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Abstract

Rapid urbanization and economic development in East Asia in past decades has led to
photochemical air pollution problems such as excess photochemical ozone and aerosol
formation. Asian megacities such as Seoul, Tokyo, Shanghai, Gangzhou, and Bei-
jing are surrounded by densely forested areas and recent research has consistently5

demonstrated the importance of biogenic volatile organic compounds from vegetation
in determining oxidation capacity in the suburban Asian megacity regions. Uncertain-
ties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical con-
centrations, undermine our ability to assess regional photochemical air pollution prob-
lems. We present an observational dataset of CO, NOx, SO2, ozone, HONO, and VOCs10

(anthropogenic and biogenic) from Taehwa Research Forest (TRF) near the Seoul
Metropolitan Area (SMA) in early June 2012. The data show that TRF is influenced
both by aged pollution and fresh BVOC emissions. With the dataset, we diagnose HOx
(OH, HO2, and RO2) distributions calculated with the University of Washington Chemi-
cal Box Model (UWCM v 2.1). Uncertainty from unconstrained HONO sources and rad-15

ical recycling processes highlighted in recent studies is examined using multiple model
simulations with different model constraints. The results suggest that (1) different model
simulation scenarios cause systematic differences in HOx distributions especially OH
levels (up to 2.5 times) and (2) radical destruction (HO2 +HO2 or HO2 +RO2) could be
more efficient than radical recycling (HO2+NO) especially in the afternoon. Implications20

of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOx
sensitivity and oxidation product formation rates. Overall, the VOC limited regime in
ozone photochemistry is predicted but the degree of sensitivity can significantly vary
depending on the model scenarios. The model results also suggest that RO2 levels are
positively correlated with OVOCs production that is not routinely constrained by obser-25

vations. These unconstrained OVOCs can cause higher than expected OH loss rates
(missing OH reactivity) and secondary organic aerosol formation. The series of mod-
eling experiments constrained by observations strongly urge observational constraint
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of the radical pool to enable precise understanding of regional photochemical pollution
problems in the East Asian megacity region.

1 Introduction

NOx (NO+NO2) and VOCs are two important precursors that drive HOx radical cycles
as shown in Fig. 1. Peroxy radical (HO2 and RO2) chemistry becomes the backbone5

of OH recycling. In addition, subsequent interactions with peroxy radicals and NOx
(NO+NO2) produce ozone and oxygenated VOCs (OVOCs) that are precursors for
secondary organic aerosols. In summary, in the presence of NOx, VOC oxidation pro-
cesses recycle OH and produce photochemical oxidation products. This reaction cycle
is highly non-linear. For example, excess NO2 may expedite nitric acid formation (Re-10

action R1), limiting ozone production. In the same context, excess VOCs may expedite
peroxy radical production (Reaction R2), which limits OH regeneration from peroxy
radicals.

OH+NO2 +M → HNO3 +M (R1)

HO2 +RO2 → ROOH (R2)15

The non-linearity in tropospheric photochemistry has been relatively well studied in
the urban regions of developed countries and applied in ozone reduction policy. The
Los Angeles Metropolitan Area has accomplished significant ozone reduction by imple-
menting aggressive emission reductions of both NOx and VOC especially from mobile
sources (Ryerson et al., 2013). The remarkable ozone abatement was possible due20

to the fact that there is no significant pollution transport from other metropolitan ar-
eas and no significant natural emission sources especially volatile organic compounds
from vegetation (BVOCs; biogenic volatile organic compounds). In the late 80s, Trainer
et al. (1987) first demonstrated the importance of isoprene (C5H8) as a peroxy radical
source that can contribute significant ozone production in rural areas. The importance25
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of isoprene in ozone production in urban areas has also been highlighted, e.g. in the
Atlanta Metropolitan Area (Chameides et al., 1988).

Isoprene is a hemiterpenoid species and is the globally dominant VOC emission
from vegetation (Guenther, 2013). Arguably, isoprene is the most frequently studied
BVOC from the perspective of atmospheric oxidation processes and their implications5

for ozone and aerosol formation. However, significant uncertainty hinders assessment
of the roles of isoprene in regional and global photochemistry in three fronts. First,
there is still significant uncertainty in estimating emission rates from each individual
plant species on regional scales (Guenther, 2013). Second, limited isoprene inter-
comparison results (Barket et al., 2001) suggest that there are large systematic biases10

among different analytical techniques. Lastly, recent laboratory, theoretical and field ob-
servations suggest significant uncertainty in tropospheric isoprene oxidation processes
initiated by OH. Until early 2000, it was thought that three first generation isoprene oxi-
dation products (methyl vinyl ketone, methacrolein, and formaldehyde) from OH oxida-
tion were enough to constrain isoprene tropospheric oxidation processes for modeling15

purposes (e.g. Spaulding et al., 2003). This is an interesting evolution of thoughts con-
sidering that Paulson and Seinfeld (1992), one of pioneering works describing isoprene
oxidation, clearly claimed that 22 % of first generation isoprene oxidation products from
the reaction with OH was not identified and likely included multifunctional C5 com-
pounds. Recent advances in analytical techniques (Kim et al., 2013a) have shown20

that indeed significant C5-hydroxy carbonyl (e.g. isoprene hydroperxyenals, HPALD)
and peroxide compounds are produced as first generation isoprene oxidation prod-
ucts (Crounse et al., 2011; Paulot et al., 2009; Wolfe et al., 2012; Zhao and Zhang,
2004) and are a strong function of NO concentrations (Peeters and Muller, 2010). In
general, low to intermediate NO levels (∼100 pptv or lower), the yields of C5-hydroxy25

carbonyl compounds become higher. These new findings in the isoprene oxidation
process are also closely related with recent findings in unexpectedly high OH concen-
trations (Hofzumahaus et al., 2009; Lelieveld et al., 2008) and substantial missing OH
sinks also known as unexpectedly high OH reactivity in high isoprene environments (Di
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Carlo et al., 2004; Edwards et al., 2013; Kim et al., 2011; Lou et al., 2010; Nolscher
et al., 2012).

These new findings have significant implications in regional air quality especially in
photochemical ozone and SOA production. Despite the strong anthropogenic pollutant
emissions in East Asia (China, Japan and South Korea), recent research has shown5

that isoprene accounts for a major OH chemical sink in suburban areas near Beijing
(Ran et al., 2011), the Pearl River Delta region (Lu et al., 2012), and Seoul (Kim et al.,
2013d, b). Consequently, modeling studies also clearly show that isoprene contributes
significantly to ozone formation in Asian megacity regions. Kim et al. (2013d) reported
that simulated ozone levels with isoprene chemistry are up to 30 % higher than ozone10

simulation without isoprene chemistry using the WRF-Chem model, indicating an ur-
gent need to implement improved isoprene chemistry schemes in these models in order
to simulate the unexpected higher levels of OH in isoprene rich environments. This is
especially alarming as Hofzumahaus et al. (2009) reported significantly higher (∼2.6
times at noon) than expected OH levels in the Pearl River Delta region in China. There-15

fore, the current assessments based on the conventional OH photochemistry could
significantly misdiagnose regional air-quality status and mislead policy implementation
to reduce photochemical air pollution in the East Asian region. Furthermore, as the im-
portance of BVOC in regional air-quality issues in ozone and SOA formation has been
also reported in Europe and North America, the potential uncertainty has significant20

implications in urban and suburban air quality in general (Zhang et al., 2008a; Sartelet
et al., 2012).

We present atmospheric observations of NOx, CO, VOCs, ozone, and HONO in the
Taehwa Research Forest (TRF) in the Seoul Metropolitan Area (SMA), South Korea.
We use these data to conduct observationally constrained box model (University of25

Washington Chemical Box Model; UWCM) calculations to estimate OH concentrations
with different sets of observational parameters. We discuss current uncertainty in OH-
isoprene photochemistry with perspectives of constraining photochemical ozone pro-
duction and oxygenated VOCs precursors of secondary organic aerosols.
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2 Methods

The Taehwa Research Forest (TRF) is located ∼35 km from the center of Seoul, South
Korea. The TRF is located at the southeastern edge of the Seoul metropolitan Area
(SMA, population of ∼23 million). TRF has a sampling tower located in the middle
of a coniferous tree plantation with the canopy height of 18 m (Pinus koraiensis) sur-5

rounded by a deciduous forest. Kim et al. (2013d) reported CO, NOx, SO2, ozone, and
VOC observation results along with WRF-Chem assessments of ozone forming poten-
tial of isoprene photochemistry. The report found that isoprene was the most dominant
OH chemical sink during daytime among the observed trace gases and explained up to
30 % of ozone production. The TRF instrumentation has previously been described by10

Kim et al. (2013d). Therefore, just brief descriptions of analytical techniques are given
in this paper.

2.1 CO, NOx, SO2, ozone, VOCs, and meteorological parameters

Thermo Fisher Scientific Enhanced Trace Level Gas Analyzers are used for CO, NOx,
SO2, and ozone observations. VOC observations are conducted by a High-Sensitivity15

Proton Transfer Reaction-Mass Spectrometer (PTR-MS, Ionicon GmbH). The atmo-
spheric application of this technique is thoroughly reviewed by de Gouw and Warneke
(2007). In addition, the instrument suite at TRF is thoroughly described in (Kim et al.,
2013d). PTR-MS can quantify atmospheric VOCs that have higher proton affinity than
the proton affinity of H2O (691 kJ mol−1). Most alkanes have lower proton affinity than20

water but alkene, aromatic and some oxygenated VOCs have higher proton affinity
and are suitable for quantification using PTR-MS (Blake et al., 2009). These com-
pounds are more reactive than alkane compounds so PTR-MS has capability to ob-
serve reactive atmospheric compounds in the atmosphere. The TRF PTR-MS system
was set to measure acetaldehyde, acetone, acetic acid, isoprene, methylvinylketone25

(MVK)+methacrolein (MACR), MEK, benzene, xylene (p, m, and o), and monoter-
penes (MT). Each compound was set to be monitored for 1 s each resulting in a sample
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cycle of 15 s. Meteorological parameters such as temperature and humidity are moni-
tored by LSI LASTEM Meteorological Sensors. All the presented data is from the 15 m
sampling (the canopy height is 18 m) line and meteorological sensors collocated at this
height.

PTR-MS has an intrinsic limitation that isobaric compounds are all collectively quan-5

tified with the same channel (m/z). This limitation particularly becomes an issue for
investigating the roles of different isomers of MT and sesquiterpenes (SQTs) in pho-
tochemistry. For this reason, we also occasionally collect sorbent cartridge samples to
analyze MT and SQT speciation in both ambient air and branch enclosure emissions
near the sampling tower. As described in (Kim et al., 2013d), Tenax GR and Carbotrap10

5TD packed sorbent cartridges (Markes Int, Llanstrisant, UK) were used for sampling.
The sampled cartridges were shipped to National Center for Atmospheric Research
(NCAR), Boulder CO, USA for gas chromatography-mass spectrometer (GC-MS) anal-
ysis. An Agilent 7890 GC/5975 C Electron Impact Mass Spectrometer (GC-MS/FID)
in conjunction with a MARKES Unity1/Ultra thermal desorption system optimized for15

terpenoid analysis quantifies speciated MT and SQT in the sorbent samples. Cartridge
samples are both collected from ambient and branch enclosure air. Ambient samples
were collected in the mid-day to early afternoon with a volume of 6 L. Ozone in the
ambient air was removed using a Na2SO3 filter. Branch enclosure samples were also
collected in the mid-day time frame with a volume of 1 L without an ozone filter as zero20

air was introduced to the branch enclosure.

2.2 HONO quantification

HONO was measured with an ion chromatography (IC) coupled with diffusion scrubber.
Air was introduced to diffusion scrubber (Lab solutions Inc., IL, USA) through a 2 m
PFA tubing (1/4′′ i.d.) at 1.5 L m−1 using a filtered orifice restrictor (F-950, air logic,25

WI, USA). Air flowing through diffusion scrubber interfaced with deionized water, into
which HONO was extracted. 50 µL of solution was injected into the IC system through
a PEEK loop (Rheodyne, WA, USA) and 6-way valve (EV750-100, Rheodyne, WA,
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USA). Eluent was a mixture of Na2CO3 and NaHCO3, which was pumped by a HPLC
pump (DX-100, Dionex, CA, USA) into a guard column (Ionpax® AG 14, 4mm×50 mm,
Dionex, CA, USA) and then analytical column (Ionpax® AS 14, 4mm×250 mm, Dionex,
CA, USA). The column affluent passed through a suppressor (ASRS 300, Dionex, CA,
USA) and HONO was detected as nitrite ion in conductivity detector (550, Alltech,5

IL, USA). The entire measurement processes of sampling, chemical analysis, and data
acquisition were controlled by a digital timer and data acquisition software (DSchrom-n,
DS science, Korea), by which we obtained two measurements every hour. The system
was calibrated using a NO−

2 standard solution (Kanto chemical Co., Inc., Tokyo, Japan)
whenever reagents were replaced. The detection limit was 0.15 ppb estimated from10

3σ of the lowest working standard. Specific analytical characteristics are described in
Simon and Dasgupta (1995) and Takeuchi et al. (2004).

2.3 UWCM box model

UWCM (v.2.1) has the capability to adapt the Master Chemical Mechanism version
3.2 (MCM 3.2) (Jenkins et al., 1997; Saunders et al., 2003) including all the chemical15

species and reactions. A more detailed model description can be found in Wolfe and
Thornton (2011). Recently developed isoprene photo-oxidation mechanisms shown in
Archibald et al. (2010) are also incorporated in the model. In addition, Kim et al. (2013c)
and Wolfe et al. (2013) applied the model in the identical fashion as used for this study
to probe radical distributions using comprehensive observational datasets. This study20

used the UWCM to simulate the diurnal variations of radical pool (OH+HO2 +RO2)
distributions as observational parameters such as CO, NOx, ozone, and VOCs are
constrained. To fully account for roles of OVOCs in the box model as radical sources,
we simulated three consecutive days and presented diurnal variations from the third
day. The specific parameters, constrained by observations are listed above.25
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3 Results

3.1 Observational results

Diurnal averages of observed trace gases (1 June 2012 to 6 June 2012) are shown in
Fig. 2. During this period, the weather was mostly clear and the trace gases were ob-
served in the typical ranges observed during the previous summer (Kim et al., 2013b).5

Regionally, a high pressure system caused a stagnant air pollution event in this pe-
riod. In the center of Seoul, carbon monoxide was observed in the similar levels during
the observed period. On the other hand, the NO2 level observed in central Seoul was
much higher (20–50 ppb) compared with observed levels at TRF. This can be inter-
preted as due to differences between the chemical lifetime of CO (∼ a month) and NO210

(∼ a few hours to a day). The observations also clearly indicate that the TRF is not
directly influenced by fresh SMA pollution plumes although the TRF is very close to the
Seoul metropolitan area (30 km away from the city center). Similar observations were
also reported for other East Asian megacities such as Beijing (Ma et al., 2012), where
∼30 ppb and ∼15 ppb of NO2 were observed at noon in the urban and the rural sites,15

respectively. In contrast, there were no noticeable differences in CO levels between
the urban and rural sites (∼1–2 ppm). The observed CO, NOx and SO2 levels in TRF
were much lower than those observed in the suburban regions of Chinese megacities
such as Beijing (Ma et al., 2012), Shanghai (Tie et al., 2013), and the Pearl River Delta
Region (Lu et al., 2012) and similar with the observed levels in Tokyo, Japan (Yoshino20

et al., 2012).
Previous VOC observations in the SMA consistently have shown that toluene is the

dominant anthropogenic VOC followed by other aromatic compounds such as xylene
and benzene (Kim et al., 2012; Na and Kim, 2001). Na and Kim (2001) reported high
concentrations of propane from house hold fuel use. However, recent observation re-25

sults from the photochemical pollution observational network managed by National
Institute of Environmental Research (NIER) of South Korea in the SMA clearly indicate
that propane levels have declined and are now much lower than the levels previously
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observed (NIER, 2010). This is probably caused by the implementation of a policy
changing household fuel sources from propane to methane. (Kim et al., 2012) pre-
sented detailed aromatic VOC distributions in the SMA from four different urban obser-
vational sites. In average, toluene concentrations were observed ∼7 times higher than
the observed levels of xylene and benzene. At the TRF, a similar anthropogenic VOC5

speciation distribution was observed as shown in Fig. 2. The observed toluene and
MEK (methyl ethyl ketone) mixing-ratios were much higher than benzene and xylene.
MEK is detected in m/z of 73+ by PTR-MS. Although methyl glyoxal, an atmospheric
VOC oxidation product, is also detected on the same mass, we assumed that 73+ of
m/z signals are mostly from MEK, an anthropogenic VOC, since the temporal variation10

follows that of anthropogenic VOC such as toluene and xylene. In addition, atmospheric
lifetime of methyl glyoxal is much shorter than MEK.

As the observation facility is located in the middle of a pine tree plantation (Pinus
koraiensis), monoterpenes (MT) are consistently observed. The temporal variation of
monoterpenes is affected by the planetary boundary layer evolution with a pattern of15

higher MT levels during night than those of mid-day as has been often reported in other
forest environments (Bryan et al., 2012; Kim et al., 2010), which can be explained by
interplays between boundary layer evolution and temperature dependent MT emis-
sion. The observed MT and SQT speciation information is summarized in Table 2.
Table 2a summarizes branch enclosure sample analysis results and ambient sample20

analysis results are summarized in Table 2b. In general, observed MT and SQT in the
ambient air are consistent with previously observed distributions (Kim et al., 2013d).
α-pinene and β-pinene were the dominant monoterpene and longifolene was the only
detected SQT species. In contrast, the branch enclosure observation results, reflecting
BVOC emission, indicate high emission of very reactive MT and SQT species such as25

β-myrcene, α-caryophyllene, and β-caryophyllene. The fast oxidation of these highly
reactive terpenoid species suppresses the atmospheric presence of the compounds.
Therefore, photochemical oxidation processes of these compounds may have been
neglected. Investigating emissions and photochemistry of these reactive terpenoid
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compounds can constrain potential missing OH reactivity and SOA production from
highly oxidized reaction products.

Isoprene is produced from carbon recently fixed through photosynthesis resulting
in higher emissions and atmospheric concentrations during the daytime. The tem-
poral variation shown in Fig. 2 reveals an isoprene concentration maximum between5

17:00 LT to 20:00 LT. In addition, the ratios of MVK+MACR, major isoprene oxidation
products and isoprene at this period, are significantly lower than those of late morning
to early afternoon. This may indicate that two distinctive air masses were observed
during early afternoon and late afternoon time periods. In general, this pattern is con-
sistently observed at TRF and probably governed by local and regional atmospheric10

advection systems as described in Ryu et al. (2013). Another possibility is that the
reduced vertical mixing and lower photochemical losses at this time of day results in
higher isoprene concentrations. The branch enclosure observations demonstrate that
isoprene is not emitted from the pine plantation but rather transported from surrounding
broadleaf forests. Oak comprises 85 % of broadleaf trees in South Korea (Lim et al.,15

2011). Lim et al. (2011) quantified isoprene emission rates for five representative oak
species in South Korea and report a wide emission range from oaks that are negligible
isoprene emitters (<0.004 µg C dw−1 h−1; standard emission rates) to others with very
high isoprene emission rates of 130 µg C dw−1 h−1.

Contributions from each observed trace gas species towards ambient OH reactiv-20

ity are shown in Fig. 3. This is calculated as the product of the observed species
concentration and its rate constant for reaction with OH. Observed OH reactivity from
VOCs are much higher than from other trace gases such as CO, NOx, SO2, and ozone.
Among the observed VOC species, BVOCs such as isoprene, α-pinene and β-pinene
accounted for significantly higher OH reactivity in comparison with the observed AV-25

OCs such as toluene, benzene, xylene and MEK. Isoprene accounts the highest OH
reactivity especially during the daytime. This analysis is consistent with reports from
other suburban observations from East Asian megacities such as Beijing (Ran et al.,
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2011), the PRD region, China (Lou et al., 2010), and the Kinki region Japan (Bao et al.,
2010).

HONO levels up to 1 ppb were observed in the early morning and were consistently
higher than 0.5 ppb during the daytime. These observed levels are substantially higher
than reported observations from forest environments in North America (Ren et al.,5

2011; Zhou et al., 2011), where NOx (∼1 ppb) is substantially lower than the level ob-
served at TRF. Ren et al. (2011) reported 30–60 ppt of HONO at the Blodgett Forest
Research Station in the western foothills of the Sierra Nevada Mountains in the late
summer of 2007. Zhou et al. (2011) also reported the similar levels of HONO (be-
low 100 ppt) from the PROPHET forest, a mixed hardwood forest in northern Michigan10

(Pellston, MI). However, significantly higher HONO levels (∼200 ppt to ∼2 ppb) were
reported by Li et al. (2012) from a rural observational site in the Pearl River Delta re-
gion near Guangzhou, where comparable NO2 levels with TRF were observed. The
high HONO levels (a few hundred ppt) especially during the daytime have been consis-
tently reported near Eastern Asian megacities such as Beijing (Li et al., 2012), Shang-15

hai (Hao et al., 2006), and Seoul (Song et al., 2009). Still these are limited datasets
and further comprehensive analysis, especially more extensive observation is required.
However, two recently proposed HONO production mechanisms may be able to explain
the higher levels in the Eastern Asian megacity region. One is HONO production from
NO2 photo-excitation (Wong et al., 2012) as the region usually has high NO2 concentra-20

tions and the other is HONO emission from soil bacteria (Oswald et al., 2013). Oswald
et al. (2013) found differences as much as two orders of magnitude in HONO emis-
sions from soil samples from different environments (e.g. pH and nutrient contents).
In addition, as most of observations in the East Asia regions were conducted with ion
chromatography based methods, more direct HONO quantification techniques such as25

a chemical ionization mass spectrometry technique (Roberts et al., 2010) need to be
used to characterize any potential interferences such a high NOx environment (e.g.
N2O5).
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3.2 Implications of uncertainties in isoprene-hydroxyl radical interactions in
assessments of regional ozone and organic aerosol precursor production

The presented observational results are used to constrain the UWCM box model and
evaluate uncertainties in the tropospheric oxidation capacity and how it affects our abil-
ity to constrain ozone and secondary aerosol precursor production. The observational5

results clearly indicate that isoprene is the dominant OH sink among the observed
VOCs. In addition, NO concentrations were higher in the 600 to 800 ppt range in the
morning. On the other hand, afternoon levels were substantially lower in the 50 to
100 ppt range. The environment provides a unique opportunity to examine implications
of isoprene photochemistry in various NO conditions.10

We conducted model calculations under seven different scenarios. Each scenario is
described in Table 1. The quantitative assessments of the impacts to radical concen-
trations (OH, HO2, and RO2) from unconstrained HONO sources are evaluated by ex-
amining the model outcomes of the scenarios with and without constraining observed
HONO. To evaluate the impacts of HPALD photolysis and isoprene peroxy radical re-15

cycling in the radical pool, each chemical mechanism is selectively constrained by
different scenarios. For HPALD chemistry, we adapted two different HPALD formation
rate constants published by Peeters et al. (2009) and Crounse et al. (2011). The forma-
tion rates from Peeters et al. (2009) is about 40 times faster than those from Crounse
et al. (2011) in 298 K. We applied 2.6 of the OH yield from isoprene peroxy radical and20

HO2 reactions for the evaluation (Wolfe et al., 2011).
Modeled OH, HO2, and RO2 from the five different model scenarios are shown in

Fig. 4a. A summary of averaged OH, HO2, and RO2 concentrations in the morning
(08:00–11:00 LT) and the afternoon (13:00–16:00 LT) from each simulation is shown
in Table 3. With respect to the base run results (Scenario I), Scenario III does not25

cause noticeable differences in radical concentrations. Adapting higher HPALD forma-
tion rates (Scenario II) cause significant differences in radical distribution especially
in RO2. This observation is likely caused by the fact that significant isoprene peroxy
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radical is converted to HPALD. The higher levels of discrepancy is observe in RO2
between Scenario I and Scenario II in the afternoon when NO concentrations are
observed in low, which efficiently facilitates HPALD formation. Adding HO2 + isoprene
peroxy radical reactions as OH recycling processes (Scenario IV and V) results in sig-
nificant enhancements in OH and HO2 with respect to the base run (Scenario I). RO25

concentrations are calculated in significantly different levels between Scenario IV and
V. This can be again accounted by the applications of different HPALD formation rates in
the two different model scenarios. The higher level of OH from the additional recycling
process causes substantially higher RO2 formation rates than those from the scenarios
without the additional recycling process. The faster HPALD formation in Scenario IV is10

appeared to cause faster loss of RO2 resulting in low RO2 concentrations.
Most striking differences were observed model simulation results with or without con-

straining observed HONO as shown in Fig. 4b and c. Calculation results from both Sce-
nario VI and VII indicate significantly smaller OH, HO2, and RO2 concentrations than
the concentrations calculated from the counter parts Scenario I and VI, which are con-15

strained by observed HONO, respectively. Again, this clearly indicates that more thor-
ough evaluations not only impacts of HONO to air quality but also analytical techniques
should be followed to precisely constrain photochemical processes in the region.

Two competing chemical reactions (Reactions R3 vs. R4–R6) determine radical dis-
tribution regimes.20

RO2 +NO → RO+NO2 (R3)

RO2 +HO2 → ROOH+O2 (R4)

RO2 +RO2 → ROOR+O2 (R5)

HO2 +HO2 → H2O2 +O2 (R6)

When the rate of Reaction (R3) gets much faster than the sum of reaction rates of25

Reactions R4–R6 then radical recycling processes become more efficient than radical
destruction processes. In this radical recycling regime, OH, a universal tropospheric ox-
idant, is well buffered to maintain the elevated OH levels. On the other hand, the radical
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destruction regime can be defined when the radical recycling rates (Reaction R3) are
slower than the radical destruction reaction rates (Reactions R4–R6). The temporal
variations of radical-radical reaction rates from the model simulation scenarios are
shown in Fig. 5. In general, the radical reaction rates are elevated as much as twice
once observed HONO (Scenario VI and VII) is constrained in the model calculations.5

This is because unaccounted HONO in the model calculations cause significant under-
estimations in the radical pool (OH+HO2 +RO2) size with respect to the constrained
HONO scenarios as shown in Fig. 4. In addition, as we include recently developed iso-
prene radical chemistry, the RO2 +HO2 reaction rates, known for a radical destruction
pathway becomes more faster. This is more conspicuous in the afternoon when NO10

concentration becomes lower. The RO2 +HO2 reaction rates get higher than those of
RO2 +NO in the afternoon for the Scenario V and IV. This is surprising, as the radical
destruction regime is usually associated with low NOx conditions. Suburban regions of
megacities including the TRF in general show high NOx conditions. However, radical
recycling rates are determined by concentrations of NO. The fraction of NO in the NOx15

pool is determined by competing reactions between NO2 photolysis and oxidation re-
actions of NO by ozone, HO2, and RO2 radicals. Once we assume the pseudo-steady
state of NO, then NO in NOx pool can be expressed as

[NO] = JNO2
[NO2]/(kNO+O3

[O3]+kNO+HO2
[HO2]+kNO+RO2

[RO2]) (R7)

This mathematical expression clearly shows that NO levels are dependent on NOx20

mostly composed of NO2. At the same time, the fraction of NO in NOx is anti-correlated
with ozone, HO2, and RO2 concentrations. Therefore, the size of the radical pool com-
posed of HO2 and RO2 is relevant for determining the fractions of NO in given NOx
levels. High HO2 and RO2 are likely observed in high VOC regions such as forested
areas. This could cause a smaller fraction of NO in the given NOx pool so radical recy-25

cling gets relatively weaker compared with radical destruction reaction pathways. More
quantitative approaches are required to categorize radical reaction pathways rather
than qualitative categorization such as high or low NOx regimes.
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High and low NOx regimes also have been widely used to define ozone produc-
tion regimes. As NOx catalyzes ozone production and peroxy radicals expedite NOx
turnover, in general, higher NOx and VOCs conditions result in higher ozone produc-
tion. However, non-linearity in photochemistry of ozone production causes a complex-
ity in ozone reduction strategy (Seinfeld, 1989). Conventionally, efficient ozone pro-5

duction can be achieved by the balance between nitric acid production rates (PHNO3
,

OH+NO2) and peroxide production rates (PROOH, HO2 +RO2 or PH2O2
HO2 +HO2)

(Sillman and He, 2002). The imbalance will cause ozone production sensitivity towards
either NOx or VOCs. A comprehensive photochemical model analysis (Tonnesen and
Dennis, 2000a, b) demonstrated that in a wider range of ozone concentrations, the VOC10

and NOx limited regimes can be determined by the ratios of PH2O2
and PHNO3

. The ratio
range (PH2O2

/PHNO3
) of 0.35 is regarded as the border range. In the VOC limited regime

(PH2O2
/PHNO3

< 0.35), ozone production is expected to decrease with increasing NOx

and increase with increasing VOCs. In the NOx limited regime (PH2O2
/PHNO3

> 0.35),
ozone production gets efficient with increasing NOx and is insensitive to changes in15

VOCs (Sillman and He, 2002). This categorization has guided policy-making processes
whether NOx or VOC controls will be more effective in ozone reduction. A series of
modeling studies have been conducted to characterize ozone production regimes in
the suburban regions of East Asian megacities and have consistently concluded that
the role of isoprene is important in ozone production. However, most of these stud-20

ies have concluded that East Asian megacity regions are mostly in the VOC limited
regime (Tseng et al., 2009; Zhang et al., 2008b; Lim et al., 2011; Cheng et al., 2010;
Shao et al., 2009a, b; Xing et al., 2011). Recently, however, a modeling study by Li
et al. (2013) in the Pearl River Delta region in China demonstrated the time depen-
dence of ozone production regimes. Specifically, with high NOx emissions in the morn-25

ing, the regional ozone production regime is categorized as VOC limited. In contrast,
in the afternoon when the highest ozone concentrations are observed, a NOx limited
regime is often found. The obvious issue to be addressed is that all of the above stud-
ies neglected how the uncertainty in hydroxyl radical chemistry would affect the ozone
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production regime evaluation. In addition, HONO has been rarely constrained by ob-
servations in the previous modeling studies. Figure 6 shows the temporal variations of
PH2O2

/PHNO3
from the four different model scenarios. The VOC limited ozone formation

regime was observed regardless of the HOx simulation scenarios. Differences among
different scenario are not noticeable in the morning when NO is high but noticeable dif-5

ferences are observed in the afternoon. In general, the model calculation results with
faster HPALD formation rates indicate higher PH2O2

/PHNO3
in the afternoon. The identi-

cal tendency was found in the model calculation results without constraining observed
HONO (not shown in Fig. 6). This analysis clearly shows that it is difficult to deter-
mine the appropriate policy implementation for NOx or VOC controls to achieve ozone10

abatement in Asian megaticities without accurate understanding of radical isoprene
interactions (e.g. Kim et al., 2013b).

Another unresolved uncertainty in understanding tropospheric OH is its chemical
loss rates. The limited observations of OH reactivity in BVOC dominant environments
show consistent unaccounted OH chemical loss with observational datasets (Di Carlo15

et al., 2004; Edwards et al., 2013; Kim et al., 2011; Lou et al., 2010; Nolscher et al.,
2012). Two different processes are speculated to cause unaccounted OH loss known
as missing OH reactivity: (1) primary emissions of unmeasured or unknown com-
pounds and (2) oxidation products of well-known BVOCs especially isoprene. Most
studies conducted in coniferous forests where monoterpenes are dominant primary20

BVOC emissions have concluded that unmeasured or unknown primary BVOC emis-
sions caused missing OH reactivity (Sinha et al., 2010). On the other hand, studies
conducted in isoprene dominant environments in mostly broadleaf or mixed forests
concluded the main cause of missing OH reactivity as oxidation products of isoprene
(Edwards et al., 2013; Kim et al., 2011). Edwards et al. (2013) presented a thorough25

analysis on potential impacts of isoprene oxidation products that are not routinely
constrained by observations. The authors found significant contributions from sec-
ondary oxidation products such as multi-functional oxygenated compounds. Figure 7a
shows the temporal variations of total OH reactivity calculated from five different model
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scenarios (I through V). The highest and the lowest OH reactivity levels were predicted
from model calculations of Scenario V and Scenario II, respectively. This observation
is directly correlated with calculated RO2 levels as the lowest and highest RO2 levels
were calculated from Scenario II and Scenario V, respectively. Since VOC precursors
and trace gases were all constrained by observations in the model calculations, the5

differences in model calculated OH reactivity should be mainly caused by the oxida-
tion products of VOCs. This can be confirmed by the comparisons of model calculated
formaldehyde concentrations from Scenario II and V as formaldehyde is a dominant ox-
idation product of isoprene. The differences in formaldehyde levels suggest differences
in OH reactivity levels from OVOCs in each model simulation. In summary, uncertainty10

in radical distributions especially RO2 levels is directly propagated into uncertainty in
OVOC formation.

These calculated results provide an upper limit of potential contributions from the
oxidation products of the constrained VOC precursors considering that the box-model
does not consider dry-deposition processes as Karl et al. (2010) and (Edwards et al.,15

2013) suggested that there is significant uncertainty associated with the parameteriza-
tions of dry deposition especially OVOCs. Still, this analysis suggests that significant
missing OH reactivity (∼ up to factor of two to three) can be found without constrain-
ing OVOCs. OVOCs, especially multi-functional highly oxidized compounds are pre-
cursors for secondary organic aerosols (VOCs). Therefore, uncertainty surrounding20

missing OH reactivity significantly undermines our ability to constrain SOA formation
and aerosol growth.

4 Summary

We presented trace gas observation results from the TRF near the SMA. The dataset
provides important constraints to evaluate the HOx pool at the site where both anthro-25

pogenic and biogenic influences become important factors in determining oxidation ca-
pacity. Although the site is in the vicinity of a megacity with 25 million people, isoprene
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accounted for most of the OH loss from observed atmospheric hydrocarbon species
during the observational period in early June 2012. In addition, observed NOx levels
were substantially lower than observed values in the center of the SMA. These obser-
vations indicate that impacts of aged pollution on BVOC photochemistry and aerosol
formation can be observed at the TRF.5

Seven different model calculation scenarios are employed to investigate the radi-
cal (OH, HO2, and RO2) distributions using the UWCM box-model as summarized in
Table 1. The observed trace gas data were constrained and the photochemical mech-
anisms (MCM 3.2) of seven VOC species observed in high levels at the TRF were
integrated. The different scenarios result in a wider range of OH, HO2, and RO2 distri-10

butions. Unconstrained HONO sources are also appeared to cause a quite high level
of underestimation in a radical pool (OH+HO2 +RO2). A larger difference is observed
in OH simulations (up to three times) than simulations for HO2 and RO2 (up to twice).
OH is simulated in much higher levels with the consideration of an additional OH re-
cycling channel from isoprene peroxy radical+HO2 reactions and fast HPALD forma-15

tion chemistry (Peeters et al., 2009). On the other hand, the RO2 simulations indicate
contrary results as HPALD formation depletes the RO2 pool, which mostly composed
by isoprene peroxy radicals. These results suggest that HO2 and RO2 observations
can provide pivotal information about radical recycling (Kim et al., 2013c; Wolfe et al.,
2013). More studies on characterizing existing techniques to quantify HO2 (Fuchs et al.,20

2011) and developing new techniques (Horstjann et al., 2013) are needed. In addition,
the simulations with recently developed isoprene photo-oxidation chemistry show that
radical termination processes (e.g. peroxide formation) get more efficient than radical
recycling processes in the afternoon. This may come as a surprise as in general we
expect the high NOx conditions in the suburban regions of a megacity to have effective25

radical recycling. However, the critical factor determining competing reaction channels
of recycling and peroxide formation is NO concentrations. Ratios of NO to NO2 are
not only correlated with NO2 concentrations and photolysis constants but also anti-
correlated with RO2, HO2 and ozone concentrations and relevant kinetic constants as
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shown in (R6). Therefore, a semi-quantitative term such as the high “NOx” regime is not
a proper term to define radical recycle regimes especially in high radical environments
(e.g. HO2 and RO2) such as forest environments.

These uncertainties surrounding the radical pool size and distribution directly affect
our ability for constraining photochemical ozone and SOA production. The non-linear5

response of ozone production to NOx and VOC abundances are determined by OH,
HO2, RO2 and NO2 concentrations. Regardless of which scenario we adapt, the TRF
photochemical state appears to be a VOC limited ozone production regime. However,
morning and afternoon show a very strong contrast with morning having a stronger
degree of VOC limitation, which is defined by a stronger nitric acid formation in com-10

parison with peroxide formation. In addition, a noticeable range of VOC sensitivity was
calculated from the four different model scenarios especially in the afternoon. These
analysis results, therefore, strongly indicate that uncertainty in radical photochemistry
directly propagates in policy-making processes in effectiveness of NOx or VOC con-
trols in ozone reduction. In addition, OVOC production is predicted to significantly vary15

depending on the model simulation scenarios. As the fate of these OVOCs is uncertain
and can include deposition, photolysis, or condensation, the implications of the uncer-
tainty in OVOC production caused by the uncertainty in radical photochemistry should
be addressed.

Acknowledgements. This research is financially supported by National Institute of Environmen-20

tal Research of South Korea. The authors appreciate logistical supports from the research and
supporting staff at Taehwa Research Forest operated by Seoul National University.

References

Bao, H., Shrestha, K. L., Kondo, A., Kaga, A., and Inoue, Y.: Modeling the influence of biogenic
volatile organic compound emissions on ozone concentration during summer season in the25

Kinki region of Japan, Atmos. Environ., 44, 421–431, doi:10.1016/J.Atmosenv.2009.10.021,
2010.

16711

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/J.Atmosenv.2009.10.021


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Barket, D. J., Hurst, J. M., Couch, T. L., Colorado, A., Shepson, P. B., Riemer, D. D., Hills, A. J.,
Apel, E. C., Hafer, R., Lamb, B. K., Westberg, H. H., Farmer, C. T., Stabenau, E. R., and
Zika, R. G.: Intercomparison of automated methodologies for determination of ambient iso-
prene during the PROPHET 1998 summer campaign, J. Geophys. Res.-Atmos., 106, 24301–
24313, doi:10.1029/2000jd900562, 2001.5

Blake, R. S., Monks, P. S., and Ellis, A. M.: Proton-transfer reaction mass spectrometry, Chem.
Rev., 109, 861–896, 2009.

Bryan, A. M., Bertman, S. B., Carroll, M. A., Dusanter, S., Edwards, G. D., Forkel, R., Griffith, S.,
Guenther, A. B., Hansen, R. F., Helmig, D., Jobson, B. T., Keutsch, F. N., Lefer, B. L., Press-
ley, S. N., Shepson, P. B., Stevens, P. S., and Steiner, A. L.: In-canopy gas-phase chemistry10

during CABINEX 2009: sensitivity of a 1-D canopy model to vertical mixing and isoprene
chemistry, Atmos. Chem. Phys., 12, 8829–8849, doi:10.5194/acp-12-8829-2012, 2012.

Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S.: The role of biogenic hydro-
carbons in urban photochemical smog – Atlanta as a case-study, Science, 241, 1473–1475,
1988.15

Cheng, H. R., Guo, H., Saunders, S. M., Lam, S. H. M., Jiang, F., Wang, X. M., Simpson, I. J.,
Blake, D. R., Louie, P. K. K., and Wang, T. J.: Assessing photochemical ozone formation in the
Pearl River Delta with a photochemical trajectory model, Atmos. Environ., 44, 4199–4208,
doi:10.1016/J.Atmosenv.2010.07.019, 2010.

Crounse, J. D., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Peroxy radical iso-20

merization in the oxidation of isoprene, Phys. Chem. Chem. Phys., 13, 13607–13613,
doi:10.1039/C1cp21330j, 2011.

de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earths
atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom. Rev., 26,
223–257, 2007.25

Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X. R., Thornberry, T.,
Carroll, M. A., Young, V., Shepson, P. B., Riemer, D., Apel, E., and Campbell, C.: Missing OH
reactivity in a forest: evidence for unknown reactive biogenic VOCs, Science, 304, 722–725,
doi:10.1126/Science.1094392, 2004.

Edwards, P. M., Evans, M. J., Furneaux, K. L., Hopkins, J., Ingham, T., Jones, C., Lee, J. D.,30

Lewis, A. C., Moller, S. J., Stone, D., Whalley, L. K., and Heard, D. E.: OH reactivity in a
South East Asian tropical rainforest during the Oxidant and Particle Photochemical Pro-

16712

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2000jd900562
http://dx.doi.org/10.5194/acp-12-8829-2012
http://dx.doi.org/10.1016/J.Atmosenv.2010.07.019
http://dx.doi.org/10.1039/C1cp21330j
http://dx.doi.org/10.1126/Science.1094392


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

cesses (OP3) project, Atmos. Chem. Phys., 13, 9497–9514, doi:10.5194/acp-13-9497-2013,
2013.

Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K. D., Nehr, S., Rohrer, F., and Wah-
ner, A.: Detection of HO2 by laser-induced fluorescence: calibration and interferences from
RO2 radicals, Atmos. Meas. Tech., 4, 1209–1225, doi:10.5194/amt-4-1209-2011, 2011.5

Guenther, A.: Biological and chemical diversity of biogenic volatile organic emissions into the
atmosphere, Atmospheric Sciences, 2013, 786290, doi:10.1155/2013/786290, 2013.

Hao, N., Zhou, B., Chen, D., and Chen, L. M.: Observations of nitrous acid and its relative
humidity dependence in Shanghai, J. Environ. Sci.-China, 18, 910–915, doi:10.1016/S1001-
0742(06)60013-2, 2006.10

Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Hol-
land, F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M., Zeng, L. M., Wahner, A., and
Zhang, Y. H.: Amplified trace gas removal in the troposphere, Science, 324, 1702–1704,
doi:10.1126/science.1164566, 2009.

Horstjann, M., Andrés Hernández, M. D., Nenakhov, V., Chrobry, A., and Burrows, J. P.: Peroxy15

radical detection for airborne atmospheric measurements using absorption spectroscopy of
NO2, Atmos. Meas. Tech., 7, 1245–1257, doi:10.5194/amt-7-1245-2014, 2014.

Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C., Turnipseed, A., and
Jardine, K.: Efficient atmospheric cleansing of oxidized organic trace gases by vegetation,
Science, 330, 816–819, doi:10.1126/Science.1192534, 2010.20

Kim, K. H., Ho, D. X., Park, C. G., Ma, C. J., Pandey, S. K., Lee, S. C., Jeong, H. J., and
Lee, S. H.: Volatile organic compounds in ambient air at four residential locations in Seoul,
Korea, Environ. Eng. Sci., 29, 875–889, doi:10.1089/Ees.2011.0280, 2012.

Kim, S., Karl, T., Guenther, A., Tyndall, G., Orlando, J., Harley, P., Rasmussen, R., and Apel, E.:
Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC) in a25

ponderosa pine ecosystem: interpretation of PTR-MS mass spectra, Atmos. Chem. Phys.,
10, 1759–1771, doi:10.5194/acp-10-1759-2010, 2010.

Kim, S., Guenther, A., Karl, T., and Greenberg, J.: Contributions of primary and sec-
ondary biogenic VOC tototal OH reactivity during the CABINEX (Community Atmosphere-
Biosphere INteractions Experiments)-09 field campaign, Atmos. Chem. Phys., 11, 8613–30

8623, doi:10.5194/acp-11-8613-2011, 2011.

16713

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-13-9497-2013
http://dx.doi.org/10.5194/amt-4-1209-2011
http://dx.doi.org/10.1155/2013/786290
http://dx.doi.org/10.1016/S1001-0742(06)60013-2
http://dx.doi.org/10.1016/S1001-0742(06)60013-2
http://dx.doi.org/10.1016/S1001-0742(06)60013-2
http://dx.doi.org/10.1126/science.1164566
http://dx.doi.org/10.5194/amt-7-1245-2014
http://dx.doi.org/10.1126/Science.1192534
http://dx.doi.org/10.1089/Ees.2011.0280
http://dx.doi.org/10.5194/acp-10-1759-2010
http://dx.doi.org/10.5194/acp-11-8613-2011


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Kim, S., Guenther, A., and Apel, E.: Quantitative and qualitative sensing techniques for biogenic
volatile organic compounds and their oxidation products, Environ. Sci.-Proc. Imp., 15, 1301–
1314, doi:10.1039/C3em00040k, 2013a.

Kim, S., Lee, M., Kim, S., Choi, S., Seok, S., and Kim, S.: Photochemical characteristics of high
and low ozone episodes observed in the Taehwa Forest observatory (TFO) in June 20115

near Seoul, South Korea, Asia-Pacific J. Atmos. Sci., 49, 325–331, doi:10.1007/S13143-
013-0031-0, 2013b.

Kim, S., Wolfe, G. M., Mauldin, L., Cantrell, C., Guenther, A., Karl, T., Turnipseed, A.,
Greenberg, J., Hall, S. R., Ullmann, K., Apel, E., Hornbrook, R., Kajii, Y., Nakashima, Y.,
Keutsch, F. N., DiGangi, J. P., Henry, S. B., Kaser, L., Schnitzhofer, R., Graus, M., Hansel, A.,10

Zheng, W., and Flocke, F. F.: Evaluation of HOx sources and cycling using measurement-
constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT)
dominated ecosystem, Atmos. Chem. Phys., 13, 2031–2044, doi:10.5194/acp-13-2031-
2013, 2013c.

Kim, S. Y., Jiang, X. Y., Lee, M., Turnipseed, A., Guenther, A., Kim, J. C., Lee, S. J.,15

and Kim, S.: Impact of biogenic volatile organic compounds on ozone production at
the Taehwa Research Forest near Seoul, South Korea, Atmos. Environ., 70, 447–453,
doi:10.1016/J.Atmosenv.2012.11.005, 2013d.

Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H.,
Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation ca-20

pacity sustained by a tropical forest, Nature, 452, 737–740, 2008.
Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S.,

Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A.,
Wiedensohler, A., Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chem-
istry of nitrous acid (HONO) at a rural site in Southern China, Atmos. Chem. Phys., 12,25

1497–1513, doi:10.5194/acp-12-1497-2012, 2012.
Li, Y., Lau, A. K. H., Fung, J. C. H., Zheng, J. Y., and Liu, S. C.: Importance of NOx control

for peak ozone reduction in the Pearl River Delta region, J. Geophys. Res.-Atmos., 118,
9428–9443, doi:10.1002/Jgrd.50659, 2013.

Lim, Y. J., Armendariz, A., Son, Y. S., and Kim, J. C.: Seasonal variations of isoprene30

emissions from five oak tree species in East Asia, Atmos. Environ., 45, 2202–2210,
doi:10.1016/J.Atmosenv.2011.01.066, 2011.

16714

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C3em00040k
http://dx.doi.org/10.1007/S13143-013-0031-0
http://dx.doi.org/10.1007/S13143-013-0031-0
http://dx.doi.org/10.1007/S13143-013-0031-0
http://dx.doi.org/10.5194/acp-13-2031-2013
http://dx.doi.org/10.5194/acp-13-2031-2013
http://dx.doi.org/10.5194/acp-13-2031-2013
http://dx.doi.org/10.1016/J.Atmosenv.2012.11.005
http://dx.doi.org/10.5194/acp-12-1497-2012
http://dx.doi.org/10.1002/Jgrd.50659
http://dx.doi.org/10.1016/J.Atmosenv.2011.01.066


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.C., Fuchs, H.,
Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W.,
and Hofzumahaus, A.: Atmospheric OH reactivities in the Pearl River Delta – China in
summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243–11260,
doi:10.5194/acp-10-11243-2010, 2010.5

Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R.,
Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A.,
Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO2 concentra-
tions in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos.
Chem. Phys., 12, 1541–1569, doi:10.5194/acp-12-1541-2012, 2012.10

Ma, J. Z., Wang, W., Chen, Y., Liu, H. J., Yan, P., Ding, G. A., Wang, M. L., Sun, J., and
Lelieveld, J.: The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmo-
sphere over Huabei, China, Atmos. Chem. Phys., 12, 3883–3908, doi:10.5194/acp-12-3883-
2012, 2012.

Na, K. and Kim, Y. P.: Seasonal characteristics of ambient volatile organic compounds in Seoul,15

Korea, Atmos. Environ., 35, 2603–2614, doi:10.1016/S1352-2310(00)00464-7, 2001.
NIER: Annual Report for Atmospheric Environment, National Insititute of Environmetal Re-

sarch, The Ministry of Environment, Seoul, South Korea, 2010.
Nölscher, A. C., Williams, J., Sinha, V., Custer, T., Song, W., Johnson, A. M., Axinte, R.,

Bozem, H., Fischer, H., Pouvesle, N., Phillips, G., Crowley, J. N., Rantala, P., Rinne, J., Kul-20

mala, M., Gonzales, D., Valverde-Canossa, J., Vogel, A., Hoffmann, T., Ouwersloot, H. G.,
Vilà-Guerau de Arellano, J., and Lelieveld, J.: Summertime total OH reactivity measurements
from boreal forest during HUMPPA-COPEC 2010, Atmos. Chem. Phys., 12, 8257–8270,
doi:10.5194/acp-12-8257-2012, 2012.

Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A.,25

Mougin, E., Delon, C., Loubet, B., Pommerening-Roser, A., Sorgel, M., Poschl, U., Hoff-
mann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.: HONO emissions from soil
bacteria as a major source of atmospheric reactive nitrogen, Science, 341, 1233–1235,
doi:10.1126/Science.1242266, 2013.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.:30

Isoprene photooxidation: new insights into the production of acids and organic nitrates, At-
mos. Chem. Phys., 9, 1479–1501, doi:10.5194/acp-9-1479-2009, 2009.

16715

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-10-11243-2010
http://dx.doi.org/10.5194/acp-12-1541-2012
http://dx.doi.org/10.5194/acp-12-3883-2012
http://dx.doi.org/10.5194/acp-12-3883-2012
http://dx.doi.org/10.5194/acp-12-3883-2012
http://dx.doi.org/10.1016/S1352-2310(00)00464-7
http://dx.doi.org/10.5194/acp-12-8257-2012
http://dx.doi.org/10.1126/Science.1242266
http://dx.doi.org/10.5194/acp-9-1479-2009


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Paulson, S. E. and Seinfeld, J. H.: Development and evaluation of a photooxidation mechanism
for isoprene, J. Geophys. Res., 97, 20703–20715, 1992.

Peeters, J. and Muller, J. F.: HOx radical regeneration in isoprene oxidation via peroxy radical
isomerisations. II: experimental evidence and global impact, Phys. Chem. Chem. Phys., 12,
14227–14235, doi:10.1039/C0cp00811g, 2010.5

Ran, L., Zhao, C. S., Xu, W. Y., Lu, X. Q., Han, M., Lin, W. L., Yan, P., Xu, X. B., Deng, Z. Z.,
Ma, N., Liu, P. F., Yu, J., Liang, W. D., and Chen, L. L.: VOC reactivity and its effect on
ozone production during the HaChi summer campaign, Atmos. Chem. Phys., 11, 4657–4667,
doi:10.5194/acp-11-4657-2011, 2011.

Ren, X., Sanders, J. E., Rajendran, A., Weber, R. J., Goldstein, A. H., Pusede, S. E.,10

Browne, E. C., Min, K.-E., and Cohen, R. C.: A relaxed eddy accumulation system for mea-
suring vertical fluxes of nitrous acid, Atmos. Meas. Tech., 4, 2093–2103, doi:10.5194/amt-4-
2093-2011, 2011.

Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A., Cairns, B., Co-
hen, R. C., Cooper, O. R., de Gouw, J. A., Fehsenfeld, F. C., Ferrare, R. A., Fischer, M. L.,15

Flagan, R. C., Goldstein, A. H., Hair, J. W., Hardesty, R. M., Hostetler, C. A., Jimenez, J. L.,
Langford, A. O., McCauley, E., McKeen, S. A., Molina, L. T., Nenes, A., Oltmans, S. J., Par-
rish, D. D., Pederson, J. R., Pierce, R. B., Prather, K., Quinn, P. K., Seinfeld, J. H., Senff, C. J.,
Sorooshian, A., Stutz, J., Surratt, J. D., Trainer, M., Volkamer, R., Williams, E. J., and
Wofsy, S. C.: The 2010 California Research at the Nexus of Air Quality and Climate Change20

(CalNex) field study, J. Geophys. Res.-Atmos., 118, 5830–5866, doi:10.1002/Jgrd.50331,
2013.

Sartelet, K. N., Couvidat, F., Seigneur, C., and Roustan, Y.: Impact of biogenic emis-
sions on air quality over Europe and North America, Atmos. Environ., 53, 131–141,
doi:10.1016/J.Atmosenv.2011.10.046, 2012.25

Seinfeld, J. H.: Urban air-pollution – state of the science, Science, 243, 745–752,
doi:10.1126/Science.243.4892.745, 1989.

Shao, M., Lu, S. H., Liu, Y., Xie, X., Chang, C. C., Huang, S., and Chen, Z. M.: Volatile organic
compounds measured in summer in Beijing and their role in ground-level ozone formation,
J. Geophys. Res.-Atmos., 114, D00g06, doi:10.1029/2008jd010863, 2009a.30

Shao, M., Zhang, Y. H., Zeng, L. M., Tang, X. Y., Zhang, J., Zhong, L. J., and Wang, B. G.:
Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production,
J. Environ. Manage., 90, 512–518, doi:10.1016/j.jenvman.2007.12.008, 2009b.

16716

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C0cp00811g
http://dx.doi.org/10.5194/acp-11-4657-2011
http://dx.doi.org/10.5194/amt-4-2093-2011
http://dx.doi.org/10.5194/amt-4-2093-2011
http://dx.doi.org/10.5194/amt-4-2093-2011
http://dx.doi.org/10.1002/Jgrd.50331
http://dx.doi.org/10.1016/J.Atmosenv.2011.10.046
http://dx.doi.org/10.1126/Science.243.4892.745
http://dx.doi.org/10.1029/2008jd010863
http://dx.doi.org/10.1016/j.jenvman.2007.12.008


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Sillman, S. and He, D.: Some theoretical results concerning O3-NOx-VOC chemistry and NOx-
VOC indicators, J. Geophys. Res., 107, 4659, doi:10.1029/2001JD001123, 2002.

Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T. M., Kajos, M. K., Patokoski, J., Hellen, H.,
Hakola, H., Mogensen, D., Boy, M., Rinne, J., and Kulmala, M.: OH reactivity measurements
within a boreal forest: evidence for unknown reactive emissions, Environ. Sci. Technol., 44,5

6614–6620, doi:10.1021/Es101780b, 2010.
Song, C. H., Park, M. E., Lee, E. J., Lee, J. H., Lee, B. K., Lee, D. S., Kim, J., Han, J. S.,

Moon, K. J., and Kondo, Y.: Possible particulate nitrite formation and its atmospheric im-
plications inferred from the observations in Seoul, Korea, Atmos. Environ., 43, 2168–2173,
doi:10.1016/J.Atmosenv.2009.01.018, 2009.10

Tie, X., Geng, F., Guenther, A., Cao, J., Greenberg, J., Zhang, R., Apel, E., Li, G., Wein-
heimer, A., Chen, J., and Cai, C.: Megacity impacts on regional ozone formation: obser-
vations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign, Atmos. Chem.
Phys., 13, 5655–5669, doi:10.5194/acp-13-5655-2013, 2013.

Tonnesen, G. S. and Dennis, R. L.: Analysis of radical propagation efficiency to assess ozone15

sensitivity to hydrocarbons and NOx 1. Local indicators of instantaneous odd oxygen pro-
duction sensitivity, J. Geophys. Res.-Atmos., 105, 9213–9225, doi:10.1029/1999jd900371,
2000a.

Tonnesen, G. S. and Dennis, R. L.: Analysis of radical propagation efficiency to assess ozone
sensitivity to hydrocarbons and NOx 2. Long-lived species as indicators of ozone concen-20

tration sensitivity, J. Geophys. Res.-Atmos., 105, 9227–9241, doi:10.1029/1999jd900372,
2000b.

Trainer, M., Williams, E., Parrish, D. D., Buhr, M. P., Allwine, E. J., Westberg, H., Fehsen-
feld, F. C., and Liu, S. C.: Models and observations of the impact of natural hydrocarbons
on rural ozone, Nature, 329, 705–707, 1987.25

Tseng, K. H., Wang, J. L., Cheng, M. T., and Tsuang, B. J.: Assessing the relationship between
air mass age and summer ozone episodes based on photochemical indices, Aerosol Air
Qual. Res., 9, 149–171, 2009.

VandenBoer, T., Murphy, J. G., Roberts, J. M., Middlebrook, A. M., Brock, C., Lerner, B. M.,
Wolfe, D. E., Williams, E., Brown, S. S., Warneke, C., De Gouw, J., Wagner, N. L.,30

Young, C. C., Dube, W. P., Bahreini, R., Riedel, T., Thornton, J. A., Ozturk, F., Keene, W.,
Maben, J. R., Pszenny, A., Kim, S., Grossberg, N., and Lefer, B.: Understanding the role

16717

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2001JD001123
http://dx.doi.org/10.1021/Es101780b
http://dx.doi.org/10.1016/J.Atmosenv.2009.01.018
http://dx.doi.org/10.5194/acp-13-5655-2013
http://dx.doi.org/10.1029/1999jd900371
http://dx.doi.org/10.1029/1999jd900372


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of the ground surface in HONO vertical structure: high resolution vertical profiles during
NACHTT-11, J. Geophys. Res.-Atmos., 118, 10,155–10,171, doi:10.1002/jgrd.50721, 2013.

Wolfe, G. M. and Thornton, J. A.: The Chemistry of Atmosphere-Forest Exchange (CAFE)
Model – Part 1: Model description and characterization, Atmos. Chem. Phys., 11, 77–101,
doi:10.5194/acp-11-77-2011, 2011.5

Wolfe, G. M., Crounse, J. D., Parrish, J. D., St Clair, J. M., Beaver, M. R., Paulot, F., Yoon, T. P.,
Wennberg, P. O., and Keutsch, F. N.: Photolysis, OH reactivity and ozone reactivity of a proxy
for isoprene-derived hydroperoxyenals (HPALDs), Phys. Chem. Chem. Phys., 14, 7276–
7286, 2012.

Wolfe, G. M., Cantrell, C., Kim, S., Mauldin III, R. L., Karl, T., Harley, P., Turnipseed, A.,10

Zheng, W., Flocke, F., Apel, E. C., Hornbrook, R. S., Hall, S. R., Ullmann, K., Henry, S. B.,
DiGangi, J. P., Boyle, E. S., Kaser, L., Schnitzhofer, R., Hansel, A., Graus, M., Nakashima, Y.,
Kajii, Y., Guenther, A., and Keutsch, F. N.: Missing peroxy radical sources within a summer-
time ponderosa pine forest, Atmos. Chem. Phys., 14, 4715–4732, doi:10.5194/acp-14-4715-
2014, 2014.15

Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren, X., Luke, W.,
and Stutz, J.: Daytime HONO vertical gradients during SHARP 2009 in Houston, TX, Atmos.
Chem. Phys., 12, 635–652, doi:10.5194/acp-12-635-2012, 2012.

Xing, J., Wang, S. X., Jang, C., Zhu, Y., and Hao, J. M.: Nonlinear response of ozone to pre-
cursor emission changes in China: a modeling study using response surface methodology,20

Atmos. Chem. Phys., 11, 5027–5044, doi:10.5194/acp-11-5027-2011, 2011.
Yoshino, A., Nakashima, Y., Miyazaki, K., Kato, S., Suthawaree, J., Shimo, N., Matsunaga, S.,

Chatani, S., Apel, E., Greenberg, J., Guenther, A., Ueno, H., Sasaki, H., Hoshi, J., Yokota, H.,
Ishii, K., and Kajii, Y.: Air quality diagnosis from comprehensive observations of total OH
reactivity and reactive trace species in urban central Tokyo, Atmos. Environ., 49, 51–59,25

doi:10.1016/J.Atmosenv.2011.12.029, 2012.
Zhang, Y., Hu, X. M., Leung, L. R., and Gustafson, W. I.: Impacts of regional climate

change on biogenic emissions and air quality, J. Geophys. Res.-Atmos., 113, D18310,
doi:10.1029/2008jd009965, 2008a.

Zhang, Y. H., Su, H., Zhong, L. J., Cheng, Y. F., Zeng, L. M., Wang, X. S., Xi-30

ang, Y. R., Wang, J. L., Gao, D. F., Shao, M., Fan, S. J., and Liu, S. C.: Re-
gional ozone pollution and observation-based approach for analyzing ozone-precursor

16718

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1002/jgrd.50721
http://dx.doi.org/10.5194/acp-11-77-2011
http://dx.doi.org/10.5194/acp-14-4715-2014
http://dx.doi.org/10.5194/acp-14-4715-2014
http://dx.doi.org/10.5194/acp-14-4715-2014
http://dx.doi.org/10.5194/acp-12-635-2012
http://dx.doi.org/10.5194/acp-11-5027-2011
http://dx.doi.org/10.1016/J.Atmosenv.2011.12.029
http://dx.doi.org/10.1029/2008jd009965


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

relationship during the PRIDE-PRD2004 campaign, Atmos. Environ., 42, 6203–6218,
doi:10.1016/J.Atmosenv.2008.05.002, 2008b.

Zhao, J. and Zhang, R. Y.: Proton transfer reaction rate constants between hydronium ion
(H3O+) and volatile organic compounds, Atmos. Environ., 38, 2177–2185, 2004.

Zhou, X. L., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shep-5

son, P. B., Carroll, M. A., Griffith, S., Dusanter, S., and Stevens, P. S.: Nitric acid photolysis
on forest canopy surface as a source for tropospheric nitrous acid, Nat. Geosci., 4, 440–443,
doi:10.1038/Ngeo1164, 2011.

16719

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16691/2014/acpd-14-16691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/J.Atmosenv.2008.05.002
http://dx.doi.org/10.1038/Ngeo1164


ACPD
14, 16691–16729, 2014

Urban-rural
interactions in

a South Korean forest

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. A summary of critical differences in input parameters for four different model simulation
scenarios presented in this study.

HPALD Chemistry α∗ Observational Constraints

Scenario I No 0 All
Scenario II Peeters et al. (2009) 0 All
Scenario III Crounse et al. (2011) 0 All
Scenario IV Peeters et al. (2009) 2.6 All
Scenario V Crounse et al. (2011) 2.6 All
Scenario VI No 0 All but HONO
Scenario VII Peeters et al. (2009) 2.6 All but HONO

∗ α is an OH yield from reactions between an isoprene peroxy radical and HO2.
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Table 2. Terpenoid speciation analysis results from GC-MS (a) branch enclosure and (b) ambi-
ent air samples.

(a)
Terpenoids ∗Composition (%) Speciation ∗Composition (%)

Isoprene 0.5

Monoterpenes 92.9 α-pinene 36.7
camphene 13.1
β-pinene 12.0
β-myrcene 27.7
α-terpinolene 1.9
d-limonene 8.6

Sesquiterpenes 6.6 β-caryophyllene 53.2
α-caryophyllene 46.8

(b)

Monoterpenes 98.6 α-pinene 38.8
β-piene 36.5
camphene 13.5
d-limonene 11

Sesquiterpenes 1.4 longifolene 100

∗ Composition is calculated based on the mixing ratio scale.
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Table 3. A summary for radical distributions from the observationally constrained box-model
simulation results.

OH HO2 RO2 Constraints

Local Time 8:00–12:00 13:00–16:00 8:00–12:00 13:00–16:00 8:00–12:00 13:00–16:00
Scenario I 3.85×106 3.08×106 4.10×108 7.02×108 3.65×108 1.14×109 All
Scenario II 3.99×106 3.69×106 3.99×108 7.86×108 3.51×108 9.62×108 All
Scenario III 3.86×106 3.13×106 4.09×108 7.09×108 3.64×108 1.12×109 All
Scenario IV 4.27×106 4.49×106 4.29×108 8.70×108 3.66×108 1.06×109 All
Scenario V 4.21×106 4.52×106 4.55×108 8.55×108 3.86×108 1.28×109 All
Scenario VI 1.61×106 1.61×106 1.95×108 4.82×108 1.75×108 7.25×108 All but HONO
Scenario VII 1.82×106 2.55×106 2.09×108 6.07×108 1.80×108 7.00×108 All but HONO

unit: molecules cm−3
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Figure 1 

 
 
 
 
  

Figure 1. A summary of HOx-NOx-VOC photochemical reaction mechanisms in the tropo-
sphere.
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Figure 2 
 
 

 
 
  

Figure 2. Averaged temporal variations observed trace gases at TRF (1 to 6 June 2012).
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Figure 3 
 
 

 
 
 
  

Figure 3. The temporal variations of OH reactivity calculated from the observed dataset at TRF
(Fig. 2).
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Figure 4 
 

 
 
  Figure 4. The temporal variations of OH, HO2, and RO2 calculated by seven different observa-

tionally constrained UWCM box model scenarios.
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Figure 5. The temporal variations of radical recycling (red) and destruction (blue, black and
green) rates calculated using the UWCM box model for different model scenarios.
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Figure 6 
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Figure 6. The temporal variations of PH2O2
/PHNO3

calculated from the UWCM box model from
five different model scenarios.
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Figure 7 
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Figure 7. The temporal distributions of UWCM calculated OH reactivity (top panel) and
formaldehyde (bottom panel).
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