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Abstract

The chemical composition and size distribution of marine aerosols constitute an im-
portant parameter to investigate the latter’s impact on global climate change. Amino
acids are an important component of organic nitrogen in aerosols and have the ability
to activate and act as cloud condensation nuclei, with important effects on the radiation5

balance.
In order to understand which physical and chemical transformations occur during

transport processes, aerosol samples were collected during four different Antarctic aus-
tral summer campaigns.

The mean amino acids concentration detected at the Italian coastal base was10

11 pmol m−3. The main components were fine fractions, establishing a local marine
source. Once produced on the sea surface, marine aerosols undergo an ageing pro-
cess, due to various phenomena such as coagulation, or photochemical transforma-
tions. This was demonstrated by using the samples collected on the Antarctic plateau,
where the background values of amino acids (0.7 and 0.8 pmol m−3) were determined,15

and concentration enrichment in the coarse particles was observed.
Another important source of amino acids in marine aerosols is the presence of bi-

ological material, demonstrated through a sampling cruise on the R/V Italica on the
Southern Ocean.

1 Introduction20

Marine aerosols are among the most important natural aerosol systems at the global
level, due to the oceans’ extent (O’Dowd and De Leeuw, 2007). They play an important
role in the Earth system, especially in climate and atmospheric chemistry, as they sig-
nificantly contribute to the global aerosol burden and influence both direct and indirect
radiative forcing as well as a variety of chemical processes (IPCC, 2007).25
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Knowledge of the chemical composition of these particles is crucial to better under-
stand the mechanisms influencing climate change, due to the ability of these particles
to act as cloud condensation nuclei.

Recently, the scientific community has shown particular interest in the organic com-
position of aerosols, as the latter contribute to a substantial portion of the marine5

aerosol mass, especially to the submicron size fraction (Bigg, 2007).
Several studies (Rinaldi et al., 2010; Facchini et al., 2008a, b) have demonstrated

that the chemical composition of marine organic aerosols is a combination of different
primary and secondary sources. Primary emissions result from the interaction of wind
stress via bubble bursting processes at the ocean’s surface, where the presence of10

phytoplankton can modulate the chemical and physical proprieties of marine organic
aerosols (Kuznetsova et al., 2005). As for secondary organic aerosols, their production
involves several mechanisms which have not yet been clarified (Vignati et al., 2010;
Spracklen et al., 2008; Myriokefalitakis et al., 2010). However, Bates et al. (1992)
demonstrated that the production of secondary marine organic aerosols is associ-15

ated with biologically-driven emissions of organic compounds from phytoplankton. Lim
et al. (2010) studied the role of aqueous chemistry in the formation of secondary or-
ganic aerosols, describing a number of photochemical reactions that occur in the at-
mosphere. A detailed understanding of these mechanisms is essential to quantify the
role of marine aerosols in the functioning of the Earth system.20

The organic marine fraction of marine aerosols contains water-soluble organic com-
pounds (WSOC), which include numerous species of organic acids, amines, carbonyl
compounds and amino acids (Saxena and Hildemann, 1996). Amino acids are ubiqui-
tous compounds, and constitute an important component of the organic nitrogen con-
tent of aerosols (Ge et al., 2011). Several studies have determined amino acids con-25

centrations in the condensed phase of aerosols (Mandalakis et al., 2010, 2011; Zhang
and Anastasio, 2003), but also in rainwater (Mace et al., 2003a, b), in fog (Zhang and
Anastasio, 2001), and in dew water (Scheller, 2001). Amino acids, being an important
portion of organic aerosols, can influence the cloud formation or act as ice-forming

17069

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/17067/2014/acpd-14-17067-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/17067/2014/acpd-14-17067-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 17067–17099, 2014

Amino acids in
Antarctica: evolution

and fate of marine
aerosols

E. Barbaro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

nuclei due to their hygroscopicity (Szyrmer and Zawadzki, 1997; Wedyan and Preston,
2008). De Hann et al. (2009) have postulated that amino acids can contribute to the
formation of new particles in the atmosphere. These compounds can also serve as
a source of nutrients for marine ecosystems thanks to their high bioavailability (Zhang
et al., 2002).5

Several sources can affect the content of atmospheric amino acids. Matsumoto
and Uematu (2005) describe how long-range transport influences the concentration
of amino acids in the North Pacific Ocean, while an evident marine source was veri-
fied by Weydan and Preston (2008) in the South Atlantic Ocean. Amino acids can be
detected in volcanic emissions (Scalabrin et al., 2012), but biomass burning has also10

been suggested as a possible source of these WSOC (Chan et al., 2005; Mace et al.,
2003a).

The different types of amino acids in continental particles are thought to be produced
by plants, pollen and algae, but also by fungi and bacteria spores (Zhang and Anasta-
sio, 2003; Milne and Zika, 1993; Mace et al., 2003a; Scheller, 2001). The continental15

contribution was evaluated by Mace et al. (2003b), who distinguished the biogenic
amino acids present in fine particles from the amino acids contained in anthropogenic
coarse particles. Zhang and Anastasio (2002) identified livestock farming as the main
source of amino acid ornithine in Californian aerosols. Near the inhabited continent,
several sources could produce amino acids in the particle phase, although soil and20

desert dust probably are the most important sources of high concentrations of amino
acids.

Due to their distance from anthropogenic and continental emission sources, polar
regions are excellent natural laboratories to conduct studies on the behavior, evolu-
tion and fate of marine aerosols. In Antarctica, a continent surrounded by the South-25

ern Ocean, long-range atmospheric transport of anthropogenic pollutants is minimal,
whereas natural sources such as seawater provide the main contributions to ma-
rine aerosols. Aerosol measurements in Antarctica provide information on natural
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background concentrations and processes, such as particle formation and growth (Bar-
gagli, 2008; Bourcier et al., 2010; Gambaro et al., 2008).

The main aim of this study was to estimate how the amino acids produced from sea-
water surface were distributed in the size-segregated aerosols in Antarctica. Physical
transformations of particles were also investigated after transport phenomena, where5

many physical and chemical processes occur. Four different Antarctic austral summer
campaigns were conducted to pursue our investigation: in two consecutive field cam-
paigns, aerosols were collected on the Antarctic plateau near the Italian–French base
of Concordia Station; one sampling period was carried out at the Italian coastal base
“Mario Zucchelli Station” (MZS); finally, shipboard aerosols were sampled on the R/V10

Italica on the Southern Ocean, near Antarctica.
The present study permits us to identify the main factors affecting particle amino

acids concentrations, as well as the particle size in which the single amino acid is
released from bubble bursting phenomena. The aerosols collected on the Antarctic
plateau allowed to define the changes in amino acid composition that take place when15

marine aerosols get transported inland. A cascade impactor was used in the terrestrial
base to investigate amino acids distribution on particles with a diameter below 10 µm,
while a TSP (total suspended particles) sampler was employed on the ship in order to
detect amino acids in particles with a diameter above 1 µm.

To our knowledge, this is the first investigation that considers the different composi-20

tion of amino acids present and their particle-size distribution in Antarctic aerosols.

2 Experimental section

2.1 Sample collection

Aerosol samplings were carried out during four different Antarctic austral summer cam-
paigns, in the framework of the “Progetto Nazionale di Ricerche in Antartide” (PNRA).25

Five aerosol samples were collected at the Italian base “Mario Zucchelli Station” (MZS),
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from 29 November 2010 to 18 January 2011. At the Italian–French base “Concordia
Station” (Dome C), four aerosol samples were collected from 19 December 2011 to 28
January 2012; finally, five airborne samples were obtained from 7 December 2012 to
26 January 2013. Amino acids were also determined in other seven samples retrieved
on the Ross Sea (Antarctica) on the R/V Italica from 13 January to 19 February 20125

(Supplement Table S1). The sampling sites are shown in Fig. 1.
Aerosol samples in terrestrial bases were collected using a TE-6070, PM10 high-

volume air sampler (average flow 1.21 m3 min−1) provided with a Model TE-235 five-
stage high-volume cascade impactor (Tisch Environmental Inc., Cleves, OH) equipped
with a high-volume back-up filter (Quartz Fiber Filter Media 8′′ ×10′′) and with10

a 5.625′′×5.375′′ Slotted Quartz Fiber for collecting particle size range in the following
range: 10.0–7.2 µm, 7.2–3.0 µm, 3.0–1.5 µm, 1.5–0.95 µm, 0.95–0.49 µm, < 0.49 µm.
The sampling campaign lasted 10 days, with a total air volume of ∼ 15 000 m3 per
sample.

During the oceanographic cruise, airborne aerosols were collected by means of a cir-15

cular quartz fiber filter (quartz fiber filter (QFF) (SKC Inc., Eighty Four, To-13 model))
using a TE 5000 High Volume Air Sampler (Tisch Environmental Inc., OH).To avoid
contamination from the ship’s exhaust, air samples were automatically controlled by
a wind sector, in order to start sampling only when the relative wind direction changed
from −135 to 135 ◦C of the bow, and when the relative wind was above 1 m s−1. Collec-20

tion was scheduled to last about five days, but this time frame was subject to variations,
due to the wind selector and to cruise events. The airborne sampling volumes varied
between 511 and 2156 m3. The track chart is reported in Supplement Fig. S1.

All filters were pre-combusted (4 h in a 400 ◦C in a muffle furnace), wrapped in two
aluminum foils before sampling, and stored in aluminum at −20 ◦C after sampling and25

until analysis. Blank samples were collected by loading, carrying and installing the filter
holder in the instrument with the air pump closed.

During the austral summer campaign of 2010–2011, the sampling site was at the
Faraglione Camp (74◦42′ S–164◦06′ E), about 3 km south of the MZS in Victoria Land.
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The site is a promontory at 57 m a.s.l. It was chosen because it is located in a valley
that is separated from the main station area by a hill, and pollution from the research
station is therefore negligible.

During the austral summers of 2011–2012 and 2012–2013, the sampling site was in
the East Antarctic plateau (75◦06′ S–123◦20′ E), about 1 km south-west of the Dome C5

buildings, upwind of the dominant wind (from south-west).

2.2 Sample processing

In order to avoid contamination from laboratory air particles and from the operator,
samples were handled under a laminar flow bench (class 100). The same pre-analytical
protocol used for phenolic compounds determination (Zangrando et al., 2013) was ap-10

plied to identify amino acids in Antarctic samples. This unique procedure permits to
determine a number of compounds in a single precious sample. Each quartz fiber sup-
port was cut in half using stainless steel scissors that were previously washed with
methanol. Filters were broken into small pieces, placed into 50 mL conical flasks, and
spiked with internal standard solutions.15

Slotted quartz fiber supports and circular quartz fiber filters were spiked with 100 µL
of isotopically-labelled 13C amino acid standard solutions (with concentrations ranging
between 2 and 3 µg mL−1) and extracted with 5 and then 2 mL of ultrapure water by
ultrasonication. This operation was carried out by adding ice into an ultrasonic bath
in order to avoid the degradation or evaporation of the compounds. 400 µL of internal20

standard solution were spiked into small pieces of back-up filter, which was extracted
with 25 and then 5 mL of ultrapure water.

The extracts were combined and filtered through a 0.45 µm PTFE filter in order to
remove particulate and filter traces before instrumental analysis.
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2.3 Instrumental analysis

The enantiomeric determination of amino acids in the aerosol samples was conducted
using a method previously developed by Barbaro et al. (2014). An Agilent 1100 Se-
ries HPLC Systems (Waldbronn, Germany; with a binary pump, vacuum degasser,
autosampler) was coupled with an API 4000 Triple Quadrupole Mass Spectrometer5

(Applied Biosystem/MSD SCIEX, Concord, Ontario, Canada) using a TurboV electro-
spray source that operated in positive mode by multiple reaction monitoring (MRM).

Chromatographic separation was performed using a 2.1mm×250 mm CHIROBIOTIC
TAG column (Advanced Separation Technologies Inc, USA) with a mobile phase gradi-
ent elution consisting of ultrapure water with 0.1 % formic acid (eluent A) and methanol10

with 0.1 % formic acid (eluent B).
The binary elution gradient program at a flow rate of 0.2 mL min−1 was used as fol-

lows: 0–15 min, isocratic elution with 30 % of eluent B; 15–20 min, gradient from 30 to
100 % B; 20–25 min washing step with 100 % of eluent B; 27–30 min, equilibration at
30 % eluent B. The injection volume was 10 µL.15

In this work, the internal standard and isotope dilution methods were used for the
quantification of amino acids, and the results were corrected by evaluating instrumental
response factors.

Reagents and materials used for this study and the quality control are reported in
the Supplement.20

2.4 Back-trajectory calculation and satellite imagery

Backward air trajectories arriving at MZS, Dome C and R/V Italica were computed us-
ing Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) transport and
dispersion models (Draxler and Rolph, 2013). The meteorological data used for com-
puting all the backward trajectories were the NCEP/NCAR Global Reanalysis Data.25

For MZS data, a vertical velocity model was used as vertical motion while isoentropic
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model was employed for the analysis of Dome C air masses, as suggested by Stohl
et al. (2010).

240 h normal back-trajectories beginning 500 m a.g.l. (agl) at MZS and Dome C were
calculated during each sampling campaign period. Four runs were computed for ev-
ery sampling day starting every six hours and the resulting trajectories were mean-5

clustered into 6 groups.
For the oceanographic cruise, trajectory matrices were performed in order to sim-

ulate the ship’s itinerary. In this case, for each 24 h sampling event, 5 day backward
trajectories were computed.

The data related to chlorophyll were obtained via an Aqua/MODIS NASA satellite10

continually orbiting the globe (http://neo.sci.gsfc.nasa.gov/).

3 Results and discussion

3.1 Free amino acid determination in coastal area

Thirty-six amino acids were investigated in the particulate matter collected at
Faraglione Camp near the coastal Italian base MZS. Five samples were collected be-15

tween 29 November 2010 and 18 January 2011 with a cascade impactor in order to
evaluate the dimensional distribution of amino acids in the coastal airborne samples
(Fig. 2).

Nine L-amino acids (L-Ala, L-Asp, L-Arg, L-Glu, L-Phe, L-Pro, L-Tyr, L-Thr) and
glycine (Gly) had concentrations higher than the method detection limits (MDLs) (Sup-20

plement Tables S3 and S4), while all D-amino acids were below MDLs, probably due
to a negligible presence of bacteria (Wedyan and Preston, 2008; Kuznetsova et al.,
2005).

The total concentration of amino acids, calculated from the sum of their six size
distributions in all aerosol samples, have a median value of 5 pmol m−3 and an average25
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value of 11 pmol m−3, due to the higher amino acid concentration in the first sample, as
shown in Fig. 2.

The average concentration of amino acids determined in this study was very similar
to those found in the literature for marine aerosols in remote areas. Matsumoto and
Uematsu (2005) reported an average free amino acid concentration of 10.7 pmol m−3

5

in the Pacific Ocean, while Gorzelska and Galloway (1990) and Wedyan and Preston
(2008) observed a mean of 3 and 20 pmol m−3 respectively in the Atlantic Ocean. Scal-
abrin et al. (2012) have determined an average concentration of 2.8 pmol m−3 using
the same sampling method at the Arctic coastal station.

However, higher average concentrations of amino acids were individuated in the10

Mediterranean areas. Barbaro et al. (2011) determined a mean value of 334 pmol m−3

in the Venice Lagoon (Italy); Mandalakis et al. (2010, 2011) found 166 and
172 pmol m−3 respectively in the Eastern Mediterranean and in Greece; in the austral
hemisphere, Mace et al. (2003b) have performed several studies in Tasmania (Aus-
tralia), finding amino acid concentrations that ranged between 15 and 160 pmol m−3.15

In the present work, the dominant compounds were Gly and Arg, which together con-
stituted 66–85 % of the total amino acid content. Gly and Arg had different proportions
in the five samples, while the others compounds presented similar compositions in all
the samples, with average percentages of 9 % for Glu, 7 % for Ala, 5 % for Thr, 4 % for
Asp, 2 % for Val while 1 % for other amino acids (Phe, Tyr and Pro).20

The first sample collected between 29 November and 9 December had a higher
concentration of Arg (74 %), while Gly was 11 %. In contrast, in the other samples, Gly
was the dominant compound, with a percentage between 48 to 56 %, while arginine
was about 18 %.

Scheller (2001) has demonstrated that high quantities of Arg were closely linked25

with plant growth, but the cluster means backward trajectories (Supplement Fig. S2)
conducted for our samples shows that air masses come from open-sea regions (1 %)
and principally from the internal Antarctic continent (99 %), characterized by their lack
of vegetation. These considerations suggest that local marine influence was the main
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source of amino acids in MZS and that the concentration of atmospheric amino acid
was linked to the primary production in the sea, as also confirmed by other studies
(Meskhidze and Nenes, 2006; Vignati et al., 2010; Yoon et al., 2007; Mueller et al.,
2009).

The main source of Arg in the aerosols collected in the coastal Antarctic station MZS5

was probably linked to the urea cycle in diatoms (Bromke, 2013).
The MODIS data (Fig. 3) show higher chlorophyll concentration during the period re-

ferred to the first sample, while a strong decrease in the biomass production index was
observed during the remaining sampling time. This relationship between marine pri-
mary production and Arg concentration suggests that this amino acid may have a ma-10

rine biological origin and that its concentration is closely linked to algae growth.
Meteorological conditions play an important role in the processes of aerosol forma-

tion. Indeed, the first sampling period (29 November–9 December) was characterized
by temperatures ranging between −10 and −1.5 ◦C, while in the next sampling period,
the temperature was always above −2 ◦C (PNRA-ENEA, 2014). Studies conducted on15

the sea microlayer (Knulst et al., 2003; Grammatika and Zimmerman, 2001) have es-
tablished that air temperature < −5 ◦C create surface slurries which may result in the
expulsion of salts and particulate organic matter. In such conditions, near-surface tur-
bulence was increased, leading to an increase of material in the microlayer, where
bubbles also actively contributed as transport mechanisms. Leck and Bigg (2005) have20

shown that the main occurrences of fine aerosol formation in the atmosphere were
observed during periods of lead melting and refreezing. In fact, the first sample was
collected when melting and refreezing of pack ice occurred, and we have observed the
highest concentration of total amino acid in the fine aerosols.

The local marine source of the aerosols collected in the coastal station MZS was also25

confirmed by the distribution of amino acids in the different particle fractions. Figure 2
shows that the highest concentration of amino acids (11 342 fmol m−3 as mean value,
98 %) was generally observed in fine particles (< 1 µm), while a much lower average
value of 265 fmol m−3 (2 %) for total amino acid concentration was observed in the
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coarse fraction (> 1 µm). Our experimental evidence corresponds to the enrichment
of WSOC (e.g. amino acids) in sea spray submicron particles described by O’Dowd
et al. (2004) and Keene et al. (2007). WSOC were present in all aerosol size frac-
tions, but the greatest enrichment was associated with the smallest size fraction (0.1–
0.25 µm) (Keene et al., 2007; Facchini et al., 2008b; Modini et al., 2010). The correlation5

between the increased enrichment of aerosol organic fraction and the decrease of par-
ticles dimension is in agreement with the thermodynamic prediction of bubble bursting
processes under conditions in which the ocean surface layer becomes concentrated
with surfactant material, which, in addition to inorganic salts, can be incorporated into
sea spray drops (Oppo et al., 1999).10

3.2 Free amino acid determination in remote continental area

The study of “background aerosols” is very important to estimate the impact of anthro-
pogenic sources on the atmosphere and to study the natural phenomena that occur
in atmospheric aerosols. Dome C Station is situated on the ice sheet in the Eastern
Antarctic plateau, where the only possible anthropogenic contamination can come from15

the station itself, the airplane and the traverse used to supply it. This location is ideal
for studying the chemical composition of “background” aerosols.

In this remote area, our samples were collected during two consecutive austral sum-
mer field campaigns (19 December 2011–28 January 2012 and 7 December–26 Jan-
uary 2013) in order to evaluate the size-distribution of amino acids concentration and20

the variability between two different years.
In this sampling site, several studies (Jourdain et al., 2008; Becagli et al., 2012;

Udisti et al., 2012; Fattori et al., 2005) were carried out to investigate the distribution
of inorganic compounds and of a few organic molecules (e.g. methansulfonic acid).
However, the amino acids pattern had not been studied yet.25

Figure 4 shows the concentrations of amino acids for both field campaigns, demon-
strating the similarity between the trends and compositions of the analyzed com-
pounds.
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Ten amino acids (L-Ala, L-Arg, L-Asp, L-Glu, L-Leu, Gly, L-Phe, L-Thr, L-Tyr, L-Val)
had concentrations above MDLs (Supplement Tables S3 and S4) in all samples col-
lected in both field campaigns. The concentration of D-amino acids was always below
MDLs, as also reported in our coastal results.

Gly, L-Asp and L-Ala were the major amino acid compounds, which together ac-5

counted for about 80 % of the total amino acid content.
The total average concentrations of these amino acids, obtained from the sum

of the amino acids concentrations in all stage sampled, were respectively 0.8 and
0.7 pmol m−3 for the 2011–2012 and 2012–2013 austral summer Antarctic fields
(Fig. 4). To our knowledge, these mean concentrations were the lowest concentrations10

detected in all investigated areas (Milne and Zika, 1993; Scalabrin et al., 2012; Mace
et al., 2003b; Kuznetsova et al., 2005; Matsumoto and Uematsu, 2005; Wedyan and
Preston, 2008; Mandalakis et al., 2010, 2011; Barbaro et al., 2011; Gorzelska and Gal-
loway, 1990), confirming that this type of aerosol characterization describes the amino
acids concentration in very aged “background aerosols”.15

The background profile of amino acids was altered by the higher concentrations in
the coarse fraction 1.5–0.95 µm of the sample collected from 27 December 2012 to 6
January 2013 (Fig. 4b). Having evaluated the wind roses for each sample in the two
summer field campaigns, we consider that these samples were the only ones to be
contaminated by human activities at the Dome C station (Supplement Fig. S3).20

A prominent marine source was revealed by the cluster means backward trajectories
analyses analysis of all the samples collected during both austral summer campaigns
(Supplement Figs. S4 and S5). During the Antarctic austral summer, the surface inver-
sion over the polar ice cap is relatively weak and aerosols produced on the ocean’s
surface and transported through the upper troposphere can be easily mixed down25

to the surface (Cunningham and Zoller, 1981). There are also some mechanisms of
transport from the lower stratosphere to the upper troposphere near the coast of the
Antarctic continent. The materials returning to different sources can be mixed into the
upper troposphere, and this air generally descends over the polar plateau, thanks also
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to the cooling of the latter’s surface. During the summer, there is a continuous flux of
air from the upper troposphere (Cunningham and Zoller, 1981; Stohl and Sodemann,
2010).

The analysis of the size distribution of amino acids and of air masses (Figs. 4, S4
and S5 of the Supplement) permits us to identify the source of aerosols and several5

mechanisms undergone by these aerosols during long-range transport. Our results
suggest that amino acids were produced in the fine particles on the surface of the
Southern Ocean from bubble bursting processes. The air masses subsequently per-
sisted into the upper troposphere over the continent for some days before descending
onto the ice sheet. These fine aerosol particles can grow even further during the age-10

ing process, by condensation of molecules from the gas phase, by collision of small
and large particles (coagulation) (Petzold and Karcher, 2012; Roiger et al., 2012) or
because of the ice-nucleting abitility of amino acids (Szyrmer and Zawadzi, 1997). The
concentration of amino acids in the coarse particles of aerosols collected at Dome C
had average values of 420 fmol m−3 (Fig. 4) for both field campaigns, while our coastal15

data had a mean concentration of 264 fmol m−3 (Fig. 2). This enrichment in the coarse
fraction can be explained by the ageing of the aerosols.

The composition of aerosols may change during long-range transport, due to the pro-
duction and destruction of species via photochemical reactions. McGregor and Anas-
tasio (2001) describe amino acids as highly reactive species in the atmosphere. How-20

ever, in the upper atmosphere, the chemical processes take place at slower rates than
in the boundary layer (Roiger et al., 2012). Milne and Zika (1993) have verified that
amino acids are destroyed via reactions with photochemically formed oxidants such
as hydroxyl radical, to form products such as ammonium, amides and keto-acids. In
aqueous-phase aerosols, glyoxal can react with amino acids, leading to scavenging25

processes (De Haan et al., 2009). Recent studies related to organic aerosol growth
mechanisms (Maria et al., 2004) have underlined that the oxidation process, which is
a removal mechanism for hydrophobic organic compounds, is slower in larger carbona-
ceous aerosols.
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The aerosols collected at Dome C station were characterized by the prevalence of
amino acids in the back-up filters (< 0.45 µm). However, the amino acids fraction in the
coarse particles represented a higher percentage (13–23 %) than that of the aerosols
generated near the source. In the present work, we have observed only 2 % of amino
acids in the coarse particles at the MZS station near the aerosols source.5

This evidence suggests that hydrophobic amino acids present in the coarse particles
are less reactive. Our hypothesis is confirmed by the behavior of Ala. Ala is classified as
hydrophobic (Pommie et al., 2004) and its average concentration for the coarse fraction
at Dome C was 70 fmol m−3, the same value quantified in the coarse fraction in the MZS
samples. This indicates that the coagulation processes with the relative increase of Ala10

concentration in larger particles are probably together with slow oxidation processes.
Thanks to this phenomenon, Ala significantly contributes to the amino acid content in
these “background aerosols”.

Depending on the physicochemical proprieties of amino acids, an “hydropathy” index
can be estimated, as suggested by Pommie et al. (2004). Amino acids can be divided15

into hydrophilic (Asp, Hyp, Glu, Asn, Lys, Gln, Arg), hydrophobic (Ala, Val, Leu, Ile, Met,
Phe) and neutral (Gly, Pro, Ser, Thr, Tyr, Hys), in order to evaluate the contribution of
each class for the aerosols collected in the three different field campaigns.

Figure 5 shows that hydrophilic components were predominant in marine aerosols
released into the atmosphere, while hydrophobic compounds considerably increased20

in the aerosols collected at the continental station. The low abundance of hydrophobic
amino acids in coastal aerosols was observed also by Mandalakis et al. (2011), and is
probably caused by their lower tendency to dissolve in the aqueous particles contained
in coastal aerosols. This classification permits to hypothesize that a higher content in
hydrophilic amino acids can reflect a higher water content in the aerosols. This is a very25

important indication, because amino acids can be involved in cloud formation, behaving
as ice-nuclei activators and affecting the balance of atmospheric radiation (Mandalakis
et al., 2011; Szyrmer and Zawadzki, 1997).
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With regard to the acid-base proprieties of amino acids, some differences can be
observed between two different types of aerosols. As described above, the dominant
amino acid in the MZS aerosols was Arg, which considerably contributed to the per-
centage of base compounds (53 %). Neutral components, which represented an im-
portant percentage (40 and 68 % for coastal and internal aerosols respectively), were5

heavily influenced by the presence of Gly. This amino acid is commonly present in
large quantities in the aerosols because of a very low atmospheric reactivity (half time
of 19 days) (McGregor and Anastasio, 2001) and is usually considered an indicator of
long-distance aerosol transport (Barbaro et al., 2011; McGregor and Anastasio, 2001).

Figure 4 shows that the concentration of amino acids for the 2011–2012 austral10

summer Antarctic campaign was higher than the values reported for the 2012–2013
Antarctic campaign and the Fig. 5 underlines that the main difference between two
campaign is the percentages of hydrophilic and neutral amino acids. We suggests that
the transport processes of air masses was the main cause of these variations because
the time spent from these air masses inland in the 2011–2012 summer was about 36 h15

(Supplement Fig. S4) while in 2012–2013 between 4 and 7 days (Supplement Fig. S5).
A longer time inland can be improved chemical and photochemical reactions, decreas-
ing the concentration of amino acids and modifying the composition where the more
stable Gly (neutral component) became the main compound (Fig. 5).

The acid compounds (Asp and Glu) content showed a mismatch between aerosols20

in the two different stations: the negligible percentage in the coastal MZS (7 %) was in
contrast with the important content in the aerosols of Dome C (33 and 26 % respectively
for the two consecutive field campaigns).

These evidence can be explained using a study conducted by Fattori et al. (2005)
in the Dome C aerosol, where high acidity content was verified. High concentrations25

of hydrochloric, nitric and sulfuric acids composed the aerosol fine fraction, promoting
many acid-base atmospheric reactions with neutralization process but also with an
increasing of acid component as demonstrated in our studies.
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3.3 Free amino acids during an oceanographic cruise

Measurements of free amino acids in aerosols were conducted on the Southern Ocean
on the R/V Italica from 13 January to 19 February 2012 (Fig. 6). The sampling was
performed using a TSP sampler that collected particles with a diameter above 1 µm.

The first and second samples represented the track between New Zealand (from Lit-5

tleton harbor) and the MZS (Antarctica), while the sixth and last samples characterized
the journey between Antarctica and New Zealand. Samples 3, 4 and 5 were collected
on the Ross Sea near the Antarctic continent (Fig. S1 of the Supplement).

Five L-amino acids (L-Asp, L-Arg, L-Glu, L-Phe, L-Pro) and Gly were present in
the samples, while other L-amino acids and D-amino acids had concentrations below10

MDLs (Supplement Table S2).
The total concentrations in free amino acids varied between 2 and 12 pmol m−3.
The first and last samples had the highest concentrations in amino acids (Fig. 6),

and their relative sampling periods were characterized by temperatures ranging be-
tween −1 and 18 ◦C (sample 1), in contrast with the remaining sampling periods that15

were always below −1 ◦C, with the lowest value at −8 ◦C (sample 4). While higher
temperatures can facilitate metabolic processes and accelerate atmospheric chemical
reactions, they can also promote bubble bursting from the sea surface. This could be
the main source of amino acids in our on-ship samples, as also demonstrated by the
back-trajectory analysis (Supplement Fig. S6a–g), where we have demonstrated only20

a marine influence (Kuznetsova et al., 2004).
The concentration of amino acids was closely influenced by sea conditions during the

sampling. As reported in the field report (Rapporto sulla campagna Antartica, 2012),
the navigation from New Zealand to the ice-pack region was characterized by winds
always above 30 knots, with maximum values at 60 knots and 12 m of wave height,25

determining the higher concentration of amino acids in the first samples (12 pmol m−3).
Along the same track, but under better sea conditions (sample 7), we observed a slight
reduction in the concentration of amino acids (8 pmol m−3).
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These values were very similar to those reported by Matsumoto and Uematsu (2005)
in the Pacific Ocean and to those by Wedyan and Preston (2008) and Gorzelska and
Galloway (1990) in the Atlantic Ocean.

The lowest concentrations were observed in samples 2 and 6, probably due to the
fact that they were collected far from Oceania and from the Antarctic coast, in an area5

characterized by a strong presence of pack ice and by temperatures below −1 ◦C, and
where the bubble bursting process was reduced.

The samples collected near the Antarctic coast (samples 3, 4 and 5) were the most
interesting ones because the results could be compared with the amino acids values
detected in the coastal station MZS.10

The average concentration in the samples collected on the Ross Sea was
3.5 pmol m−3, about half of the values detected in our Southern Ocean samples. Such
values seem similar to the concentrations observed in the aerosols collected at the
MZS station (median 5 pmol m−3). However, this comparison is irrelevant: for the sam-
pling campaign at the MZS, a cascade impactor was used to collect aerosol samples15

with particle-size below 10 µm, whereas the data collected during the cruise regarded
aerosols with a particle diameter above 1 µm. However, a comparison is possible if the
back-up and the fifth slotted filters are excluded.

In the MZS aerosols, the median value of the amino acids concentration into the
aerosols with particle size between 0.95 and 10 µm was 1 pmol m−3 and this con-20

centration was lower than the ones measured in the cruise’s aerosols (3.5 pmol m−3).
Aerosols with a diameter above 10 µm, collected with a TSP sampler, can be the main
source of amino acids in the samples collected on the R/V Italica.

Biological material present in the atmosphere can have a variety of sizes: the diam-
eter of pollens typically varies between 17–58 µm (Stanley and Linskins, 1974); that25

of fungal spores between 1–30 µm (Gregory, 1973); that of algal spores between 15–
120 µm (Coon et al., 1972); that of bacteria between 0.25–8 µm (Thompson, 1981);
finally, viruses have diameters that are typically less than 0.3 µm (Taylor, 1988).
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The back-trajectory analysis (Supplement Fig. S6c–e) demonstrated that air masses
come from inland Antarctica, where no vegetation is present. For this reason, the bio-
logical materials that influenced the concentration of amino acids in shipboard aerosols
can probably be attributed to algal spores or bacteria. D-amino acids are good bio-
markers of bacteria, because some of them are contained in the peptidoglycan mem-5

brane (Kuznetsova et al., 2005; Wedyan and Preston, 2008), but in our shipboard sam-
ples no relevant concentration of D-amino acids were observed, indicating that the
presence of bacteria was negligible.

In these samples, the presence of algal spores was also confirmed by the detection
of Pro at 4 % (mean value) of the total concentration of amino acids. Fisher et al. (2004)10

measured the relevant concentration of Pro in ascospores, demonstrating that this
amino acid can be used to identify the presence of spores presence in aerosols. In
the MZS aerosols, the presence of spores (typical diameter 15–120 µm) could not be
evaluated because the sampler used eliminated the particles above 10 µm. This is
probably the reason why Pro concentration was always below MDLs.15

Asp was detected in only one sample (sample 5), with a concentration of 502 fmol
m−3. This value is very similar to those measured in the two field campaigns above the
Antarctic plateau, considering only the slotted filter above 1 µm (446 e 382 fmol m−3

respectively for the austral summer field campaigns 2011–2012 and 2012–2013). The
back-trajectory analysis (Supplement Fig. S6e) demonstrated that, in the air mass com-20

ing from the plateau, aspartic acid was a dominant component of amino acid content.
In the aerosols collected during the cruise, the Arg concentration was very low be-

cause the sampling conducted in the R/V Italica during the austral summer 2012 ex-
cluded fine particles, whereas Arg was one of the most abundant compounds observed
in the coastal station.25

The neutral components (77 %) gained influence in the shipboard data, for which
the particles with diameter > 1 µm were considered. Gly was the dominant component,
with concentrations ranging between 1.5 and 4.1 pmol m−3. A very low percentage of
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hydrophobic amino acids (2 %) characterized the aerosols collected on the ship, prob-
able due to the major incidence of the local source in the amino acids content.

4 Conclusions

This first study on the distribution of Antarctic amino acids permitted to identify the
marine source of aerosols and to study the ageing of aerosols.5

Marine emissions of fine particles occurred via bubble bursting processes on the
surface of the Southern Ocean. Instead, an enrichment of amino acids in coarse parti-
cle was occurred during the “ageing” process as verified in Dome C station. Numerous
photochemical events may contribute to decreasing the concentration in amino acids in
the fine mode, but the chemical reactions were faster for hydrophilic compounds than10

for hydrophobic ones, as suggested by Ala enrichment in the aged aerosols.
The study of aerosols with diameter > 10 µm indicated that bubble bursting pro-

cesses can also emit microorganisms composed by a higher number of neutral amino
acids.

The Supplement related to this article is available online at15

doi:10.5194/acpd-14-17067-2014-supplement.
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Figure 1. The sampling sites: the Italian base “Mario Zucchelli Station” (MZS) (74° 42’S – 164° 689 

06’ E), the Italian-French base  “Concordia Station” (Dome C) ( 75° 06’ S – 123° 20’ E) and the 690 

track chart of the R/V Italica.  691 
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Figure 2. Amino acid size distribution in the samples collected during the austral summer 2010-11 693 

at the Mario Zucchelli Station (Antarctica). 694 

Figure 1. The sampling sites: the Italian base “Mario Zucchelli Station” (MZS) (74◦42′ S–
164◦06′ E), the Italian–French base “Concordia Station” (Dome C) (75◦06′ S–123◦20′ E) and
the track chart of the R/V Italica.
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Figure 2. Amino acid size distribution in the samples collected during the austral summer 2010-11 693 

at the Mario Zucchelli Station (Antarctica). 694 

Figure 2. Amino acid size distribution in the samples collected during the austral summer
2010–2011 at the Mario Zucchelli Station (Antarctica).
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 695 

Figure 3. Distribution of chlorophyll concentrations in the Ross Sea for each sampling period 696 

obtained through Aqua/MODIS NASA satellite.  697 

Figure 3. Distribution of chlorophyll concentrations in the Ross Sea for each sampling period
obtained through Aqua/MODIS NASA satellite.
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698 

Figure 4. Size distributions of amino acids concentration in the samples collected during the austral 699 

summer 2011-12 (A) and during the austral summer 2012700 

“Concordia Station” (Dome C). 701 

. Size distributions of amino acids concentration in the samples collected during the austral 

d during the austral summer 2012-13 (B) at the Italian French base 
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Figure 4. Size distributions of amino acids concentration in the samples collected during the
austral summer 2011–2012 (A) and during the austral summer 2012–2013 (B) at the Italian
French base “Concordia Station” (Dome C).

17097

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/17067/2014/acpd-14-17067-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/17067/2014/acpd-14-17067-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 17067–17099, 2014

Amino acids in
Antarctica: evolution

and fate of marine
aerosols

E. Barbaro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 

702 

Figure 5. Comparison between theme an percentages of hydrophilic, neutral and hydrophobic 703 

contributions of the aerosols sampled at the Mario Zucchelli 704 

705 

Figure 5. Amino acid distribution in the aerosols sampled on the R/V Italica during the 706 

oceanographic cruise on the Southern Ocean during the austral summer 2012.707 

. Comparison between theme an percentages of hydrophilic, neutral and hydrophobic 

contributions of the aerosols sampled at the Mario Zucchelli Station and at Dome C.

5. Amino acid distribution in the aerosols sampled on the R/V Italica during the 

oceanographic cruise on the Southern Ocean during the austral summer 2012. 
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Figure 5. Comparison between theme an percentages of hydrophilic, neutral and hydrophobic
contributions of the aerosols sampled at the Mario Zucchelli Station and at Dome C.
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Figure 6. Amino acid distribution in the aerosols sampled on the R/V Italica during the oceano-
graphic cruise on the Southern Ocean during the austral summer 2012.
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