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Abstract. The size and composition of particles contain-
ing black carbon (BC) are modified soon after emission
by condensation of semi-volatile substances and coagulation
with other particles, known collectively as “aging” processes.
Although this change in particle properties is widely rec-5

ognized, the timescale for transformation is not well con-
strained. In this work, we simulated aerosol aging with the
particle-resolved model PartMC-MOSAIC and extracted ag-
ing timescales based on changes in particle cloud condensa-
tion nuclei (CCN). We simulated nearly 300 scenarios and,10

through a regression analysis, identified the key parameters
driving the value of the aging timescale. We show that BC’s
aging timescale spans from hours to weeks, depending on
the local environmental conditions and the characteristics of
the fresh BC-containing particles. Although the simulations15

presented in this study included many processes and particle
interactions, we show that 80% of the variance in the aging
timescale is explained by only a few key parameters. The
condensation aging timescale decreased with the flux of con-
densing aerosol and was shortest for the largest fresh par-20

ticles, while the coagulation aging timescale decreased with
the total number concentration of large (D > 100 nm), CCN-
active particles and was shortest for the smallest fresh parti-
cles. Therefore, both condensation and coagulation play im-
portant roles in aging, and their relative impact depends on25

the particle size range.

1 Introduction

Particles containing black carbon (BC) alter the Earth’s en-
ergy balance by scattering and absorbing solar radiation (Mc-30

Cormick and Ludwig, 1967; Rosen et al., 1978; Schulz et al.,
2006), by interacting with clouds (Twomey, 1977; Twomey
et al., 1984; Lohmann et al., 2005; Albrecht, 1989; Acker-
man et al., 2000), and by decreasing the albedo of ice and

snow (Hansen and Nazarenko, 2004; Jacobson, 2004). Each35

of these climate effects depends on the properties of individ-
ual BC-containing particles and their atmospheric residence
time. The dominant removal mechanism of BC mass from
the atmosphere is wet deposition (Cozic et al., 2007), with
one important pathway being the activation of BC-containing40

particles into cloud condensation nuclei (CCN) and their sub-
sequent removal if the cloud precipitates. Although freshly
emitted BC-containing particles are too small and hydropho-
bic to activate (Maricq, 2007; Weingartner et al., 1997), their
morphology and chemical composition are altered soon af-45

ter emission by condensation of semi-volatile gases and co-
agulation with pre-existing particles (Johnson et al., 2005;
Oshima et al., 2009; Zaveri et al., 2010).

These changes in particle characteristics, termed “aging”,
often increase the particles’ susceptibility to cloud droplet50

nucleation and wet removal (Furutani et al., 2008; Cantrell
et al., 2001; Zuberi et al., 2005), so these processes must be
included in global models. However, a complex aerosol pop-
ulation that evolves with time is not easily simulated in cli-
mate models, so even sophisticated aerosol schemes do not55

fully resolve aerosol properties on a per-particle level (Jacob-
son, 1997; Wexler et al., 1994; Bauer et al., 2008; Binkowski
and Roselle, 2003; McGraw, 1997; Jacobson, 2002; Aquila
et al., 2011; Matsui et al., 2013). The simplest representa-
tion of aging classifies BC mass as either hydrophobic or60

hydrophilic, such that hydrophilic BC is susceptible to re-
moval by wet deposition and hydrophobic BC is not. In this
framework, BC is transferred from the hydrophobic (fresh)
category to the hydrophilic (aged) category according to a
first-order aging timescale (Cooke and Wilson, 1996; Croft65

et al., 2005; Koch, 2001). Global models apply a fixed aging
timescale of 1–3 days. Global modeling studies have shown
that estimates of BC’s climate forcing are sensitive to the as-
sumed aging timescale (Koch et al., 2009), but its value is
not well constrained. While some climate models have been70
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moving toward aerosol modules that represent aerosol aging
using several interacting modes (Aquila et al., 2011; Bauer
et al., 2008; Wilson et al., 2001; Matsui et al., 2013), the
practice of using a fixed aging timescale is still widespread
(Jo et al., 2013; Chin et al., 2014; Schmidt et al., 2014).75

To improve upon using one constant value for the aging
timescale, several studies have developed parameterizations
of BC’s aging timescale that vary with environmental condi-
tions. Liu et al. (2011) developed a parameterization of black
carbon aging by condensation that depended on the conden-80

sation rate of sulfuric acid and overall BC surface area. They
showed that, by allowing for slower aging in the winter, their
parameterization was better able to represent seasonal vari-
ability in black carbon transport to the Arctic. Oshima and
Koike (2013) extended this approach and developed a pa-85

rameterization of aging timescales based on simulations with
a box model. Their parameterization predicted the rate for
BC to transition from a hydrophobic class to a hydrophilic
class, expressed as a function of the mass-normalized coat-
ing rate and on parameters of the fresh BC size distribution.90

Riemer et al. (2004) showed that timescales for aging by co-
agulation decrease with the overall aerosol number concen-
tration, which they parameterized using a simple power law,
and this parameterization was applied by Croft et al. (2005).
Pierce et al. (2009) parameterized size-resolved coagulation95

rates as a first-order loss process that depends on the over-
all size distribution. In an analysis of aging timescales in a
specific urban environment using a particle-resolved model,
Riemer et al. (2010) showed that timescales for particles to
transition from CCN-inactive to CCN-active varied diurnally100

due to variations in condensation aging rates. Because the
timescale from Riemer et al. (2010) is based on changes in
particle CCN activity, it quantifies changes in particle char-
acteristics that these first-order aging models are meant to
represent.105

This study builds on the work of Riemer et al. (2010) to
generalize how the CCN-based aging timescale varies with
scenario-specific properties. Unlike other aerosol schemes,
which simplify the representation of particle composition,
the particle-resolved model tracks the composition of each110

simulated particle and is, therefore, uniquely suited to study
the impact of aging on per-particle CCN activity. The focus of
this paper is to identify the set of independent variables that
best explain variance in BC’s aging timescale for a large col-
lection of simulations. Using the independent variables iden-115

tified in this study, we will later introduce a simple aging
parameterization for use in global models.

2 Extracting aging timescales from particle-resolved
model output

In a first-order model of aging, particles transition from fresh120

to aged according to an aging timescale, τaging. In this frame-
work, a criterion must be applied to distinguish fresh and

aged particles. Particle CCN activity at a specified environ-
mental supersaturation is the aging criterion applied in this
work, so the aging timescale indicates changes in particles’125

susceptibility to removal by wet deposition. We define aged
particles as those that are activated at a specified environ-
mental supersaturation, and fresh particles are CCN-inactive
at that supersaturation threshold. The first-order aging model
is given by:130 [
dNfresh

dt

]
aging

=− 1

τaging
Nfresh, (1)

where Nfresh is the number concentration of fresh particles.
Before discussing the full set of sensitivity simulations in

Section 2.3, we describe the particle-resolved simulation of
aerosol dynamics in a baseline scenario and show how the ag-135

ing timescale is used to quantify changes in per-particle CCN
activity. The particle-resolved model is described in Section
2.1, and the κ-Köhler model (Petters and Kreidenweis, 2007)
for computing CCN activity from the PartMC-MOSAIC data
is discussed in Section 2.2. We discuss methods for comput-140

ing aging timescales from the particle-resolved model output
in Section 2.3.

2.1 Particle-resolved simulation of aerosol aging

The Particle Monte Carlo model (Riemer et al., 2009) cou-
pled to the Model for Simulating Aerosol Interactions and145

Chemistry (Zaveri et al., 2008), PartMC-MOSAIC, is a La-
grangian box model that simulates gas and aerosol chem-
istry, gas-aerosol mass transfer, aerosol coagulation, gas
and aerosol emissions, and dilution with background air.
The boundary layer height varies temporally according to150

a prescribed profile. The treatment of dilution is the same
as in (Riemer et al., 2009); a constant dilution rate of
1.5×10−5 s−1 is applied and additional dilution with back-
ground air occurs when the boundary layer height increases.
Coagulation events, particle emissions, and dilution with155

background air are simulated stochastically by PartMC. Gas-
and aerosol-phase chemistry and gas-aerosol mass transfer
are simulated deterministically by MOSAIC. MOSAIC in-
cludes modules for gas-phase photochemistry (Zaveri and
Peters, 1999), particle-phase thermodynamics (Zaveri et al.,160

2005b,a), and gas-particle mass transfer (Zaveri et al., 2008).
MOSAIC treats secondary organic aerosol formation based
on the SORGAM scheme (Schell et al., 2001). The cou-
pled model represents all atmospherically important aerosol
species, including sulfate (SO4), nitrate (NO3), chloride165

(Cl), carbonate (CO3), ammonium (NH4), sodium (Na), cal-
cium (Ca), methanesulfonic acid (MSA), black carbon (BC),
primary organic aerosol (POA), and eight secondary or-
ganic aerosol (SOA) species. A full description of the cou-
pled model can be found in Riemer et al. (2009). PartMC-170

MOSAIC represents changes in particle composition by con-
densation and coagulation; we do not consider changes in
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particle shape or aging by photochemical oxidation. PartMC
Version 2.1.4 was used to generate the results in this paper.
Simulations were performed at a time step of 60 seconds,175

with approximately 105 computational particles.
We simulated 288 plume scenarios, varying meteorolog-

ical conditions, emissions of gases and particles, and the
background number concentration, with further description
given in Section 2.3. The atmospheric composition and en-180

vironmental conditions differed between the scenarios, but
the general structure of all simulations was the same. In each
case, we simulated a well-mixed air parcel that is advected
over and away from large urban area. All scenarios started at
06:00 LST, at which time the parcel contained only back-185

ground gas and aerosol without any freshly emitted particles.
During transport over the urban area, the parcel received gas
and aerosol emissions from 06:00 LST until 18:00 LST, after
which all emissions ceased. In these scenarios, we simulate
a well-mixed boundary layer during the day, and the parcel190

is assumed to be in the residual layer at night. The temper-
ature, mixing height, and relative humidity were held con-
stant. Before discussing the full set of scenarios in Section
2.3, we show changes in CCN activity and the diurnal evolu-
tion of aging timescales in a baseline scenario. For this base-195

line scenario, Table 1 outlines background aerosol number
concentration, aerosol emission intensity, and size distribu-
tion and composition information for both background and
emitted aerosols. The background concentration and emis-
sion intensity of gas-phase species are provided in Table 2.200

2.2 κ-Köhler model for computing CCN activity

We determined aging timescales from the particle-resolved
results by tracking changes in CCN activity over two con-
secutive time steps. A particle’s ability to activate cloud for-
mation depends on its dry diameter Ddry,i and its hygroscop-205

icity parameter κi. The equilibrium saturation ratio (Si) over
an aqueous droplet is computed through the κ-Köhler model
(Köhler, 1936; Petters and Kreidenweis, 2007) as:

Si(Di) =
D3

i −D3
dry,i

D3
i −D3

dry,i(1−κi)
exp

(
4σwMw

RTρwDi

)
, (2)

where σw is the surface tension of water, Mw is the molec-210

ular weight of water, R is the universal gas constant, T is
the ambient temperature, ρw is the density of water, Di is
the particle wet diameter, Ddry,i is the particle dry diameter,
and κi is the hygroscopicity parameter introduced by Petters
and Kreidenweis (2007). All other factors being equal, parti-215

cles with a greater κi are more hygroscopic and more easily
activated. The parameter κ has been determined empirically
for a number of aerosol species (Table 3), and the effective
hygroscopicity parameter κi for each particle is the volume-
weighted average of κ for its constituent aerosol species. We220

denote the critical saturation ratio at which a particle acti-
vates and forms a cloud droplet with Sc,i and the critical su-
persaturation as sc,i =

(
S(Dc,i)− 1

)
× 100.

Figure 1 shows the two-dimensional number density dis-
tribution as a function of the particle dry diameter (Ddry,i)225

and the particle hygroscopicity parameter (κi). Only parti-
cles containing BC are shown in this figure. In the scenar-
ios presented in this study, all BC originated from diesel or
gasoline exhaust. Choosing a certain environmental supersat-
uration threshold allows us to classify the particles as fresh230

or aged. For example, all particles to the left of the line for
sc,i = 1% are considered “fresh” for environmental supersat-
urations of 1% or lower, and all particles to the right of the
line for sc,i = 1% are considered “aged” at supersaturations
above 1%.235

The number distributions corresponding to fresh emis-
sions, prior to any aging, are shown in Figure 1.a, and
changes in the distribution during two time periods are shown
in Figures 1.b and 1.c. Freshly emitted combustion particles
are small and hydrophobic, with geometric mean diameter240

Ddry,gm = 0.5 µm and with a hygroscopicity parameter of
κ= 3× 10−4 or κ= 8× 10−4 for particles from diesel or
gasoline, respectively. Therefore, most BC-containing par-
ticles are initially unable to activate at any environmental
supersaturation s < 1% (lines in Figure 1.a). As Ddry,i and245

κi for individual particles increase by condensation and co-
agulation, their critical supersaturation sc,i for CCN-active
decreases, shown by particles crossing the lines of con-
stant critical supersaturation in Figure 1. Secondary aerosol
forms through photochemical reactions during the day, caus-250

ing rapid changes in particles’ size and hygroscopicity. At
night aging by condensation rates are slow, so coagulation
is the dominant aging mechanism. This diurnal variation in
aging rates is consistent with observations (Rose et al., 2011;
Cheng et al., 2012). We define particles that “age” over a spe-255

cific time period as those that transition from CCN-inactive
to CCN-active, that is the particles that move from below a
supersaturation line (CCN-inactive) at time t to above super-
saturation line (CCN-active) at t+ ∆t.

2.3 CCN-based aging timescale260

For the entire particle population, this change in the particle
properties is quantified using the first-order aging timescale
defined in Equation 1. Because the time period ∆t is short
relative to the timescale τaging, Equation 1 can be approxi-
mated as:265

[
dNfresh

dt

]
aging

≈−∆Nf→a

∆t
, (3)

where ∆Nf→a is the number of discrete particles that transi-
tion from fresh at time t to aged at time t+ ∆t, calculated
from changes in the number of fresh particles. In this study,
aging timescales are computed over a time step ∆t= 10 min-270

utes. Combining Equations 1 and 3, the aging timescale is
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computed as:

τaging(t,s)≈∆t
Nfresh(t,s)

∆Nf→a(t, t+ ∆t,s)
. (4)

We refer to this aging timescale as the “bulk aging timescale”
because it corresponds to the entire fresh particle population,275

and the term ∆Nf→a includes all particles that transition from
fresh to aged, regardless of their size. Later, we will introduce
an analogous “size-resolved aging timescale”. Further details
on the derivation of the bulk aging timescale, including num-
ber balances for all processes affecting aging, are given in280

Riemer et al. (2010).
The temporal evolution of the timescale is shown for the

baseline scenario in Figure 2.a at s= 0.1%, s= 0.3%, and
s= 1%. The aging timescale is a simple metric for quanti-
fying the effects of changes in per-particle size and hygro-285

scopicity that are shown in Figure 1, and the gray shading in
Figure 2.a corresponds to the time periods shown in Figure 1.
Particles must become highly hygroscopic to activate into
cloud droplets at low s (e.g. s= 0.1%) but require less pro-
cessing to become CCN at higher values of s (e.g. s= 1%),290

so the aging timescale tends to be shorter for higher values
of s.

Any particle that transitions from fresh at t to aged at
t+ ∆t does so either by coagulation with a large, hygro-
scopic particle or by accumulating sufficient condensing ma-295

terial to become hygroscopic. The overall aging timescale
τaging can be represented as the combination of separate
timescales for aging by condensation τcond and by coagula-
tion τcoag:

1

τaging(t,s)
=

1

τcond(t,s)
+

1

τcoag(t,s)
. (5)300

The contribution of condensation and coagulation to the
overall aging timescale is shown by separate timescales
for aging by condensation (τcond) and coagulation (τcoag) at
s= 0.3% in Figure 2.b. We computed the coagulation and
condensation aging timescales by counting the number of305

particles that transition from fresh to aged after participat-
ing in a coagulation event, ∆Nf→a,coag, or that age only by
condensation, ∆Nf→a,cond. Then, we applied Equation 4 to
find the corresponding condensation and coagulation aging
timescales. Figure 2.b shows that the overall aging timescale310

is shortest during the day (e.g. 1 h at s= 0.3%) due to rapid
condensation of semi-volatile substances, and it is consider-
ably longer at night (e.g. 24 h at s= 0.3%), when coagulation
is the dominant aging mechanism. The temporal evolution of
τaging and τcond are shown for multiple supersaturation levels315

in Riemer et al. (2010).

3 Ensemble of particle-resolved model scenarios

The aging timescales shown in Figure 2 are limited to only
one scenario, and aging rates vary with local conditions. For320

example, the number concentration and size distribution of
background particles affect coagulation rates and, thereby,
the coagulation aging timescale. In order to identify the set
of independent variables that best explain variance in BC’s
aging timescale under a range of atmospheric conditions,325

we simulated aerosol dynamics in a series of plume scenar-
ios and extracted aging timescales for each scenario. As we
will show, the environmental properties that affect aerosol
dynamics varied diurnally and differed between scenarios,
causing the aging timescale to range from less than an hour330

(a large portion of particles age per time interval) to longer
than a week (few particles age per time interval).

The input parameters that were varied between the scenar-
ios are shown in Table 4. These input parameters were se-
lected to produce a range of environmental conditions, con-335

sistent with observations described by Jimenez et al. (2009)
and references therein. Simulations were performed using
every combination of input parameters given in Table 4, lead-
ing to a total of 288 scenarios. In each scenario, aerosol
concentrations and particle characteristics varied through-340

out the 24-hour simulation. The conclusions in this study are
based on these simulations of urban air masses.

Figure 3 shows the distribution of aerosol mass concentra-
tion for selected aerosol species for all scenarios simulated
with PartMC-MOSAIC (black lines) and corresponding am-345

bient observations compiled by Jimenez et al. (2009) (verti-
cal colored lines). The range of conditions simulated in the
ensemble of scenarios is representative of the distribution in
concentrations observed in these urban areas. The distribu-
tion in the number concentration of all particles and of BC-350

containing particles are shown in Figure 4.a and 4.b, respec-
tively. The size and composition of BC-containing particles
also varied over the course of an individual simulation, as we
showed in Figure 1. Variation in the geometric mean diam-
eter and in the geometric mean hygroscopicity parameter of355

BC-containing particles across all simulations are shown in
Figures 4.c and 4.d, respectively. Figures 3 and 4 were con-
structed from data at 10-minute intervals in each of the 288
simulations, corresponding to 41,000 time steps.

Variance in the aging timescale is shown by the proba-360

bility density distribution in Figure 5, which includes each
10-minute time interval in each of the 288 simulations. Dis-
tributions are shown for timescales computed at s= 0.1%,
s= 0.3%, and s= 1%. The supersaturation threshold s spec-
ifies the degree of change in particle properties required to365

classify a particle as aged, and timescales tend to decrease as
s increases. In the following sections, we show that most of
the variance in black carbon’s aging timescale at a specific s
is explained by only a few key variables.
4 Nonparametric regression analysis to quantify ex-370

plained variance

Black carbon’s aging timescale ranges from minutes to weeks
(Figure 5), depending on local conditions and characteristics
of BC-containing particles. We evaluated how well different
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combinations of independent variables explain variance in375

black carbon’s aging timescale by comparing predictions of
aging timescales from nonparametric regression with exact
aging timescales from PartMC-MOSAIC. A nonparametric
regression was chosen, rather than a parametric regression,
because we do not know a priori the shape of the predictor380

surface.
The procedure in applying a nonparametric regression is as

follows: 1) select a set of candidate independent variables to
test; 2) use most (90% of simulations) of the data as the train-
ing set to find the expected value of the aging timescale as a385

function of the independent variables, as will be explained
below; 3) evaluate this expected aging timescale using the
rest of the data (10% of simulations), called the testing set.
The timescale from the regression is assessed by how well it
predicts the values of the aging timescale in the testing set,390

represented by R2. The purpose of this exploration is to find
the independent variables that explain most of the variance in
the aging timescale, indicated by the largest value of R2. To
ensure that our conclusions did not depend on the choice of
scenarios, we repeated the analysis several times with ran-395

domly chosen testing and training sets and verified that R2

was insensitive to the specific choice of testing and training
sets.

4.1 Kernel density regression applied to particle-
resolved model data400

Figure 6 shows how the regression analysis is applied in this
study. For all times in all simulations in the testing set, a
particle that is fresh at time t may age between t and some
later time t+ ∆t or it may remain fresh over that time pe-
riod. Because these two events are mutually exclusive, this405

aging behavior in PartMC-MOSAIC may be represented by
a binary variable Yage,j(t, t+ ∆t,s), where Yage,j = 1 if the
particle ages between t and t+∆t and Yage,j = 0 if it remains
fresh. The aging timescale at each model time step can then
be computed as the average of Yage,j across all fresh BC-410

containing particles:

τaging(t,s) = ∆t
Np,fresh∑Np,fresh

i=1 Yage,j(t, t+ ∆t)
, (6)

which is equivalent to Equation 4, computed from Np,fresh in-
dividual particles over a specific model time step.

Alternatively, the expected probability that a fresh parti-415

cle will age, given its characteristics or the aging conditions
that it experiences, can be estimated from a nonparametric
regression. We applied the kernel density regression intro-
duced by Watson (1964) and Nadaraya (1964). The expected
value of Yage,j for a specific particle in the testing set is pre-420

dicted using the kernel density regression, using information
about the candidate variable xj only. The candidate variable
xj may be a particle-level characteristic, which varies be-
tween particles and, for a specific particle, varies over time
(e.g. particle wet diameter). The candidate variable xi may425

also be a characteristic of the environment, which varies over
time but, at a specific time, is the same for all particles (e.g.
aerosol number concentration). All candidate variables ex-
plored in this study are outlined in Table 5. In this section,
we show how the nonparametric regression can be applied430

to evaluate variance explained by a single candidate variable
at a time. Later, we show how this analysis can be extended
to evaluate combinations of independent variables.

At each time step in each simulation of the testing set,
the expected value of Yage(t, t+ ∆t,s) for each particle435

was computed as a weighted average of Yage,i(t, t+ ∆t,s)
for millions of individual particles in the training set. Val-
ues for Yage,i(t, t+ ∆t,s) in the training set are weighted
according to the kernel function Kh(x−xi), where x is
the independent variable of interest. The expected value of440

Yage(t, t+ ∆t,s) is given by:

E
[
Yage

∣∣xj(t),∆t,s] =

Np,train∑
i=1

Kh(xj(t)−xi)Yage,i

Ntrain∑
i=1

Kh(xj(t)−xi)
, (7)

where xi is the value of the independent variable for each
particle in the training set, xj is the value of the independent
variable for the target variable in the testing set, and Np,train445

is all particles in the training set, including all time steps in
all simulations.

Analogous to Equation 6, the expected value of the aging
timescale at a specific model time step, τ̂aging(t,s), is then
computed as the average of E

[
Yage

∣∣xj(t),∆t,s] across all450

BC-containing particles:

τ̂aging(t,s) = ∆t
Np,fresh∑Np,fresh

j=1 E[Yage|xj(t),∆t,s]
. (8)

In Section 4.1, we provide further explanation on the in-
clusion of particle-level characteristics in the prediction of
τ̂aging.455

In this study we used a Gaussian kernel function with stan-
dard deviation h:

Kh

(
xj(t)−xi

)
=

1√
2πh

exp

(
− (xj(t)−xi)2

2h2

)
. (9)

The kernel function Kh(xj(t)−xi) defines the weight ap-
plied to each model timescale τage,i to compute the expected460

timescale τ̂age, such that timescales for conditions similar to
the conditions of the target point are weighted most heav-
ily in the regression. The regression function predicted by
the kernel regression depends on the prescribed value for h,
where larger h results in smoother regression functions. We465

applied Silverman’s rule of thumb to select the value for h
(Silverman, 1986), such that h depends on the number of
independent variables, the standard deviation of each inde-
pendent variable, and the total number of data points in the
testing set.470
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If the candidate variable x strongly affects the value of
the aging timescale, the expected aging timescale ˆτaging, j
will accurately represent the actual aging timescale τaging,j ,
assuming a suitable kernel bandwidth h is applied in the ker-
nel regression. Aging rates scale with the inverse of the aging475

timescale, so we quantified the variance explained by the re-
gression function, R2, in terms of 1/τaging:

R2(s) = 1−

ntest∑
j=1

Nfresh,j(s)

(
1

τ̂aging,j(s)
− 1

τaging,j(s)

)2

ntest∑
j=1

Nfresh,j(s)

(
1

τ̂aging,j(s)
− 1

τ̄aging(s)

)2 ,

(10)

where τaging,j is the timescale from PartMC-MOSAIC for
each data point in the testing set, τ̂aging,j is the expected480

timescale from the regression for each data point in the test-
ing set, τ̄aging is the harmonic mean of the aging timescales
across all data points in the testing set, and Ntest is the num-
ber of data points in the testing set, where the data points
include all time steps in all scenarios.485

4.2 Inclusion of particle-level variables in the kernel re-
gression

To illustrate our approach for including particle-level
variables, we demonstrate the regression procedure using the490

wet diameter as the independent variable x. The resulting re-
gression surface is a size-dependent timescale, which gives
insight into the importance of aging processes as a function
of particle wet diameter. For a given set of environmental
conditions, some particles are more likely to age than oth-495

ers, and we find that a particles’ tendency to age depends on
their characteristics just prior to the aging period. We evalu-
ated how aging rates vary with a number of per-particle char-
acteristics, such as particles’ diameter at emission, their dry
diameter at the time when aging is evaluated, or their hy-500

groscopicity parameter when aging is evaluated. We found
that for given environmental conditions, per-particle aging
rates were most correlated with the wet diameter of fresh
(CCN-inactive) particles; that is, values of R2 were greatest
for regression functions that included the time-varying wet505

size distribution of fresh BC-containing particles.
It is therefore useful to introduce a size-resolved ag-

ing timescale that accounts for differences in aging rates
between particles of different sizes. Size-resolved aging
timescales were computed at each time t and supersaturation510

s using the kernel regression described in Section 4.1. The
expected value of Yage for a particle in the testing set with
wet diameter Dj(t) was computed as the weighted average
of Yage,i for rest particles the training set i= 1, ...,Np,train,
computed at a specific t and s:515

for a particle in the testing set of wet diameter Dj was

E
[
Yage|Dj(t),∆t,s

]
=

Np,train∑
i=1

KhD
(Dj(t)−Di)Yage,i

Np,train∑
i=1

KhD
(Dj(t)−Di)

, (11)

where the kernel weighting function Kh(Dj(t)−Di) is a
Gaussian (Equation 9), such that fresh particles with Di sim-
ilar to the target diameter Dj are weighted most heavily in520

the regression. The size-resolved aging timescale can also be
defined for a continuous size distribution of fresh particles
nfresh(t,D,s). Similar to Equation 8, the size-resolved aging
timescale, τaging(D), is computed as a function of E

[
Yage|D]

and the time step ∆t:525

τaging(t,D,s) =
∆t

E
[
Yage|D(t),∆t,s

] . (12)

For a particle-resolved population of fresh particles j =
1, ...,Np,fresh, where each particle has a unique wet diam-
eter Dj , the bulk, population-level aging timescale can be
estimated as the average of E

[
Yage|Dj(t),∆t,s

]
across530

all Np,fresh particles, as given in Equation 8 using xj =
Dj . Equivalently, the population-level aging timescale can
be computed through the average of the continuous size-
resolved aging timescale τaging(D,t,s), weighted by the size
distribution of fresh particles nfresh(D,t,s): integration of535

the continuous size-resolved aging timescale τaging(D,t,s)
over all D, continuous size distribution of fresh parti-
cle nfresh(D,t,s) as the average of τaging(D,t,s) across
all D, weighted by the size distribution of fresh particles
nfresh(D,t,s):540

τaging(t,s)−1 =

∫∞
0
τaging(t,D,s)

−1
nfresh(t,D,s)dD∫∞

0
nfresh(t,D,s)dD

. (13)

By this relationship, the bulk aging timescale under a spe-
cific set of environmental conditions also varies with the size
distribution of CCN-inactive (fresh) BC.

The temporal evolution of the size-resolved aging545

timescale is shown for the baseline scenario in the middle
column of Figure 7 for s= 0.3%. The contributions of co-
agulation (Figure 7.b) and condensation (Figure 7.c) to the
overall aging timescale (Figure 7.a) are shown by the sepa-
rate size-resolved timescales for each process. The dominant550

mechanism driving the aging timescale depends on the time
of day and the particle size.

A comparison between Figures 7.a and 7.c shows that con-
densation was the dominant process driving diurnal varia-
tion in the size-resolved aging timescale. This diurnal pat-555

tern in condensation aging conditions is reflected in the bulk
aging timescale shown in Figure 2. The bulk condensation
aging timescale was shorter than 4 h during the day for this
scenario, and this was the dominant process affecting aging
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rates at this time. However, Figure 7.c shows that these rapid560

transitions from CCN-inactive to CCN-active occurred only
for the largest (D > 50 nm) fresh particles, although conden-
sation also caused an increase in D for smaller fresh parti-
cles. The coagulation aging timescale, on the other hand, was
short for the smallest fresh particles and varied only slightly565

over the course of the simulation.
4.3 Combining particle-level and population-level vari-

ables in kernel regression

In this study, we performed a series of multivariate ker-
nel regressions to identify the combination of independent570

variables that best explain variance in black carbon’s ag-
ing timescale. In many cases, we extracted aging timescales
that depend both on characteristics of individual particles,
such as D, and on properties of entire particle populations
or the environment, such as the overall aerosol number con-575

centration N . One advantage of this approach is that both
particle-level variables and population-level variables can
be included in the prediction of Yage,j . For example, the ex-
pected value of Yage,j for a particle with diameter Dj that is
exposed to an aerosol number concentration Nj is computed580

with the bivariate kernel regression:

E
[
Yage|Dj ,Nj ] =

Np,train∑
i=1

KhD
(Dj(t)−Di)Khf

(Nj(t)−Ni)Yage,i

Np,train∑
i=1

KhD
(Dj(t)−Di)Khf

(Nj(t)−Ni)

. (14)

The overall aging timescale for a particular size distribu-585

tion exposed to a specific number concentration is the com-
puted as the sum across individual particles (Equation 8) or,
equivalently, by integrating over the size distribution (Equa-
tion 13). Equation 14 can easily be generalized to three or
more independent variables.590

5 Independent variables that best explain variance in
aging timescales

We found that most variance in the aging timescale is ex-
plained by only a few independent variables. Explained vari-
ance R2 is shown different combinations of independent595

variables as a function of the environmental supersaturation
s at which CCN activity is evaluated. For all supersaturation
levels, 90% of variance in the coagulation aging timescale
(Figure 8.a) was explained by regression predictions that
included the size distribution of fresh BC-containing par-600

ticles and the number concentration of large, CCN-active
particles (NCCN,large). Three variables were needed to ex-
plain 85% of variance in the condensation aging timescale
(Figure 8.b): the size distribution of fresh BC (nfresh(D));
the flux of secondary aerosol (ḟcond), defined as the vol-605

ume condensation rate of semi-volatile substances per par-
ticle surface area density; and the effective hygroscopicity
parameter of secondary aerosol (κcond), where κcond is the

volume-weighted average of κ for condensing semi-volatile
species. The size distribution of fresh BC was included in610

each case by determining a regression for the size-resolved
aging timescale before computing the bulk aging timescale
according to Equation 13. Only 10-15% of variance remains
unexplained, indicating that variables other than nfresh(D),
ḟcond, κcond, andNCCN,large also weakly taffect the value of the615

aging timescale.
Figure 8 shows the explained variance R2 as a function

of s for the independent variables that best explain vari-
ance in the coagulation and condensation aging timescales.
Approximately 90% of variance in the coagulation aging620

timescale was explained by regressions in terms of nfresh(D)
and NCCN,large (black line of Figure 8.a). Brownian coagula-
tion events are most likely to occur between large and small
particles, so the coagulation aging timescale decreases when
there are more particles that are CCN-active and are also625

large enough to be good coagulation partners. The small-
est fresh particles are likely to coagulate with large back-
ground particles, where we found the threshold for “large”
to be D > 100 nm by identifying the threshold that resulted
in the highest R2. A regression computed in terms of the630

number concentration of large particles (green line of Fig-
ure 8.a), rather than the number concentration of large and
CCN-active particles, gaveR2 ≈85% at high supersaturation
thresholds (s > 0.8%) but R2 < 10% at low supersaturation
thresholds (s < 0.1%). This is because not all particles with635

D > 100 nm are CCN-active at s= 0.1%, but nearly all par-
ticles that are CCN-active at this low s have D > 100 nm.
On the other hand, if the independent variable was the num-
ber concentration of CCN-active particles (blue line of Fig-
ure 8.a), rather than the number concentration of large and640

CCN-active particles,R2 ≈ 90% for timescales at low super-
saturation thresholds (s < 0.1%) and R2 ≈ 70% at high su-
persaturation thresholds (s > 0.8%). Only by considering the
number concentration of particles that are both CCN-active
and large, NCCN,large were we able to explain variance in the645

coagulation aging timescale at all supersaturation levels. If
the size distribution of fresh BC was neglected, R2 ranged
from 40% to 60%, depending on the supersaturation thresh-
old (yellow line of Figure 8.a).

While the expected aging timescale computed in terms650

of nfresh(D), ḟcond, and κcond (black line of Figure 8.b) ex-
plained greater than 80% of variance in the condensation
aging timescale, R2 was less than 60% for regressions that
did not include nfresh(D) (red line). Only 10-30% of vari-
ance was explained if κcond was not included in the regres-655

sion (grey line). If ḟcond was not included, R2 ≈ 0% for all
s, regardless of the other variables included in the regression
(not shown). This suggests, not surprisingly, that the conden-
sation rate is the key variable driving aging by condensation,
but the condensation aging timescale also depends strongly660

on the hygroscopicity of condensing aerosol κcond and on the
size distribution of fresh particles nfresh(D).
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5.1 Aging timescales as a function of governing param-
eters

The regression surfaces τ̂coag(NCCN,large,D) and665

τ̂cond(ḟcond,κcond,D) are shown in Figures 9.a and 9.b,
respectively. Figure 9.a shows that timescales for aging by
coagulation range from hours to weeks. The coagulation
aging timescale decreases with the number concentration of
“large”, CCN-active particles (NCCN,large) and, for a given670

NCCN,large, small BC-containing particles are more likely to
age by coagulation than large BC-containing particles. On
the other hand, condensation aging timescales are shortest
for the largest fresh particles and, for these particles, the
condensation aging timescale tends to decrease as ḟcond or675

κcond increase. The two panels of Figure 9.b show τ̂cond as
a function of ḟcond and D for secondary aerosol with dif-
fering hygroscopicity, κcond = 0.65 on the left, representing
secondary inorganic aerosol, and κcond = 0.1 on the right,
representing secondary organic aerosol.680

5.2 Sensitivity of aging timescale to aging conditions

In this section we apply the regression surfaces shown in
Figure 9 to selected example cases to demonstrate how ag-
ing conditions and the fresh particle size distribution af-
fect particle aging rates. Figure 10 shows how aging rates685

by condensation and coagulation can be reconstructed as
a function of the size distribution of fresh particles (Fig-
ure 10.a) and the size-resolve aging timescale (Figure 10.b).
We compare lognormal size distributions with geometric
mean diameter (Dgm) of 30 nm (dashed line of Figure 10.a)690

and 60 nm (solid line of Figure 10.a). Timescales were
computed for limiting environmental conditions, indicated
by line colors in Figure 10.b): slow coagulation aging
(NCCN,large = 500 cm−3, red line) or fast coagulation aging
(NCCN,large = 10,000 cm−3, blue line) and slow condensa-695

tion aging (ḟcond = 0.01 nm h−1, green line) or fast conden-
sation aging (ḟcond = 1 nm h−1, yellow line). Size-resolved
aging timescales are taken from the regression surfaces in
Figure 9 for these values of ḟcond and NCCN,large, assuming
κcond = 0.65 in both cases. Then, the rate at which particles700

of a given size transition from fresh to aged (Figure 10.c)
is computed as the product of nf(D) and 1/τage(D). Fig-
ure 10.c shows aging rates for particle distributions with
Dgm = 30 nm (dashed lines) and Dgm = 60 nm (solid lines)
under these limiting environmental conditions that promote705

rapid (blue lines) or slow (red lines) aging by coagulation
and rapid (yellow lines) or slow (green lines) aging by con-
densation.

For these two size distributions (Figure 10.a) and different
combinations of aging conditions (Figure 10.b), bulk aging710

timescales at s= 0.3% were computed according to Equa-
tion 13, and the results are given in Table 6. The combina-
tions of environmental conditions are as follows: 1) rapid
condensation aging (yellow lines in Figure 10.b) and slow

coagulation aging (red lines), 2) slow condensation aging715

(green lines) and rapid coagulation aging (blue lines), 3)
slow aging by both condensation and coagulation, and 4)
rapid aging by both condensation and coagulation.

The sensitivity of the bulk aging timescales to ḟcond and
NCCN,large depends strongly on the environmental supersat-720

uration s, as shown in Figure 11. At each supersatura-
tion, sensitivities are quantified as a logarithmic derivative,
or relative change in τage to a relative change in ḟcond or
NCCN,large. Negative values oft his metric indicate that in-
creasing NCCN,large or ḟcond corresponds to a decrease in725

τaging.
While τaging is most sensitive to NCCN, large at low super-

saturation levels, τaging shows the greatest sensitivity to ḟcond

at high supersaturation levels. At low supersaturation lev-
els, τaging is insensitive to ḟcond if the distribution contains730

a higher fraction of small particles (Dgm = 30 nm), regard-
less of conditions for aging by coagulation. If particles are
large (Dgm=60 nm), τaging at this low s is τaging sensitive
to ḟcond only under conditions of slow aging by coagulation.
At s= 1%, τaging is sensitive to ḟcond in all cases, regardless735

of the fresh particle size distribution or conditions for aging
by coagulation. Coagulation aging is relatively more impor-
tant at low supersaturation compared to high supersatura-
tion thresholds. Consistent with this fact, Figure 11a shows
that the sensitivity of the aging time scale toNCCN,large gener-740

ally decreases as s increases. The magnitude of the conden-
sational flux ḟcond impacts the sensitivity towards NCCN,large.
Environments with lower ḟcond result in a larger sensitivity to
NCCN,large.

6 Discussion745

Global models that employ first-order aging models assume
a fixed timescale of 1–3 days, but observations show that ag-
ing timescales can be as short as a few hours in polluted areas
(Zhang et al., 2008). Other modeling studies have suggested
parameterizations that account for this variation in aging con-750

ditions. Riemer et al. (2004) evaluated aging timescales in a
mesoscale model and parameterized timescales for aging by
coagulation as a function of the overall number concentra-
tion. Pierce et al. (2009) developed an analytical expression
that accounts for decreases in the number concentration of755

primary aerosol through coagulation events; for emitted par-
ticles of a specific size, the coagulation loss rate was com-
puted by integrating the coagulation kernel over the entire
background size distribution. However, the regression analy-
sis applied in the current study reveals that 90% of the vari-760

ance in the coagulation aging timescale can be explained
using a relatively simple representation of the background
size distribution. We showed that the variation in the size-
resolved aging timescales can be attributed to the number
concentration of particles that are both large (D > 100 nm)765
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and CCN-active. Other characteristics of the background size
distributions are not needed.

Oshima and Koike (2013) developed a parameterization
of the condensation aging timescale based on results from
a box model, and, similar to the present study, computed770

aging timescales based on changes in CCN activity. How-
ever, unlike the present study, Oshima and Koike (2013)
did not consider differences in the hygroscopic properties
of the condensing material, and their aging timescale var-
ied with the mass condensation rate per total BC mass con-775

centration. In contrast, the regression analysis in the present
study reveals that the volume condensation rate per overall
aerosol surface area is the variable that best explains variance
in BC’s condensation aging timescale, which is consistent
with laboratory studies (Zhang et al., 2008; Khalizov et al.,780

2009). The present work also differs from Oshima and Koike
(2013) in the representation of the aerosol size distribution.
Whereas Oshima and Koike (2013) parameterized bulk ag-
ing timescales for lognormal size distributions, we presented
a size-resolved aging timescale that can be applied to any ar-785

bitrary size distribution.
As in all relationships for BC’s aging timescale, the value

of the aging timescale depends strongly on the criterion used
to distinguish fresh and aged particles. Particle activation at a
specific environmental supersaturation is the aging criterion790

applied in this study, representing changes in particle charac-
teristics that most affect their susceptibility to wet deposition.
Table 6 shows that the value of the aging timescale depends
strongly on the criterion supersaturation at which CCN ac-
tivation was evaluated, consistent with Riemer et al. (2010)795

and Oshima and Koike (2013). Further, the relative impor-
tance of condensation versus coagulation as aging processes
also depends on the supersaturation threshold.

7 Conclusions

This study identifies the minimal set of independent variables800

needed to explain variance in black carbon’s aging timescale.
We simulated the evolution of gases and aerosols in a series
of urban scenarios with the particle-resolved model PartMC-
MOSAIC and extracted time-dependent aging timescales
based on the rate at which individual particles transition from805

CCN-inactive to CCN-active at a specified environmental su-
persaturation. The value of the aging timescale spanned or-
ders of magnitude, depending on local environmental con-
ditions and the supersaturation threshold at which CCN ac-
tivity was evaluated. Aging timescales were shorter than an810

hour under conditions of rapid secondary aerosol formation,
but on the order of days in the absence of secondary aerosol
precursors. Condensation aging timescales exhibited more
variation than coagulation aging timescales, and the relative
importance of each aging mechanism depended on the size815

range of particles to be aged. We performed a non-parametric
regression analysis on model data from 288 scenarios in or-

der to identify the independent variables with which aging
timescales are best correlated and quantified the portion of
variance explained by regressions in terms of these variables.820

This paper is the groundwork for the development of aging
parameterizations suitable for use in global models.

To our knowledge, this is the first study to apply a re-
gression analysis to identify the minimal set of parameters
needed to explain variance in black carbon aging rates. Af-825

ter evaluating a number of independent variables, we found
that the flux of secondary aerosol, the hygroscopicity of sec-
ondary aerosol, and the size distribution of CCN-inactive
(fresh) BC-containing particles were the minimal set of pa-
rameters needed to explain 80% of variance in the condensa-830

tion aging timescale. On the other hand, 90% of variance in
the coagulation aging timescale was explained by only two
variables: the size distribution of fresh BC-containing parti-
cles and the number concentration of particles that are both
large (D > 100 nm) and CCN-active. This work distills the835

complex interactions captured by the particle-resolved model
to a few input variables, all of which are tracked by existing
global climate models, and is a first step toward developing
physically-based parameterizations of aerosol aging.
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Köhler, H. (1936). The nucleus in and the growth of hygroscopic940

droplets. Transactions of the Faraday Society, 32:1152–1161.
Liu, J., Fan, S., Horowitz, L. W., and Levy, H. (2011). Evaluation

of factors controlling long-range transport of black carbon to the
arctic. Journal of Geophysical Research: Atmospheres (1984–
2012), 116(D4).945

Lohmann, U., Feichter, J., et al. (2005). Global indirect aerosol
effects: a review. Atmospheric Chemistry and Physics, 5(3):715–
737.

Maricq, M. M. (2007). Chemical characterization of particulate
emissions from diesel engines: a review. Journal of Aerosol Sci-950

ence, 38(11):1079–1118.
Matsui, H., Koike, M., Kondo, Y., Moteki, N., Fast, J. D., and Za-

veri, R. A. (2013). Development and validation of a black carbon
mixing state resolved three-dimensional model: Aging processes
and radiative impact. Journal of Geophysical Research: Atmo-955

spheres, 118(5):2304–2326.
McCormick, R. A. and Ludwig, J. H. (1967). Climate modification

by atmospheric aerosols. Science, 156(3780):1358–1359.
McGraw, R. (1997). Description of aerosol dynamics by the quadra-

ture method of moments. Aerosol Science and Technology,960

27(2):255–265.
Nadaraya, E. A. (1964). On estimating regression. Theory of Prob-

ability & Its Applications, 9(1):141–142.
Oshima, N. and Koike, M. (2013). Development of a parameteriza-

tion of black carbon aging for use in general circulation models.965

Geoscientific Model Development, 6(2):263–282.
Oshima, N., Koike, M., Zhang, Y., and Kondo, Y. (2009). Aging of

black carbon in outflow from anthropogenic sources using a mix-
ing state resolved model: 2. aerosol optical properties and cloud
condensation nuclei activities. Journal of Geophysical Research:970

Atmospheres (1984–2012), 114(D18).
Petters, M., Prenni, A., Kreidenweis, S., DeMott, P., Matsunaga,

A., Lim, Y., and Ziemann, P. (2006). Chemical aging and the
hydrophobic-to-hydrophilic conversion of carbonaceous aerosol.
Geophysical Research Letters, 33(24):L24806.975

Petters, M. D. and Kreidenweis, S. M. (2007). A single param-
eter representation of hygroscopic growth and cloud conden-
sation nucleus activity. Atmospheric Chemistry and Physics,
7(8):1961–1971.

Pierce, J., Theodoritsi, G., Adams, P., and Pandis, S. (2009). Pa-980

rameterization of the effect of sub-grid scale aerosol dynamics
on aerosol number emission rates. Journal of Aerosol Science,
40(5):385–393.

Prenni, A., Petters, M., Kreidenweis, S., DeMott, P., and Ziemann,
P. (2007). Cloud droplet activation of secondary organic aerosol.985

Journal of Geophysical Research, 112(D10):10223.
Riemer, N., Vogel, H., and Vogel, B. (2004). Soot aging time scales

in polluted regions during day and night. Atmospheric Chemistry
and Physics, 4(7):1885–1893.



L. Fierce et al.: Explaining variance in BC aging timescales 11

Riemer, N., West, M., Zaveri, R., and Easter, R. (2009). Simulating990

the evolution of soot mixing state with a particle-resolved aerosol
model. Journal of Geophysical Research, 114(D9):D09202.

Riemer, N., West, M., Zaveri, R., and Easter, R. (2010). Estimating
black carbon aging time-scales with a particle-resolved aerosol
model. Journal of Aerosol Science, 41(1):143–158.995

Rose, D., Gunthe, S., Su, H., Garland, R., Yang, H., Berghof, M.,
Cheng, Y., Wehner, B., Achtert, P., Nowak, A., et al. (2011).
Cloud condensation nuclei in polluted air and biomass burn-
ing smoke near the mega-city guangzhou, china–part 2: Size-
resolved aerosol chemical composition, diurnal cycles, and ex-1000

ternally mixed weakly ccn-active soot particles. Atmospheric
Chemistry and Physics, 11(6):2817–2836.

Rosen, H., Hansen, A., Gundel, L., and Novakov, T. (1978). Identi-
fication of the optically absorbing component in urban aerosols.
Applied Optics, 17(24):3859–3861.1005

Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel,
A. (2001). Modeling the formation of secondary organic aerosol
within a comprehensive air quality model system. Journal of
Geophysical Research. D. Atmospheres, 106:28.

Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell,1010

G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck,
R., et al. (2014). Configuration and assessment of the giss mod-
ele2 contributions to the cmip5 archive. Journal of Advances in
Modeling Earth Systems.

Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen,1015

T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., et al.
(2006). Radiative forcing by aerosols as derived from the ae-
rocom present-day and pre-industrial simulations. Atmos. Chem.
Phys, 6(12):5225–5246.

Silverman, B. (1986). Density estimation for statistics and data1020

analysis, volume 26. Chapman & Hall/CRC.
Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde,

M., Facchini, M., Decesari, S., Fuzzi, S., Zhou, J., Mønster, J.,
et al. (2006). Hygroscopic growth and critical supersaturations
for mixed aerosol particles of inorganic and organic compounds1025

of atmospheric relevance. Atmospheric Chemistry and Physics,
6(7):1937–1952.

Twomey, S. (1977). The influence of pollution on the shortwave
albedo of clouds. Journal of the Atmospheric Sciences, 34:1149–
1152.1030

Twomey, S., Piepgrass, M., and Wolfe, T. (1984). An assessment
of the impact of pollution on global cloud albedo. Tellus B,
36(5):356–366.

Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The
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Fig. 1. Two-dimensional probability density distribution shows changes in particle properties. As particles increase in size (horizontal axis)
and hygroscopicity (vertical axis), they are able to activate at lower critical supersaturation thresholds (superimposed lines). a) Freshly emitted
particles are hydrophobic, with κ= 3× 10−4 and κ= 8× 10−4 for diesel and gasoline, respectively. b) During the daytime, particles age
rapidly by condensation of semi-volatile substances that are produced through photochemical reactions. c) At night, condensation aging is
slow, and particles age only by coagulation.

Table 1. Aerosol Emissions and Initial Conditions for Baseline Simulation

Initial/Background N (m−3) Dgm (µm) σg Composition by Mass
Aitken Mode 9× 108 0.02 1.45 50% (NH4)2SO4, 50% SOA
Accumulation Mode 7.5× 108 0.116 1.65 50% (NH4)2SO4, 50% SOA
Emissions Ṅemit (m−2s−1) Dgm,emit (µm) σg Composition by Mass
Meat cooking 9× 106 0.0865 1.9 100% POA
Diesel vehicles 3.2× 107 0.05 1.7 30% POA, 70% BC
Gasoline vehicles 1× 107 0.05 1.7 80% POA, 20%BC
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Table 2. Gas-phase Initial Conditions and Emissions1 for Baseline Simulation

MOSAIC Species Symbol
Initial Mole

Fraction (ppb)
Emissions

(nmol m−2s−1)
Nitric oxide NO 0.1 15.9
Nitrogen dioxide NO2 1 0.84
Nitric acid HNO3 1.0
Ozone O3 50
Hydrogen peroxide H2O2 1.1
Carbon monoxide CO 21 291.3
Sulfur dioxide SO2 0.8 7.53
Ammonia NH3 0.5 6.11
Hydrogen chloride HCl 0.7
Methane CH4 2200
Ethane C2H6 1.0
Formaldehyde HCHO 1.2 1.68
Methanol CH3OH 0.12 0.28
Methyl hydrogen peroxide CH3OOH 0.5
Acetaldehyde ALD2 1.0 0.68
Paraffin carbon PAR 2.0 96
Acetone AONE 1.0 1.23
Ethene ETH 0.2 7.3
Terminal olefin carbons OLET 2.3× 10−2 2.42
Internal olefin carbons OLEI 3.1× 10−4 2.42
Toluene TOL 4.04
Xylene XYL 0.1 2.41
Lumped organic nitrate ONIT 0.1
Peroxyacetyl nitrate PAN 0.8
Higher organic acid RCOOH 0.2
Higher organic peroxide ROOH 2.5× 10−2

Isoprene ISOP 0.5 0.23
Alcohols ANOL 3.45

Table 3. Hygroscopicity parameter assigned to aerosol species

aerosol species κi citation
NO3 0.65 Clegg et al. (1998); Svenningsson et al. (2006); Petters and Kreidenweis (2007)
SO4 0.65 Clegg et al. (1998); Svenningsson et al. (2006); Petters and Kreidenweis (2007)
NH4 0.65 Clegg et al. (1998); Svenningsson et al. (2006); Petters and Kreidenweis (2007)
SOA 0.1 Prenni et al. (2007)
BC 0 Petters et al. (2006)
POA 0.001 Petters et al. (2006)
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Table 4. Input parameters varied in the ensemble of sensitivity simulations. Scenarios corresponding to the baseline conditions are indicated
in bold. All combinations of scenarios were included in the full ensemble of 288 simulations.

input parameter scenario name values assigned
gas-phase emissions G1 baseline gas emissions

G2 increase SO2 emissions by 200% and turn of NH3 emissions
G3 increase SO2 emissions by 300%
G4 increase SOA precursor emissions by 200% and turn off NH3 emissions

increase selected SOA-precursors by 100%

black carbon emissions BC1 baseline diesel and gasoline emissions
BC2 increase diesel and gasoline emissions by a factor of five
BC3 increase diesel and gasoline emissions by a factor of ten

background aerosol BG1 baseline background aerosol concentration
BG2 decrease background aerosol concentration by 45%

relative humidity RH1 95%
RH2 50%

meteorological conditions M1 5◦ N, July 19, 303 K
M2 5◦ N, January 5, 303 K
M3 40◦ N, July 19, 298 K
M4 40◦ N, January 5, 275 K
M5 60◦ N, July 19, 293 K
M6 60◦ N, January 5, 263 K

Table 5. Candidate variables included in the regression analysis.

symbol description type
D wet diameter particle-level
Ddry dry diameter particle-level
κ hygroscopicity parameter particle-level
εBC mass fraction BC particle-level
εSOA mass fraction SOA particle-level
εinorg mass fraction inorganic aerosol particle-level
N overall aerosol number concentration population-level
Awet aerosol surface area concentration population-level
V̇cond secondary aerosol formation rate, volume population-level
ḟcond secondary aerosol flux, V̇cond/Awet population-level
ṁcond secondary aerosol formation rate, mass population-level
κcond hygroscopicity parameter of secondary aerosol population-level
NCCN number concentration of CCN-active particles population-level
Nlarge num. conc. of particles with D > 100 nm population-level
NCCN,large num. conc. of CCN-active particles with D > 100 nm population-level
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Table 6. Bulk aging timescale for two fresh particle size distributions under different aging regimes. Condensation, coagulation, and overall
aging timescales are given for s= 0.3%. We assumed lognormal size distributions of fresh BC with a geometric standard deviation of 1.7.

input variables expected aging timescale

Dgm ḟcond NCCN,large s= 0.3%
[nm] [nm h−1] [cm−3] τ̂cond [h] τ̂coag [h] τ̂age [h]

30 0.01 500 460 17 16
60 0.01 500 44 40 20
30 1 500 18 17 9
60 1 500 2.8 40 2.6
30 0.01 10,000 460 5 5
60 0.01 10,000 44 6 5.4
30 1 10,000 18 2.6 2.2
60 1 10,000 2.8 6 2
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Fig. 2. For a single scenario, overall aging timescale for s= 0.1%,
s= 0.3%, and s= 1% in Figure 2.a and the overall, condensation,
and coagulation aging timescales for s= 0.3% in Figure 2.b. The
shaded regions show how the value of the aging timescale reflects
changes in per-particle characteristics, which correspond to Fig-
ure 1. Short aging timescales correspond to rapid increases in parti-
cle size and hygroscopicity (Figure 1.b), and long aging timescales
correspond to slow changes in particle properties (Figure 1.c)
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Fig. 3. Probability density function of aerosol mass species in simulations (black line in each graph) show that model cases represent
variation in atmospheric conditions from ambient observations (vertical colored lines). Probability density functions include all output time
steps in the full ensemble of sensitivity simulations.

Fig. 4. Probability density function of a) total aerosol number con-
centration, b) total number concentration of BC-containing parti-
cles, c) geometric mean diameter of BC-containing particles, and
d) geometric mean hygroscopicity parameter of BC-containing par-
ticles.

Fig. 5. Probability density function of aging timescales for the full
ensemble of sensitivity simulations, computed at three environmen-
tal supersaturation levels: s= 0.1%, s= 0.3%, and s= 1%.
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Fig. 6. Procedure for applying kernel regression to predict black
carbon’s aging timescale and quantifying the portion of variance
explained by that prediction, shown for a hypothetic input variable
x.

Fig. 7. For baseline scenario, a) overall size-dependent aging
timescale, b) condensation aging timescale, and c) coagulation ag-
ing timescale. Values are shown for s= 0.3%.
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Fig. 8. Coefficient of determination R2 for a) coagulation and b) condensation timescales as a function of supersaturation for selected
combinations of independent variables, where the combination of variables that explain most of the variance are shown by the black lines
in each graph. Regression analyses on the coagulation aging timescales are shown for four combinations of independent variables: (I)
including wet diameter, D, of fresh BC-containing particles and the number concentration of large (D > 100 nm), CCN-active particles,
NCCN,large, (II) including D of fresh BC-containing particles and the number concentration of large particles, Nlarge, rather than NCCN,large,
(III) including D of fresh particles and the number concentration of CCN-active particles, NCCN, rather than NCCN,large, and (IV) including
NCCN,large but without including D of fresh BC-containing particles. Regression analyses on the condensation aging timescale are shown
for three combinations of independent variables: (V) including secondary aerosol flux, ḟcond, the hygroscopicity of secondary aerosol, κcond,
and D of fresh BC-containing particles, (VI) including ḟcond and κcond but without including D of fresh BC-containing particles, and (V)
including ḟcond and D of fresh BC-containing particles but without including κcond. For all s, approximately 90% of variance in coagulation
aging timescale is explained by two independent variables (black line in Figure 8.a), and 80% of variance in condensation aging timescale
is explained by three independent (black line in Figure 8.b).

Fig. 9. Coagulation aging timescale as a function of wet diameter and number of large, CCN-active particles (Figure 9.a) and condensation
aging timescale as a function of wet diameter, secondary aerosol flux, and hygroscopicity of secondary aerosol (Figure 9.b). Results are
shown for a threshold supersaturation s of 0.3%.
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Fig. 10. Rate at which particles of specific size transition from fresh to aged (Figure 10.c) depends on size distribution of fresh BC (Fig-
ure 10.a) and size-resolved aging timescale (Figure 10.b). Results are shown at s= 0.3%, where the size-resolved aging timescale under
different conditions are determined from the regression function in Figure 9. The line colors in Figure 10.c correspond to the aging conditions
shown in Figure 10.b, and the line style in Figure 10.c correspond to the size distributions shown in Figure 10.a.

Fig. 11. Sensitivity of aging timescale to a) NCCN,large and b) ḟcond

as a function of supersaturation level, expressed as the logarith-
mic derivative of the timescale with respect to each variable. The
value of d logτage/d logNCCN,large, for example, indicates the rela-
tive change in τage to a relative change in NCCN,large. Shown for the
size distributions and aging conditions in Figure 10.
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