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Abstract 28 

New particle formation (NPF) events and their impacts on cloud 29 

condensation nuclei (CCN) were investigated using continuous 30 

measurements collected in urban Shanghai from 1 to 30 April 2012. 31 

During the campaign, NPF occurred in 8 out of the 30 days and enhanced 32 

CCN number concentration (NCCN) by a factor of 1.2-1.8, depending on 33 

supersaturation (SS). The NPF event on 3 April 2012 was chosen as an 34 

example to investigate the NPF influence on CCN activity. In this NPF 35 

event, secondary aerosols were produced continuously and increased 36 

PM2.5 mass concentration at a rate of 4.33 µg cm
-3

 h
-1

, and the growth rate 37 

(GR) and formation rate (FR) were on average 5 nm h
-1

 and 0.36 cm
-3

 s
-1

, 38 

respectively. The newly formed particles grew quickly from nucleation 39 

mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 40 

0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN 41 

activities (fractions of activated aerosol particles in total aerosols, 42 

NCCN/NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS 43 

of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol 44 

size distributions and chemical composition measured simultaneously 45 

were used to predict NCCN. There was a good agreement between the 46 

predicted and measured NCCN (R
2
=0.96, Npredicted/Nmeasured=1.04). This 47 

study reveals that NPF exerts large impacts on aerosol particle abundance 48 

and size spectra, thus significantly promotes NCCN and aerosol CCN 49 



activity in this urban environment. The GR of NPF is the key factor 50 

controlling the newly formed particles to become CCN at all SS levels, 51 

whereas the FR is an effective factor only under high SS (e.g. 1.0%) 52 

conditions. 53 

 54 

1. Introduction 55 

Atmospheric aerosols exert great impacts on global climate by 56 

affecting the earth’s radiation balance through directly scattering and 57 

absorbing solar and terrestrial lights, and indirectly modifying cloud by 58 

acting as cloud condensation nuclei (CCN) (Charlson et al., 1992; 59 

Lohmann et al., 2005). The indirect effect of primary and secondary 60 

aerosols brings up the largest uncertainty to predictions of aerosol 61 

radiative forcing and global climate change (IPCC, 2013). So far, many 62 

studies of field observation and modeling have found that new particle 63 

formation (NPF) significantly impacts aerosols and CCNs at worldwide 64 

locations (Ghan et al., 2001; Spracklen et al., 2006, 2008; Zhang, 2010). 65 

Normally, NPF in the atmosphere is identified as the nucleation of gas 66 

phase precursors and subsequent condensational growth, which is a 67 

crucial secondary transformation course (Birmili et al., 2000; Kulmala et 68 

al., 2004). In fact, NPF consists of a complex set of procedures, including 69 

the formation of nanometer-size clusters from gaseous vapors, the growth 70 

of these clusters, the removal of growing clusters by coagulation with 71 



pre-existing particles, and the further growth of survived clusters into 72 

aerosol particles, some of which are large enough to become CCN 73 

(McMurry et al., 1983, 2005；Weber et al., 1996). The NPF event can be 74 

effectively characterized by the formation rate (FR) of nucleation mode 75 

particles and the growth rate (GR) of freshly nucleated particles (Kulmala 76 

et al., 2012). On the basis of over 100 field measurements summarized by 77 

Wang et al. (2013), significant gaps still exist regarding both formation 78 

and growth rate outputs. For example, the GR varied in the range of 1-20 79 

nm h
-1

 and the FR in 0.01-10 cm
-3

 s
-1

. Condensable gaseous precursors 80 

and their coagulation sink responsible for NPF are commonly high in 81 

megacities of developing countries (Mönkkönen et al., 2005; Wu et al., 82 

2007). Gaseous sulfur is proved to play a vital role in nucleation process 83 

(Petäjä et al., 2009; Kulmala et al., 2013). Atmospheric ammonia can 84 

effectively lower the surface pressure of gaseous sulfuric molecular and 85 

participates homogeneous nucleation with gaseous sulfuric acid and water 86 

vapor (Smith et al., 2004; Sakurai et al., 2005; Gaydos et al., 2005). In 87 

addition, there are other species responsible for NPF such as amines (Yu 88 

et al., 2012; Benson et al., 2011), low-volatile organic vapors (Metzger et 89 

al., 2010; Paasonen et al., 2010; Riipinen et al., 2011; Ehn et al., 2014) 90 

and iodine compounds (O’Dowd et al., 2002; Vuollekoski et al., 2009). 91 

The newly formed particles from atmospheric nucleation are often 92 

able to grow into CCN size and further influence cloud properties or even 93 



global climate (Kerminen et al., 2005; Laaksonen et al., 2005; 94 

Wiedensohler et al., 2009). Kerminen et al. (2012) presents a synthesis of 95 

our current (by the end of 2012) knowledge of CCN production 96 

associated with atmospheric nucleation, and concludes that CCN 97 

production associated with atmospheric nucleation is both frequent and 98 

widespread phenomenon in numerous types of continental boundary 99 

layers, and probably also for a large fraction of the free troposphere. The 100 

latest model results show that the NPF events contribute much more to 101 

global aerosol number burden than primary emissions (Merikanto et al., 102 

2009; Yu et al., 2008). Under numerous atmospheric conditions aerosol 103 

has a positive feedback to CCN number concentration (NCCN) 104 

(Ramanathan et al., 2001; Laaksonen et al., 2005), and NCCN usually 105 

exhibits a significant increase after NPF (O’Dowd et al., 2001; 106 

Lihavainen et al., 2003; Kuwata et al., 2008; Yue et al., 2011). Due to 107 

various chemical species involved in NPF, the extent of NPF effects on 108 

CCN varied temporarily and spatially (Spracklen et al., 2008; Pierce and 109 

Adams, 2009). The long-term NPF observations were mainly conducted 110 

in Europe and North America, whereas little has been done in developing 111 

countries (Wang et al., 2013). To date, only a few studies have concerned 112 

NPF and its interaction with CCN in China. Yue et al. (2011) reported 113 

that the GR of sulfur-poor NPF was on average about 80% larger than 114 

that of sulfur-rich NPF, and the NPF events increased CCN by 0.4-6 115 



times in Beijing, where various source apportionment of PM2.5 was 116 

reported by Zhang et al. (2013). Wiedensohler et al. (2009) found that the 117 

CCN size distribution is dominated by the growing nucleation mode in 118 

Beijing, which accounted up to 80% of the total CCN number 119 

concentration, in contrast to the usually found phenomenon of the 120 

dominance by the accumulation mode. 121 

In the present study, we analyze a comprehensive dataset of 1-month 122 

simultaneous measurements of aerosol size spectra, NCCN, black carbon 123 

(BC), water-soluble ions and gaseous pollutants to understand the NPF 124 

events and their impacts on NCCN and aerosol CCN activity in an urban 125 

environment of Shanghai, one of the largest cities in China. A closure 126 

study between predicted and measured CCNs is also conducted to 127 

investigate the influence of aerosol chemical composition on its growth to 128 

CCN. An effective CCN prediction model is further developed based on 129 

model-measurement comparison results. 130 

2. Experimental 131 

2.1 Observational site 132 

   All instruments were mounted on the roof of one building 133 

approximately 20m above the ground in the campus of Fudan University 134 

(31˚18´N, 121˚29´E) located in Shanghai. The observational site is 135 

mainly surrounded by urban residential areas, where no large local 136 

emission was detected during this study. The East China Sea is 137 



approximate 40 km east of the site. Except CCN, other measurements 138 

conducted synchronously, including aerosol number size distribution 139 

(condensation nuclei (CN) of 10-800 nm), major inorganic water-soluble 140 

ions in aerosol particles, gaseous pollutants and meteorological factors. 141 

Local time (LT) used in this study is eight hours ahead of UTC. 142 

2.2 Measurement and instrumentation 143 

   A CCN counter (CCN-100, DMT, USA) with continuous flow and 144 

single column (Roberts and Nenes, 2006; Lance et al., 2006) was 145 

employed to monitor CCN concentrations at supersaturated conditions 146 

(SS in the range of 0.07-2%). Before the campaign, the instrument was 147 

calibrated for SS using standard (NH4)2SO4 particles. To maintain stable 148 

SS, according to the instrument operation manual, regular calibrations 149 

were also performed for temperature gradient, input and shear airflows 150 

and pressure (Leng et al., 2013). In addition, periodic zero checks were 151 

done to ensure counting accuracy for optical particle counter (OPC) 152 

installed inside the CCN counter. The ambient aerosol was firstly dried by 153 

a dryer (active carbon) to lower relative humidity (RH) below 30%, and 154 

subsequently introduced into the CCN counter (Leng et al., 2013). 155 

   Aerosol particle size distributions in the size range of 10-800 nm were 156 

measured using a high-resolution scanning mobility particle sizer (SMPS, 157 

TSI 3080, USA). Before and after the field campaign, the instrument was 158 

calibrated to maintain accurate particle sizing. The SMPS data are 159 



recorded by AIM (Aerosol Instrument Management) software from TSI 160 

company. The SMPS 3936 (TSI corp.) is employed to track the size 161 

distribution change, in which the CPC 3736 (TSI corp.) is used to count 162 

the number of particle of each size. The neutralizer 3077a (TSI corp.) is 163 

used in the system to provide known charge on the particles going into 164 

the SMPS. The size of the employed impactor is 0.071 cm. Both multiple 165 

charge and the diffusion correction is applied. The inlet information has 166 

been reported in our previously papers (Wang et al., 2009; Huang et al., 167 

2013). 168 

   BC was measured by an online monitor of Aethalometer (AE-31, 169 

Magee Scientific Co., Berkeley, California, USA) at a 5-min time 170 

resolution and a 5 l/min airflow rate. According to the strong ability of 171 

BC light absorption at near infrared wavelengths (Hansen et al., 1984; 172 

Weingartner et al., 2003), BC mass is determined using the light 173 

attenuation at 880 nm and the appropriate specific attenuation cross 174 

section proportional to BC (Petzold et al., 1997). The attenuation can be 175 

calculated based on the intensity difference of reference and sensing 176 

beams between light on and off (Dumka et al., 2010). In order to screen 177 

the impacts of other absorptive material, the data contaminated by 178 

mineral and dust aerosols were excluded from BC measurements. Details 179 

for instrument operating and calibrating can be found in Cheng et al. 180 

(2010). 181 



A monitor of aerosols and gases (MARGA, ADI 2080, Netherlands) 182 

was employed to measure the mass concentrations of major inorganic 183 

water-soluble ions (Na+, K
+
, Mg

+
, Ca

+
, SO4

2-
, Cl

-
, NO3

- 
and NH4

+
) in 184 

ambient aerosol particles at a 1h time resolution. The methods of 185 

sampling, operation and internal calibration of the MARGA were 186 

described in Du et al. (2011).  187 

  A continuous ambient particulate monitor (FH62C14, Thermo) was 188 

used to measure PM2.5 (particles in aerodynamic diameter less than 2.5 189 

µm) concentration online. The Thermo FH62C14 Continuous Ambient 190 

Particulate Monitor (FH62C14) is a radiometric particulate mass monitor 191 

capable of providing real-time measurements. It incorporates 192 

time-averaged measurements of an integral beta attenuation sensor and 193 

advanced firmware to optimize the continuous mass measurement. The 194 

FH62C14 equips a dynamic heating system (DHS) to maintain the 195 

relative humidity (RH) of the air passing through the filter tape of the 196 

radiometric stage well below the point at which the collected particles 197 

accrete and retain liquid water. The DHS system minimizes the internal 198 

temperature rise ensuring negligible loss of semi-volatiles from the 199 

collected sample when the ambient RH is below the threshold to which 200 

the heater is controlling. As the ambient RH increases above the threshold, 201 

the applied heating is optimized to maintain the RH threshold above the 202 

beta attenuation filter tape. Necessary sensor calibrations are performed 203 



for temperature, relative humidity, barometric pressure and volumetric 204 

flow regularly to maintain valid measurements. 205 

Moreover, an automatic weather station client (HydroMet
TM

, Vaisala) 206 

and a visibility monitor (Belford, M6000) were employed to collect the 207 

data of meteorological variables and atmospheric visibility. 208 

3. Results and discussion 209 

3.1 Overview of the entire period 210 

   The ground-based measurements contained NCCN at SS of 0.2-1.0%, 211 

aerosol size spectra, atmospheric visibility, PM2.5, BC, aerosol inorganic 212 

water-soluble ions and SO2 and were conducted during the period of 1-30 213 

April 2012. Figure 1 describes the general meteorological conditions (e.g. 214 

wind speed, wind direction, RH and temperature) for the entire period. 215 

Wind frequently changed direction and were mostly weaker than 6 m s
-1

. 216 

There was no significant precipitation in this month and RH seldom 217 

exceeded 90%. Temperature generally varied between 10-25 °C. 218 

Figure 2 shows the temporal variations of 5-min mean SO2, PM2.5 219 

concentration and atmospheric visibility for the entire period. In general, 220 

PM2.5 and visibility were negatively correlated and averaged 70±60 µg 221 

m
-3 

and 24.3±23.7 km, respectively. The maximum and average of PM2.5 222 

in the current study is of less magnitude than those measured in a 223 

previous study in 2006 in this urban environment which showed a range 224 

of 17.8-217.9 µg m
-3 

and an average of 94.6 µg m
-3 

(Wang et al., 2006). 225 



PM2.5 frequently experienced a clear inter-day oscillating with a similar 226 

intra-day cycle. PM2.5 can reflect the variations of ambient particulate 227 

pollutant loadings in the boundary atmosphere layer, and can be viewed 228 

as an additional proxy of pre-existing particle amounts for identifying 229 

NPF. In a broad view, atmospheric visibility frequently declined to be less 230 

than 10 km, revealing heavily polluted episode occurrences (e.g. haze). In 231 

fact, the haze or hazy days accounted for 50% of the study period, during 232 

which atmospheric visibility was on average 5.65 km, while it was 24.3 233 

km on average for the rest of the days. 234 

3.1.1 New particle formation events 235 

It has been widely accepted that the key criterion for discerning an 236 

NPF event is to identify an acute burst of nucleation mode particles, 237 

known as newly formed particles up to detectable size of 3 nm exceeding 238 

the background level and lasting for several hours and subsequent growth 239 

in mean particle size (Birmili and Wiedensohler, 2000; Kulmala et al., 240 

2004, 2012; Vakkari et al., 2011). The supplementary criterions are also 241 

needed for identifying NPF, such as low pre-existing particle loading, an 242 

apparent “banana” shaped particle number concentration as a function of 243 

time and size, and favorable weather conditions essential for excluding 244 

pre-existing particle disturbance particularly in urban environment (Shi et 245 

al., 2001; Heintzenberg et al., 2007; Olofson et al., 2009). In this study, 246 

although the SMPS is only capable of capturing particles no less than 10 247 



nm, the aerosol size spectra from the SMPS measurements was available 248 

to determine NPF and to calculate the FR and GR of NPF. 249 

In this study, the days with distinct bursts of nucleation mode (10-20 250 

nm) particles lasting for at least 1.5 h from their initial outbreak to 251 

maximum in number concentration, and with apparent growth to larger 252 

sizes (e.g. 20-50 nm) for a few hours, were defined as effective NPF days. 253 

The rest of the days were defined as non-NPF days. Figure 3 shows the 254 

1-month series of aerosol size distribution, 4-min mean total (Ntotal) and 255 

nucleation mode (N10-20nm) aerosol number concentration and 1 h mean 256 

CCN concentration. On a whole, 8 out of the 30 days were characterized 257 

as the NPF days, which represented an occurrence frequency of 27% and 258 

was much higher than the 5.4% measured by Du et al (2012) at the same 259 

site in winter. Many studies have observed greater NPF frequency in 260 

springtime in northern hemisphere. For example, seasonal NPF pattern 261 

with a spring maximum and winter minimum is typical for all Nordic 262 

stations (Dal Maso et al., 2007; Kristensson et al., 2008; Vehkamäki et al., 263 

2004). In North China Plain, The number of events was highest in the 264 

spring months (Wang et al., 2013). The high frequency during spring in 265 

urban Shanghai is probably due to high frequency of strong wind from 266 

northern China, which helps removing the pre-existing particles in the 267 

atmosphere and further favors the occurrence of new particle formation 268 

events (Wu et al., 2008; Wang et al., 2013). 269 



3.1.2 Formation and growth rate, and condensation sink 270 

Formation and growth rates are two essential factors characterizing 271 

NPF events (Yue et al., 2011; Kulmala et al., 2012). The FR rate is 272 

theoretically defined as the mean increase rate of nucleation mode 273 

particle in number concentration as a function of time (dNnucleation/dt) 274 

during the nucleation stage of a NPF event. In this paper, due to the losses 275 

of newly-formed nucleated particles caused by coagulation, and the 276 

measurement unavailable for 3-10 nm particles, this calculation only 277 

yielded an “apparent particle formation rate (APFR)” (Du et al., 2012). It 278 

should be noted that this APFR would be an underestimate in comparison 279 

with the actual formation rate. On the other hand, the GR rate refers to the 280 

mean size growing rate of nucleated particles in geometric mean diameter 281 

as a function of time during the growth stage of a NPF event, which has 282 

been described in details elsewhere (Kulmala et al., 2001, 2004b; Dal 283 

Masol et al., 2005). The mode diameter, namely a calibrated geometric 284 

mean diameter automatically made by SMPS itself for all aerosol size 285 

bins instead of only for nucleated particles, is used to calculate particle 286 

growth rate in this study. Similarly, this calculation produces an “apparent 287 

particle growth rate (APGR)”. The APGR would be an overestimate in 288 

comparison with the real growth rate due to inclusion of the GR rate 289 

caused by coagulation, which is not related to particle mass increases 290 

(Kerminen and Kulmala., 2002). 291 



The condensation sink (CS) describes how rapidly vapor molecules can 292 

condense onto the particles and can be used to represent the pre-existing 293 

particle concentrations (Kulmala et al., 2001). Its values can be directly 294 

calculated from the measured aerosol particle size distributions using 295 

equation (1) as following: 296 

2 pCS D D N                           (1)  297 

Where D is the diffusion coefficient of the condensing vapor, β is the 298 

transitional regime correction factor and can be determined using method 299 

from Fuchs and Sutugin (1971), Dp is the particle diameter and N is the 300 

particle number concentration of corresponding size. More explanations 301 

and the derivation process for equation (1) can be seen in many studies 302 

(Kulmala et al., 2001, 2005; Dal Maso et al., 2002, 2005; Gong et al., 303 

2010; Shen et al., 2011; Gao et al., 2012; Wang et al., 2013), therefore it 304 

was only briefly summarized here. It is worth noting that this calculated 305 

CS might be underestimated compared to the real values because its 306 

derivation is based on the dry particle number size distributions incapable 307 

of necessarily representing ambient wet condition well in this study. The 308 

uncertainty coming from the effect of ambient hygroscopic growth of 309 

aerosols on CS ranges from 5% to 50% (Kulmala et al., 2001).  310 

The mean formation and growth rates of NPF events were 0.40 cm
-3

 s
-1

 311 

and 4.91 nm h
-1

, respectively, during the whole campaign. The formation 312 

and growth rates showed a strong location dependence, for example, 313 



higher formation and growth rates have been observed in New Delhi 314 

(3.3-13.9 cm
-3

 s
-1

, 11.6-18.1 nm h
-1

) and Atlanta (20-70 cm
-3

 s
-1

), while 315 

comparable values were measured in Beijing (6 cm
-3

 s
-1

, 4 nm h
-1

) for 316 

sulfur-rich aerosol type and (2 cm
-3

 s
-1

, 6 nm h
-1

) for sulfur-poor aerosol 317 

type and in Shanghai (3.3-5.5 nm h
-1

) (Kulmala et al., 2004; Mönkkönen 318 

et al., 2005; Yue et al., 2011; Du et al., 2012). The mean CS values were 319 

0.021 s
-1

 on the NPF event days and 0.040 s
-1

 on the non-event days, 320 

lower than those measured in Beijing (0.027±0.021 and 0.047±0.024 321 

s-1) and New Delhi (0.050-0.070 s
-1

), and higher than those observed in 322 

Shangdianzi (SDZ, a regional station located in the North China Plain, 323 

about 120 km northeast of Beijing, 0.020±0.020 and 0.026±0.018 s
-1

), 324 

and European urban environments including Marseille (0.003-0.015 s
-1

), 325 

Athens (0.006-0.013 s
-1

) and Helsinki (0.006 s
-1

) (Kumala et al., 2005; 326 

Hussein et al., 2008; Wang et al., 2013). 327 

3.1.3 NPF impacts on aerosol CCN activity 328 

  Pierce and Adams (2007) are the first ones that present the full 329 

theoretical framework on the efficiency of CCN production resulting 330 

from nucleation. To explore the NPF potential influence on CCN, we 331 

further examined the impacts of FR and GR rates in NPF events on NCCN 332 

and aerosol CCN activity. Table 1 summarizes the NCCN enhancement 333 

ratios for different FR and GR levels during the entire campaign. 334 

It has been widely recognized that NCCN is positively correlated to NCN 335 



under various atmospheric conditions (Ramanathan et al., 2001; 336 

Laaksonen et al., 2005), and enhancements on NCCN are expected after 337 

NPF events (O’Dowd et al., 2001; Kuang et al., 2009; Yue et al., 2011). 338 

Theoretically, the high FR rate produces more secondary aerosol particles 339 

(i.e. NCN), which may subsequently impact NCCN if new particles grow 340 

into greater sizes (Ghan et al., 2001; Spracklen et al., 2006, 2008; Zhang, 341 

2010). In this paper, however, NCCN was insensitive to the FR rate of NPF 342 

at SS of 0.2-0.8%, as indicated by the small differences in NCCN 343 

enhancement ratios under various FR and SS values. This finding agrees 344 

with the results of earlier studies that the nucleation of newly formed 345 

particles within the boundary layer poses a minor impact on NCCN. 346 

Carslaw et al. (2007) found that NCCN increased only by 12-17% after a 347 

two order of magnitude increase of nucleation rate in central Europe. A 348 

similar result has been reported in Beijing (Yue et al., 2011). The possible 349 

explanation is in two aspects. The first one is due to the two separate and 350 

self-governed processes in particle formation and subsequent growth. A 351 

high formation rate does not necessarily correspond to a high GR rate 352 

since the newly formed particles may not grow into CCN size with 353 

insufficient time period. The second one is due to coagulation process 354 

between particles which leads to reduced NCN and further lowers NCCN 355 

enhancement ratios. In fact, the impact of FR in NPF on NCCN 356 

enhancement increased with SS (Table 1). The lower critical dry diameter 357 



under higher SS for a given aerosol particle was probably the main reason. 358 

For example, according to the κ-Köhler theory (Köhler., 1936; Petters and 359 

Kreidenweis., 2007), pure NaCl particles can act as CCN only at 65 nm 360 

under SS 0.2%, while it can be activated at 22 nm under SS 1.0%. 361 

Presumably, with the presence of an unrealistic high SS where all 362 

nucleation mode particles (10-20 nm) are activated, the formation rate 363 

would be one controlling factor. 364 

On the other hand, what controls a newly formed particle to become a 365 

CCN is its survival probability whether it has enough time to grow into 366 

thermodynamic stable size by competing with the capture and removal of 367 

pre-existing particles (Kerminen et al., 2001; Pierce and Adams, 2007; 368 

Zhang et al., 2012). Toward to this end, the aerosol GR rate of NPF 369 

responsible for this survival probability was observed to exert a valid 370 

effect on NCCN enhancement ratios. As was found in this study, the NCCN 371 

enhancement ratios at larger GR rate were higher than those at lower GR 372 

rate by a factor of 1.06-1.13 depending on SS. 373 

Overall, the NCCN enhancement ratios due to NPF varied as a function 374 

of FR and GR rates and SS. In real atmosphere, SS varys from exceeding 375 

1.0% in clean-air stratus cloud to slightly less than 0.1% in polluted 376 

conditions (Hudson and Noble, 2014). FR may logically play a vital role 377 

in CCN production in the clean-air stratus cloud while exert a minor 378 

impact in polluted conditions. GR is invariably the most important factor 379 



in controlling the extent of newly formed particles in becoming CCN 380 

during NPF. 381 

3.2 Characteristics of a typical NPF 382 

3.2.1 Increased concentrations of nanoparticles 383 

The NPF event spanning the period from 10:00 LT on 3 April to 4:00 384 

LT on 4 April is analyzed in detail to shed some light on the relationship 385 

between NPF and CCN. This NPF event was identified to consist a 386 

nucleation stage (10:00-13:00 LT) and a growth (13:00-4:00 LT) stage 387 

(Fig. 4). 388 

Before 10:00 LT on 3 April, PM2.5 was below 20 µg m
-3 

due to the 389 

relatively strong wind speed (e.g. 6 m s
-1

) favoring pollutant dispersion. 390 

BC was less than 1 µg m
-3

 and atmospheric visibility exceeded 30 km 391 

(Fig. 5 and 6). Apparently, the pre-existing particles of nucleation mode 392 

(10-20 nm) were low (Fig. 7). Newly formed particles increased quickly 393 

in just 1.5 hours from the initial outbreak to the maximum concentration 394 

of 1800 cm
-3

 (Fig. 7). During the same time period, NCN increased from 395 

15,000 to 25,000 cm
-3

. The newly formed particles grew in size in the 396 

following periods (the growth stage) due to condensation, heterogeneous 397 

reactions of chemical compounds and coagulation between particles 398 

(Wang et al., 2010). The temporal variations of median, geometric mean 399 

and mode diameters for the measured aerosol population are given in Fig. 400 

7. In general, these three diameters were strongly correlated with each 401 



other and increased in size ever since the nucleation burst occurred. 402 

During this period, the wind speed was mostly less than 2 m s
-1

, implying 403 

a weak atmospheric dilution of pollutants. PM2.5 increased after 17:00 LT 404 

on 3 April, showing a significant enhancement from 38 to 86 µg m
-3

. In 405 

addition, BC correlated well with PM2.5, and they both reduce 406 

atmospheric visibility. 407 

3.2.2 Insights into chemical species involved 408 

Several factors likely determine if a chemical species is to act as 409 

nucleation precursor, including its abundance, reactivity and volatility 410 

(Zhang et al., 2012). Gaseous H2SO4 has been proved to be a key 411 

precursor participating in nucleation process due to its low volatility 412 

(Petäjä et al., 2009; Kulmala et al., 2013), and a necessary condition for 413 

new particle formation is for its molecular concentration exceeding 10
5
 414 

cm
-3

 in atmosphere (Weber et al., 1999, Nieminen et al., 2009). The 415 

condensation of gaseous H2SO4 together with subsequent neutralization 416 

with ammonia plays a dominant role in the growth of Aitken mode 417 

particles, whereas it exerts little contribution to the growth of particles in 418 

accumulation mode (Zheng et al., 2011). 419 

However, direct measurement of sulfuric acid in ambient air is still 420 

challenging, appropriate proxies are needed. Petäjä et al. (2009) 421 

measured the sulfuric acid and OH concentration in a boreal forest site in 422 

Finland and successfully developed three reasonable proxies for sulfuric 423 



acid concentration by using the measured time series as a foundation. 424 

Their proxies refer to source (i.e. gaseous SO2, hydroxyl radical, solar 425 

radiation in 280-320 nm range, and global radiation) and sink (i.e. 426 

condensation sink) terms, and the simplest one is the radiation times SO2 427 

divided by condensation sink. In this paper, the source and radiation 428 

terms are unavailable, one may plausibly conjecture similar promotion of 429 

H2SO4 on the basis of its gaseous precursor (e.g. SO2) evolution (Zhang 430 

et al., 2012). 431 

SO2+OH → H2SO4 432 

The particle nucleation event showed a burst of 10-20 nm particles when 433 

SO2 peaked at 10:00 LT on 3 April, with its mass and molar 434 

concentrations exceeding 4.1 µg m
-3

 and 3.8×10
10

 cm
-3

, respectively (Fig. 435 

8). Afterwards, SO2 underwent a gradual decrease down to 1.5 µg m
-3

, 436 

and SO4
2-

 correspondingly increased from 8 to 10 µg m
-3

. The good 437 

agreement between SO2 and nucleation mode particles denotes the key 438 

role of gaseous sulfur in controlling particle nucleation (Zhang et al., 439 

2012; Kulmala et al., 2013). 440 

Besides gaseous sulfur, other nucleation precursors have been proposed 441 

to involve in the critical nucleus formation in numerous environment 442 

conditions (Riipinen et al., 2011; Zhang et al, 2012). For example, 443 

atmospheric ammonia can significantly lower the surface vapor pressure 444 

of gaseous sulfuric acid molecular and participate homogeneous 445 

O2 H2O 



nucleation with gaseous sulfur acid and water vapor. According to the 446 

classical ternary homogeneous theory developed recently, the presence of 447 

ammonia in ppt level significantly enhances nucleation rates (Yu et al., 448 

2006). Many field measurements and laboratory simulations have 449 

corroborated the crucial role of ammonia in the growth of newly formed 450 

particles (Smith et al., 2004; Sakurai et al., 2005; Gaydos et al., 2005). 451 

Though experimental evidence seems very limited, nitrate has been 452 

reported as a crucial contributor to nanoparticle growth, especially for 453 

10-30 nm particles where nitrate is dominant (Hildebrandt et al., 2012). 454 

Riipinen et al. (2011) combined observations from two continental sites 455 

to show that condensation of organic vapors (i.e. non-volatile and 456 

semi-volatile species) is a crucial factor governing the lifetimes and 457 

climatic importance of the smallest atmospheric particles. Ehn et al. 458 

(2014) find that several biogenic VOCs (e.g. monoterpenes) form large 459 

amounts of extremely low-volatility vapours and further demonstrate that 460 

these low-volatility vapours can enhance (or even dominate) the 461 

formation and growth of aerosol particles over forested regions. In this 462 

paper, NO3
- 
increased by a factor of 1.33 and NH4

+
 increased by a factor 463 

of 1.45 during the case NPF event, indicating that the particle growth is 464 

partly driven by the condensation of atmospheric precursors (Fig. 8). 465 

3.2.3 Aerosol CCN activity enhancement 466 

Figure 9 shows the temporal evolutions of NCCN and aerosol CCN 467 



activity at SS of 0.2-1.0% for the entire period. The enhanced NCN and 468 

reduced aerosol CCN activity, associated with nucleation mode particle 469 

burst, was observed between 10:00 and 13:00 LT on 3 April. In contrast 470 

to NCN which increased immediately after the burst of nucleation mode 471 

particles, there was a 4 h delay in the increase of NCCN. As the newly 472 

formed particles grew into larger sizes, both NCCN and aerosol CCN 473 

activity increased at various stages under different SS. At a SS higher 474 

than 0.4%, NCCN peaked at 20:00 LT on 3 April. NCCN greatly promoted 475 

from 8000-12,000 cm
-3

 to 13,000-20,000 cm
-3 

under higher SS, however, 476 

only slightly from 6000 to 7000 cm
-3 

under lower SS (e.g. 0.2%). Larger 477 

critical dry diameter corresponding to lower SS should be the main 478 

reason. For example, the critical dry diameter for pure (NH4)2SO4 particle 479 

was 83 nm at SS of 0.2% and was only 29 nm at SS of 1.0%. The newly 480 

formed particles rarely grew larger than 83 nm in size in this NPF event, 481 

hence less NCCN enhancement was expected at SS of 0.2%. In summary, 482 

the NCCN enhancement ratios were 1.17-1.88 depending on SS value. In 483 

Beijing, a larger NCCN enhancement ratio of 1.4-7 was observed under SS 484 

of 0.07-0.86% caused by NPF (Yue et al., 2011). 485 

In comparison with NCCN, aerosol CCN activity was more sensitive to 486 

aerosol size spectra and meteorology factors, which exerts a big 487 

complexity into the temporal variation of aerosol activation. Aerosol 488 

activities were effectively reduced by abundant ultra-fine aerosol particles 489 



(CCN-inert) produced during the nucleation period. The minimum 490 

(0.2-0.6) of aerosol activities was found at 13:00 LT on April when the 491 

particle growth started. Owing to the high survival probability of particles 492 

growing from nucleation mode to accumulation mode (CCN size), 493 

aerosol activities began to increase at different steps for varying SS and 494 

reached their maximums of 0.3-0.9 (0.2-1.0% SS) at 4:00 LT on 4 April, 495 

eight hours after NCCN peaked.  496 

3.2.4 Towards CCN closure for NPF 497 

  A kappa value κ describing particle hygroscopiciy, firstly 498 

introduced by Petters and Kreidenweis (2007), was employed here to get 499 

CCN closure study during NPF. Assuming aerosol particle population is 500 

totally internal-mixed, the effective integrated κ can be obtained through 501 

weighting their chemical compound volume factions, 502 

                     i i

i

                                   (2) 503 

where εі is the volume fraction of chemical compounds in particles, 504 

and κі is the effective κ of individual chemical composition. This 505 

equation has been widely used and described in detail elsewhere (Petters 506 

and and Kreidenweis., 2008; Yue et al., 2011). Aerosol particle 507 

compositions were classified into three categories, and κі and εі for 508 

individual composition are listed in Table 2, of which “others” refers to 509 

PM2.5-(SO4
2-

+NO3
-
+NH4

+
+Cl

-
+Na

+
), and is viewed as a chemical 510 

compound with κі=0 (Yue et al., 2011). Due to MARGA data limitations, 511 



we only attempted to get CCN closure for the case NPF event in this 512 

study. The hourly mean κ values were varying from 0.19 to 0.42, and had 513 

an average of 0.28 during the case NPF event. In total, 83.2% of the 514 

effective κ was explained by SO4
2-

+NO3
-
+NH4

+
, with their individual 515 

contributions of 37.4%, 27.5% and 18.3%, respectively. By using the 516 

calculated κ, the critical dry diameter for a particle to act as CCN at a 517 

given SS can be determined from an extended κ-Köhler theory: 518 

S(D)=

3 3

/a

3 3

4
exp( )

(1 )

d s

d

D D M

D D RT D





 

   
                   (3) 519 

where   is the density of water, M  is the molecular weight of water,  520 

/as is the surface tension of the solution/air interface, R is the universal 521 

gas constant, κ is the hygroscopicity parameter, T is temperature, D is the 522 

diameter of the droplet and S(D) is the critical dry size under a given SS. 523 

More explanation and the derivation process of equation (3) have been 524 

given in detail by Petters and Kreidenweis (2007), therefore there is only 525 

brief summarization here. The CCN population can be effectively viewed 526 

as a subset of measured aerosol size distributions since the operating 527 

range includes the majority of atmospheric particles (10-800 nm). 528 

Computed for σs/a=0.072 J m
-2

 and T=298.15 K, the predicted CCN 529 

number concentration can be calculated through integration between the 530 

bottom and top critical dry diameters (i.e. S(D)). 531 

Figure 10 provides correlation analysis for the hourly-averaged (N=90) 532 

predicted and measured NCCN at SS of 0.2-1.0%. The agreement was 533 



excellent between the predicted and measured NCCN, and a linear 534 

regression produced a slope of 0.98 and an intercept of -150 cm
-3

, with a 535 

correlation coefficient (R
2
) of 0.96. The ratio of Npredicted/Nmeasured varied 536 

between 0.83 and 1.28 with an average of 1.04. 537 

4. Conclusions 538 

The new particle formation (NPF) events and their impacts on the 539 

abundance and properties of cloud condensation nuclei (CCN) were 540 

investigated using 1-month continuous measurements collected in 541 

downtown Shanghai from 1 to 30 April 2012. The NPF events were 542 

observed in 8 out of the 30 days, and their formation and growth rates 543 

were 0.40 cm
-3 

s
-1

 and 4.91 nm h
-1 

on average, respectively. The growth 544 

rate is important in controlling the conversion of newly formed particles 545 

in NPF to possible CCN, whereas the formation rate is viewed as an 546 

effective factor only at higher SS (e.g. 1.0%). This is due to the small 547 

critical dry diameters for particles to act as CCN under high SS 548 

conditions.  549 

The NPF event on 3 April 2012 showed that aerosol particle 550 

enhancement in number concentration significantly relates to the length 551 

of nucleation period of NPF, and aerosol particle enhancement in mass 552 

concentration depends on the growth period. The nucleation period leads 553 

to increased NCN and reduced aerosol activity, while the increases in NCCN 554 

and aerosol activity occurred during the growth period. The newly 555 



formed particles needed enough time to grow into CCN size and thus 556 

NCCN had a delayed peak compared to NCN. 557 

   Closure between the measured and predicted NCCN is successful 558 

during the NPF event (R
2
=0.96). SO4

2-
+NO3

-
+NH4

+
 explained the 559 

majority of the effective κ, and minimized the impact of lacking 560 

organic matter. An overestimation of 4% for NCCN is probably 561 

introduced by the following uncertainties: (1) aerosol assumed to be 562 

completely internal-mixed, which is an unrealistic condition and hardly 563 

realized in real atmosphere, (2) errors introduced by κі for individual 564 

chemical composition, and (3) the category “others” typically includes 565 

organic carbon (OC), elemental carbon (EC), hydrophobic inorganic and 566 

other species. Among these other species there are water soluble species 567 

contributing to CCN formation. For example, OC has an effective κ value 568 

of roughly 0.1 and has been reported to be an important contributor to 569 

particle condensational growth. The reasonable closure identified in this 570 

study implies that the detailed information of particle size spectra can 571 

build an effective CCN prediction model, and size plays a dominant role 572 

in aerosol activity during NPF. 573 

It should be noted that the contribution of NPF to CCN has not been 574 

fully characterized in this study. For example, the loss of nucleation mode 575 

particles by coagulation and the impact of atmospheric dilution and 576 

boundary layer evolution on pre-existing and newly formed CCN are 577 



unknown. To fully determine NPF contribution to CCN, additional 578 

information on size-resolved aerosol composition, size spectra for 3 nm 579 

or smaller particles, atmospheric sink and physicochemical process will 580 

be needed. 581 
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Table 1. Comparison of CCN enhancement ratios from NPF events with 974 

different formation and growth rates. 975 

 0.2% 0.4% 0.6% 0.8% 1.0% 

Enhancement ratio 

(FR>0.40) 
1.18 1.84 1.88 1.84 1.77 

Enhancement ratio 

(FR<0.40) 
1.15 1.89 1.81 1.77 1.58 

Enhancement ratio 

(GR>4.91) 
1.25 1.95 2.03 1.93 1.72 

Enhancement ratio 

(GR<4.91) 
1.10 1.79 1.80 1.74 1.63 

 976 

Table 2. Effective hygroscopicity parameters (κ) and densities of the four 977 

category compositions. 978 

Species Data source κ Density (g cm
-3

)   

Sulfate & nitrate SO4
2-

+NO3
-
+NH4

+
 0.6 1.7 

 Sodium chloride Cl
-
+Na

+
 1 2.2 

Insoluble compounds Others 0 2.0 

 979 

Figure captions 980 

Figure 1. Series of 10-min mean meteorological parameters over the 981 

entire campaign. 982 

Figure 2. Series of 5-min mean SO2 and PM2.5 concentration and 983 

atmospheric visibility over the entire campaign. 984 

Figure 3. Series of aerosol size distribution, 4-min mean total (Ntotal) and 985 

nucleation (N10-20nm) mode aerosol number concentration and 1-hour 986 

mean CCN concentration over the entire campaign.  987 



Figure 4. Temporal evolution of 4-min mean aerosol size spectra, 988 

showing new particle formation and subsequent growth on 3 and 4 April 989 

2012. 990 

Figure 5. Temporal evolution of 10-min mean meteorological parameters 991 

during the new particle formation event on 3-4 April 2012. 992 

Figure 6. Temporal evolutions of 5-min mean atmospheric visibility, BC 993 

and PM2.5 concentrations during the new particle formation event on 3-4 994 

April 2012. 995 

Figure 7. Temporal evolutions of 4-min mean mode, median and 996 

diameters and 10-20 nm particle concentration, showing the growth rate 997 

and formation of new particle on 3-4 April 20. 998 

Figure 8. Series of 1-h mean SO2, SO4
2-

, NO3
-
 and NH4

+
 concentrations 999 

on 3 and 4 April 2012. 1000 

Figure 9. Series of 1-h mean CCN concentration and CCN/CN on 3 and 1001 

4 April 2012. 1002 

Figure 10. Scatterplots of predicted and measured CCN concentrations 1003 

(cm
-3

) at different SS conditions, the red dash line represents y=x. 1004 
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Figure 1. Series of 10-min mean meteorological parameters over the 1020 

entire campaign. 1021 
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Figure 2. Series of 5-min mean SO2 and PM2.5 concentration and 1030 

atmospheric visibility over the entire campaign. 1031 
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Figure 3. Series of aerosol size distribution, 4-min mean total (Ntotal) and 1042 

nucleation (N10-20nm) mode aerosol number concentration and 1-hour 1043 

mean CCN concentration over the entire campaign.  1044 
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Figure 4. Temporal evolution of 4-min mean aerosol size spectra, 1051 

showing new particle formation and subsequent growth on 3 and 4 April 1052 

2012. 1053 
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Figure 5. Temporal evolution of 10-min mean meteorological parameters 1061 

during the new particle formation event on 3-4 April 2012. 1062 
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Figure 6. Temporal evolutions of 5-min mean atmospheric visibility, BC 1072 

and PM2.5 concentrations during the new particle formation event on 3-4 1073 

April 2012. 1074 
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Figure 7. Temporal evolutions of 4-min mean mode, median and 1085 

diameters and 10-20 nm particle concentration, showing the growth rate 1086 

and formation of new particle on 3-4 April 20. 1087 
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Figure 8. Series of 1-h mean SO2, SO4
2-

, NO3
-
 and NH4

+
 concentrations 1101 

on 3 and 4 April 2012. 1102 
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Figure 9. Series of 1-h mean CCN concentration and CCN/CN on 3 and 4 1119 

April 2012. 1120 
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Figure 10. Scatterplots of predicted and measured CCN concentrations 1136 

(cm
-3

) at different SS conditions, the red dash line represents y=x. 1137 


