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The ergodic hypothesis is a basic hypothesis il atmospheric-turbuternt experimen}ﬁ The

ergodic theorem of % stationary random processes is introduced -first—into—the

urbulence-in-atmosphe face layer (ASL) to analyze and verify the ergodicity of
_ | _.h{_

: S , Fedrnigy
atmospheric turbulence measuredkiby—ﬂ;e eddy covariance -S;éfbéﬂ;ﬁwﬂh two sets of

field observational data;ef-the-ASk-The results show that eddies of atmospheric
A the

turbulence, of which the scale is smaller than the scale ofiatmospheric boundary layer

(ABL), i.e)the spatial scale is less than 1,000 m and temporal scale is shorter than 10
_ | ‘ | Undec dnece ool 4v icions A
min, can ef’fg&éwely satisfy the ergodic theorems. Fherefore; ﬁ}ﬂ%ﬁmte time avd*age

] {-_-‘{
can be used )() 7“’\SI,IE:stitute for the ensemble average of atmospheric turbulence.
NG

Whereas, eddies,are larger than ABL’s scale, cannot satisfy the mean ergodic theorem.

A
Consequently, when % finite time average is used to substitute for the ensemble

_ € |ncucd | 0SS \< \
average, the eddy correction m{qthod Wﬁl}? large c-:-rrogg rate- due-to thelesing— WITN LR BT
& .Z_S('L][ﬂi--cil tJiib: . ; Y -~ el '.:,E
low frequency information-ef-the larger eddies. multi-station observation 1 P\_C("

" -U‘k ™)
. X - s

X > AW
compared with y(e single-station, and then the scope that satisfies the ergodic l\ib
theoremx/is expanded from the smaller scale about 1000 m of ABL’s scale to about &

2000 m, even it exceeds ABL’s scale. Therefore, the calculation of averag‘?\?vaﬁancgls
and fluxes of ‘t)(iturbulence can effectively satisty the ergodic assumption, and the

results are more approximate to the actual values. Regardless of vertifalnvelocity or
(.-1

e o oA/
temperature, the variance of eddlesXﬁ dlffegel (,sgales
¢ The

Monin-Obukhov Similarity Theory (MOSTXif the ergodic theorem can be satisfied;

or_else it deviates from -MOST. The ergodicity exploration of % atmospheric
N

turbulence is -doubtiessty helpful /’@ understanding the issues in atmospheric turbulent

observatiog,sand provides a theoretical basis for overcoming related difficulties.
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1 Introduction e e \s Hf},,,r) y

The basic principle o%average of 9‘6 turbulence measurement ls‘ti}'re'ensem bl{ average;(
(_ ut-?4 . 4ar7 (
of space, time and state. However, it is impossible that- an actual turbu]ince
tilirv

ENO S W‘“ _
measurement w1thbmumcmy7observat1 al instruments in space for eﬁetrgh time to

VA

obtain all states of turbulent eddies to achieve the goal Of/\ ensemble average.

Therefore, based on the ergodic hypothesis, the time average at one spatial point,
4l Q
which is long enough for observation, is used )\oﬁsubstltute for the ensemble average

for temporally steady and spatially homogeneous surfaCﬁS(Stull 1988; Wyngaard 2010;
Aubinet 2012). The ergodic hypothesis is a basic assumption in atmespherrc turbulent €
experiment,i» L
(ASL). THe ‘stationarity, homogeneity, and ergodicity are routinely used to link t

ensemble sl:atistics (mean and higher-order moments) of field ermz‘
experiments in the ABL. Many authors habitually refer to the ergodicity assumptmr*

Stth
-as—some- descriptions such as “when satisfying ergodic hypothesis, ...... o

“something indicates that ergodic hypothesis 1s satisfied”. theagh"fﬁe success of

Monin-Obukhov Similarity Theo
the Val i(.'

1€
1S just %ewdence 0‘5" eEOdl’? hypothems ual-xf-x-% In the ASL honlener—n- Teﬂ-lﬂy—a"
2 u&(

Ll 4 u-g  ©
necessary condition f¢ does not prove ergodicity

N .
the atmospheric boundary layer (ABL) and atmospheric surface layer

1\/}OST) for unstable and neat%peu al condltlons

L\ C(e {

(Katul et al ZOOMMOST suc.cass—-ls-v under the conditions of stationary and

R G I +he
- - implies that)( MJH—-&W are the

important conditions of ASL ergodicity. Therefore, many ABLX experiments focus

on seeking ideal homogeneous surface,&sfm:temassrb’re And-some rst procedures ¢ ¢

of -availablity-are-widely applied to estabhsh stationarity (Foken and Wichura 1996; "
Vickers and Mahrt 1997). Katul et al. (2004) qualitatively analyzed the ergodicity

homogene

problem¥\m reggrding atmospheric turbulence, and believed that it i1s common for the
neutral and unstable stratrﬁcaﬁon-ﬁrASL to reach ergodicity, while it is difficult to
reach ergodicity for*tl‘te stable chr Eichinger et al. (2001) indicate that LIDAR
(Light Detection and Ranging) technique opens up new possibilities for atmospheric
measurements and analysis by providing spatial and temporal atmospheric

information with simultaneous high-resolution. The stationarity and ergodicity can be



68 tested for such ensembles of experiments. Recent advances in LIDAR measurements
69  offers a promising first step for direct evaluation of such hypotheses for ASL flows
70  (Higgins et al., 2013). Higgins et al. (2013) applied LIDAR of water vapor
71 concentration to investigate the ergodic hypothesis of atmospheric turbulence for the
72 first time. It is clear all the same that there is a need to reevaluate turbulence
73 measurement technology, to test the ergodicity of atmospheric turbulence
74 quantitatively by means of observation experiments.

75 The ergodic hypothesis was first proposed by Boltzmann (Boltzmann 1871; Uffink
76 2004) in his study of the ensemble theory of statistical dynamics. He argued that a

77 trajectory traverses all points on the energy hypersurface after a_certain amount of

e ekl e
78  time. At the beginning of 20th century,ﬂEhrenfesf( couplel‘;eaquo'se the quasi-ergodic
s

79  hypothesis and changed the term “traverses all points” in ,\aforesaid ergodic hypothesis
80 to “passes arbitrarily close to every point”. The basic points of ergodic hypothesis or

C .
81  quasi-ergodic hypothesis recognize that the macroscopic property of system in the

* A
82  equilibrium state is the average of microcosmic quantity in a certain amount of time.

83  Nevertheless, the ergodic hypothesis or quasi-ergodic hypothesis were never proven

¢
84 theoretically. The proof ot;\J%rgodic hypothesis in physics aroused the interest of

85 mathematicians. The famous mathematician, Neumann et al. (1932) first theoretically

86 proved the ergodic theorem in topological space (Birkhoff 1931, Krengel 1985).

87  Afterward, a banausic ergodic theorem of stationary random processes was proved to

88  provide the necessary and sufficient conditions for the ergodicity of steitionary random

' ( l _({J

: ~'N eXxYyo (tl- e .:;.‘_ L‘L',Lf)'i ("’” &
89  processes. Mattingly (2003) reviewed research pro essi,: | I . Qc jcally
: j 1 Q] tﬂ'g.'l"“!;- i-rC{V\..:

90  Navier-Stokes equations, and GalantlfGa-lﬁnﬁa?-a-l-(ZOO Lennaert et al.(2006) solved

91 the—fagdém_ Navier-Stokes equatiorg by numerical simulation to prove that )K(

92  turbulence WhiCha Nlj *é?nmg{gza}]y steady and spatially homogeneous is ergodic.

93  However, Galanti (2004) also indicated that such partially turbulent flows acting as

94  mixed layer, wake flow, jet flow, flow around the boundary layer may be non-ergodic

95  turbulence.

96 Obviously, the ald\jﬁ\nces of research on }\ﬁ<ergodicity In the mathematics and
C :

_ |e e vy todl |
97  physics have- the atmospheric science'.f» We try firstisto introduce
98 the ergodic theorem of statio’g‘\ary random processes to ahnospher%u’fﬁﬁence in’zﬁfSL
N
99

; ; | N\ Ny ;
In this paper. And—that—the ergodicity of different scale eddies of atmospheric
100  turbulence is directly analyzed and verified quantitatively on the basis of /l¥ field
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2 Theories and methods

%rgodic theorems of stationary random processes

tatlonary random processes are | processes which will not vary with time, i.e.,

+ime
for observed quantity 4, its function of ﬁp&té x; and temperal #; satisfies the following

condition:

A(X1, X2, oooy X 81, 82 oony tn) = A(X], X2, ooy X3 8T, 12T, .., 1 HT), (1)

where 7 is a time period, defined as the relaxation time.

&
The mean uy, th random variable 4 and autocorrelation function R4(t) are

respectively defined as following:

My = !iritm ; A( )::It (2)
R,(r)= lim — ; A(A(r+7)dr 3)

The autocorrelation function R4(7) is a temporal second-order moment. In the case of

=0, the autocorrelation function R r) 1s the variance of randog variable. “Fhe A

statlonary random processes, satisfy the mean

ergodicity are the mean ergodic function Ero(4) to zero (Papoulis et al. 1991), as
shown below:

i-.

necessary and sufficient conditionﬂ

Ero(A4) = lim — : [1 ————)[R

2 —
T T 3P 'uA]dT"'O' (4)

The mean ergodic function Ero(4) 1s a time integral of variation between the

autocorrelation function R4(zr) of variable 4 and its mean square, 1. If the mean

ergodic function Ero(4) converges to zero, then the stationary random processes will
be ergodic. In other words, if the autocorrelation function R4(7) of variable A4
converges to its mean square, 4, , the stationary random processes are mean ergodic.

The Eq. (4) is namely the mean ergodic theorem to be called as well as ergodic

theorem of the weakly stationary processes in mathematics. For discrete variables, Eq.

(4) can be rewritten as the following:
Ero(A) = hm Z( ][R

)42 |=0. (5)

The Eq. (5) is the mean ergodic theorem of discrete variable. Hence, Egs. (4) and (5)
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