Air Quality and Atmospheric Deposition in the Eastern US: 20 Years of Change

Joseph E. Sickles, II United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division, Landscape Characterization Branch, Mail Drop E243-05 109 TW Alexander Drive Research Triangle Park, North Carolina 27711, USA (919) 541-2446 sickles.joseph@epa.gov (W) jesii@mindspring.com (H)

Douglas S. Shadwick[†] Computer Sciences Corporation, Durham, North Carolina 27713, USA [†]deceased

1	Air quality and atmospheric deposition in the eastern US: 20 years of change		
2			
3	Joseph E. Sickles, II		
4	Landscape Characterization Branch, Environmental Sciences Division, National Exposure		
5	Research Laboratory, United States Environmental Protection Agency, Research Triangle Park,		
6	North Carolina 27711, USA		
7			
8	Douglas S. Shadwick	Co	mmented [SJ1]: Doug passed on June 25, 2014
9	Computer Sciences Corporation, Durham, North Carolina 27713, USA		
10	[†] deceased		
11			
12	Correspondence to: Joseph E. Sickles, II (sickles.joseph@epa.gov)		
13			
14	Abstract. Data collected in the eastern US between 1990 and 2009 at 34 paired dry and wet		
15	monitoring sites are examined. A goal is to evaluate the air quality impacts occurring between		
16	1990 and 2009 that are associated with concurrent legislatively-mandated changes in emissions.		
17	Four 5-year periods, 1990–1994 (P1), 1995–1999 (P2), 2000–2004 (P3), and 2005–2009 (P4) are		
18	considered, with a primary focus on P1-to-P4 changes. Results suggest that legislatively-		
19	mandated air pollution mitigation strategies have been successful in improving air quality and		
20	reducing atmospheric deposition in the eastern US.		
21	Respective P1-to-P4 reductions of estimated sulfur dioxide (SO ₂) and nitrogen oxides		
22	(NOx) emissions in the eastern US are 50% and 42%. Corresponding behavior of the following		
23	metrics associated with these emissions reductions are examined: monitored atmospheric		
24	concentrations of SO ₂ , aerosol sulfate (SO ₄), and oxidized sulfur (S); dry, wet, and total		
25	deposition of S; monitored atmospheric concentrations of nitric acid (HNO ₃), aerosol nitrate		
26	(NO ₃), and their sum, oxidized nitrogen (OxN); dry, wet, and total deposition of OxN; monitored		
27	atmospheric concentration of aerosol ammonium (NH4); dry, wet, and total deposition of NH4;		
28	summed monitored atmospheric concentration of oxidized and reduced nitrogen (N); dry, wet,		
29	and total deposition of N; wet deposition of hydrogen ion (H ⁺); monitored atmospheric		
30	concentration of ozone (O ₃); dry deposition of O ₃ ; and the summed monitored atmospheric		
31	concentration of aerosol NO ₃ , SO ₄ , and NH ₄ (CASTNET PM). Other metrics (e.g., ratios of dry		

32 to total deposition) are also considered.

33	Selected period-to-period changes of air quality and deposition metrics at site, regional,
34	and seasonal scales are discussed. As an example, despite P1-to-P3 reductions in estimated
35	emissions of both SO ₂ and NOx, aerosol NO ₃ concentration increased in the east, with
36	widespread wintertime numerical increases in both aerosol NO3 concentration and CASTNET
37	PM. However, a reversal of this behavior is associated with continuing P3-to-P4 reductions of
38	SO2 and NOx emissions. Thus, additional P3-to-P4 reductions of these emissions, especially
39	NOx, appear to have made progress in altering the chemical regime of the wintertime eastern US
40	atmosphere so that future emissions reductions and their resulting reductions in aerosol
41	concentrations may no longer be accompanied by sub-linear changes (or actual increases) in
42	CASTNET PM.
43	
44	Keywords: Trends, dry deposition, wet deposition, total deposition, flux, deposition velocity,
45	concentration, ozone, sulfur dioxide, nitric acid, sulfate, nitrate, ammonium, hydrogen ion,

- 46 CASTNET, NADP
- 47
- 48

49 1. Introduction

50

In the United States (US), pollution control legislation has been established to protect the
public health and welfare by reducing emissions of selected pollutants. Both sulfur dioxide (SO₂)
and nitrogen dioxide (NO₂) are designated by the US Environmental Protection Agency (EPA)
as criteria pollutants, and they contribute to acidic deposition as well as airborne particulate
matter (PM). In addition, nitrogen oxides (NOx), the sum of nitric oxide (NO) and NO₂, act as
precursors of another criteria pollutant, ozone (O₃).
Nationwide, in 1990, 69% of SO₂ emissions came from electric generating units (EGUs);

58 whereas, 82% of NOx emissions came from the sum of EGUs (25%) and mobile sources (57%) 59 (Xing et al., 2013). Sources in the eastern states contributed 76% and 58% of the US total 1990 60 SO2 and NOx emissions. The Clean Air Act Amendments of 1990 (CAAA) established phased 61 year-round controls for SO₂ and NOx emissions from EGUs that became effective in 1995 for 62 SO₂ and 1996 for NOx (Phase I); while additional controls became effective under Phase II in 2000. Over half of the EGUs targeted by the CAAA are located in six states along the Ohio 63 64 River (source region (SR), Table 1). Beginning in 1999, O3 season (i.e., summertime) NOx 65 controls focusing on EGUs became effective in selected eastern states under the Ozone Transport 66 Commission (OTC) and were superceded in 2003 by the NOx State Implementation Plan (SIP) 67 Call. The affected states chose to meet their mandatory reductions by participating in the NOx 68 Budget Trading Program (BTP), a market-based cap and trade program for EGUs and large industrial units. The BTP was replaced in 2009 by the Clean Air Interstate Rule (CAIR). Various 69 70 mobile source NOx emissions control programs also began in the mid- to late 1990s. Fully 71 implemented in 2006, the Tier 2 Gasoline Sulfur Program targeted both SO₂ and NOx emissions 72 from mobile sources. These mobile source programs have a cumulative effect of reducing 73 emissions over time as the mobile fleet is replaced. 74 Figure 1 shows estimates of emissions from 1990 to 2010 for both the total US and the

eastern states (Xing et al., 2013). Both SO₂ and NOx emissions show weak reductions between
1990 and 1994. There is a sharp reduction in SO₂ emissions in 1995, when Phase I controls
became effective. Although additional reductions of both SO₂ and NOx emissions begin to
appear in 1999, they are apparent in later years (e.g., after 2005 for SO₂). Although a substantial

79 portion of the long-term emissions reductions since 1990 has resulted from legislatively driven

emissions controls, economic factors (e.g., coal-to-natural gas fuel switching and recessioninduced reduction in demand for electricity and transportation fuel) played a sizeable role

82 between 2008 and 2009 (Lu et al., 2012).

83 A major objective of the current study is to examine the monitored and estimated air 84 quality and deposition behaviors in the eastern US (E) between 1990 and 2009 associated with changes in emissions. The time period of interest is divided into four 5-year periods: 1990-1994 85 (period one, P1), 1995–1999 (period two, P2), 2000–2004 (period three, P3), and 2005–2009 86 87 (period four, P4). Focusing on these 5-year periods, average P1 US SO₂ and NOx emissions have 88 declined by 19% and 6% by P2, by 33% and 19% by P3, and by 49% and 37% by P4 (Xing et 89 al., 2013). In the current study, the east is taken to represent all states east of the Mississippi 90 River and is divided into three geographical regions: midwest (MW), northeast (NE), and south (SO) (Fig. 2). Mean period-specific emissions in these regions are illustrated for each 5-year 91 period relative to P1 in Fig. 3. 92 93 This paper builds on the previous work (Sickles and Shadwick, 2007a and b), hereafter 94 known as SS07a and SS07b. In SS07a seasonal and regional distributions of concentration and 95 deposition of selected pollutants, were examined for the 1990s (i.e., P1 and P2) at eastern rural 96 US Clean Air Status and Trends Network (CASTNET) and paired National Atmospheric 97 Deposition Program (NADP) monitoring sites. In SS07b temporal changes in air quality and 98 deposition in the eastern states between the early 1990s and early 2000s (i.e., P1-to-P3) were described and discussed. The record is expanded in the current paper to include a fourth 5-year 99 100 period. Here, emphasis is on temporal changes occurring between the early 1990s and late 2000s 101 (i.e., P1-to-P4) as new and continuing pollution controls have become mature and their impacts 102 apparent. Results are displayed in a consistent manner to previous work (SS07a and b) to 103 facilitate comparison. See Table 2 for definitions of terms and pollutant metrics used in the text, 104 tables, and figures. 105 106 107 2. Approach 108

Monitoring data collected in the east between 1990 and 2009 at 34 CASTNET
[http://epa.gov/castnet/javaweb/index.html] dry monitoring sites and paired NADP

111 [http://nadp.sws.uiuc.edu/] wet monitoring sites provide a sufficiently complete 20-year record to 112 permit examination. Weekly concentrations of gaseous SO₂ and nitric acid (HNO₃), and aerosol 113 sulfate (SO₄), nitrate (NO₃), and ammonium (NH₄) (using 3-stage filter packs) and hourly 114 concentrations of O₃ (using continuous monitors) are determined at 10 m. Dry deposition of 115 airborne species is estimated using the inferential model by multiplying modeled deposition 116 velocities (Vd) by the monitored atmospheric concentration for the gas or aerosol species of 117 interest. Deposition velocities for gases and aerosols are estimated using the multilayer model (MLM) (Meyers et al., 1998; Wesely et al., 1985). Monitoring data are composed from reported 118 119 weekly (hourly for O₃) measurements into estimates of means for year, site, and season. These 120 year-site-season means, computed for atmospheric concentration, Vd, precipitation rate (PR), 121 and dry, wet and total deposition, are averaged to period-site-season means and used to examine 122 differences between 5-year periods for seasons, sites, and predefined groupings of sites. The 123 data, methodologies, data quality (i.e., precision and accuracy), covariance of concentration and 124 Vd, impacts of non-ideal landscape features, adjustments for sampling artifacts, and data 125 completeness criteria for accepting mean estimates of measurement data are described in SS07a. 126 Monitoring site locations, 10 in the MW and NE, and 14 in the SO, are identified in Fig. 127 2 and Table 1. These 34 sites provide sparse coverage, especially in the southern part of the SO 128 and the northeastern part of the NE. Three additional environmental groupings of monitoring 129 sites are also defined as subsets of the eastern sites: background (BKG); high elevation (HE); and 130 SR. These sites are chosen to reveal distinctions in pollutant behavior characteristic of their 131 environments (Table 1 and SS07a). 132 CASTNET monitoring locations were initially sited to avoid the influence of major cities, 133 highways, local activities, and point and area sources of pollutants and to be regionally 134 representative (i.e., similar to a characteristic 80 by 80 km area surrounding the site) (Clarke et 135 al., 1997; Baumgardner et al., 2002). In the current study, most of the CASTNET sites are 136 located within 50 km of a paired NADP/NTN wet deposition site. 137 Collocated precision estimates (as CVs) of weekly CASTNET concentration, Vd, and dry deposition at eastern sites are within 5% to 10% for the major species (Clarke et al., 1997; 138 139 Sickles and Shadwick, 2002). Corresponding precision estimates are: 5% for weekly NADP PR, wet S (i.e., wet deposition of sulfate, see Table 2), and wet OxN; 10% for wet H+; and 15% for 140

141 wet NH₄ (Nilles et al., 1994). These estimates for weekly network results are likely to be

Commented [SJ2]: Response to comment from Referee #3

142 conservative for corresponding longer-duration 5-year period results.

143Total oxidized nitrogen (NO_Y) includes the primary NOx species (NO and NO2) plus the144secondary species (HNO3, nitrous acid (HNO2), aerosol NO3, peroxyacetylnitrate (PAN), as well145as other oxidized organic nitrogen species). Total reduced nitrogen (NHx) includes both gaseous146ammonia (NH3) and aerosol NH4. In the current study, only two of the NOY species, HNO3 and147aerosol NO3, (their sum is OxN), and only one of the NHx species, aerosol NH4, are monitored.148As a result, reported estimates of dry deposition of OxN and NH4 underestimate corresponding149values for NOY and NHx.

150 The contribution of coarse (i.e., $>2.5 \mu m$) particles to total particulate deposition likely 151 depends on location and proximity to sources of crustal dusts, road salt, and marine aerosols. 152 Since the contribution of coarse particles is ignored in the MLM, where all particles are modeled 153 as fine aerosol SO₄ particles, current estimates of particulate dry deposition are biased low. 154 However, the open-faced non-size selective CASTNET filter pack sampler (with no 2.5 µm size 155 eut) likely oversamples the fine tail of coarse particle distribution. Although this may not be too 156 important for aerosol SO4 and NH4, which occur mainly as fine particles; it would underestimate 157 the contribution of dry deposition of aerosol NO_3 , where appreciable coarse aerosol NO_3 can 158 occur (Wolff, 1984; Lefer and Talbot, 2001).-Recent comparison of concentrations from 159 collocated CASTNET and IMPROVE samplers (with 2.5µm size cut) indicate CASTNET 160 samplers typically to be biased high at eight non-marine eastern sites by 4 to 7% for aerosol SO₄₇ 161 but ranged between 25% higher and 39% lower for aerosol NO₃ (Sickles and Shadwick, 2008). 162 As noted in SS07a (and references therein), use of the CASTNET filter pack sampler 163 introduces sampling artifacts, especially to nitrogen-containing species. Findings from Sickles II 164 and Shadwick (2008) as well as wind tunnel and modeling studies (unpublished) of particle 165 sampling characteristics of the non-size selective open-faced CASTNET filter pack inside its 166 weather shield over a range of wind speeds suggest appreciable collection of both fine (<2.5 μ m) 167 and coarse particles on the first filter (Teflon) of the filter pack. Although both aerosol SO₄ and 168 NH_4 exist mainly in the fine fraction (<1 μ m) year round; aerosol NO₃ is multi-modal, and in 169 non-marine environments exists mainly (>75%) in the fine fraction in cool seasons and mainly as

170 larger (>4 μm) particles during warm seasons (Wolff, 1984; Lefer and Talbot, 2001; Zhang et al.,

171 2008; Lee et al., 2008). Sampling artifacts in opposing directions may arise through possible

loss of aerosol NH₄NO₃ during sampling and by aspiration of the fine tail of coarse aerosol NO₃.

Commented [SJ3]: Response to comments from Referee #2

173 Aerosol NH₄NO₃ (nominally $<2.5 \mu$ m) collected on the Teflon filter may be lost during sampling 174 by volatilization into gaseous HNO3 and NH3, driven by departures from equilibrium 175 (exaggerated at higher temperatures) and/or by reaction with strong acids. Results from 176 comparison studies (Sickles II and Shadwick, 2002; Sickles II and Shadwick 2008; Lee et al., 177 2008; Zhang et al., 2009) are consistent with loss of NH4NO3 from the Teflon filter followed by 178 collection of volatilized HNO₃ on the downstream nylon filter of the CASTNET filter pack 179 during warm season sampling and with minimal volatilization loss during cool season sampling. 180 Coarse alkaline particles (e.g., sea/road salt or soil/mineral dust) may contain aerosol NO₃ 181 (possibly formed by scavenging HNO₃ while airborne), and to the extent that they are collected, 182 these larger particles may provide a high bias to CASTNET aerosol NO3 relative to its fine 183 (PM_{2.5}) contribution. Some of these larger particles (if unreacted and retained on the Teflon 184 filter) may scavenge airborne HNO₃ from sampled air during week-long sampling periods, also 185 providing a high bias to aerosol NO₃ and a low bias to HNO₃. Some of these concepts are illustrated by the performance of CASTNET and IMPROVE 186 187 (with 2.5 µm size selective inlet) samplers collocated at 10 eastern monitoring sites (Sickles II 188 and Shadwick 2008). At the eight non-marine sites good agreement was found for aerosol SO4

189 (CASTNET was biased high by 4 to 7%), and more variability was found for aerosol NO₃ 190 (CASTNET ranged between 25% higher and 39% lower). Seasonally, aerosol NO₃ showed 191 median relative biases ranging between 5 and -10% for all seasons, except summer, where the 192 IMPROVE aerosol NO₃ exceeded the corresponding CASTNET values by >40% (this was at 193 very low concentrations where the median bias was 0.07 µg m⁻³). Finally, although CASTNET 194 and IMPROVE aerosol NO₃ displayed mixed comparisons at eight inland sites, CASTNET sites 195 showed consistently higher aerosol NO₃ (40 - 100%) at the two marine-influenced sites, which 196 was attributed to over-sampling the fine tail of coarse sea salt aerosols by the CASTNET 197 sampler.

Thus, in the current study, minimal CASTNET sampling bias is expected for aerosol SO₄
and NH₄, which occur mainly as fine particles. However, HNO₃ and aerosol NO₃ as well as other
metrics derived from them are subject to sampling biases that act in opposing directions.
Volatilization of collected NH₄NO₃ during sampling could lead to a high bias of HNO₃ and a low
bias of aerosol NO₃. In contrast, the non-size selective sampler inlet could lead to an

203 oversampling of the fine tail of coarse aerosol NO₃ with a high bias of aerosol NO₃ and a

204 potentially low bias of HNO₃. The impacts of these biases are expected to be minimal during 205 cool season sampling at non-marine sites. As a result, in the current study HNO₃, aerosol NO₃, 206 and metrics derived from them (e.g., CASTNET PM, Dry HNO₃, Dry NO₃, RNO₃ and other 207 ratios of concentration and deposition) should be viewed with caution, especially during summer. Uncertainties in Vd, rather than concentration, likely limit the accuracy of dry deposition 208 209 estimates (Hicks et al., 1991; Lovett and Lindberg, 1993). Accuracy of Vd estimates has not 210 been well established. Based on comparisons with field measurements, the MLM may provide 211 fairly accurate estimates of Vd for SO2, O3, and HNO3 to many surfaces (e.g., crops (Meyers et 212 al., 1998)); however, Vd for SO₂ to forested canopies may be underestimated by $\approx 35\%$ 213 (Finkelstein et al., 2000). Recent comparison at the same site of weekly CASTNET MLM Vd 214 estimates with those from a similar model used by the Canadian Air and Precipitation 215 Monitoring Network (CAPMoN) show CASTNET Vd to be low (relative to CAPMoN) by 216 approximately 50% for SO₂ and 35% for HNO₃; differences of hourly estimates between the two 217 models could be as large as a factor of two to three (Schwede et al., 2011). Annual average 218 small-scale spatial variability (0.5 km) of model-estimated Vd was estimated at 10% for SO₂ and 219 O₃, 30% for aerosol SO₄, and 40% for HNO₃ (Brook et al., 1997). Uncertainty of the inferential 220 model has been estimated at 25% for O_3 , 30% for SO_2 and $\geq 40\%$ for HNO₃ and particles (Clarke 221 et al., 1997). These estimates may be appropriate for areas with ideal terrain and uniform land 222 use; however, nonideal landscape features (e.g., irregular terrain and/or forested canopies) likely 223 contribute low biases to concentration, estimated Vd, and dry deposition estimates, and increase 224 their resulting uncertainty (Clarke et al., 1997; Hicks, 2006). The distribution of influential 225 landscape features across sites suggests that their impacts result in the greatest underestimates at 226 sites in the south and northeast geographical regions, and that their impacts should be smaller at 227 sites in the midwestern grouping. Much of the above evidence suggests that CASTNET Vd 228 estimates, while uncertain, likely provide conservative lower bound estimates of dry deposition. 229 Internetwork comparisons of annual wet deposition have been conducted for the periods 1986-1993 (Sirois et al., 2000) and 1995-2004 (Wetherbee et al., 2010) at collocated NADP and 230 231 CAPMoN sites. NADP results for precipitation depth and wet deposition of H⁺, NH₄, S, and 232 OxN appear to be biased low relative to CAPMoN by less than 30%. Although there are no 233 standards for determining accuracy, current NADP results are possibly biased low and likely 234 accurate within 25%.

235	The east has large heterogeneities in its spatial distribution of land cover (i.e., crops,	
236	forests, and suburban), of terrain (i.e., flat, rolling, complex, and montane) and of pollution	
237	sources (e.g., EGU sources in the Ohio Valley and mobile sources in urban centers). As a result,	
238	it is unlikely that the sparse coverage of CASTNET (i.e., 34 sites) can provide truly accurate	
239	regional representations. This is supported by a recent modeling study of wet deposition (Sickles	
240	et al., 2009) where current study site locations were found to over represent geographical areas	
241	subject to both high emissions and wet deposition, yielding overestimations of corresponding	
242	regional values by 5 to 25%. Nevertheless, for the current study, values representing areas with	
243	common geographical and environmental characteristics are approximated as the means of	
244	values from sites associated with each classification. It is assumed that these estimates are useful	
245	as rough indices of their respective geographical regions and environmental groupings.	
246	As indicated above, the airborne concentration, estimated Vd, and dry and wet deposition	
247	estimates may be subject to sizeable uncertainties. However, assuming constant bias, their	
248	precision to a first approximation is expected to control the uncertainty associated with the	
249	current examination of period-to-period (e.g., P1-to-P4) temporal changes.	
250	Data have been composed from reported measurements into estimates of means for year,	
251	site, and season. Year-site-season means were computed for atmospheric concentration, Vd, PR,	
252	and dry, wet and total deposition. Consistent with previous work (SS07a and b) these values,	
253	averaged to period-site-season means, are used to examine differences between 5-year emission	
254	periods for seasons, sites, and predefined site groupings. Seasons (e.g., data for winter (W) 1990	
255	includes data from December 1989 through February 1990; spring (Sp); summer (Su); and fall	
256	(F)) are used to define the years in periods. Five-year periods have been chosen to coincide with	
257	emission patterns (noted earlier), to minimize the impacts of missing data on seasonal means,	
258	and to reduce the impact of meteorological variability, and to maintain consistency with earlier	
259	studies. For example, Table 3 presents averages of year-site-season means averaged over all the	
260	years in P4 and all the sites in each specified site grouping. Analogous tabulations for P1, P2,	
261	and P3 may be found in SS07a and b.	
262	The approach to data analysis, described in detail in SS07b, uses mean squared error	
263	derived from analysis of variance of mean estimates for each pollutant metric to examine period-	
264	to-period differences in the monitoring data and metrics derived from them. Use of the term,	

265 "significant," implies comparison where a statistical test is satisfied at the p=0.05 significance

Commented [SJ4]: Response to comment from Referee #2

266	level, and "NS" implies a non-significant test result (p>0.05). Comparison with no mention of			
267	significance, using the term "numerically," implies nominal comparison where one comparator is			
268	numerically different from another, without statistical testing. The statistical tests that were			
269	performed apply only to absolute differences. Relative differences (RD) (changes) are used as a	Commented [SJ5]: Response to comment from Referee #2		
270	convenient construct to enable discussion of the absolute differences.			
271				
272				
273	3. Results			
274				
275	Means of each species-specific value of P4 atmospheric concentration; Vd; PR; dry, wet,			
276	and total deposition; and selected ratios are presented in Table 3 for each site grouping.			
277	Corresponding across-site variabilities are given as coefficients of variation (CV). Results are			
278	displayed for each grouping of monitoring sites over all seasons and for the east by specific			
279	season. P1-to-P4 absolute changes in both native units and RDs relative differences (%) are	Commented [SJ6]: Response to comment from Referee #2		
280	displayed in Fig. 4 for each geographical region. To facilitate identification of patterns of P1-to-			
281	P4 changes, significant (p \leq 0.05) decreases are colored blue, and increases are colored pink. Six			
282	sets of period-to-period differences are considered (e.g., P1-to-P2, P1-to-P3, etc.); however, they			
283	are not tabulated due to space limitations. Although not shown comprehensively, P3-to-P4			
284	differences are discussed in a few instances to contrast with P1-to-P4 differences. Graphical			
285	illustrations of period-to-period comparisons of concentration, deposition, and related metrics as			
286	well as relative changes by site and region have been created for each of the entries shown in			
287	Table 3. Example illustrations for selected airborne concentration (i.e., S, OxN, N and			
288	CASTNET PM) and deposition (i.e., total S, total OxN, total N and wet H^+) are shown for all			
289	sites in Figs. 5 and 6.			
290				
291	3.1. Deposition velocity and precipitation rate			
292				
293	Deposition velocity and its analog, PR, may be viewed as velocities at which pollutants			
294	are delivered (i.e., deposited via dry and wet deposition) to the earth's surface. Both Vd and PR			
295	are strongly influenced by meteorology. One of the reasons for selecting 5-year averaging			

296 periods in the current study is to reduce the confounding influences of year-to-year

297 meteorological variability in assessing the impacts of changes in pollutant emissions on resulting 298 ambient atmospheric concentrations, dry deposition, and wet deposition. 299 The variabilities of Vd and PR are fairly low. In the case of Vd, this is indicated by the 300 2010 CASTNET decision [http://epa.gov/castnet/javaweb/docs/CASTNET_Factsheet_2013.pdf] 301 to discontinue meteorological monitoring and use site-specific historical average Vd at all but 302 five monitoring sites (Bowker et al., 2011). In the current study, period-site-season-specific CVs, 303 averaged across all periods, sites, and seasons for Vd for aerosol, O₃, SO₂, and HNO₃ are each 304 <5%, and the corresponding value for PR is <9%. For the east and for each of the three 305 geographic regions, entity-specific RDs-relative differences were determined for each of the six 306 possible period-to-period comparisons (i.e., $4 \ge 6 = 24 \frac{\text{RDs}}{\text{RDs}}$ -relative differences per entity), 307 yielding median absolute relative differences $\leq 6\%$ for Vd of each of the four species and PR. 308 Similar comparisons at the site-specific level ($34 \times 6 = 204 \frac{\text{RDs}}{\text{relative differences}}$ per entity) 309 vield median absolute relative differences <7% for Vd of each of the four species and PR. 310 Since period-to-period changes in Vd are usually small, the behavior of P1-to-P4 changes 311 in species atmospheric concentration and dry deposition are generally similar, and the relative 312 behavior of the dry deposition of a species is often mirrored by that of its airborne concentration. 313 However, there are instances where opposing changes in Vd are sufficient to cause the resulting 314 change in species deposition to differ appreciably and sometimes significantly from its 315 corresponding atmospheric concentration. For example, wintertime increases in aerosol Vd yield 316 changes in dry deposition that tend to moderate P1-to-P4 reductions apparent in atmospheric 317 concentration (e.g., dry SO₄, Fig. 4) and exaggerate increases (e.g., dry NO₃). 318 In the east and in each geographic region, seasonal P1-to-P4 changes in mean PR are not 319 significant ($p\leq 0.05$, Fig. 4), and they are usually small ($\leq 10\%$), except in winter. These 320 wintertime changes contribute to a small, but significant, 1% increase in PR in the east, 9% 321 increase in the northeast, and 2% decrease in the south. Reduced significance of wintertime 322 changes in wet deposition (e.g., wet S, wet OxN, wet H⁺, and wet N, Fig. 4) appear to be 323 associated with these numerical wintertime P1-to-P4 changes in PR. 324 325 3.2. Oxidized sulfur species 326 327 As is illustrated in Fig. 4, significant P1-to-P4 reductions occur in atmospheric SO₂

328 concentration and dry deposition, atmospheric aerosol SO₄ concentration, atmospheric S 329 concentration and dry deposition, and total S in each region in each season and over all seasons. 330 For atmospheric SO₂ concentration and dry deposition, the numerically largest significant 331 seasonal absolute reductions usually occur in winter when SO₂ concentration is at its seasonal 332 maximum (largest in northeast); the smallest occur in summer when SO₂ concentration is at its 333 seasonal minimum (smallest in south). Both SO₂ concentration and dry deposition show similar 334 P1-to-P4 relative reductions of approximately 50% across all seasons and regions. As noted earlier, P1-to-P4 changes in atmospheric aerosol SO4 concentrations show 335 significant reductions in each region both in each season and over all seasons. Seasonally, the 336 337 numerically largest absolute and relative reductions tend to occur in summer when aerosol SO4 338 concentration is at its seasonal maximum, with regionally uniform summertime absolute 339 reductions of $\approx 3.4 \,\mu g SO_4/m^3$ and relative reductions ranging regionally between 38 and 42%. The regionality of aerosol SO₄ concentration, a secondary pollutant, is also illustrated in Table 3 340 341 by contrasting its across-site variability (CV) with that of its precursor, SO₂ (e.g., 22% versus 342 51%). 343 Dry deposition of aerosol SO₄ also shows significant P1-to-P4 reductions regionally. 344 Overall relative reductions in dry SO_4 are numerically less than the corresponding values for 345 concentration of aerosol SO₄ (i.e., for the east, 29% versus 33%). This pattern is likely due in 346 part to significant period-to-period increases in aerosol Vd, noted earlier. Seasonally, the 347 numerically largest absolute and relative reductions in dry SO₄ tend to occur in summer when 348 aerosol SO₄ concentration is at its seasonal maximum, with an average relative reduction of 37% 349 in summer in the east. Dry SO₄ shows significant reductions in most seasons, except winter, 350 when its concentration is at a seasonal minimum. 351 Since atmospheric S concentration is the sum of atmospheric SO₂ and aerosol SO₄ 352 concentrations (expressed as mass of sulfur) and $\approx 67\%$ of atmospheric S is present as SO₂ 353 (RSO₂, Table 3), the behavior of atmospheric S concentration is dominated by that of SO₂. Additionally, since $\approx 85\%$ of the dry S is usually contributed by SO₂ (RFSO₂, Table 3), the 354 behavior of dry S is likewise dominated by that of dry SO2. As a result, P1-to-P4 changes of both 355

- 356 atmospheric S concentration and dry deposition are similar to those for atmospheric SO₂
- 357 concentration and dry deposition, and they are similar to each other (Fig. 4). Atmospheric S
- 358 concentration and dry S are reduced significantly in each region in each season and over all

seasons. Seasonally, the numerically largest significant absolute reductions usually occur in
winter when atmospheric SO₂ concentration is at its seasonal maximum, and the largest of these
occurs in the northeast. Regionally, P1-to-P4 relative reductions are similar for atmospheric S
concentration (42 to 47%) and dry deposition (48 to 51%).

363 In contrast to atmospheric SO_2 concentration (with its summertime minimum), wet S has 364 a seasonal summer maximum. This coincides with scavenging of SO_4 by precipitation when both atmospheric aerosol SO₄ concentration and PR are generally at their seasonal maxima. The 365 numerically largest significant absolute and relative P1-to-P4 reductions in wet S also generally 366 367 occur in summer. Changes in wet S are numerically smaller and less significant in winter due to 368 seasonal minima of wet S and PR and to wintertime P1-to-P4 increases in PR. In general, 369 relative reductions in wet S are similar to those of aerosol SO₄ concentration (e.g., 33 and 32% in 370 the east). 371 Except during winter, wet S generally constitutes more than 50% of the total S ((D/T) S,

Table 3) and exerts a corresponding influence on total S. As noted earlier, P1-to-P4 total S is reduced significantly in each region in each season and over all seasons (Fig. 4). Since seasonal behaviors of dry S and wet S are different but complementary, the seasonal behavior of their sum, total S, shows less seasonal variability than its constituents. Nevertheless, the numerically largest significant P1-to-P4 absolute reductions for total S occur in summer when wet S is at its seasonal maximum. Relative P1-to-P4 reductions are similar across regions, and average 40% in the east.

379

380 3.3. Oxidized nitrogen species

381

382 Sampling artifacts described in Sect. 2 suggest that sampling artifacts may provide biases 383 in opposing directions for concentrations of HNO₃ and aerosol NO₃, but these impacts would be 384 minimized during non-summer sampling at non-marine sites. Regional and seasonal changes in 385 atmospheric HNO₃ concentration have more consistent, substantial, and significant reductions 386 for P1-to-P4 (Fig. 4) than for P1-to-P2 or P1-to-P3 (not shown). With recent summertime 387 reductions in NOx emissions, the seasonal timing of peak HNO3 concentration has shifted from summer in P1 and P2 to spring in P3 and P4. In addition, P1, P2, and P3 summertime peaks of 388 389 dry deposition of both HNO₃ and OxN have shifted to spring in P4. The overall P1-to-P4 relative Commented [SJ7]: Response to comment from Referee #2

390	reductions in atmospheric HNO_3 concentration in the east are 34% versus 0% (NS) for P1-to-P2
391	and 13% for P1-to-P3. Regionally, the numerically largest significant P1-to-P4 reductions occur
392	in the northeast (39%), with smaller reductions in the south (32%) and midwest (30%).
393	Numerically, maximum absolute and relative seasonal reductions consistently occur in summer,
394	with the largest of these in the northeast. Summertime P1-to-P4 relative reductions in
395	atmospheric HNO $_3$ concentration are 48% in northeast, 40% in south, 38% in midwest, and 42%

in east. Wintertime P1-to-P4 absolute reductions in atmospheric HNO₃ concentration are smaller,
40 to 46% of those in summer.

398 Dry HNO3 exhibits P1-to-P4 reductions that are of similar magnitude and consistency 399 with those noted above for atmospheric HNO3 concentration. The only exception is winter in the 400 midwest, where P4 Vd was 9% higher than in P1. Regionally, significant reductions occur in the northeast (41%), south (35%), and midwest (28%), averaging 35% in the east. Seasonal behavior 401 402 of dry HNO₃ is similar to that of atmospheric HNO₃ concentration, with numerically maximum absolute and relative seasonal reductions generally occurring in summer. Summertime P1-to-P4 403 404 relative reductions in dry HNO3 are 50% in northeast, 41% in south, 34% in midwest, and 42% 405 in east. Wintertime P1-to-P4 absolute reductions in dry HNO₃ are smaller, 20 to 28% of those in 406 summer.

407 In contrast to P1-to-P3 comparisons, where atmospheric aerosol NO3 concentration and 408 dry deposition generally display significant increases (SS07b), P1-to-P4 comparisons in Fig. 4 show more reductions. Significant P1-to-P4 absolute and relative increases in atmospheric 409 410 aerosol NO₃ concentration and dry NO₃ occur only in winter in the east (e.g., 0.20 µgNO₃/m³ 411 and 12%, and 0.03 kgN/(ha y) and 31%) when atmospheric aerosol NO₃ concentration is at its 412 seasonal maximum. The increased magnitude of winter relative increases in dry NO3 over those 413 of airborne concentration are likely due to previously noted significant period-to-period increases 414 in aerosols Vd. Wintertime regional absolute P1-to-P4 increases in concentration and dry 415 deposition are numerically strongest in the midwest (e.g., $0.27 \ \mu g NO_3/m^3$ and $0.05 \ kg N/(ha y)$). The wintertime P1-to-P4 increases in aerosol NO3 concentration are considerably smaller than 416 417 the corresponding P1-to-P3 increases (Fig. 7). Significant P1-to-P4 reductions in absolute and 418 relative atmospheric aerosol NO3 concentration occur in many of the remaining seasons, 419 especially summer. Significant P3-to-P4 reductions in relative atmospheric aerosol NO3 420 concentration occur in all seasons in the east, consistent with recent aggressive reductions of

421 NOx emissions.

422 Atmospheric OxN concentration is the sum of atmospheric HNO₃ and aerosol NO₃ 423 concentrations (expressed as mass of nitrogen), and almost 60% of the OxN is generally present 424 as HNO3 (RHNO3, Table 3). As a result, the behavior of atmospheric OxN concentration reflects 425 the influence of both atmospheric HNO₃ and aerosol NO₃ concentrations. Also, since well over 90% of the dry OxN is generally contributed by HNO₃ (RFHNO₃ Table 3), the behavior of dry 426 427 OxN is strongly influenced by that of dry HNO₃. Seasonally in the east, the numerically largest 428 P1-to-P4 absolute and relative reductions in atmospheric OxN concentration and dry deposition 429 (e.g., $0.26 \mu g N/m^3$ and 38%, and 1.23 kg N/(ha y) and 43%, Fig. 4) occur in summer when 430 atmospheric HNO₃ is the dominant OxN species. Summertime relative reductions are 431 numerically more pronounced in the northeast (43% and 50%, respectively) than the south (35% 432 and 43%) or midwest (36% and 34%). In contrast, in winter, when atmospheric aerosol NO₃ 433 concentration is at its seasonal maximum and significant P1-to-P4 increases of both atmospheric 434 aerosol NO₃ concentration and dry deposition occur, reductions in OxN concentration and dry 435 deposition also occur, but they are smaller in magnitude and in some cases not significant. Over 436 all seasons, regional P1-to-P4 relative reductions in atmospheric OxN concentration and dry 437 deposition are numerically larger in the northeast (29% and 40%) than the south (24% and 34%) 438 or the midwest (21% and 27%), and average 24% and 34%, respectively, in the east. 439 Wet OxN and PR in the east are at their seasonal maxima in summer (followed closely by 440 spring). Numerically, the largest significant absolute reductions in wet OxN occur in summer (or 441 spring). Reduced significance of some wintertime P1-to-P4 reductions in wet OxN is associated 442 with numerical increases in wintertime PR. Significant regional P1-to-P4 reductions in wet OxN 443 are numerically larger in the northeast (34%) than midwest (28%) or south (25%), and average 444 29% in the east.

Considering the dry deposition of a comprehensive suite of NO_Y species, field measurements suggest that 40 to 85% of total NO_Y deposition at eight rural Canadian sites occurred as wet deposition (Zhang et al., 2009); whereas, a modeling study suggests that for the continental US this figure is closer to 31% for NO_Y and 44% for OxN (Zhang et al., 2012). In the current study, over 60% of the total OxN generally is contributed by wet OxN ((D/T) OxN, Table 3); however, this estimate may be biased because it neglects previously noted uncertainties

451 in Vd for HNO_3 and contributions to dry deposition by non-monitored NO_Y species.

452 Nevertheless, wet OxN appears to exert a moderate-to-strong influence on the behavior of total 453 OxN. Both dry OxN and wet OxN display strong seasonal P1-to-P4 reductions in summer that 454 become weaker in winter (Fig. 4). Seasonally, the numerically largest absolute and relative 455 reductions in total OxN occur in summer and range from 42% in the northeast, to 35% in the 456 south, to 33% in the midwest, and average 37% in the east. Regional P1-to-P4 reductions in total OxN are 36% in the northeast, 29% in the south, and 28% in the midwest, and average 31% in 457 458 the east. Thus, over all seasons the numerically largest absolute and relative reductions in 459 atmospheric HNO₃ concentration and dry deposition, atmospheric OxN concentration and dry 460 deposition, and total OxN generally occur in the northeast, and seasonally they tend to occur 461 there in summer.

463 3.4. Reduced nitrogen species

462

464

Since NH3 is not monitored in CASTNET, aerosol NH4 is the reduced nitrogen species 465 466 considered in the current study. Numerically, the regional maximum for atmospheric aerosol 467 NH₄ concentration occurs near emissions sources in the source region and midwest, and the 468 seasonal maximum in the east occurs in summer. As is illustrated in Fig. 4, between P1 and P4, 469 atmospheric aerosol NH₄ concentration shows significant regional relative reductions that are 470 similar, ranging from 29% in the midwest, to 27% in the northeast, to 24% in the south, and 471 averaging 26% in the east. Seasonally, the numerically largest absolute and relative reductions of 472 atmospheric aerosol NH₄ concentration occur in summer (when atmospheric aerosol SO₄ 473 concentration is at its seasonal maximum and is also experiencing its largest absolute and relative 474 reductions). Summertime P1-to-P4 relative reductions in atmospheric aerosol NH₄ concentration 475 range from 40% in the midwest, to 32% in the northeast, to 26% in the south, and average 32% 476 in the east. In contrast, reductions are smaller in winter (e.g., 14% in the east) when atmospheric 477 aerosol NH₄ concentration is small and atmospheric aerosol SO₄ concentration is also at its 478 seasonal minimum. 479 Although generally showing significant reductions, dry deposition of atmospheric aerosol

480 NH4 shows numerically weaker P1-to-P4 changes than its atmospheric concentration. The

481 overall P1-to-P4 relative reduction for dry NH₄ in the east (22%) is numerically smaller than the

482 corresponding value for its atmospheric concentration. This pattern of weaker reductions is likely

due to the significant P1-to-P4 increases in aerosol Vd, noted earlier. Regional P1-to-P4 relative reductions in dry NH₄ are 26% in the northeast and 21% in the midwest and south. Seasonally, in winter, when the atmospheric aerosol NH₄ concentration is low, changes in its dry deposition show changes which tend to be small and not significant regionally. Mirroring aerosol NH₄ concentration, the numerically largest P1-to-P4 absolute and relative reductions in dry NH₄ also occur in summer. They range from 34% in the northeast, to 33% in the midwest, to 24% in the south, and average 30% in the east.

490 Numerically, wet NH4 is also high near emissions sources in the midwest and source 491 region, and in the east in the spring and summer seasons when PR is also relatively high. At the 492 regional and seasonal scales, wet NH4 shows P1-to-P4 changes that are usually not significant. 493 The only two reductions that are significant occur overall in the midwest (12%) and east (9%). 494 Two wintertime increases occur in the midwest and the east, but they are not significant. 495 Since the magnitude of wet NH₄ is over seven times larger than dry deposition ((D/T) 496 NH₄, Table 3), the behavior of total NH₄ is strongly influenced by the behavior of wet NH₄. 497 Similar to wet NH4, total NH4 shows mostly P1-to-P4 reductions that are usually not significant,

but with non-significant wintertime increases in the midwest and the east. The only significant
reduction is overall in the east (11%).

500

502

501 3.5. Oxidized plus reduced nitrogen species

503 The sum of monitored oxidized and reduced nitrogen species is represented as N. The 504 behavior of the resulting N-metrics (i.e., atmospheric N concentration, dry N, wet N, and total N) 505 reflects the behavior of the weighted sum of the individual constituents, described previously. 506 Aerosol NH₄ constitutes \approx 67%, HNO₃ \approx 19%, and aerosol NO₃ \approx 14% of the monitored 507 airborne N concentration (RNNH4 and RNHNO3, Table 3). As a result, aerosol NH4 exerts a 508 moderate-to-strong influence on its behavior. Seasonally, the numerically strongest absolute and 509 relative P1-to-P4 reductions of atmospheric N concentration occur in summer (midwest, 39%; 510 northeast, 34%; south, 28%; and east, 33%). This seasonality coincides with the summer peaks 511 of atmospheric N concentration and P1-to-P4 reductions in the concentration of aerosol NH₄, 512 HNO₃, and OxN. Regionally, atmospheric N concentration shows relative reductions of 26% in 513 the midwest, 27% in the northeast, 24% in the south, and 26% in the east.

515	HNO ₃ , but only \approx 21% by dry NH ₄ and \approx 4% by dry NO ₃ (RNFHNO ₃ and RNFNH ₄ , Table 3).
516	Seasonally, the numerically strongest absolute and relative P1-to-P4 reductions in dry N mirror
517	those of aerosol NH ₄ , HNO ₃ , and OxN concentration and dry deposition (and N concentration);
518	they occur in summer (northeast, 47%; south, 39%; midwest, 34%; and east, 40%). Regional
519	non-significant wintertime P1-to-P4 reductions may result in part from corresponding significant
520	regional increases in dry NO ₃ . Regionally, the numerically largest P1-to-P4 reductions occur in
521	the northeast (38%), with smaller reductions in the south (32%) and midwest (26%), and they
522	average 32% in the east.
523	Wet OxN and wet NH4 contribute about equally to wet N, with maxima in spring or
524	summer (Table 3). The numerically largest significant P1-to-P4 absolute reductions in wet N also
525	occur in spring or summer, and peak seasonal relative reductions range between 20 and 30%.
526	Non-significant numerical wintertime P1-to-P4 reductions in wet N occur in the northeast and
527	south, with a non-significant increase in the midwest. This behavior is likely associated with
528	previously noted numerical wintertime P1-to-P4 increases in PR. Regional P1-to-P4 relative
529	reductions in wet N are 24% in the northeast, 20% in the midwest, 17% in the south, and average
530	20% in the east.
531	Since wet N contributes \approx 75% of total N ((D/T) N, Table 3), the behavior of total N is
532	strongly influenced by the behavior of wet N. The numerically largest significant P1-to-P4
533	absolute reductions in total N generally occur in summer, with corresponding seasonal relative
534	reductions of 31% in northeast, 25% in midwest, and 26% in south. Non-significant P1-to-P4
535	reductions in total N occur only in wintertime and are associated with similar behavior of wet
536	OxN and wet N and numerical wintertime P1-to-P4 increases in PR. Regionally, the numerically
537	largest P1-to-P4 reductions occur in the northeast (28%), with smaller reductions in the midwest
538	and south (22%). The overall P1-to-P4 relative reduction of total N in the east is 24%.
539	
540	3.6. Wet H ⁺

542	Regionally, wet H^+ deposition is generally heaviest in the northeast, and seasonally in the
543	east it is heaviest during summer (Table 3). Seasonally, the numerically largest absolute
544	reductions occur in summer, with relative reductions of similar magnitude in spring and summer;

545	while generally smaller reductions occur in winter (Fig. 4). The numerically largest seasonal	
546	relative reductions range from 65% in the midwest (summer), to 55% in the northeast (spring), to	
547	50% in the south (spring). Regionally, P1-to-P4 regional relative reductions of wet H^+ are	
548	numerically larger near sources in the midwest (56%) and smaller in the south (46%) and	
549	northeast (44%). The overall P1-to-P4 relative reduction in wet H^+ in the east is 47%.	
550		
551	3.7. Atmospheric O ₃ concentration and dry deposition	
552		
553	In the current study, hourly atmospheric O3 concentrations, averaged to weekly values,	
554	are treated as other weekly CASTNET data (i.e., averaged to period-site-season means); however	
555	this does not represent the relevant time period for determining compliance with the US ambient	
556	air quality standard. As is illustrated in Fig. 4, mostly non-significant P1-to-P4 seasonal increases	
557	in atmospheric O_3 concentration occur in winter in the northeast (13%, NS), midwest and south	
558	(7%, NS), and east (9%, significant). Summertime atmospheric O3 concentrations do show	
559	substantial and mostly significant absolute and relative reductions in each region: 6.7 ppb (17%)	
560	in the northeast; 5.3 ppb (14%) in the south; 2.4 ppb (6%, NS) in the midwest; and 4.9 ppb	
561	(12%) in the east. The numerically largest reduction in atmospheric O_3 concentration occurs in	
562	summer and in the northeast, coinciding with aggressive O3-season NOx emissions controls	
563	during P3 and P4 in this region and upwind in the east. Unpublished examination of seasonal	Commented [SJ8]: Response to comment from Referee #3
564	NOx emissions in the eastern US for the period between 1990-1992 and 2006-2008 (roughly	
565	corresponding to P1-to-P4) suggests that reductions in summertime emissions are approximately	
566	6% greater than those for the aggregate of the remaining three seasons over the same time	
567	period. Regional reductions of atmospheric O3 concentration over all seasons are small and only	
568	significant in the south (5%) and east (4%).	
569	Moderate P1-to-P4 increases in Vd for O3 act in opposition to corresponding reductions	
570	in atmospheric O_3 concentration to yield P1-to-P4 changes in dry deposition of O_3 that are	
571	sometimes significant. Relatively large, significant seasonal reductions in dry O_3 , ranging from 5	
572	to 15%, occur regionally in summer; however, corresponding increases ranging between 15 and	
573	25% occur in winter. Regionally, P1-to-P4 reductions in dry O_3 occur in the northeast (8%) and	
574	south (4%), and a non-significant increase occurs in the midwest (1%, NS). The P1-to-P4	
575	relative reduction in dry O_3 in the east is 4%.	

5/6		
577		
578	4.	Discussion
579		
580	4.1.	Changes in atmospheric aerosol SO ₄ and SO ₂ concentration
581		
582		Both P1-to-P4 absolute and relative changes in atmospheric aerosol SO ₄ concentration,
583	show	n in Fig. 4, are numerically substantially less than the corresponding values for atmospheric
584	$SO_2 c$	concentration, consistent with the findings of Reid et al. (2001), Holland et al. (2004), and
585	SS07	b for earlier time periods. For regional groupings of sites and in the east, the year-round
586	ratios	of P1-to-P4 relative reductions in atmospheric aerosol SO4 concentration to atmospheric
587	SO ₂ c	concentration are similar (≈0.7% decrease in aerosol SO ₄ for each 1% decrease in SO ₂). In
588	the ea	ast these ratios range numerically between a wintertime low (${\approx}0.5\%$ SO ₄ per 1% SO ₂) and a
589	high (($\approx 0.8\%$ SO ₄ per 1% SO ₂) in summer when aerosol SO ₄ levels are at their seasonal maxima
590	and S	O2 levels are at their seasonal minima. Year-round ratios of P1-to-P4 absolute reductions of
591	atmos	spheric aerosol SO_4 concentration to those of SO_2 concentration (both expressed as mass of
592	sulfur) are similar in regions of higher emissions density, the midwest and northeast (≈ 0.2	
593	µgS/r	n^3 decrease in aerosol SO ₄ for each 1 µgS/m ³ decrease in SO ₂). This ratio is numerically
594	highe	r in the south (\approx 0.3), and it may be due in part to concurrent reductions of SO ₂ emissions in
595	areas	of higher emissions density with subsequent transport of reduced amounts of oxidized
596	sulfu	r, especially aerosol SO ₄ , into the south.
597		RSO_2 (Table 3), is the ratio of atmospheric SO_2 concentration to total atmospheric S
598	conce	entration, and 1-RSO ₂ is the relative amount of atmospheric S concentration present as
599	aeros	ol SO ₄ , representing a rough index of the extent of conversion of SO ₂ to other oxidized
600	sulfu	species (i.e., aerosol SO ₄). Significant P1-to-P4 RSO_2 reductions (not shown) of 8% in the
601	south	, 5% in the northeast, and 7% in the midwest and east correspond to increases in the
602	conve	ersion index (e.g., 17% in the east). This suggests that as the P1-to-P4 atmospheric SO ₂
603	conce	entration in the east has decreased, the relative amount of airborne S present as SO_2 has
604	decre	ased, and both the relative amount present as aerosol SO_4 and the apparent extent of
605	conve	ersion of SO ₂ to aerosol SO ₄ have increased.
606		

607 4.2. Changes in dry and wet deposition

608

609 As noted in Section 3.2, wet S exceeds dry S in the east, except in winter. The P4 ratio of 610 dry S to total S in the east is 0.37 ((D/T) S, Table 3), down from 0.44 in P1; qualitatively similar behavior is noted for the BKG sites (i.e., P4 ratio 0.23 versus 0.26 in P1) and HE sites (i.e., P4 611 612 ratio 0.40 versus 0.50 in P1). In the east, the ratio of dry S to wet S (calculated from (D/T) S) has 613 diminished by 24% from P1 (0.78) to P4 (0.60). This reduction is strongest (>30%) in regions of 614 high emissions density (midwest and northeast) in winter, where SO_2 concentrations are at their 615 peak. Year-round, in the east and regionally, both P1-to-P4 absolute and relative reductions in 616 dry S are numerically larger (by ≈ 20 to 70%, Fig. 4) than corresponding values for wet S. 617 However, in summer when PR is high and atmospheric aerosol SO₄ concentration is at its 618 seasonal maximum, the absolute P1-to-P4 reductions are larger (by ≈ 25 to 100%) for wet S than 619 dry S. In other seasons, the roles are different, and in winter, when atmospheric SO₂ 620 concentration is at its seasonal maximum and PR is at its seasonal minimum, P1-to-P4 absolute 621 and relative reductions in dry S, are substantially larger (by over a factor of ≈ 2) than the 622 corresponding reductions for wet S. Thus, strong emissions controls of the primary pollutant SO₂ 623 have reduced dry S to a greater extent than wet S, permitting the latter to become an increasing 624 relative contributor to total S. This, along with the increased apparent conversion of SO₂ to 625 aerosol SO₄, noted above, suggests that wet processes are becoming more prominent than dry 626 processes at removing oxidized sulfur from the current atmosphere in the east. 627 Whereas deposition estimates of both primary and secondary oxidized sulfur species are 628 available for comparison of their dry and wet P1-to-P4 changes, only changes in deposition of 629 monitored secondary oxidized nitrogen species can be compared in the current study. In the east, 630 dry OxN appears to be numerically smaller than wet OxN (Section 3.3), and the P4 ratio of dry 631 OxN to total OxN is 0.35 ((D/T) OxN, Table 3), down slightly from 0.37 in P1. Qualitatively 632 similar behavior is noted for the BKG sites (i.e., P4 ratio 0.27 versus 0.30 in P1) and HE sites

633 (i.e., P4 ratio 0.41 versus 0.51 in P1). Absolute P1-to-P4 reductions in dry OxN are generally

634 numerically smaller than corresponding values for wet OxN (Fig. 4). However, with the recent,

635 more aggressive NOx emissions controls, the relative P1-to-P4 reductions of dry OxN now

exceed those for wet OxN more frequently than in the earlier P1-to-P3 comparison (SS07b).

637 These findings suggest that wet OxN is becoming an increasing relative contributor to total OxN.

057		
640		
641	Although PM _{2.5} is not monitored in CASTNET, many of the major inorganic constituents	
642	(i.e., aerosol SO ₄ , NO ₃ , and NH ₄) are monitored. In contrast to aerosol SO ₄ and NH ₄ , which	
643	occur mainly as fine particles, there is evidence suggesting that the size distribution of aerosol	
644	NO ₃ can be multimodal in the east and is subject to sampling artifacts in opposing	Commented [SJ9]: Response to comment from I
645	directions(Wolff, 1984; Lefer and Talbot, 2001). Although collection of both fine and coarse	
646	particles may occur on with the open faced-CASTNET filter packsampler, but they are thought	
647	to be minimal during cooler seasons based on the estimated aspiration rate (Li and Lundgren,	
648	2002) and comparison with collocated IMPROVE (with 2.5 µm cut (Sickles and Shadwick,	
649	2008)) the contribution of coarse particles is not expected to be large at the non-marine, eastern	
650	CASTNET sites (see Sect. 2). In the current study, CASTNET PM is taken to be the sum of	
651	atmospheric aerosol SO ₄ , NO ₃ , and NH ₄ mass concentrations.	
652	Significant P1-to-P4 (Fig. 5) and P3-to-P4 reductions occur in CASTNET PM	
653	concentration in each region in each season and over all seasons. This is in contrast to P1-to-P3	
654	behavior where non-significant wintertime changes occurred (SS07b), with both numerical and	
655	significant increases in the midwest (Fig. 8). Year-round absolute and relative reductions in the	
656	east are 2.3 $\mu g/m^3$ and 28% (P1-to-P4) and 1.1 $\mu g/m^3$ and 16% (P3-to-P4). Seasonally, they peak	
657	in summer when aerosol SO ₄ and NH ₄ concentrations are at their maxima and are also	
658	experiencing their largest reductions. Regionally, the largest absolute and relative reductions in	
659	CASTNET PM occur in the midwest in summer (4.9 $\mu g/m^3$ and 41% (P1-to-P4) and 1.9 $\mu g/m^3$	
660	and 21% (P3-to-P4)).	
661	For the chemically complex NH ₃ -HNO ₃ -H ₂ SO ₄ -water system, conditions can arise where	
662	the availability of NH3 limits the formation of aerosol NH4NO3. Here, subsequent reductions of	
663	airborne aerosol SO ₄ , by tying up less NH_3 as aerosol (NH_4) ₂ SO ₄ , may make more NH_3 available	
664	to react with HNO ₃ , increasing the level of aerosol NH ₄ NO ₃ . Although atmospheric NH ₃	
665	concentration is not monitored in CASTNET, when the index, RNO3 (i.e., the ratio of	
666	atmospheric aerosol NO_3 to OxN concentrations), is less than 0.7, then formation of aerosol	
667	NH4NO3 may be NH3-limited (Blanchard et al., 2000). Using this index and focusing on non-	Commented [SJ10]: Response to comment from
668	summer season results to minimize the impacts of sampling artifacts (see Sect. 2), results in	

4.3. CASTNET PM

669 Table 3 suggest that NH₃-limited conditions are present in the east but are weakest in winter and 670 year-round in the midwest.

671 Significant P1-to-P2-to-P3-to-P4 increases in RNO3 occur in the east. Regionally, the 672 numerically largest absolute and relative P1-to-P4 increases occur in the northeast (40%), with smaller increases in the south (28%), midwest (10%), and east (22%). Seasonally, the 673 674 numerically largest absolute increases occur in winter. The numerically largest regional P1 675 winter RNO₃ value (0.70) occurs in the midwest, and this value increases significantly by 12% to 0.78 in P4. These results suggest that between P1 and P4, NH3 availability has increased in the 676 677 east and the formation of aerosol NO3 has become less NH3-limited. The least NH3-limited 678 situation appears to occur in winter in the midwest (with its strong sources of NH₃). In addition, 679 the relative amount of monitored OxN present as HNO3, RHNO3 (i.e., 1-RNO3), diminished 680 significantly in the east between P1 (0.66) and P4 (0.59) (Section 3.3). 681 For a chemical system initially containing, NH₃, HNO₃, H₂SO₄, and water, an index of 682 the extent to which ambient sulfuric acid (H_2SO_4) has been neutralized by atmospheric NH₃ may be defined as the neutralization index (NI). Correcting for the presence aerosol NH₄NO₃, it may 683 684 be computed as ([NH₄] - [NO₃]) / 2[SO₄] (Blanchard and Hidy, 2005). The value of NI can range 685 between zero (unneutralized H_2SO_4) and unity (100% neutralization to (NH₄)₂SO₄). As shown in 686 Table 3, NI averages ≈ 0.8 in the east. Calculation of NI assumes that aerosol NO₃ is present as 687 fine aerosol NH₄NO₃ and neglects the possible presence other forms of aerosol NO₃ (e.g., from 688 large particle sea/road salt or soil/mineral dust). As suggested in Sect. 2, sampling artifacts may 689 provide biases in opposing directions for aerosol NO₃. Their impacts are expected to be minimal 690 during cooler season sampling at non-marine sites. Although small (but significant) P1-to-P4 691 increases in NI occur in the east, large increases occur in summer in the northeast (15%) and 692 south (18%), while small non-significant decreases occur in winter. These results suggest that 693 between P1 and P4 an acidic aerosol is approaching neutralization due to increased relative 694 availability of NH₃ associated with reductions of aerosol SO₄ concentration. These findings are 695 consistent with those noted in previous paragraphs and with those for P1-to-P3 (SS07b), 696 indicating that conditions in the east are becoming less NH₃-limited. 697 Modeling efforts have indicated that nonlinear changes in PM2.5 concentrations can occur 698

- in response to reductions in atmospheric aerosol SO4 concentrations in the east (Ansari and
- 699 Pandis, 1998; West et al., 1999; Blanchard and Hidy, 2005). Under NH₃-limited conditions

Commented [SJ11]: Response to comment from Referee #2

700 Blanchard et al. (2000) suggest: that reduction of aerosol SO₄ concentrations can increase aerosol 701 NO3 concentrations by amounts that exceed the aerosol SO4 reductions on a mass basis; and that 702 reductions of ambient oxidized nitrogen concentrations (that may accompany reductions in NOx 703 emissions) may not reduce aerosol NO₃ concentrations. These modeling studies suggest that for 704 the NH₃-HNO₃-H₂SO₄-water system, constituent concentration and temperature conditions can 705 exist in the east so that when the atmospheric aerosol SO_4 concentration is reduced, the 706 corresponding change in PM2.5 concentration can be influenced nonlinearly. At low 707 temperatures, aerosol NH₄NO₃ will likely form when NH₃ is made available from a reduction in 708 atmospheric aerosol SO₄ concentration, and negative to nonlinear responses ranging from -0.3 to 709 <1.0 ($\Delta \mu g PM_{2.5} / \Delta \mu g SO_4$) can result (Ansari and Pandis, 1998; West et al., 1999). Using 710 model estimates, West et al. (1999) have predicted that these conditions would exist most 711 commonly in winter in the midwest and would be uncommon in summer in the east. A 2009 field 712 study (Stanier et al., 2012) has focused on wintertime episodes of elevated aerosol NO₃ 713 concentrations in the midwest (Wisconsin). 714 Ratios of P1-to-P4 absolute changes in CASTNET PM concentrations to corresponding 715 changes in aerosol SO₄ (($\Delta(\mu g \text{ CASTNET PM/m}^3) / \Delta(\mu g \text{ SO}_4/m^3)$) have been determined. Year 716 round, these ratios are of similar magnitude, numerically falling between 1.2 and 1.6, both for the 717 east and for each regional grouping of sites. Seasonally in the east, these ratios range between 1.3 718 and 1.5 in spring, summer, and fall. However, in winter they are numerically close to 1.0 in the 719 east and each region. This represents a change from P1-to-P3 behavior, where the wintertime 720 ratio averaged close to 0.0 in the east, and in the midwest was negative and accompanied by a 721 numerical increase in CASTNET PM (SS07b). Wintertime numerical increases in CASTNET 722 PM occurred at 15 sites between P1 and P3, but at only one site between P1 and P4 and at only 723 one site between P3 and P4 (Fig. 8). This wintertime behavior of CASTNET PM appears to be 724 driven largely by that of aerosol NO₃ (Fig. 7). These findings suggest that additional P3-to-P4 725 reductions in emissions of SO₂, and especially NOx, have made progress in altering the chemical 726 regime of the wintertime eastern US atmosphere so that future emissions reductions and their 727 resulting reductions in aerosol concentrations may no longer be accompanied by sub-linear 728 changes (or actual increases) in CASTNET PM. 729

730 4.4. Comparison with emissions estimates

731 732 Emissions estimates for SO₂ and NOx (Xing et al., 2013) have been aggregated to 733 regional levels and have been used to determine current mean estimates of P1, P2, P3 and P4 734 emissions as well as period-to-period absolute and relative changes in regional SO2 and NOx emissions in the east (see Section 2.1 for identification of the states composing each 735 geographical region). Although current P1, P2, and P3 emissions estimates have been updated 736 737 and may be slightly different compared to those reported in SS07b; using the same current 738 version permits period-to-period comparisons to be made using consistent emissions estimates. 739 In addition, subsequent analyses repeated using emissions estimates (US EPA, National 740 Emissions Inventory, Emissions Factor and Inventory Group, Office of Air Quality Planning and 741 Standards, Research Triangle Park, NC) [http://www.epa.gov/ttn/chief/net/2008inventory.html, 742 accessed 02/12/13], yield reasonably consistent findings with no appreciable changes to 743 conclusions. 744 Continuous emissions monitors used on most EGUs provide reasonably accurate 745 estimates of SO₂ and NOx emissions from these sources. Although EGUs are the main source of 746 SO₂ emissions; EGUs, on-road, and off-road sources contribute substantially to total NOx 747 emissions. Uncertainty in on-road and other non-EGU NOx emissions make estimates of total 748 NOx emissions more uncertain than those for SO₂ (Butler et al., 2005; Parrish, 2006; Blanchard 749 et al., 2013). 750 Estimates of both P1 and P4 emissions density are shown in Table 4 in the same units as 751 deposition. For example, the P1 emissions density for SO₂ is over 60% higher in the midwest, 752 with its EGU sources in the Ohio Valley, than in the south (i.e., 51 versus 31 kgS/(ha y)). P1-to-753 P4 relative change results for regional SO₂ and NOx emissions (Fig. 3) are also shown in Table 4 754 with corresponding values for selected measures of atmospheric concentration and total

- 755 deposition from Fig. 4.
- 756

757 4.4.1. Oxidized sulfur species

- 758 The fairly universal reductions in the S-related concentration and deposition metrics
- noted previously in Section 3.2 largely reflect the year-round SO_2 emissions controls that have
- 760 been continuing since 1995 (Fig. 1). Reductions in SO₂ emissions in the east have led to
- significant reductions in monitored SO₂ concentrations (i.e., P1-to-P2 (21 versus 27%), P1-to-P3

(35 versus 33%), P1-to-P4 (50 versus 48%), and P3-to-P4 (23 versus 23%)). Reductions in SO₂
emissions in the east have led to significant, but smaller, reductions in aerosol SO₄
concentrations (i.e., P1-to-P2 (21 versus 12%), P1-to-P3 (35 versus 21%), P1-to-P4 (50 versus

765 33%), and P3-to-P4 (23 versus 15%)).

766 As indicated in Table 4, the P1-to-P4 relative reductions in SO₂ emissions in the east 767 (50%) are in closer numerical agreement with reductions of atmospheric concentration of the monitored primary pollutant, SO_2 (48%), than the monitored reaction product, aerosol SO_4 768 (33%). Ratios of the P1-to-P4 relative change in monitored concentration to emissions estimates 769 770 for SO₂ in the east are approximately 0.97 for SO₂ and 0.66 for aerosol SO₄, with similar 771 findings for P3-to-P4 comparisons. Relative P1-to-P4 comparisons also show significant 772 reductions for SO₂ emissions (50%) and dry S (49%). These results suggest that at the current 773 scale, the responses of both atmospheric SO_2 concentration and dry deposition to changes in SO_2 774 emissions are close to 1:1; however, the relationship appears to be less than 1:1 for aerosol SO₄. 775 In addition, as indicated here and in Section 4.1, the relationship between changes in the 776 concentration of the reaction product, aerosol SO₄, and that of the primary pollutant, SO₂, 777 appears to be less than 1:1. 778 These findings are generally consistent with earlier findings for P1-to-P3 comparisons 779 (SS07b) as well as those of those of others. Butler et al. (2001) reported slightly less than a 1:1 780 relationship between changes in downwind atmospheric S concentration and changes in SO₂ emissions from specific upwind source regions. Blanchard et al. (2013) found southeastern US 781 782 trends of SO₂ ambient concentrations and emissions to be decreasing with a qualitative 1:1 783 proportionality, while the relationship for trends of ambient aerosol SO₄ concentrations and SO₂ 784 emissions were decreasing but at less than 1:1 proportionality. Hand et al. (2012) reported linear 785 relationships between aerosol SO₄ concentrations and SO₂ emissions that depended on location 786 in the US, with aerosol SO_4 concentration showing the weakest response to SO_2 emissions in a 787 region in the eastern US roughly included in the currently defined source region, midwest, and

northeast.
Atmospheric pollutants are transported and transformed by physical and chemical
processes between their release and deposition. For example, gaseous SO₂ may be transformed
into aerosol SO₄ by several pathways, including gas-phase oxidation by the hydroxyl radical and,

 $792 \qquad after \ dissolution \ in \ water \ droplets, \ via \ oxidation \ by \ hydrogen \ peroxide \ and \ O_3 \ (McHenry \ and$

793 Dennis, 1994). As SO₄-containing aqueous particles undergo atmospheric processing (i.e., 794 evaporation and dissolution), there is a close linkage between the secondary pollutant's 795 atmospheric concentration and wet removal (i.e., they have similar atmospheric time scales). 796 Although SO₄ is then subject to both dry and wet deposition, the latter dominates (e.g., east P4 797 wet S is 5.2 kgS/(ha y) versus 0.4 kgS/(ha y) for dry SO₄ (Table 3)). This may explain the 798 relatively good agreement between P1-to-P4 (33%) and P3-to-P4 (15%) reductions in the 799 atmospheric concentration of secondary pollutant, aerosol SO₄, and corresponding changes (32% 800 and 13%) in wet S.

801 Since atmospheric S concentration is comprised of SO_2 and aerosol SO_4 , reductions of 802 SO₂ emissions may be expected to yield responses of atmospheric S concentration and total S 803 that fall between corresponding values for SO_2 and aerosol SO_4 . This is confirmed in Table 4 804 where reductions in SO_2 emissions in the east correspond to significant reductions of both 805 atmospheric S concentration (i.e., P1-to-P4 (50 versus 45%)) and total S (i.e., P1-to-P4 (50 806 versus 40%)).

807 For a pollutant where all primary and secondary species are monitored (e.g., S), 808 neglecting other sources and sinks, emissions density may be compared with total deposition to 809 construct rough budgets for oxidized sulfur, revealing insights about the relative amounts of the 810 species deposited and exported. Model predictions for North America (Wojcik and Chang, 1997) 811 suggest approximately 50% of S emissions are deposited. In the current study, P1, P2, P3 and P4 812 S emissions densities in the east are 38, 30, 25, and 19 kgS/(ha y), while corresponding total S 813 values are 15, 12, 11 and 8.7 kgS/(ha y). Between P1 and P4 the relative amount of deposited S 814 emissions increased by $\approx 8\%$ from 39 to 47%, and the net exported S emissions decreased by a 815 corresponding amount from 61% to 53%. Thus, the strong P1-to-P4 SO₂ emissions controls are 816 accompanied by increased apparent conversion of SO_2 to aerosol SO_4 (Section 4.1), possible 817 increased relative contribution of wet versus dry deposition (Section 4.2), increased fraction of 818 deposited S emissions, and decreased fraction of exported S emissions. 819

820 4.4.2. Oxidized nitrogen species

Changes in pollutant emissions generally lead to more direct changes in the atmospheric
 concentration of primary rather than secondary pollutant species, where emissions as well as

823 variable meteorological and atmospheric chemical processes are influential. In contrast to

oxidized sulfur species, where the behaviors of both primary and secondary pollutants are
monitored, the atmospheric concentration and deposition of only a few of the secondary oxidized
nitrogen species (i.e., HNO₃, aerosol NO₃ and aqueous NO₃ ion) are monitored in the current
study. This likely propagates more uncertainty into comparisons with primary NOx emissions
than is present in earlier comparisons with SO₂ emissions.

Recent aggressive NOx emissions controls in the east have led to significant reductions in concentrations of the important secondary oxidized nitrogen pollutant, HNO₃ (i.e., P1-to-P2 (6% versus NS), P1-to-P3 (22 versus 13%), P1-to-P4 (42 versus 34%), and P3-to-P4 (25 versus 24%)). The non-linear behavior of aerosol NO₃ concentration noted in Section 4.3 is apparent in many comparisons of reductions in NOx emissions with aerosol NO₃ behavior but appears to be diminishing with time (i.e., P1-to-P2 (6 versus -5%), P1-to-P3 (22 versus -11%), P1-to-P4 (42 versus 8%), and P3-to-P4 (25 versus 17%), where the minus sign indicates increase).

836 The numerically largest P1-to-P4 relative reductions in estimated NOx emissions (46%), 837 vear-round atmospheric concentrations of HNO₃ (39%) and OxN (29%), dry OxN (40%), wet OxN (34%), total OxN (36%), and summertime total OxN (42%) occur in the northeast, the 838 839 region with the largest P1 emissions density (Table 4). As noted in Section 3.3, numerical 840 maximum absolute and relative seasonal reductions in atmospheric HNO₃ concentrations also 841 occur in summer, with largest reductions in the northeast. These changes are likely reflecting 842 contributions from year-round control of NOx emissions by Phases I and II of the CAAA and continuing mobile source controls. However, the timing (e.g., changes most apparent in summer 843 844 with peak concentrations moving from summer to spring) and the location (i.e., strongest 845 reductions in northeast) suggest that major contributors are summertime NOx emissions control activities instituted under OTC, SIP Call, BTP and CAIR that focused on EGU sources in the 846 847 eastern states.

As noted above and in SS07b, the 22% reduction in the east of P1-to-P3 NOx emissions is associated with a 13% reduction in HNO₃ concentration, an 8% reduction in dry OxN, a 12% reduction in wet OxN, an 11% reduction in total OxN, but an 11% increase in aerosol NO₃ concentration. Here, the ratio of P1-to-P3 relative changes of monitored HNO₃ concentration to those of estimated NOx emissions is 0.6, qualitatively consistent with the value of 0.7 found by Butler et al. (2005) for a similar time period (1991-2001). Recent aggressive NOx emissions controls, however, appear to have altered these relationships. As indicated in Table 4, the 42% 855 P1-to-P4 reduction of NOx emissions in the east corresponds to 34% reductions in HNO₃ concentration and dry OxN, a 29% reduction in wet OxN, a 31% reduction in total OxN, and an 856 857 8% reduction in aerosol NO3 concentration. Here, the ratio of P1-to-P4 relative changes of 858 monitored HNO₃ concentration and dry OxN to those of estimated NOx emissions is 0.8, but the corresponding ratio for aerosol NO₃ concentration is 0.2. These findings are consistent with the 859 recent observations in the southeastern US of decreasing 1999-2010 trends of NO_Y 860 concentration that exceed those for aerosol NO₃ concentration and are qualitatively proportional 861 862 to decreasing NOx emissions trends (Blanchard et al., 2013). 863 In the east, the 42% P1-to- P4 reduction of NOx emissions also corresponds to significant 864 reductions of deposition (i.e., dry HNO3 (35%), dry OxN (34%), wet OxN (29%) and total OxN 865 (31%)). The relatively good agreement between the P1-to-P4 changes in the atmospheric 866 concentration of HNO₃, dry HNO₃, and dry OxN can be explained by the high RFHNO₃ (Section 867 3.3; Table 3). The favorable comparison with wet OxN may be related to the high relative 868 abundance and high water solubility of HNO₃ in comparison to other NO_Y species in the atmosphere. It could also be related to a possible high correlation of atmospheric concentration 869 870 of HNO₃ with those of other airborne NOx reaction products that are removed from the 871 atmosphere and measured as aqueous NO₃ ion in precipitation. 872 Model predictions for the continental US (Zhang et al., 2012) suggest approximately 63% 873 of 2006-2008 NOx emissions are deposited as NO_Y and 45% as OxN. In the current study, none of the primary NOx species and only two of the secondary species (HNO₃ and aerosol NO₃) are 874 875 monitored. Nevertheless, neglecting other sources and sinks, it is possible to compare NOx 876 emissions density with total OxN deposition to determine the fraction of NOx emissions 877 deposited as OxN. Using the approach described in Section 4.4.1 for oxidized sulfur, 878 approximately 30% of the NOx emissions appear to be deposited as OxN during the study 879 period. Although there are hints of a numerically small P1-to-P4 increase in the relative amount 880 of NOx emissions deposited as OxN, the large relative uncertainty associated with NOx 881 emissions estimates (Section 4.4) precludes a conclusion in this instance. Nevertheless, the 882 strong P1-to-P4 reduction of NOx emissions (42%) is accompanied by reduced atmospheric 883 concentration of HNO3 and OxN as well as RHNO3 (Sections 3.3 and 4.3), and by increased 884 relative contribution of wet OxN versus dry OxN (Section 4.2). 885

886 4.4.3. Wet H⁺

887 In the east the P1-to-P2 reductions in estimated emissions are 21% for SO2 and 6% for 888 NOx. Concurrent changes in deposition include reductions of 17% for wet S, 3% (NS) for both 889 wet OxN and wet NH₄, and 24% for wet H⁺ (not shown). In the absence of sizeable P1-to-P2 890 changes in NOx emissions, it appears that P1-to-P2 reductions in SO₂ emissions played a major 891 role in the resulting reductions of both wet S and wet H⁺ in the east. P1-to-P3 reductions in 892 estimated SO₂ and NOx emissions are 35% and 22%, with corresponding reductions of 22% in 893 wet S, 12% in wet OxN, no change in wet NH4, and 34% in wet H⁺ (SS07b). For P1-to-P4, 894 reductions in estimated SO2 and NOx emissions are 50% and 42%, and corresponding reductions 895 are 32% for wet S, 29% for wet OxN, 9% for wet NH4, and 47% for wet H⁺ (Fig. 4). Respective 896 P3-to-P4 reductions in estimated SO₂ and NOx emissions are 23% and 25%, with corresponding 897 reductions of 13% in wet S, 19% in wet OxN, 9% in wet NH4, and 20% in wet H+. 898 Changes in wet NH₄ between P1 and P3 are generally small, variable, and non-899 significant. Although significant P1-to-P4 reductions in wet NH₄ are also relatively small ($\approx 9\%$), 900 they occur mainly between P3 and P4. In the east between P1 and P4, with the continuing 901 reduction in SO₂ and NOx emissions, the fraction of wet S plus wet OxN that could be 902 neutralized on an equivalent basis by wet NH₄ increased by approximately 8% from 25% in P1, 903 to 33% in P4. 904 Neglecting the relatively small temporal impacts of wet NH₄ (above) and those of other 905 wet cations, examination of the behavior of wet S plus wet OxN (on an equivalent basis) permits rough estimation of the relative contributions of reductions in SO₂ and NOx emissions to 906 907 corresponding reductions in wet H⁺. Year-round in the east, P1-to-P3 reductions in wet S 908 contribute most (\approx 80%) of the relative reduction of wet S plus wet OxN associated with reduced 909 wet H⁺. Between P1 and P4, this relative contribution diminishes (to $\approx 70\%$), and between P3 and 910 P4 the relative contribution of wet S (\approx 55%) approaches that of wet OxN. This finding illustrates 911 the impact of recent aggressive NOx emissions controls along with continuing SO₂ controls on 912 wet H⁺ and the increasing relative contribution of reductions in NOx emissions to the significant 913 and substantial reduction of wet H⁺ in the eastern US. 914 915

916 5. Summary, conclusions, and recommendations

)1/	
918	Data collected in the eastern US between 1990 and 2009 at 34 CASTNET dry monitoring
919	sites and paired NADP wet monitoring sites are examined. A major objective is to evaluate the
920	monitored air quality impacts occurring between 1990 and 2009 that are associated with
921	concurrent legislatively-mandated changes in emissions. Four 5-year periods (P1, P2, P3, and
922	P4) are considered. Period-to-period changes in selected pollutant metrics are examined,
923	focusing on P1-to-P4 changes. Data are composed from reported weekly measurements into
924	period-site-season means. These means, computed for atmospheric concentration, Vd, PR, and
925	dry, wet and total deposition, are used to examine differences between 5-year periods for
926	seasons, sites, and predefined regional groupings of sites. The approach to data analysis uses the
927	mean squared error derived from analysis of variance of mean estimates for each pollutant metric
928	to examine differences in the monitoring data and metrics derived from them.
929	Estimated SO ₂ emissions for P4 are 50% lower than for P1. This is accompanied in each
930	regional site grouping in each season and over all seasons by significant reductions in
931	atmospheric SO2 concentration and dry deposition, atmospheric aerosol SO4 concentration,
932	atmospheric S concentration and dry deposition, wet S (except in winter), and total S. For
933	atmospheric SO_2 concentration and dry deposition, the numerically largest significant seasonal
934	absolute reductions usually occur in winter when atmospheric SO ₂ concentration is at its
935	seasonal maximum. Analogous behavior occurs in summer for atmospheric aerosol SO4
936	concentration, dry SO ₄ , and wet S, when atmospheric aerosol SO ₄ concentration is at its seasonal
937	maximum. In the east, significant reductions of 48%, 33%, and 45% for atmospheric
938	concentration of SO_2 , aerosol SO_4 and atmospheric S, and of 49%, 32%, and 40% for dry, wet,
939	and total deposition of atmospheric S are associated with the 50% P1-to-P4 reduction in
940	estimated SO ₂ emissions. Consistent with earlier findings (SS07b), results suggest that at the
941	current scale, the responses of both atmospheric SO_2 concentration and dry deposition to changes
942	in SO_2 emissions are close to 1:1; and the relationship between changes in the concentration of
943	the secondary reaction product, aerosol SO_4 , and that of the primary pollutant, SO_2 , appears to be
944	less than 1:1. The strong P1-to-P4 reduction of SO_2 emissions (50%) is accompanied by
945	increased apparent conversion of SO2 to aerosol SO4, possible increased relative contribution of
946	wet versus dry deposition as a sink for S, increased fraction of deposited S emissions, and
947	decreased fraction of exported S emissions.

948	In the east, significant P1-to-P4 reductions of 34%, 8%, and 24% for atmospheric
949	concentration of HNO ₃ , aerosol NO ₃ and OxN, and of 34%, 29%, and 31% for dry, wet, and total
950	deposition of OxN are associated with the 42% reduction in estimated NOx emissions.
951	Atmospheric aerosol NO ₃ concentration in the east displays a significant P1-to-P3 increase
952	(11%), with the numerically strongest seasonal relative increase (31%) in winter (SS07b). Recent
953	aggressive reductions of NOx emissions have been accompanied by significant P1-to-P4 and P3-
954	to-P4 reductions of 8% and 17% in atmospheric aerosol NO3 concentration over all seasons. In
955	addition, the smaller P1-to-P4 wintertime increase in atmospheric aerosol NO3 concentration
956	(i.e., 12% versus 31% for P1-to-P3) and the P3-to-P4 wintertime reduction of 14% suggest that
957	recent continuing NOx emissions controls are having a desirable impact. Over all seasons the
958	numerically largest absolute and relative reductions in atmospheric HNO3 concentration and dry
959	deposition, atmospheric OxN concentration and dry deposition, and total OxN generally occur in
960	the northeast (the geographical region with the highest P1 NOx emissions density), and
961	seasonally they tend to occur there in summer. In the east, coincident timing and location suggest
962	that aggressive summertime NOx emissions reductions by EGU sources contributed substantially
963	to this observed behavior. The strong P1-to-P4 reduction of NOx emissions (42%) is
964	accompanied by reduced atmospheric concentration of HNO3 relative to OxN, and increased
965	contribution of wet OxN relative to dry OxN.
966	Estimated annual 1990 to 2009 NH3 emissions are relatively constant, ranging between
967	3.5 and 3.9 Tg/y (Xing et al., 2013). However, this is not confirmed through monitoring in the
968	current study, because only the atmospheric concentration of the secondary reduced nitrogen
969	species, aerosol NH ₄ , is monitored. In the east, both atmospheric aerosol NH ₄ concentration and
970	dry deposition show significant P1-to-P4 reductions (i.e., 26 and 22%). The numerically largest
971	absolute and relative reductions of atmospheric aerosol NH4 concentration and dry deposition
972	tend to occur regionally in the midwest and northeast and seasonally in the summer (when
973	atmospheric aerosol SO ₄ concentration is at its seasonal maximum and is also experiencing its
974	largest reductions). Although showing a significant (9%) P1-to-P4 reduction over all in the east,
975	wet NH4 shows changes at the regional and seasonal scales that are usually not significant. Since
976	the magnitude of wet NH4 is over seven times larger than dry deposition, the resulting reduction
977	in total NH_4 in the east (11%) is similar to that of wet NH_4 .
978	The atmospheric concentration of N, the sum of monitored oxidized and reduced nitrogen

979 species, is dominated in the east by aerosol NH₄ (\approx 67%) with smaller contributions from HNO₃ 980 (\approx 19%) and aerosol NO₃ (\approx 14%). However, a high Vd permits HNO₃ to dominate dry deposition 981 of N (≈75%). Both the atmospheric concentration and dry deposition of N show significant 982 overall P1-to-P4 reductions (26% and 32%) which tend to be seasonally higher in summer. Wet deposition of OxN and NH₄ are fairly comparable, and their sum (wet N) dominates total N 983 (\approx 75%). The overall P1-to-P4 relative reductions of wet N and total N in the east are 20% and 984 985 24%, with the strongest reductions in summer and in the northeast. 986 In the east, a 47% reduction in wet deposition of H⁺ ion is associated with P1-to-P4

reductions of 50% and 42% in SO₂ and NOx emissions. The relative contributions of reduced NOx versus SO₂ emissions have increased over time, until currently (P3-to-P4), they are almost equal. Thus, recent aggressive reductions of NOx emissions along with continuing reductions of SO₂ emissions appear to contribute similarly to the significant and substantial reduction of wet deposition of H⁺ ion in the eastern US.

Although both atmospheric O₃ concentration and dry deposition in the east show
significant summertime P1-to-P4 reductions of 12% each, significant wintertime respective
increases of 9% and 19% lead to overall significant reductions of 4% each. The numerically
largest seasonal and regional reductions of both atmospheric O₃ concentration and dry deposition
(17% and 15%) occur in summer in the northeast, coinciding with aggressive O₃-season NOx
emissions controls during P3 and P4 in the region and upwind in the east.

Although conditions in the east permitting the formation of aerosol NO₃ may be limited 998 999 by the availability of NH₃, this appears to be diminishing over time. Increasing NI between P1 1000 and P4 suggests that an acidic aerosol exists in the east, but is approaching neutralization due to 1001 increased relative availability of NH₃ associated with reductions of aerosol SO₄ concentration. 1002 Widespread wintertime numerical increases in the atmospheric concentrations of both aerosol 1003 NO₃ and CASTNET PM are present between P1 and P3, despite reductions in estimated 1004 emissions of both SO₂ and NOx (SS07b). Currently, this behavior appears to be largely reversed, 1005 and this reversal is associated with continuing reductions of SO₂ and NOx emissions between P3 1006 and P4. Our findings suggest that additional P3-to-P4 reductions in emissions of SO₂, and 1007 especially NOx, have made progress in altering the chemical regime of the wintertime eastern 1008 US atmosphere so that future emissions reductions and their resulting reductions in aerosol 1009 concentrations may no longer be accompanied by sub-linear changes (or actual increases) in

1010	CASTNET PM.	
1011	Monitoring data for several atmospheric species not collected by CASTNET, including	
1012	NH ₃ , NO, NO ₂ , PAN, other oxidized organic nitrogen species, and NO _Y , as well as aerosol size	Commented [SJ12]: Clarification
1013	distributions would have facilitated data analysis and interpretation. It is recommended that	
1014	addition of these species determinations be considered in future monitoring network upgrades.	
1015	Uncertainties in estimates of many species' deposition velocities and emissions (especially NOx)	
1016	argue strongly for their continued improvement.	
1017		
1018		
1019	Acknowledgments	
1020		
1021	This is a preliminary draft; it has not been formally released by the US EPA; it is being	Commented [SJ13]: Revision reflects change in status from under review to accepted
1022	circulated for comments; do not cite or quote. The US EPA, through its Office of	
1023	Research and Development, funded and partially performed the research described here under	
1024	contract GS-35F-4381G, BPA0775, Task Order 1521, TDD 2-5, to CSC Corporation. This	
1025	manuscript has been subjected to Agency review, but has not yet been and approved for	
1026	publication.	
1027		
1028		
1029	References	
1030		
1031	Ansari, S., and S. N. Pandis: Response of inorganic PM to precursor concentrations, Environ.	
1032	Sci. Technol., 32, 2706-2714, 1998.	
1033	Baumgardner, R.E., Jr., T. F. Lavery, C. M. Rogers, and S. S. Isil: Estimates of the atmospheric	
1034	deposition of sulfur and nitrogen species: Clean Air Status and Trends Network, 1990-	
1035	2000, Environ. Sci. Technol., 36, 2614-2629, 2002.	
1036	Blanchard, C. L., P. M. Roth, S. J. Tanenbaum, S. D. Ziman, and J. H. Seinfeld: The use of	
1037	ambient measurements to identify which precursor species limit aerosol nitrate formation,	
1038	J. Air Waste Manage., 50, 2073-2084, 2000.	
1039	Blanchard, C. L., and G. M. Hidy: Effects of SO ₂ and NOx emission reductions on PM2.5 mass	
1040	concentrations in the southeastern United States, J. Air Waste Manage., 55, 265-272,	

1041	2005.
1011	2000.

1042	Blanchard, C. L., G. M. Hidy, S. Tanenbaum, E. S. Edgerton, and B. E. Hartsell: The
1043	southeastern aerosol research and characterization (SEARCH) study: Temporal trends in
1044	gas and PM concentrations and composition 1999-2010, J. Air Waste Manage., 63, 247-
1045	259, 2013.
1046	Bowker, G. E., D. B. Schwede, G. G. Lear, W. J. Warren-Hicks, and P. L. Finkelstein: Quality
1047	assurance decisions with air models: A case study of imputation of missing input data
1048	using EPA's multi-layer model, Water Air Soil Pollut., 222, 391-402,
1049	doi10.1007/s11270-011-0832-7, 2011.
1050	Brook, J. R., F. Di-Giovanni, S. Cakmak, and T. P. Meyers: Estimation of dry deposition
1051	velocity using inferential models and site-specific meteorology-Uncertainty due to siting
1052	of meteorological towers, Atmos. Environ., 31, 3911-3919, 1997.
1053	Butler, T. J., G. E. Likens, and B. J. B. Stunder: Regional-scale impacts of Phase I of the Clean
1054	Air Act Amendments in the USA: The relation between emissions and concentration,
1055	both wet and dry, Atmos. Environ., 35, 1015-1028, 2001.
1056	Butler, T. J., G. E. Likens, F. M. Vermeylen, and B. J. B. Stunder: The impact of changing
1057	nitrogen oxide emissions on wet and dry nitrogen deposition in the northeastern USA,
1058	Atmos. Environ., 39, 4851-4862, 2005.
1059	Clarke, J. F., E. S. Edgerton, and B. E. Martin: Dry deposition calculations for the Clean Air
1060	Status and Trends Network, Atmos. Environ., 31, 3667-3678, 1997.
1061	Finkelstein, P. L., T. G. Ellestad, J. F. Clarke, T. P. Meyers, D. B. Schwede, E. O. Hebert, and J.
1062	A. Neal: Ozone and sulfur dioxide dry deposition to forests: Observations and model
1063	evaluation, J. Geophys. Res., 105, 15365-15377, 2000.
1064	Hand, J. L., B. A. Schichtel, W. C. Malm, and M. L. Pitchford: Particulate sulfate ion
1065	concentration and SO_2 emissions trends in the United States from the early 1990s through
1066	2010, Atmos. Chem. Phys., 12, 10353-10365, doi:10.5194/acp-12-10353-2012, 2012.
1067	Hicks, B. B.: Dry deposition to forests-On the use of data from clearings, Agric. For. Meteorol.,
1068	136, 214-221, 2006.
1069	Hicks, B. B., R. P. Hosker, Jr., T. P. Meyers, and J. D. Womack: Dry deposition inferential
1070	measurement techniques-I. Design and tests of a prototype meteorological and chemical
1071	system for determining dry deposition, Atmos. Environ., 25A, 2345-2359, 1991.

1072	Holland, D. M., P. Caragea, and R. L. Smith: Regional trends in rural sulfur concentrations,	
1073	Atmos. Environ., 38, 1673-1684, 2004.	
1074	Lee, T., Yu, XY., Ayres, B., Kreidenweis, S. M., Malm, W. C., and Collett Jr., J. L.:	Commented [SJ14]: Cited in revision
1075	Observations of fine and coarse particle nitrate at several rural locations in the United	
1076	States, Atmos. Environ., 42, 2720-2732, doi:10.1016/j.atmosenv.2007.05.016, 2008.	
1077	Lefer, B. L., and R. W. Talbot: Summertime measurements of aerosol nitrate and ammonium at a	
1078	northeastern US site, J. Geophys. Res., 106, 20365-20378, 2001.	
1079	Li, S. N., and D. A. Lundgren: Aerosol aspiration efficiency of blunt and thin-walled samplers at	Commented [SJ15]: Deleted in revision
1080	different wind orientations, Aerosol Sci. Tech., 36, 342-350, 2002.	
1081	Lovett, G. M., and S. E. Lindberg: Atmospheric deposition and canopy interactions of nitrogen	
1082	in forests, Can. J. For. Res., 23, 1603-1616, 1993.	
1083	Lu, X., M. B. McElroy, G. Wu, and C. P. Nielsen: Accelerated reduction in SO2 emissions from	
1084	the U.S. power sector triggered by changing prices of natural gas, Environ. Sci. Technol.,	
1085	46, 7882-7889, dx.doi.org/10.1021/es301023c, 2012.	
1086	McHenry, J. N., and R. L. Dennis: The relative importance of oxidation pathways and clouds to	
1087	atmospheric ambient sulfate production as predicted by the regional acid deposition	
1088	model, J. Appl. Meteorol., 33, 890-905, 1994.	
1089	Meyers, T. P., P. Finkelstein, J. Clarke, T. G. Ellestad, and P. F. Sims: A multilayer model for	
1090	inferring dry deposition using standard meteorological measurements, J. Geophys. Res.,	
1091	103, 22645-22661, 1998.	
1092	Nilles, M. A., J. D. Gordon, and L. J. Schroder: The precision of wet atmospheric deposition data	
1093	from National Atmospheric Deposition Program/National Trends Network sites	
1094	determined with collocated samplers, Atmos. Environ., 28, 1121-1128, 1994.	
1095	Parrish, D. D.: Critical evaluation of US on-road vehicle emission inventories, Atmos. Environ.,	
1096	40, 2288-2300, 2006.	
1097	Reid, N., P. K. Misra, R. Bloxam, D. Yap, S. T. Rao, K. Civerolo, E. Brankov, and R. J. Vet: Do	
1098	we understand trends in atmospheric sulfur species?, J. Air Waste Manage., 51, 1562-	
1099	1567, 2001.	
1100	Schwede, D., L. Zhang, R. Vet, and G.Lear: An intercomparison of the deposition models used	
1101	in CASTNET and CAPMoN networks, Atmos. Environ., 45, 1337-1346, 2011.	
1102	Sickles, J. E., II, and D. S. Shadwick: Precision of atmospheric dry deposition data from the	

1103	Clean Air Status and Trends Network, Atmos. Environ., 36, 5671-5686, 2002.
1104	Sickles, J. E., II, and D. S. Shadwick: Seasonal and regional air quality and atmospheric
1105	deposition in the eastern United States. J. Geophys. Res., 112, D17302, doi:
1106	10.1029/2006JD008356, 2007a.
1107	Sickles, J. E., II, and D. S. Shadwick: Changes in air quality and atmospheric deposition in the
1108	eastern United States: 1990-2004. J. Geophys. Res., 112, D17301, doi:
1109	10.1029/2006JD007843, 2007b.
1110	Sickles, J. E., II, and D. S. Shadwick: Comparison of particulate sulfate and nitrate at collocated
1111	CASTNET and IMPROVE sites in the eastern US, Atmos. Environ., 42, 2062-2073,
1112	2008.
1113	Sickles, J. E., II, D. S. Shadwick, J. V. Kilaru, and J. W. Grimm: Errors in representing regional
1114	acid deposition with spatially sparse monitoring: Case studies of the eastern US using
1115	model predictions, Atmos. Environ., 43, 2855-2861, 2009.
1116	Sirois, A., R. Vet, and D. Lamb: A comparison of the precipitation chemistry measurements
1117	obtained by the CAPMoN and NADP/NTN networks, Environ. Monit. Assess., 62, 273-
1118	303, 2000.
1119	Stanier, C., A. Singh, W. Adamski, J. Baek, M. Caughey, G. Carmichael, E. Edgerton, D.
1120	Kenski, M. Koerber, J. Oleson, T. Rohlf, S. R. Lee, N. Riemer, S. Shaw, S. Sousan, and
1121	S. N. Spak: Overview of the LADCO winter nitrate study: hourly ammonia, nitric acid
1122	and $PM_{2.5}$ composition at an urban and rural site pair during $PM_{2.5}$ episodes in the US
1123	Great Lakes region, Atmos. Chem. Phys., 12, 11037-11056, doi:10.5194/acp-12-11037-
1124	2012, 2012.
1125	Wesely, M. L., D.R. Cook, and R. L. Hart: Measurements and parameterization of particulate
1126	sulfur dry deposition over grass, J. Geophys. Res., 90, 2131-2143, 1985.
1127	West, J. J., S. Ansari, and S. N. Pandis: Marginal PM2.5: Nonlinear aerosol mass response to
1128	sulfate reductions in the eastern United States, J. Air Waste Manage., 49, 1415-1424,
1129	1999.
1130	Wetherbee, G. A., M. J. Shaw, N. E. Latysh, C. M. B. Lehmann, and J. E. Rothert: Comparison
1131	of precipitation chemistry measurements obtained by the Canadian Air and Precipitation
1132	Monitoring Network and National Atmospheric Deposition Program for the period 1995-
1133	2004, Environ. Monit. Assess., 164, 111-132, doi10.1007/s10661-009-0879-8, 2010.

1134	Wolff, G. T.: On the nature of nitrate in coarse continental aerosols, Atmos. Environ., 18, 977-	
1135	981, 1984.	
1136	Wojcik, G. S., and J. S. Chang: A re-evaluation of sulfur budgets, lifetimes, and scavenging	
1137	ratios of eastern North America, J. Atmos. Chem., 26,109-145, 1997.	
1138	Xing, J., J. Pleim, R. Mathur, G. Pouliot, C. Hogrefe, CM. Gan, and C. Wei: Historical gaseous	
1139	and primary aerosol emissions in the United States from 1990 to 2010, Atmos. Chem.	
1140	Phys., 13, 7531-7549, doi:10.5194/acp-13-7531-2013, 2013.	
1141	Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M. D., and Iqbal, S.:	Commen
1142	Characterization of the size-segregated water-soluble inorganic ions at eight Canadian	
1143	rural sites, Atmos. Chem. Phys., 7133-7151, www.atmos-chem-phys.net/8/7133/2008,	
1144	2008.	
1145	Zhang, L., R. Vet, J. M. O'Brien, C. Mihele, Z. Liang, and A. Wiebe: Dry deposition of	
1146	individual nitrogen species at eight Canadian rural sites, J. Geophys. Res., 114, D02301,	
1147	doi: 10.1029/2008JD010640, 2009.	
1148	Zhang, L., D. J. Jacob, E. M. Knipping, N. Kumar, J. W. Munger, C. C. Carouge, A. van	
1149	Donkelaar, Y. X. Wang, and D. Chen: Nitrogen deposition to the United States:	
1150	distribution, sources, and processes, Atmos. Chem. Phys., 12, 4539-4554, doi:	
1151	10.5194/acp-12-4539-2012, 2012.	
1152		

Table Captions

 Table 1. Summary of characteristics of 34 CASTNET monitoring sites providing data in current

 study (see Fig. 2) listed by region.

 Table 2. Notation.

Table 3. Mean (CV) atmospheric concentration; deposition velocity; precipitation rate; dry, wet and total deposition; and concentration and deposition metrics at 34 eastern US CASTNET and selected subsets of sites for the 5-year period 2005-2009 (see Table 2 for definitions).

Table 4. P1 and P4 emissions density and P1-to-P4 relative changes (%) in oxidized sulfur and nitrogen emissions, atmospheric concentration, and dry, wet, and total deposition.

Site	Name	Land Use ^a	Terrain ^b	Elevation (m)	Region ^d	Special Category ^e	Latitude (°N)	Longitude (°W)
ALH	Alhambra, IL	А	FL	164	MW	SR	38.9	89.6
ANA	Ann Arbor, MI	F	FL	267	MW		42.6	83.9
BVL	Bondville, IL	А	FL	212	MW	SR	40.1	88.4
DCP	Deer Creek State Park, OH	А	R	265	MW	SR	39.6	83.3
LYK	Lykens, OH	А	FL	303	MW	SR	40.9	83.0
OXF	Oxford, OH	А	R ^c	284	MW	SR	39.5	84.7
PRK	Perkinstown, WI	А	R	472	MW	BKG	45.2	90.6
SAL	Salamonie Reservoir, IN	А	FL	249	MW	SR	40.8	85.7
UVL	Unionville, MI	А	FL	210	MW		43.6	83.4
VIN	Vincennes, IN	А	R	134	MW	SR	38.7	87.5
ARE	Arendtsville, PA	А	R	269	NE	SR	39.9	77.3
ASH	Ashland, ME	А	FL	235	NE	BKG	46.6	68.4
BEL	Beltsville, MD	S/A	FL	46	NE		39.0	76.8
СТН	Connecticut Hill, NY	F	R ^c	515	NE	HE	42.4	76.7
KEF	Kane Experimental Forest, PA	F	R	622	NE	SR	41.6	78.8
LRL	Laurel Hill State Park, PA	F	Cc	615	NE	SR	40.0	79.2
MKG	M.K. Goddard State Park, PA	F	Rc	384	NE	SR	41.4	80.2
PSU	Penn. State University, PA	А	R	378	NE	SR	40.7	77.9
WSP	Washington's Crossing, NJ	A/S	R	58	NE		40.3	74.9
WST	Woodstock, NH	F	Cc	258	NE		43.9	71.7
CAD	Caddo Valley, AR	F	R ^c	71	SO	BKG	34.2	93.1
CDR	Cedar Creek State Park, WV	F	Cc	234	SO	SR	38.9	80.9
CND	Candor, NC	F	R	198	SO		35.3	79.8
COW	Coweeta, NC	F	Cc	686	SO		35.1	83.4
CVL	Coffeeville, MS	F	R	134	SO		34.0	89.8
ESP	Edgar Evins State Park, TN	F	Rc	302	SO		36.0	85.7
МСК	Mackville, KY	А	R	353	SO	SR	37.7	85.0
PAR	Parsons, WV	F	Cc	510	SO	SR	39.1	79.7
PED	Prince Edward, VA	F	R	146	SO		37.2	78.3
SHN	Big Meadows, VA	F	Μ	1073	SO	HE	38.5	78.4
SND	Sand Mountain, AL	А	R	352	SO		34.3	86.0
SPD	Speedwell, TN	А	R	361	SO		36.5	83.8
SUM	Sumatra, FL	F	FL	14	SO	BKG	30.1	85.0
VPI	Horton Station, VA	А	Mc	920	SO	HE	37.3	80.6

 Table 1. Summary of characteristics of 34 CASTNET monitoring sites providing data in current study (see Fig. 2) listed by region.

^aLand use category within 10 km of site: A=agricultural; F=forested; S=suburban;

^bTerrain classification (local ground slope): FL=flat (<5°); R=rolling (5–15°); C=complex (>15°); M=montane;

^cAssumptions for applying the MLM may not be satisfied;

^dGeographical regions: MW=midwest; NE=northeast; SO=south; individual sites are identified by region in the same order shown in Figs. 5-8; ^eSpecial category sites: BKG=background; HE=high elevation; SR=source region. Table 2. Notation.

BKG	background
С	concentration
CV	coefficient of variation (100 SD/x)
CASTNET PM	sum of aerosol SO ₄ , NO ₃ , and NH ₄ concentrations in total mass units
D	deposition
Dry HNO ₃	dry deposition of monitored oxidized nitrogen from HNO ₃ , computed as (14 x HNO ₃ deposition/63), in units of mass of nitrogen dry deposition of nitrogen from HNO ₃ , aerosol NO ₃ , and aerosol NH ₄ , computed as (Dry OxN + Dry NH ₄)
Dry N Dry NH₄	dry deposition of monitored reduced nitrogen from aerosol NH ₄ , computed as (14 x dry NH ₄ ⁺ ion deposition/18), in units of mass of nitrogen
Dry NO ₃	dry deposition of monitored exidered nitrogen from aerosol NO ₃ , computed as (14 x dry NO ₃ ⁻ ion deposition/62), in units of mass of nitrogen dry deposition of monitored oxidized nitrogen from aerosol NO ₃ , computed as (14 x dry NO ₃ ⁻ ion deposition/62), in units of mass of nitrogen
Dry O ₃	dry deposition of ozone, in units of mass of O_3
Dry OxN	dry deposition of monitored oxidized nitrogen from HNO ₃ and aerosol NO ₃ , computed as (Dry HNO ₃ + Dry NO ₃)
Dry S	dry deposition of oxidized sulfur from SO ₂ and aerosol SO ₄ , computed as (Dry SO ₂ + Dry SO ₄)
Dry SO ₂	dry deposition of oxidized sulfur from SO ₂ , computed as ($32 \times SO_2$ deposition/64), in units of mass of sulfur
Dry SO ₄	dry deposition of oxidized sulfur from aerosol SO ₄ , computed as (32 x dry SO ₄ ²⁻ ion deposition/96), in units of mass of sulfur
(D/T) N	ratio of dry N deposition to total N deposition, computed as Dry N/Total N
(D/T) NH4	ratio of dry NH $_4$ deposition to total (dry plus wet) NH $_4$ deposition, computed as Dry NH $_4$ / Total NH $_4$
(D/T) OxN	ratio of dry OxN deposition to total (dry plus wet) OxN deposition, computed as Dry OxN / Total OxN
(D/T) S	ratio of dry S deposition to total (dry plus wet) S deposition, computed as Dry S/Total S
E	eastern US
F	fall (Sep, Oct, Nov)
HE	high elevation
HNO₃	nitric acid (HNO $_3$) concentration
MW	midwest
n	number of site-specific period values comprising the mean
N	monitored oxidized plus reduced nitrogen present as HNO3, aerosol NO3, and aerosol NH4, in units of mass of nitrogen
NE	northeast
NH ₄	ammonium (NH4*) ion concentration
NI	neutralization index, computed as [(NH ₄ /18) – (NO ₃ /62)] / 2(SO ₄ /96), using airborne concentrations (in molar units)
NO ₃	nitrate (NO ₃) ion concentration
O ₃	ozone (O ₃) concentration, in ppb
OA	over all = period-site means averaged over sites \approx annual average for 5-y period
OxN	monitored oxidized nitrogen present as HNO ₃ and aerosol NO ₃ , computed as (14 x HNO ₃ /63) + (14 x NO ₃ /62), in units of mass of nitrogen
PR RFHNO₃	precipitation rate, in units of cm yr⁻¹ or cm season⁻¹ ratio of dry HNO₃ deposition to dry OxN deposition, computed as Dry HNO₃ / Dry OxN
RFSO ₂	ratio of dry SO ₂ deposition to dry S deposition, computed as Dry SO ₂ / Dry S
RHNO ₃	ratio of oxidized nitrogen concentration from HNO ₃ to oxidized nitrogen present as OxN, computed as $(14 \times HNO_3/63)$ / OxN
RNFHNO ₃	ratio of dry HNO ₃ deposition to dry N deposition, computed as Dry HNO ₃ / Dry N
RNFNH ₄	ratio of dry NH4 deposition to dry N deposition, computed as Dry NH4 / Dry N
RNHNO ₃	ratio of oxidized nitrogen concentration from HNO ₃ to nitrogen present as N, computed as $(14 \times HNO_3/63) / N$
RNNH ₄	ratio of reduced nitrogen concentration from aerosol NH ₄ to nitrogen present as N, computed as $(14 \times NH_4/18) / N$
RNO ₃	ratio of oxidized nitrogen concentration from aerosol NO ₃ to oxidized nitrogen present as OxN , computed as $(14 \times NO_3/62) / OxN$, also = 1-
- 5	RHNO3
RSO ₂	ratio of airborne oxidized sulfur concentration from SO ₂ to airborne oxidized sulfur present as S, computed as (32 x SO ₂ /64) / S
S	monitored oxidized sulfur present as SO2 and aerosol SO4, computed as (32 x SO2/64) + (32 x SO4/96), in units of mass of sulfur
SO	south
SO ₂	sulfur dioxide (SO ₂) concentration
SO ₄	sulfate (SO ₄ ²⁻) ion concentration
Sp	spring (Mar, Apr, May)
SR	source region
Su	summer (Jun, Jul, Aug)
Total N	sum of total dry plus wet deposition of monitored nitrogen, computed as (Dry N + Wet N)
Total NH ₄	sum of dry plus wet deposition of monitored reduced nitrogen, computed as (Dry NH4 + Wet NH4), in units of mass of nitrogen
Total OxN	sum of dry plus wet deposition of monitored oxidized nitrogen, computed as (Dry OxN + Wet OxN), in units of mass of nitrogen
Total S	total dry plus wet oxidized sulfur deposition, computed as (Dry S + Wet S), in units of mass of sulfur
W	winter (Dec, Jan, Feb)
Wet H ⁺	wet deposition of aqueous H ⁺ ion, in units of mass of hydrogen
Wet N	wet deposition of nitrogen from aqueous NO ₃ ion and aqueous NH ₄ ⁺ ion, computed as (Wet OxN + Wet NH ₄)
Wet NH ₄	wet deposition of reduced nitrogen from aqueous NH_4^+ ion, computed as (14 x aqueous NH_4^+ ion deposition/18), in units of mass of nitrogen
Wet OxN	wet deposition of oxidized nitrogen from aqueous NO ₃ ion, computed as (14 x aqueous NO ₃ ion deposition/62), in units of mass of nitrogen
Wet S	wet deposition of oxidized sulfur from aqueous SO_4^2 ion, computed as (32 x aqueous SO_4^2 ion deposition/96), in units of mass of sulfur

 Table 3. Mean (CV) atmospheric concentration; deposition velocity; precipitation rate; dry, wet and total deposition; and concentration and deposition metrics at 34 eastern US CASTNET and selected subsets of sites for the 5-year period 2005-2009 (see Table 2 for definitions).

Site Grouping											
Region			E			NE	MW	SO	SR	HE	BKG
Season	OA	W	Sp	Su	F	OA	OA	OA	OA	OA	OA
n	34	34	34	34	34	10	10	14	15	3	4
							ntration, μg m		(a	
SO ₂	5.63 (51)	8.83 (55)	5.00 (47)	3.75 (54)	4.98 (52)	7.22 (49)	5.87 (41)	4.33 (48)	7.61 (28)	6.45 (27)	1.54 (16)
SO ₄	3.52 (22)	2.49 (18)	3.33 (21)	5.13 (28)	3.12 (21)	3.32 (32)	3.41 (23)	3.74 (12)	3.94 (9)	3.49 (15)	2.32 (39)
S (as S)	4.00 (40)	5.25 (48)	3.61 (37)	3.59 (39)	3.53 (41)	4.72 (45)	4.08 (35)	3.42 (34)	5.12 (22)	4.39 (23)	1.55 (25)
HNO ₃	1.32 (32)	1.26 (35)	1.56 (33)	1.35 (40)	1.12 (35)	1.33 (42)	1.46 (24)	1.22 (28)	1.51 (20)	1.55 (10)	0.68 (43)
NO ₃	1.04 (64)	1.85 (72)	0.92 (68)	0.55 (36)	0.85 (69)	0.78 (50)	1.92 (17)	0.60 (48)	1.38 (52)	0.56 (25)	0.73 (83)
OxN (as N)	0.53 (40)	0.70 (41)	0.55 (41)	0.42 (35)	0.44 (44)	0.47 (43)	0.76 (15)	0.41 (30)	0.65 (31)	0.47 (1)	0.32 (49)
	1.35 (26)	1.20 (39)	1.20 (26)	1.80 (28)	1.19 (25)	1.23 (36)	1.56 (17)	1.28 (22)	1.58 (13)	1.22 (6)	0.78 (37)
N (as N)	1.58 (29)	1.63 (40)	1.49 (30)	1.82 (26)	1.36 (30)	1.43 (37)	1.97 (16)	1.40 (23)	1.88 (19)	1.42 (4)	0.92 (40
O₃ (ppb)	30.8 (14)	24.6 (16)	38.4 (11)	34.5 (21)	25.6 (18)	30.3 (10)	30.6 (6)	31.4 (20)	30.4 (11)	39.4 (10)	28.0 (14
	1 16 (21)	0.06 (27)	1 21 (10)	1 25 (10)		Vd, cm s ⁻¹	1 22 (11)	1 12 (21)	1 10 (21)	1 20 (7)	1 1 1 / 7 /
HNO₃	1.16 (21)	0.96 (27)	1.31 (19)	1.35 (19)	1.04 (24)	1.13 (28)	1.23 (11)	1.13 (21)	1.19 (21)	1.29 (7)	1.14 (24)
SO ₂	0.31 (29)	0.31 (40)	0.32 (30)	0.33 (22)	0.29 (32)	0.30 (30)	0.36 (21)	0.28 (32)	0.36 (22)	0.30 (9)	0.25 (27)
O ₃	0.17 (17)	0.09 (18)	0.17 (24)	0.26 (20)	0.15 (18)	0.16 (18)	0.15 (15)	0.17 (17)	0.17 (17)	0.19 (9)	0.16 (19
Aerosol	0.10 (21)	0.08 (28)	0.13 (19)	0.12 (22)	0.09 (24) 20 6 (24)	0.10 (28)	0.11 (12)	0.10 (22)	0.10 (22)	0.11 (15)	0.10 (18
PR (cm time ⁻¹)	119 (19)	25.7 (27)	30.3 (24)	32.7 (20)	29.6 (24) Denos	119 (12) ition, kg (ha y	100 (20)	132 (15)	115 (14)	126 (17)	124 (29)
Dry SO ₂ (as S)	3.13 (62)	4.84 (70)	2.83 (61)	2.20 (58)	2.58 (62)	3.91 (60)	3.68 (51)	2.18 (61)	4.61 (35)	2.96 (14)	0.67 (12
Dry SO ₄ (as S)	0.40 (33)	0.21 (35)	0.46 (30)	0.63 (37)	0.29 (34)	0.36 (45)	0.40 (31)	0.42 (27)	0.44 (25)	0.43 (23)	0.23 (28
Dry S (as S)	3.53 (58)	5.06 (68)	3.29 (55)	2.83 (51)	2.87 (58)	4.27 (58)	4.09 (48)	2.60 (55)	5.05 (33)	3.40 (14)	0.91 (13
Wet S (as S)	5.22 (28)	3.59 (35)	5.65 (29)	7.53 (38)	3.97 (26)	5.96 (31)	4.97 (30)	4.86 (20)	6.25 (18)	5.13 (11)	3.16 (31
Total S (as S)	8.75 (36)	8.65 (47)	8.93 (35)	10.4 (38)	6.84 (35)	10.2 (38)	9.06 (37)	7.47 (25)	11.3 (19)	8.53 (5)	4.06 (27
Dry HNO₃ (as N)	1.28 (41)	0.89 (45)	1.65 (41)	1.60 (45)	0.98 (45)	1.24 (54)	1.48 (35)	1.16 (36)	1.48 (34)	1.46 (18)	0.62 (41
Dry NO ₃ (as N)	0.07 (66)	0.11 (73)	0.09 (68)	0.05 (48)	0.05 (75)	0.06 (67)	0.13 (21)	0.04 (62)	0.10 (56)	0.04 (20)	0.05 (86
Dry OxN (as N)	1.35 (41)	1.00 (42)	1.74 (42)	1.65 (44)	1.03 (45)	1.30 (54)	1.61 (33)	1.21 (36)	1.58 (34)	1.50 (18)	0.66 (36
Wet OxN (as N)	2.35 (19)	2.06 (28)	2.76 (22)	2.86 (22)	1.73 (23)	2.56 (24)	2.45 (15)	2.14 (11)	2.67 (12)	2.17 (17)	1.78 (26
Total OxN (as N)	3.71 (22)	3.06 (25)	4.50 (25)	4.51 (25)	2.76 (24)	3.86 (29)	4.06 (19)	3.35 (13)	4.25 (14)	3.67 (5)	2.45 (28
Dry NH4 (as N)	0.35 (38)	0.24 (49)	0.38 (35)	0.52 (38)	0.26 (39)	0.31 (51)	0.41 (26)	0.34 (37)	0.41 (30)	0.35 (19)	0.18 (32
Wet NH4 (as N)	2.30 (27)	1.29 (33)	3.14 (35)	3.10 (31)	1.65 (34)	2.23 (29)	2.87 (21)	1.94 (14)	2.64 (22)	2.33 (25)	1.79 (54
Total NH ₄ (as N)	2.65 (26)	1.53 (32)	3.53 (33)	3.62 (28)	1.91 (31)	2.54 (29)	3.28 (19)	2.28 (15)	3.05 (21)	2.68 (20)	1.97 (52
Dry N (as N)	1.70 (40)	1.24 (40)	2.12 (40)	2.17 (41)	1.29 (43)	1.61 (53)	2.02 (31)	1.54 (35)	1.98 (33)	1.85 (18)	0.85 (32
Wet N (as N)	4.66 (21)	3.36 (26)	5.90 (27)	5.96 (24)	3.38 (26)	4.79 (25)	5.32 (17)	4.08 (11)	5.32 (14)	4.50 (21)	3.58 (37
Total N (as N)	6.36 (22)	4.59 (24)	8.02 (26)	8.13 (25)	4.67 (24)	6.41 (28)	7.34 (16)	5.63 (13)	7.30 (15)	6.35 (11)	4.42 (34
Wet H⁺	0.26 (37)	0.23 (34)	0.23 (38)	0.37 (49)	0.21 (34)	0.34 (31)	0.20 (41)	0.25 (25)	0.31 (33)	0.26 (8)	0.15 (50
Dry O₃	39.5 (27)	16.3 (28)	48.3 (29)	66.1 (33)	28.5 (31)	38.3 (28)	36.6 (18)	42.3 (30)	40.4 (25)	56.4 (10)	32.3 (18
				(Concentratior	and deposition	ion metrics				
RSO ₂	0.67 (16)	0.81 (11)	0.66 (16)	0.49 (23)	0.66 (17)	0.73 (12)	0.71 (7)	0.60 (18)	0.73 (7)	0.73 (5)	0.51 (17
RFSO ₂	0.85 (9)	0.93 (5)	0.82 (12)	0.74 (14)	0.86 (9)	0.89 (6)	0.88 (7)	0.80 (11)	0.91 (3)	0.87 (3)	0.75 (7)
(D/T) S	0.37 (33)	0.53 (33)	0.35 (32)	0.27 (36)	0.39 (34)	0.38 (37)	0.43 (20)	0.33 (38)	0.44 (20)	0.40 (14)	0.23 (19
NI	0.79 (10)	0.70 (13)	0.75 (12)	0.85 (10)	0.80 (9)	0.80 (8)	0.78 (6)	0.78 (13)	0.80 (7)	0.81 (5)	0.67 (22
RHNO ₃	0.59 (22)	0.47 (43)	0.65 (19)	0.69 (12)	0.60 (23)	0.62 (12)	0.42 (18)	0.68 (12)	0.55 (23)	0.73 (9)	0.51 (33
RNO ₃	0.41 (32)	0.53 (37)	0.35 (36)	0.31 (28)	0.40 (35)	0.38 (21)	0.58 (13)	0.32 (24)	0.45 (29)	0.27 (26)	0.49 (34
RNHNO ₃	0.19 (18)	0.20 (44)	0.23 (17)	0.16 (27)	0.18 (22)	0.20 (18)	0.16 (15)	0.19 (17)	0.18 (15)	0.24 (6)	0.17 (26
RNNH ₄	0.67 (8)	0.58 (6)	0.64 (9)	0.76 (8)	0.69 (10)	0.68 (6)	0.61 (2)	0.71 (6)	0.66 (8)	0.67 (2)	0.66 (6)
RFHNO ₃	0.95 (3)	0.89 (11)	0.95 (3)	0.97 (2)	0.95 (3)	0.96 (2)	0.91 (4)	0.96 (1)	0.94 (3)	0.97 (1)	0.92 (7)
RNFHNO ₃	0.75 (6)	0.72 (18)	0.77 (7)	0.73 (8)	0.75 (7)	0.76 (5)	0.72 (7)	0.75 (5)	0.75 (4)	0.79 (1)	0.72 (14
RNFNH ₄	0.21 (15)	0.19 (35)	0.19 (21)	0.25 (22)	0.21 (22)	0.20 (17)	0.21 (15)	0.22 (15)	0.21 (10)	0.19 (2)	0.22 (25
(D/T) OxN	0.35 (28)	0.32 (31)	0.37 (27)	0.35 (30)	0.36 (32)	0.32 (38)	0.39 (18)	0.35 (27)	0.36 (25)	0.41 (19)	0.27 (12
(D/T) NH4	0.13 (32)	0.16 (39)	0.11 (34)	0.15 (39)	0.14 (38)	0.12 (39)	0.13 (29)	0.15 (30)	0.13 (28)	0.14 (31)	0.10 (18
(D/T) N	0.26 (29)	0.27 (32)	0.26 (30)	0.26 (31)	0.27 (34)	0.24 (38)	0.27 (25)	0.27 (27)	0.27 (26)	0.30 (25)	0.19 (17
CASTNET PM	5.91 (24)	5.55 (36)	5.45 (24)	7.49 (26)	5.16 (25)	5.33 (34)	6.89 (17)	5.62 (16)	6.90 (13)	5.28 (9)	3.83 (32

			P1-to-P4 C	Change in a	tmospheric					
-	E	missions	С	oncentratio	on		P1-to-P4 Char	nge in depositio	n	
Region	ρ ₁ ^a (ρ ₄)	P1-to-P4 Change	SO ₂	SO ₄	S	Dry S	Wet S	Total S	Wet H⁺	
E	38 (19)	-50	-48	-33	-45	-49	-32	-40	-47	
MW	51 (23)	-55	-51	-33	-47	-48	-36	-42	-56	
NE	36 (19)	-47	-48	-34	-45	-51	-30	-40	-44	
SO	31 (16)	-47	-47	-32	-42	-49	-31	-39	-46	
-	ρ ₁ ^b (ρ ₄)	P1-to-P4 Change	HNO ₃	NO₃	OxN as N	Dry OxN	Wet OxN	Total OxN	Wet H⁺	
E	19 (11)	-42	-34	-8	-24	-34	-29	-31	-47	
MW	21 (12)	-43	-30	-13	-21	-27	-28	-28	-56	
NE	23 (12)	-46	-39	-1 ^c	-29	-40	-34	-36	-44	
SO	17 (10)	-39	-32	-2°	-24	-34	-25	-29	-46	

Table 4. P1 and P4 emissions density and P1-to-P4 relative changes (%) in oxidized sulfur and nitrogen emissions, atmospheric concentration, and dry, wet, and total deposition.

 $^{a}SO_{2}$ emissions density in units of kgS (ha yr)⁻¹. ^{b}NOx emissions density in units of kgN (ha yr)⁻¹. $^{c}p > 0.05$, NS.

Figure Captions.

Figure 1. Annual US SO₂ (TgS) and NOx (TgN) emissions estimates between 1990 and 2010 (Xing et al., 2013).

Figure 2. CASTNET monitoring sites and geographical regions considered in the current study (see Table 1).

Figure 3. Estimates of regional mean annual SO₂ and NOx emissions for four 5 year periods (P1, P2, P3, and P4) between 1990 and 2009, expressed as percentages of the 1990-1994 (P1) regional means. In the SO, NE, and MW mean P1 SO₂ emissions are 3.48, 1.68, and 3.27 TgS yr⁻¹, and mean P1 NOx emissions are 1.89, 1.06, and 1.35 TgN yr⁻¹ (Xing et al., 2013).

Figure 4. P1-to-P4 changes expressed in Table 3 units and as relative differences (%); see Table 2 for definitions of column headings.

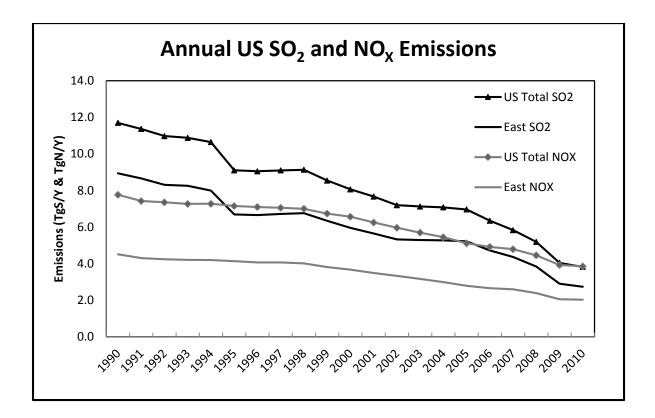
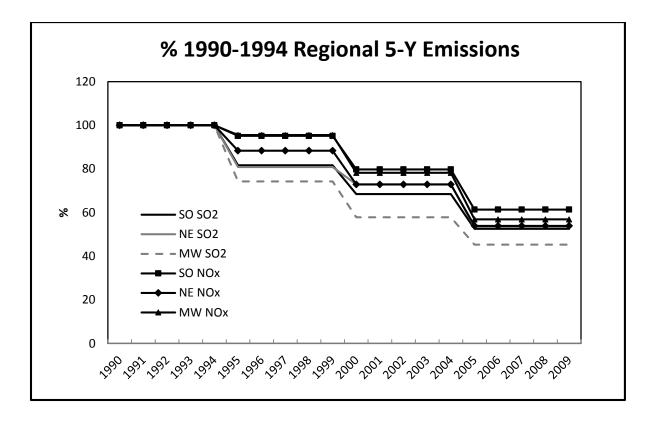
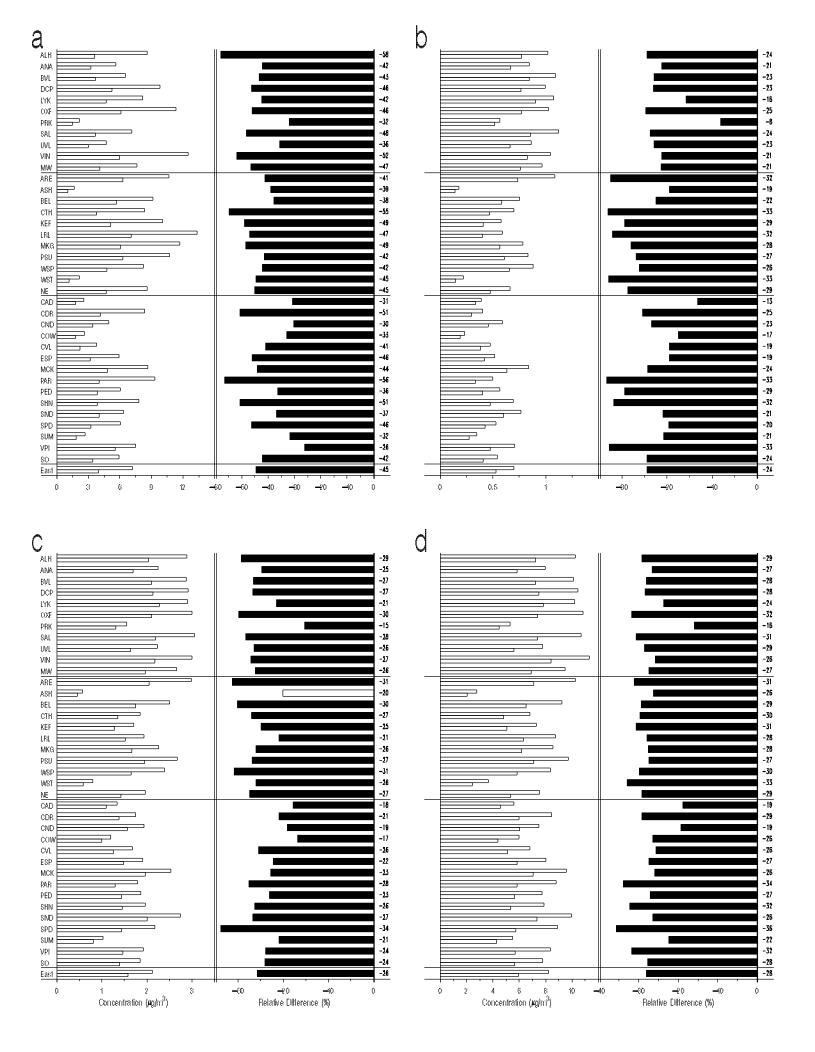
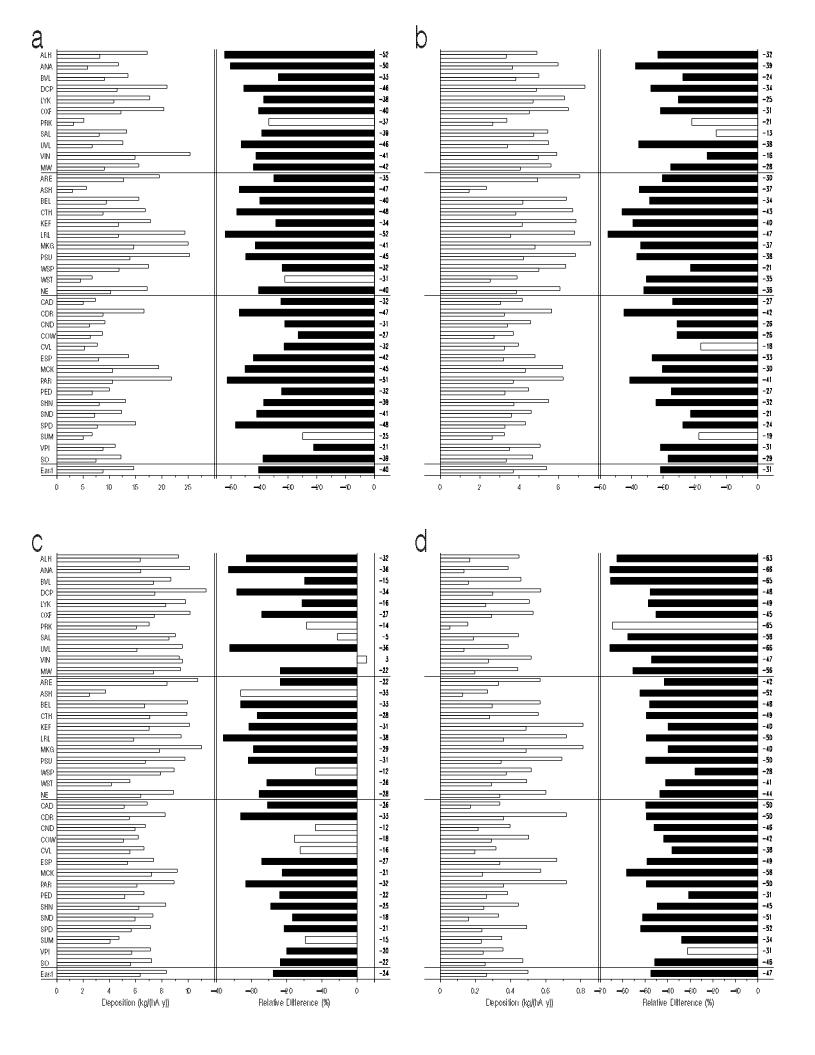

Figure 5. Site- and region-specific concentration (μ g m⁻³, left (upper bar, P1; and lower bar, P4)) and P1-to-P4 relative changes (%, right and bottom) for: (**a**) S: monitored oxidized sulfur (μ gS m⁻³); (**b**) OxN: monitored oxidized nitrogen (μ gN m⁻³); (**c**) N: monitored oxidized plus reduced nitrogen (μ gN m⁻³); and (**d**) CASTNET PM: sum of aerosol SO₄, NO₃, and NH₄ (μ g m⁻³). Significance level of period-to-period relative changes indicated by bar fill: black, p≤0.05; and open, p>0.05 (NS). Sites are identified by region in the same order as shown in Table 1.

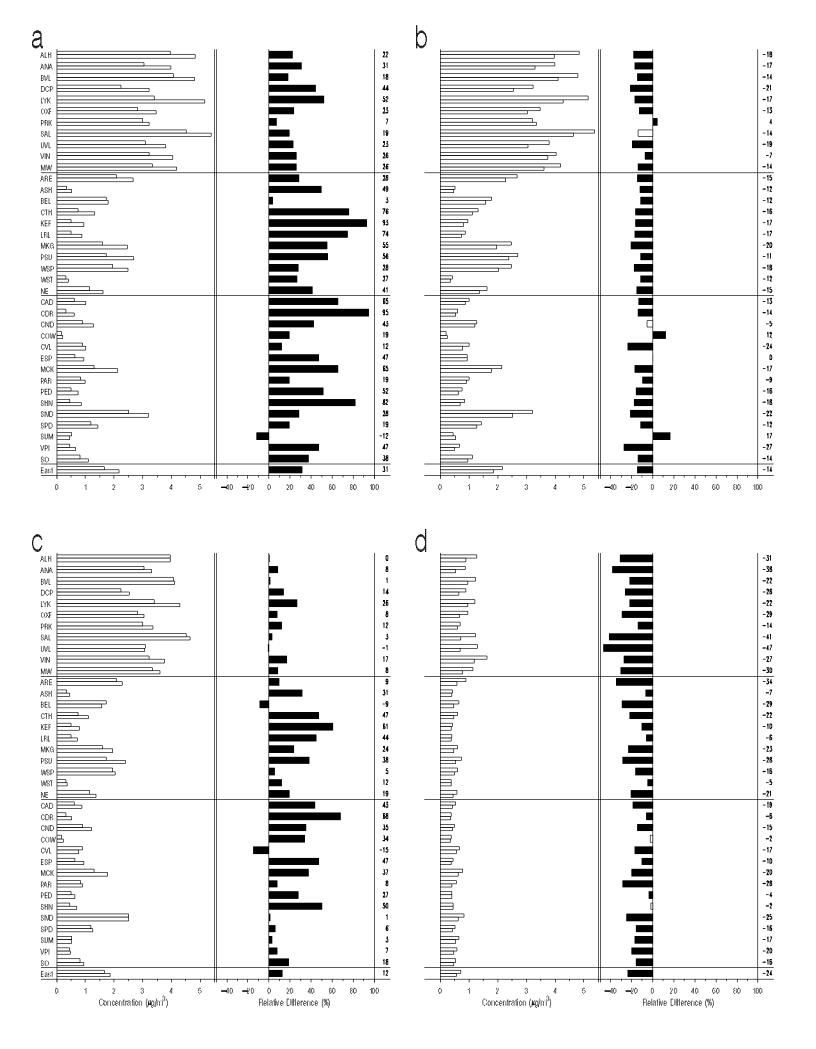
Figure 6. Site- and region-specific total deposition (kg (ha yr)⁻¹), left (upper bar, P1; and lower bar, P4)) and P1-to-P4 relative changes (%, right and bottom) for: (**a**) Total S: total dry plus wet oxidized sulfur deposition; (**b**) Total OxN: sum of dry plus wet deposition of monitored oxidized nitrogen; (**c**) Total N: sum of total dry plus wet deposition of monitored oxidized plus reduced nitrogen; and (**d**) Wet H⁺: wet deposition of H⁺. Significance level of period-to-period relative changes indicated by bar fill: black, p≤0.05; and open, p>0.05 (NS). Sites are identified by region in the same order as shown in Table 1.

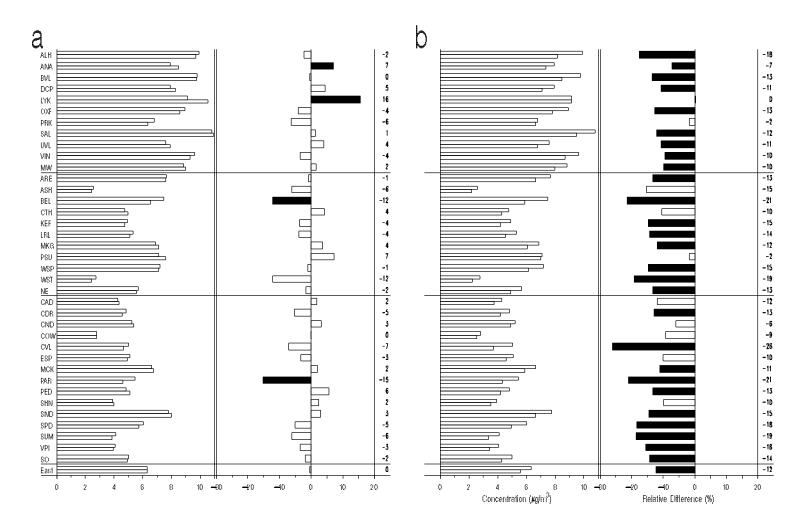
Commented [SJ1]: Clarification prompted by comment by Referee #2

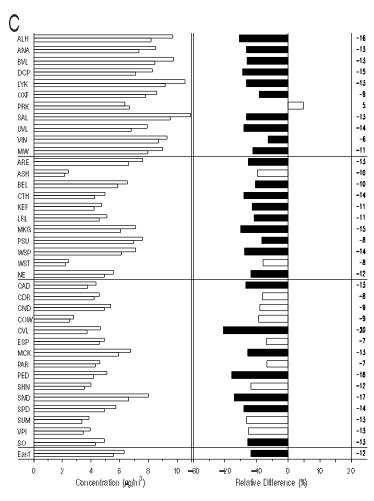
Figure 7. Site- and region-specific seasonal aerosol NO₃ concentration (μ g m⁻³, left (upper bar: early period; and lower bar: later period)) and period-to-period relative changes (%, right and bottom) for: (a) P1-to-P3, W; (b) P3-to-P4, W; (c) P1-to-P4, W; and (d) P1-to-P4, Su. Significance level of period-to-period relative changes indicated by bar fill: black, p≤0.05; and open, p>0.05 (NS). Sites are identified by region in the same order as shown in Table 1.

Figure 8. Site- and region-specific wintertime CASTNET PM concentration (μ g m⁻³, left (upper bar: early period; and lower bar: later period)) and period-to-period relative changes (%, right and bottom) for: (**a**) P1-to-P3, W; (**b**) P1-to-P4, W; and (**c**) P3-to-P4, W. Significance level of period-to-period relative changes indicated by bar fill: black, p≤0.05; and open, p>0.05 (NS). Sites are identified by region in the same order as shown in Table 1.


Figure 4. P1-to-P4 changes expressed in Table 2 units and as relative differences (%); see Notation Section for definitions.


Region	Season	С	D	С	D	С	D	D	D	С	D	С	D	D	D
		SO2	Dry SO ₂	SO4	Dry SO ₄	S	Dry S	Wet S	Total S	03	O ₃	NH4	Dry NH ₄	Wet NH ₄	Total NH ₄
E	OA	-5.28 (-48)	-3.29 (-51)	-1.73 (-33)	-0.17 (-29)	-3.22 (-45)	-3.45 (-49)	-2.45 (-32)	-5.90 (-40)	-1.13 (-4)	-1.59 (-4)	-0.48 (-26)	-0.10 (-22)	-0.22 (-9)	-0.32 (-11)
Е	W	-8.03 (-48)	-4.38 (-48)	-0.78 (-24)	-0.03 (-13)	-4.28 (-45)	-4.41 (-47)	-0.76 (-17)	-5.17 (-37)	2.04 (9)	2.65 (19)	-0.20 (-14)	0.00 (0)	0.05 (4)	0.05 (3)
E	Sp	-4.45 (-47)	-3.24 (-53)	-1.50 (-31)	-0.16 (-26)	-2.73 (-43)	-3.40 (-51)	-2.79 (-33)	-6.19 (-41)	-0.16 (0)	0.74 (2)	-0.48 (-29)	-0.11 (-23)	-0.29 (-8)	-0.40 (-10)
E	Su	-3.47 (-48)	-2.31 (-51)	-3.42 (-40)	-0.38 (-37)	-2.88 (-45)	-2.69 (-49)	-4.19 (-36)	-6.88 (-40)	-4.85 (-12)	-9.10 (-12)	-0.85 (-32)	-0.22 (-30)	-0.27 (-8)	-0.49 (-12)
E	F	-5.15 (-51)	-2.99 (-54)	-1.24 (-28)	-0.12 (-29)	-2.99 (-46)	-3.11 (-52)	-2.17 (-35)	-5.28 (-44)	-1.66 (-6)	-3.56 (-11)	-0.41 (-26)	-0.09 (-26)	-0.25 (-13)	-0.34 (-15)
MW	OA	-6.00 (-51)	-3.67 (-50)	-1.68 (-33)	-0.14 (-25)	-3.56 (-47)	-3.81 (-48)	-2.76 (-36)	-6.57 (-42)	-0.16 (-1)	0.34 (1)	-0.63 (-29)	-0.11 (-21)	-0.39 (-12)	-0.50 (-13)
MW	W	-8.55 (-50)	-4.90 (-47)	-0.90 (-26)	-0.02 (-7)	-4.58 (-47)	-4.92 (-46)	0.10 (3)	-4.82 (-34)	1.47 (7)	2.89 (25)	-0.24 (-12)	0.03 (9)	0.19 (14)	0.21 (13)
MW	Sp	-4.85 (-47)	-3.67 (-52)	-1.53 (-32)	-0.11 (-20)	-2.94 (-44)	-3.79 (-50)	-3.01 (-34)	-6.80 (-41)	0.93 (3)	4.27 (12)	-0.68 (-32)	-0.11 (-20)	-0.45 (-10)	-0.56 (-11)
MW	Su	-4.68 (-54)	-2.99 (-55)	-3.38 (-42)	-0.33 (-35)	-3.47 (-49)	-3.32 (-52)	-4.68 (-43)	-7.99 (-46)	-2.44 (-6)	-3.11 (-5)	-1.14 (-40)	-0.26 (-33)	-0.38 (-9)	-0.64 (-13)
MW	F	-5.87 (-52)	-3.74 (-53)	-0.94 (-23)	-0.06 (-15)	-3.25 (-46)	-3.80 (-51)	-2.69 (-39)	-6.49 (-45)	-0.91 (-4)	-1.14 (-4)	-0.46 (-25)	-0.06 (-17)	-0.59 (-22)	-0.65 (-21)
NE	OA	-6.61 (-48)	-4.18 (-52)	-1.74 (-34)	-0.18 (-33)	-3.89 (-45)	-4.36 (-51)	-2.55 (-30)	-6.91 (-40)	-1.12 (-4)	-3.43 (-8)	-0.45 (-27)	-0.11 (-26)	-0.18 (-7)	-0.29 (-10)
NE	W	-10.3 (-45)	-6.25 (-49)	-0.80 (-24)	-0.05 (-19)	-5.43 (-43)	-6.30 (-48)	-0.76 (-19)	-7.05 (-41)	2.93 (13)	2.82 (22)	-0.18 (-14)	-0.02 (-7)	-0.06 (-5)	-0.08 (-6)
NE	Sp	-5.41 (-48)	-4.07 (-57)	-1.50 (-34)	-0.17 (-29)	-3.21 (-45)	-4.24 (-55)	-3.33 (-37)	-7.57 (-45)	0.27 (1)	0.49 (1)	-0.43 (-29)	-0.11 (-25)	-0.42 (-14)	-0.54 (-15)
NE	Su	-4.30 (-48)	-3.01 (-53)	-3.45 (-41)	-0.43 (-42)	-3.31 (-45)	-3.44 (-51)	-4.27 (-30)	-7.71 (-37)	-6.65 (-17)	-11.9 (-15)	-0.82 (-32)	-0.25 (-34)	-0.28 (-8)	-0.54 (-13)
NE	F	-6.39 (-51)	-4.10 (-58)	-1.29 (-32)	-0.13 (-37)	-3.63 (-48)	-4.23 (-56)	-2.56 (-37)	-6.79 (-47)	-0.87 (-3)	-3.11 (-10)	-0.39 (-28)	-0.10 (-33)	-0.08 (-5)	-0.18 (-9)
SO	OA	-3.81 (-47)	-2.37 (-52)	-1.75 (-32)	-0.17 (-29)	-2.49 (-42)	-2.55 (-49)	-2.16 (-31)	-4.71 (-39)	-1.82 (-5)	-1.65 (-4)	-0.40 (-24)	-0.09 (-21)	-0.15 (-7)	-0.23 (-9)
SO	W	-6.04 (-48)	-3.28 (-52)	-0.69 (-22)	-0.03 (-12)	-3.25 (-45)	-3.31 (-50)	-1.44 (-28)	-4.75 (-40)	1.81 (7)	2.36 (15)	-0.18 (-16)	-0.01 (-4)	-0.15 (-10)	-0.16 (-10)
SO	Sp	-3.49 (-46)	-2.61 (-54)	-1.48 (-29)	-0.19 (-28)	-2.24 (-41)	-2.80 (-51)	-2.12 (-28)	-4.92 (-37)	-1.24 (-3)	-1.60 (-3)	-0.38 (-25)	-0.11 (-23)	-0.06 (-2)	-0.17 (-5)
SO	Su	-2.02 (-41)	-1.29 (-43)	-3.42 (-38)	-0.38 (-36)	-2.16 (-39)	-1.67 (-41)	-3.36 (-33)	-5.03 (-36)	-5.28 (-14)	-11.5 (-15)	-0.66 (-26)	-0.16 (-24)	-0.07 (-3)	-0.23 (-7)
SO	F	-3.74 (-50)	-2.17 (-56)	-1.43 (-30)	-0.16 (-34)	-2.35 (-44)	-2.33 (-53)	-1.66 (-32)	-3.99 (-42)	-2.75 (-9)	-5.62 (-15)	-0.39 (-26)	-0.10 (-29)	-0.18 (-12)	-0.28 (-16)
		HNO3	Dry HNO ₃	NO3	Dry NO ₃	OxN	Dry OxN	Wet OxN	Total OxN	PR	Wet H ⁺	N	Dry N	Wet N	Total N
E	OA	-0.67 (-34)	-0.69 (-35)	-0.09 (-8)	0.00 (-1)	-0.17 (-24)	-0.69 (-34)	-0.97 (-29)	-1.66 (-31)	1.61 (1)	-0.24 (-47)	-0.55 (-26)	-0.79 (-32)	-1.19 (-20)	-1.98 (-24)
E	W	-0.41 (-24)	-0.26 (-23)	0.20 (12)	0.03 (31)	-0.04 (-6)	-0.24 (-19)	-0.32 (-13)	-0.56 (-15)	1.37 (6)	-0.11 (-33)	-0.20 (-11)	-0.24 (-16)	-0.27 (-7)	-0.51 (-10)
E	Sp	-0.66 (-30)	-0.72 (-30)	-0.21 (-19)	-0.01 (-8)	-0.19 (-26)	-0.73 (-29)	-1.22 (-31)	-1.94 (-30)	-0.07 (0)	-0.28 (-55)	-0.57 (-28)	-0.84 (-28)	-1.50 (-20)	-2.34 (-23)
E	Su	-0.97 (-42)	-1.15 (-42)	-0.17 (-24)	-0.01 (-22)	-0.26 (-38)	-1.23 (-43)	-1.43 (-33)	-2.66 (-37)	0.98 (3)	-0.36 (-50)	-0.91 (-33)	-1.46 (-40)	-1.70 (-22)	-3.16 (-28)
E	F	-0.64 (-37)	-0.60 (-38)	-0.19 (-18)	-0.01 (-14)	-0.19 (-30)	-0.60 (-37)	-0.84 (-33)	-1.45 (-34)	0.61 (2)	-0.20 (-49)	-0.51 (-27)	-0.69 (-35)	-1.09 (-24)	-1.79 (-28)
MW	OA	-0.63 (-30)	-0.58 (-28)	-0.29 (-13)	0.00 (-2)	-0.21 (-21)	-0.59 (-27)	-0.96 (-28)	-1.55 (-28)	1.75 (2)	-0.24 (-56)	-0.70 (-26)	-0.70 (-26)	-1.35 (-20)	-2.04 (-22)
MW	W	-0.44 (-30)	-0.22 (-22)	0.27 (8)	0.05 (32)	-0.04 (-3)	-0.17 (-15)	-0.08 (-4)	-0.25 (-8)	5.20 (33)	-0.06 (-21)	-0.23 (-9)	-0.14 (-10)	0.11 (3)	-0.04 (-1)
MW	Sp	-0.51 (-22)	-0.47 (-20)	-0.64 (-27)	-0.03 (-14)	-0.26 (-24)	-0.49 (-19)	-1.12 (-27)	-1.62 (-24)	1.61 (6)	-0.29 (-62)	-0.78 (-29)	-0.60 (-19)	-1.57 (-18)	-2.18 (-19)
MW	Su	-1.08 (-38)	-1.10 (-34)	-0.34 (-30)	-0.02 (-21)	-0.32 (-36)	-1.12 (-34)	-1.40 (-32)	-2.52 (-33)	-1.43 (-5)	-0.39 (-65)	-1.20 (-39)	-1.38 (-34)	-1.78 (-21)	-3.16 (-25)
MW	F	-0.46 (-27)	-0.41 (-26)	-0.42 (-21)	-0.01 (-13)	-0.20 (-23)	-0.43 (-26)	-1.05 (-36)	-1.48 (-32)	-2.30 (-9)	-0.22 (-54)	-0.55 (-24)	-0.49 (-24)	-1.63 (-29)	-2.13 (-28)
NE	OA	-0.84 (-39)	-0.88 (-41)	-0.01 (-1)	0.00 (2)	-0.19 (-29)	-0.88 (-40)	-1.31 (-34)	-2.19 (-36)	9.81 (9)	-0.26 (-44)	-0.54 (-27)	-0.98 (-38)	-1.49 (-24)	-2.48 (-28)
NE	W	-0.48 (-25)	-0.43 (-31)	0.22 (19)	0.02 (29)	-0.06 (-8)	-0.41 (-29)	-0.58 (-20)	-0.99 (-23)	2.95 (13)	-0.11 (-30)	-0.19 (-12)	-0.43 (-26)	-0.64 (-16)	-1.07 (-18)
NE	Sp	-0.90 (-38)	-1.00 (-39)	-0.04 (-6)	0.00 (3)	-0.21 (-30)	-0.99 (-38)	-1.86 (-41)	-2.85 (-40)	-0.03 (0)	-0.33 (-55)	-0.54 (-29)	-1.11 (-36)	-2.28 (-30)	-3.39 (-31)
NE	Su	-1.20 (-48)	-1.54 (-50)	-0.12 (-21)	-0.01 (-23)	-0.29 (-43)	-1.55 (-50)	-1.78 (-36)	-3.33 (-42)	3.21 (11)	-0.39 (-42)	-0.93 (-34)	-1.81 (-47)	-2.06 (-25)	-3.87 (-31)
NE	F	-0.80 (-42)	-0.81 (-47)	-0.09 (-13)	-0.01 (-14)	-0.20 (-34)	-0.81 (-46)	-1.06 (-35)	-1.87 (-39)	2.87 (10)	-0.25 (-50)	-0.50 (-30)	-0.91 (-44)	-1.14 (-23)	-2.05 (-30)
SO	OA	-0.58 (-32)	-0.63 (-35)	-0.01 (-2)	0.00 (-1)	-0.13 (-24)	-0.63 (-34)	-0.70 (-25)	-1.33 (-29)	-3.12 (-2)	-0.22 (-46)	-0.44 (-24)	-0.72 (-32)	-0.85 (-17)	
SO	W	-0.34 (-20)	-0.24 (-21)	0.15 (18)	0.02 (32)	-0.04 (-7)	-0.22 (-19)	-0.43 (-19)	-0.65 (-19)	-3.56 (-11)	-0.17 (-43)	-0.18 (-13)	-0.23 (-16)	-0.57 (-16)	-0.81 (-16)
SO	Sp	-0.59 (-29)	-0.78 (-34)	-0.03 (-6)	0.00 (-3)	-0.14 (-24)	-0.78 (-33)	-0.71 (-21)	-1.49 (-26)	-0.24 (-1)	-0.23 (-50)	-0.43 (-25)	-0.89 (-31)	-0.77 (-12)	-1.66 (-18)
SO	Su	-0.74 (-40)	-0.88 (-41)	-0.09 (-16)	-0.01 (-20)	-0.18 (-35)	-1.00 (-43)	-1.12 (-30)	-2.11 (-35)	0.78 (2)	-0.31 (-46)	-0.69 (-28)	-1.20 (-39)	-1.19 (-19)	-2.41 (-26)
SO	F	-0.66 (-39)	-0.69 (-44)	-0.09 (-16)	-0.01 (-16)	-0.17 (-33)	-0.70 (-43)	-0.56 (-28)	-1.25 (-35)	0.76 (2)	-0.16 (-45)	-0.47 (-28)	-0.80 (-40)	-0.73 (-21)	-1.53 (-28)


Colored entries are significant at p=0.05 level: blue=significant decrease; pink=significant increase.

