Jacobson, 2005). 
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   Internally mixed particles (OPEs-OA) are considered an ideal solution for OPEs. 

The evaporation of OA and OPEs are treated separately in this model. Then, the mass 

of the drop in each step is calculated by = +              Eq. (S4) 

Where, i=0, 1, 2… 

The evaporation rate constant (ke) of the OPE is obtained from the slope of the plot of 

ln(cOPE/cOPE,0) against t. The following parameters are used as inputs in to the model.  

Table S1 Inputs for the evaporation rate calculation. 

 TBEP  OA Air 
 (g cm-3)  1.02 a 1.27 b 1.18×10-3 c, 0.33 d 
 ( kg m-1 s-1) - - 1.86×10-5 e 
Vapor pressure (Pa)  3.3×10-6 f 3.3×10-7 g - 
M (g mol-1) 398 300 h 29 
m0 (g m-3) 1.0×10-3 5.0 h - 
Dv (cm2 s-1) h 0.1617 0.1635 - 
P (Pa) 101325 
T (K) 298 

a (IPCS, 2000); b (Lee et al., 2010); c gas-phase; d liquid-phase ; e (Kadoya et al., 1985); 

f (Bergman et al., 2012);g (Abramson et al., 2013); h (Vogel et al., 2013).  
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Figure S1. Experimental schematic for heterogeneous oxidation studies 
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Figure S2. NIST mass spectra of (A) citric acid (B) TBEP. 
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Figure S3. (A) Mass spectra of unreacted, (B) oxidized and (C) difference mass 

spectra for externally mixed TBEP and CA; (D) and (E) mass spectra of unreacted 

TBEP and CA.  
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Figure S4. Repeatability of OH exposures under the identical experimental conditions. 

OH concentrations were calibrated with methanol as a reference compound. The flow 

rate of gas flow is 1.03 L min-1 and the RH is 40±2 %. 
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Figure S5. Calculated evaporation curves of TBEP from (A) 200 nm particles for 

laboratory experiment, and (B) ambient PM1.0. 
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