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Abstract

At Uccle, a long time series (1991–2013) of simultaneous measurements of erythemal
ultraviolet (UV) dose, global solar radiation, total ozone column (TOC) and Aerosol Op-
tical Depth (AOD) (at 320.1 nm) is available which allows for an extensive study of the
changes in the variables over time. A change-point analysis, which determines whether5

there is a significant change in the mean of the time series, is applied to the monthly
anomalies time series of the variables. Only for erythemal UV dose and TOC, a sig-
nificant change point (without any known instrumental cause) was present in the time
series around February 1998 and March 1998 respectively. The change point in TOC
corresponds with results found in literature, where the change in ozone levels (around10

1997) is attributed to the recovery of ozone. Linear trends were determined for the dif-
ferent (monthly anomalies) time series. Erythemal UV dose, global solar radiation and
TOC all increase with respectively 7, 4 and 3 % per decade. AOD shows an (insignif-
icant) negative trend of −8 % per decade. These trends agree with results found in
literature for sites with comparable latitudes. A multiple linear regression (MLR) analy-15

sis is applied to the data in order to study the influence of global solar radiation, TOC
and AOD on the erythemal UV dose. Together these parameters are able to explain
94 % of the variation in erythemal UV dose. Most of the variation (56 %) in erythemal
UV dose is explained by global solar radiation. The regression model performs well
with a slight tendency to underestimate the measured erythemal UV doses and with20

a Mean Absolute Bias Error (MABE) of 18 %. However, in winter, negative erythemal
UV dose values are modeled. Applying the MLR to the individual seasons solves this
issue. The seasonal models have an adjusted R2 value higher than 0.8 and the corre-
lation between modeled and measured erythemal UV dose values is higher than 0.9 for
each season. The summer model gives the best performance, with an absolute mean25

error of only 6 %. Again, global solar radiation is the factor that contributes the most to
the variation in erythemal UV dose, so there is no doubt about the necessity to include
this factor in the regression models. A large part of the influence of AOD is already
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represented by the global solar radiation parameter. Therefore the individual contribu-
tion of AOD to erythemal UV dose is so low. For this reason, it seems unnecessary to
include AOD in the MLR analysis. Including TOC however, is justified as the adjusted
R2 increases and the MABE of the model decreases compared to a model where only
global solar radiation is used as explanatory variable.5

1 Introduction

The discovery of the Antarctic Ozone hole in the mid-1980s triggered an increased sci-
entific interest in the state of stratospheric ozone levels on a global scale (Garane et al.,
2006). The ozone depletion not only occurred above the Antarctic, but there is strong
evidence that stratospheric ozone also diminished above mid-latitudes (Bartlett and10

Webb, 2000; Kaurola et al., 2000; Smedley et al., 2012). While ozone depletion con-
tinued in the 2000s over the polar regions, it has leveled off at mid-latitudes, although
ozone amounts still remain lower compared to the amounts in the 1970s (Garane et al.,
2006). Stratospheric ozone is expected to recover in response to the ban on ozone de-
pleting substances agreed by the Montréal Protocol in 1987 (WMO, 2006; Fitzka et al.,15

2012). However, it is difficult to predict future changes in ozone as the predictions suffer
from uncertainties caused by the general climate change, numerical errors of simula-
tion models and by human behaviour which is not well controllable in several parts of
the world. The decline in stratospheric ozone has shifted the focus of the scientific com-
munity and the general public towards the variability of surface UV irradiance (Krzýscin20

et al., 2011). If all other factors influencing UV irradiance remain stable, reductions in
stratospheric ozone would lead to an increase in UV irradiance at the ground, particu-
larly at wavelengths below 320 nm (Garane et al., 2006). Increases of UV irradiance in
response to the ozone decline have already been reported for different sites during the
1990s (Garane et al., 2006 and references therein).25

The possible increase in UV irradiance raises concern because of its adverse health
and environmental effects. Overexposure can lead to the development of skin cancers,
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cataract, skin aging and the suppression of the immune system (Rieder et al., 2008;
Cordero et al., 2009). UV irradiance also has adverse effects on terrestrial plants (Tevini
and Teramura, 1989; Cordero et al., 2009) and on other elements of the biosphere
(Diffey, 1991). On the other hand, UV radiaton does enable the production of vitamin
D in the skin, which is positively linked to health effects as it supports bone health5

and may decrease the risk of several internal cancers (Bernhard, 2011). It is important
to assess the changes in UV irradiance over prolonged periods of time. Not only do
adverse health and environmental effects often relate to long term exposure (from years
to a lifetime), also the time scales of the atmospheric processes that are involved (e.g.
ozone depletion and recovery) are beyond decades (Chubarova, 2008; den Outer et al.,10

2010).
In principle, long term trends in UV irradiance can either be inferred from direct mea-

surements (from ground or space) or reconstructed based on proxy data such as to-
tal ozone and sunshine duration (Bernhard, 2011). Different sorts of reconstruction
models have been used in several studies. They all use various kinds of statistical15

or model approaches and different meteorological or irradiance datasets (Chubarova,
2008; Rieder et al., 2010; den Outer et al., 2010; Bais et al., 2011). Techniques are
either based on modeling of clear sky UV irradiance or on empirical relationships be-
tween surface UV irradiance and the factors influencing the penetration of UV irradi-
ance through the atmosphere (Kaurola et al., 2000; Trepte and Winkler, 2004). In ad-20

dition to the reconstruction studies, changes in surface UV irradiance have also been
studied using ground based measurements at different locations (e.g. den Outer et al.,
2000; Sasaki et al., 2002; Bernhard et al., 2006; Fitzka et al., 2012; Zerefos et al., 2012)
or even in combination with satellite retrievals (Herman et al., 1996; Matthijsen et al.,
2000; Kalliskota et al., 2000; Ziemke et al., 2000; Zerefos et al., 2001; Fioletov et al.,25

2004; Williams et al., 2004). Some studies combine both models and observations to
investigate possible UV irradiance changes (e.g. Kaurola et al., 2000).

Not only stratospheric ozone influences the intensity of UV irradiance reaching the
surface of the Earth. Long term changes in solar elevation, tropospheric ozone, clouds,
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Rayleigh scattering on air molecules, surface albedo, aerosols, absorption by trace
gases and changes in the distance between the Sun and the Earth can lead to trends
in UV irradiance (Bernhard, 2011). Some studies show that increased amounts of
aerosols and trace gases from industrial emissions, which absorb UV irradiance in the
troposphere, could even compensate for the UV effects caused by the stratospheric5

ozone decline (Krzýscin et al., 2011; Fitzka et al., 2012). Clouds induce more variabil-
ity in surface UV irradiance than any other geophysical factor, but their effects depend
very much on local conditions (Krzýscin et al., 2011). Surface albedo is determined
mostly by snow amount and snow depth (Rieder et al., 2010) and plays a significant
role at high altitude and high latitude sites, where UV irradiance can be strongly en-10

hanced due to multiple occurrences of scattering and reflection between snow covered
ground and the atmosphere (Fitzka et al., 2012). Several studies have been conducted
to quantify the effects of the above mentioned variables on the amount of UV irradi-
ance reaching the ground and many of them have done so by constructing empirical
models with UV irradiance (or a related quantity) as a dependent variable (Díaz et al.,15

2000; Fioletov et al., 2001; de la Casinière et al., 2002; Foyo-Moreno et al., 2007; An-
tón et al., 2009; De Backer, 2009; Huang et al., 2011; Krishna Prasad et al., 2011; El
Shazly et al., 2012).

At Uccle, simultaneous measurements of erythemal UV dose, global solar radiation,
total ozone column and AOD at 320.1 nm are available for a long time period of 23 years20

(1991–2013). The time series is long enough to allow for reliable determination of sig-
nificant changes (a minimum of 15 years is required as shown in Weatherhead et al.,
1998 and Glandorf et al., 2005). The availability of the simultaneous time series allows
an extensive analysis in which three analysis techniques (change-point analysis, linear
trend analysis and multiple linear regression analysis) will be combined in order to in-25

crease our insights in the relations between the variables. The monthly anomalies time
series will be the subject of change-point analysis where the homogeneity of the time
series will be investigated. Next, a linear trend analysis will be applied to the monthly
anomalies of the time series (both on a daily and seasonal time scale) and the results
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will be compared with results found in literature. Monthly anomalies are used to reduce
the influence of the seasonal cycle on the analysis and are calculated by subtracting
the long term monthly mean from the individual monthly means. Finally, the multiple
linear regression technique (with daily erythemal UV doses as dependent variable and
daily values of global solar radiation, total ozone column and AOD at 320.1 nm as ex-5

planatory variables) will allow us to study the influence of the explanatory variables on
the dependent variable on a daily and seasonal basis.

2 Data

In this study, the (all sky) erythemal UV dose, (all sky) global solar radiation, to-
tal ozone column and (clear sky) AOD at 320.1 nm are investigated over a time pe-10

riod of 23 years (1991–2013). These measurements are performed at Uccle, Belgium
(50◦48’ N, 4◦21’ E, 100 m a.s.l.), a residential suburb of Brussels located about 100 km
from the North Sea shore.

2.1 Daily erythemal UV dose

In 1989, the Brewer spectrophotometer instrument#016 (single monochromator) was15

equipped with a UV-B monitor (De Backer, 2009). This is an optical assembly which
enables the Brewer to measure UV-B irradiance using a thin disc of Teflon as a transmit-
ting diffuser (SCI TEC Brewer#016 manual, 1988). The Brewer measures the horizon-
tal spectral UV irradiance with a spectral resolution of approximately 0.55 nm, full width
at half maximum. The instrument performs UV scans from 290 to 325 nm with 0.5 nm20

wavelength steps (Fioletov et al., 2002). The erythemal irradiances are calculated us-
ing the erythemal action spectrum as determined by the Commission Internationale de
l’Eclairage and are integrated to daily erythemal doses (De Backer, 2009). For wave-
lenghts above 325 nm (for which Brewer#016 does not provide data), the intensities
are extrapolated using a theoretical spectrum weighted by the intensity at 325 nm. This25
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is justified by the fact that, at those wavelengts, the UV intensity is no longer strongly
dependent on ozone and the erythemal weighting function is low. For the calculation of
the daily sum, a linear interpolation between the different measurement points is per-
formed. When there is an interruption between the measurements (between sunrise
and sunset) of 2 h or more, the calculated daily sum is rejected. The data (in J m−2) are5

available on a regular base since 1991. The instrument is calibrated with 50 W lamps
on a monthly basis and with 1000 W lamps during intercomparisons in 1994, 2003,
2006, 2008, 2010 and 2012. The instrument was also compared with the travelling
QUASUME unit in 2004 (Gröbner et al., 2004).

2.2 Global solar radiation10

The global solar radiation is a measure of the rate of total incoming solar energy
(both direct and diffuse) on a horizontal plane at the surface of the Earth (Journée
and Bertrand, 2010). The measurements at Uccle are performed by CM11 pyranome-
ters (Kipp&Zonen; http://www.kippzonen.com). For this study, the daily values in J m−2

(derived from 10 min and 30 min data) are used. The data are quality controlled in two15

steps: first a preliminary fully automatic quality control is performed prior to the system-
atic manual check of the data (Journée and Bertrand, 2010). In May 1996, we switched
to a new system and in 2005 half of the instruments were replaced. Corrections to the
measurements have been done in 2000, 2001, 2004, 2005, 2007 and 2012. (For the
period before 1996, no information is available concerning possible calibrations of the20

instrument.)

2.3 Total ozone column

Total ozone column values (in DU) are available from Brewer#016 direct sun measure-
ments. The instrument records raw photon counts of the photomultiplier at 5 wave-
lengths (306.3, 310.1, 313.5, 316.8 and 320.1 nm) using a blocking slit mask, which25

opens successively one of the five exit slits. The five exit slits are scanned twice within
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1.6 s and this is repeated 20 times. The whole procedure is repeated five times for
a total of about three minutes. The total ozone column is obtained from a combination
of measurements at 310.1, 313.5, 316.8 and 320.1 nm, weighted with a predefined set
of constants chosen to minimize the influence of SO2 and linearly varying absorption
features from e.g. clouds or aerosols (Gröbner and Meleti, 2004). Brewer#016 was cal-5

ibrated relative to the Dobson instrument in 1984 (De Backer and De Muer, 1991) and
regularly recalibrated against the travelling standard Brewer instrument #017 in 1994,
2003, 2006, 2008, 2010 and 2012. The stability is also continuously checked against
the co-located instruments Dobson#40 (from 1991 until May 2009) and Brewer#178
(since 2001).10

2.4 Aerosol Optical Depth

Cheymol and De Backer (2003) developed a method that enables the retrieval of
AOD values (at 306.3, 310.1, 313.5, 316.8 and 320.1 nm) using the Direct Sun (DS)
measurements of the Brewer instrument. It is also possible to retrieve AOD values
at 340 nm using Sun Scan (SS) measurements of the Brewer instrument (De Bock15

et al., 2010). Together with the AOD retrieval method, De Bock et al. (2010) devel-
oped a cloud screening procedure to select the clear sky AOD values. However, this
screening method did not perform well. Hence an improved cloud screening method
(described in Sect. 3.1) has been developed and has been applied to AOD values re-
trieved from DS and SS measurements. For this study only the cloud screened AOD20

values at 320.1 nm, retrieved from the DS measurements of the single monochromator
Brewer#016, will be used.
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3 Method

3.1 Improved AOD cloud screening method

The initial cloud screening algorithm, as described in De Bock et al., 2010, consisted
of three steps. First, all AOD values larger than 2 were removed. Then, it was veri-
fied whether there was a DS observation within five minutes of each individual AOD5

measurement. Finally, the measured irradiances (photon counts) were plotted for days
with AOD measurement(s) larger than 1.5. If the graph showed clear signs of cloud
perturbation, the measurement was removed. The first two steps of this cloud screen-
ing were done automatically, whereas the last step had to be done manually. Analysis
of the cloud screened data indicated that the performance of this screening technique10

was not optimal. Therefore it was decided to develop an improved cloud screening
method.

This new cloud screening method makes use of sunshine duration data (from 4
pyrheliometers at Uccle) and is also based on the assumption that the variability of
the AOD in the course of one day is either lower than 10 % or lower than 0.08 AOD15

units (which is the maximum uncertainty of the AOD retrieval algorithm). Figure 1 gives
a schematic overview of the improved cloud screening technique. First it is determined
whether the individual AOD measurements were taken within a 10 min interval of con-
tinuous sunshine. The measurements for which this is not the case are removed, after
which more than 2 individual measurements per day must remain in order to continue.20

For each day, we then determine the maximum deviation to the median value. If this
value is less than 0.08, we accept all measurements for that day. However, if the maxi-
mum deviation exceeds 0.08, the relative standard deviation for that day is calculated.
In case this value is less than 10 % (which would guarantee a given stability within
the diurnal pattern of AOD), all the AOD values for that day are accepted. In the other25

case, the AOD measurement with the largest contribution to the standard deviation is
removed (as this measurement is most likely influenced by clouds). The median value
will then be recomputed and the previous steps are repeated. Days with 2 or less
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individual AOD measurements are excluded from the results, since it does not make
sense to calculate the deviation to the median and the standard deviation.

The cloud-screened AODs (both from DS and SS Brewer measurements) were com-
pared to quasi-simultaneous and co-located Cimel level 2.0 quality assured values
(with a maximum time difference of 3 min). The Cimel sunphotometer, which belongs5

to BISA (Belgium Institute of Space Aeronomy), is located at approximately 100 m from
the Brewer instrument. It is an automatic sun-sky scanning filter radiometer allowing the
measurements of the direct solar irradiance at wavelengths 340, 380, 440, 500, 670,
870, 940 and 1020 nm. These solar extinction measurements are used to compute
aerosol optical depth at each wavelength except for the 940 nm channel, which is used10

to retrieve total atmospheric column precipitable water in centimeters. The instrument is
part of the AERONET network (http://aeronet.gsfc.nasa.gov/; Holben et al., 2001). The
accuracy of the AERONET AOD measurements at 340 nm is 0.02 (Eck et al., 1999). For
the period of comparison (2006–2013), the correlation coefficient, slope and intercept
of the regression lines have been calculated and the values are presented in Table 1.15

The results of the comparison show that the cloud screened Brewer AOD values agree
very well with the Cimel data.

The advantages of the improved cloud screening method are the removal of the
arbitrary maximum level of AOD values and the fact that it runs completely automatic
(whereas the old one needed manual verification afterwards). This method has now20

been applied not only to the AOD retrieval using SS measurements at 340 nm, but also
to the method using DS measurements.

3.2 Data analysis methods

Since most statistical analysis tests, such as linear regression and change-point tests,
rely on independent and identically distributed time series (e.g. Van Malderen and De25

Backer, 2010 and references therein), most data used in this study are in their anomaly
form. Monthly anomalies are used to reduce the influence of the seasonal cycle on
the analysis and are calculated by subtracting the long term monthly mean from the
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individual monthly means. Monthly means are only calculated for months with at least
10 individual daily values. For the multiple linear regression analysis, daily values will
be used instead of anomaly values.

3.2.1 Change-point analysis

Change points are times of discontinuity in a time series (Reeves et al., 2007) and can5

either arise naturally or as a result of errors or changes in instrumentation, recording
practices, data transmission, processing, etc. (Lanzante, 1996). A change point is said
to occur at some point in the sequence if all the values up to and including it share
a common statistical distribution and all those after the point share another. The most
common change-point problem involves a change in the mean of the time series (Lan-10

zante, 1996). There are different tests that can be used to detect a change point in
a time series. In this study we use the combination of three tests: the non-parametric
Pettitt–Mann–Whitney (PMW) test (based on the ranks of the values in the sequence),
the Mann–Whitney–Wilcoxon (MWW) test (a rank sum test) and the Cumulative Sum
Technique (CST). The details of these tests are described in Hoppy and Kiely (1999).15

The change points discussed further in this study are detected by all three tests (ex-
cept when mentioned otherwise) and only the change points that exceeded the 90 %
confidence level were retained. The change points are determined for the monthly
anomalies time series of erythemal UV doses, global solar radiation, TOC and AOD at
320.1 nm.20

3.2.2 Linear trend analysis

Linear trends are calculated for the monthly anomalies of erythemal UV dose, global
solar radiation, TOC and AOD at 320.1 nm. To determine the significance of the linear
trends, the method described in Santer et al. (2000) is used. The least squares linear
regression estimate of the trend in x(t), b, minimizes the squared differences between25
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x(t) and the regression line x̂(t)

x̂(t) = a+b(t); t = 1, . . . ,nt (1)

Whether a trend in x(t) is significantly different from zero is tested by computing the
ratio between the estimated trend (b) and its standard error (sb)5

tb =
b
sb

(2)

Under the assumption that tb is distributed as Student’s t, the calculated t ratio is
then compared with a critical t value, tcrit, for a stipulated significance level α and nt−2
degrees of freedom (Santer et al., 2000).10

However, if the regression residuals are autocorrelated, the results of the regression
analysis will be too liberal and the original approach must be modified. The method
proposed in Santer et al. (2000) involves the use of an effective sample size ne in
the computation of the adjusted standard error and calculated t value, but also in the
indexing of the critical t value. To test for autocorrelation in the residuals of a time15

series, the Durbin–Watson test is used (Durbin and Watson, 1971).
The above described linear trend analysis is also applied to the monthly anomalies

of the extreme values (minima and maxima) of the variables. The extreme values are
calculated by determining the lowest and highest measured value for each month.
These trends will be studied together with the relative frequency distribution of the20

daily mean values. This distribution is determined by using the minimum and maximum
values of the entire study period as boundaries and by dividing the range between the
boundaries into a certain amount of bins of equal size. The daily values are distributed
over the different bins and the relative frequency (in %) is calculated. This will be done
for 2 different time periods: 1991–2002 and 2003–2013. Also, the medians for these25

periods are calculated. In this way, it is possible to investigate whether there is a shift in
the frequency distribution of the variables from the first period to the second one. (The
results of the analysis of the frequency distribution will only be presented in case they
show a significant shift in the data).
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3.2.3 Multiple linear regression analysis

The goal of a Multiple Linear Regression (MLR) analysis is to determine the values
of parameters for a linear function that cause this function to best describe a set of
provided observations (Krishna Prasad et al., 2011). In this study, the MLR technique
is used to explore whether there is a significant relationship between the erythemal UV5

dose and three explanatory variables (global solar radiation, TOC and AOD) both on
a daily and seasonal scale. We use a linear model where the coefficients are deter-
mined with the least squares method:

Sery = a×Sg +b×QO3
+c× τaer +d +ε (3)

10

with

– Sery: erythemal UV dose (in J m−2)

– Sg: global radiation (in J m−2)

– QO3
: total ozone column (in DU)

– τaer: Aerosol Optical Depth at 320.1 nm15

– a, b, c: regression coefficients

– d : constant term

– ε: error term.

The model will be developed based on data from 1991 to 2008. The data from 2009
to 2013 will be used for validation of the model. The performance of the model and20

its parameters will be evaluated through different statistical parameters. The adjusted
R2 value is the measure for the fraction of variation in UV explained by the regression,
accounting for both the sample size and the number of explanatory variables. Com-
pared to the R2 value, the adjusted R2 value will only increase if a new variable has
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additional explanatory power. It is possible to test the null hypothesis that a regression
coefficient is equal to zero (which would mean that the variable associated with this
regression coefficient does not contribute to explaining the variation in UV) by looking
at the p value. If we want to test whether a regression coefficient differs significantly
from zero at the 5 % level, the p value should be less than or equal to 0.05. The influ-5

ence of the variation in the three parameters on the variation of Sery is determined by
multiplying the standard deviation of each parameter with its corresponding regression
coefficient and dividing this by the average Sery value.

The Mean Bias Error (MBE) and the Mean Absolute Bias Error (MABE) are also
calculated in order to evaluate the performance of the regression model. The MBE10

(given in %) provides the mean relative difference between modeled and measured
values (Antón et al., 2009):

MBE = 100× 1
N

N∑
i=1

Smodeled
eryi

−Smeasured
eryi

Smeasured
eryi

(4)

The MABE (given in %) reports on the absolute value of the individual differences15

between modeled and measured data (Antón et al., 2009):

MABE = 100× 1
N

N∑
i=1

|Smodeled
eryi

−Smeasured
eryi

|

Smeasured
eryi

(5)
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4 Results and discussion

4.1 Change-point analysis

4.1.1 Erythemal UV dose

According to the three tests (PMW, MWW and CST) of the change-point analysis, there
is a significant shift in the mean of the monthly anomalies of erythemal UV dose which5

occurs around January 2003. The change point is located suspiciously close to the mid-
dle of the time series though. To remove the influence of the presence of one general
increasing trend (which would lead to the discovery of a change point in the middle of
the time series), the time series was detrended (=original time series−general trend).
The change point in the detrended time series is located around February 1998 (Fig. 2).10

Since no calibration of the Brewer instrument took place around that period, it seems
that the change point is not caused by known instrumental changes but rather by nat-
ural/environmental changes.

4.1.2 Global solar radiation

A significant change point was detected (only by the PMW test) around January 2003 in15

the time series of global solar radiation. Similar to the erythemal UV dose time series,
there is one general trend present, which explains the detection of a change point near
the middle of the time series. Thus, it was again decided to look at the detrended time
series of global radiation. However, the detected change point around January 2006
(only by the PMW test) was not significant at the 90 % significance level.20

4.1.3 Total ozone column

All three tests confirmed the presence of a significant change point around March 1998
in the time series of monthly anomalies of TOC, where the mean before the change
point is clearly lower than the one after the change point (Fig. 3). As there is clearly
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more than one general trend within the entire time series, there is no need for detrend-
ing in this case. No ozone calibrations were performed around 1998, so the change
point has no known instrumental cause.

4.1.4 AOD at 320.1 nm

According to the change-point analysis, no significant change was found in the mean5

of the monthly anomalies of AOD.

4.1.5 Overview and explanations

The change points in the time series of erythemal UV dose and TOC occur around
the same time period (February/March 1998). Since we were able to rule out known
instrumental causes for the detected change points in both time series, we can assume10

that they have some natural/environmental cause and are related to each other.
The change point in the TOC time series corresponds with results found in literature.

Recent studies have shown that for other stations, the ozone recovery started around
1997 (Steinbrecht et al., 2006; Reinsel et al., 2005). Ozone levels seem to follow the
change in chlorine concentrations resulting from the regulations of the Montréal Proto-15

col in 1987. When ozone starts to increase, it is expected to have some implications on
the UV irradiance as ozone is a strong absorber of UV irradiance in the stratosphere
(Wenny et al., 2001). An increase in ozone would normally lead to a decrease in UV
irradiance, which is not what was observed at Uccle where the UV irradiance levels
continue to increase after 1998. Before 1998, the (insignificant) trends in the time se-20

ries of TOC and erythemal UV dose are opposite, which is what would be expected.
However after 1998, both the (insignificant) TOC and erythemal UV dose trend are pos-
itive. So the behavior of TOC can only partly explain the changes observed in the UV
irradiance time series and other parameters (such as aerosols and cloudiness) might
play an important role.25
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4.2 Linear trend analysis

4.2.1 Erythemal UV dose

A significant positive trend (at the 99 % significance level) can be detected in the time
series of monthly anomalies of erythemal UV doses (Fig. 4). These values increase
with 7 % (±2 %) per decade. The seasonal trends are presented in Table 2. In spring5

(March, April and May), summer (June, July and August) and autumn (September, Oc-
tober and November), the erythemal UV dose increases significantly, whereas in winter
(December, January and February), the trend is negative. The increase in erythemal
UV dose is the largest in spring.

A significant positive trend has been found in the monthly anomalies of both the min-10

imum and maximum values of erythemal UV dose. The minimum values show an in-
crease of +10 % (±4 %) per decade and the maximum values increased by 7 % (±1 %)
per decade (respectively at the 95 and 99 % level). The increase in the median value
from 825 J m−2 (1991–2002) to 987 J m−2 (2003–2013), shows that higher erythemal
UV dose values are more frequent in the last period.15

4.2.2 Global solar radiation

The values of the global solar radiation show an increase of 4 % (±1 %) per decade
at the 99 % significance level, which corresponds to an absolute change of +0.5
(±0.2) W m−2 year−1 for the observed time period (Fig. 4). On a seasonal scale, spring
and autumn exhibit a significant positive trend (Table 3). The seasonal trends of global20

solar radiation, although not significant in summer and winter, have the same sign as
the seasonal erythemal UV dose trends. The trends of global solar radiation are smaller
than the UV trends, both on an annual and seasonal scale.

There is a clear difference between the trends of the monthly anomalies of minimum
and maximum values of global solar radiation. Both trends are positive, but the increase25

in the minimum values (+12 % (±5 %) per decade at 99 % significance level) is much
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larger than the one in the maximum values (+3.2 % (±0.7 %) per decade at 99 % sig-
nificance level). Study of the median values reveals the presence of an increase from
7880 kJ m−2 (1991–2002) to 8902 kJ m−2 (2003–2013). As the global radiation data are
all sky data, it is obvious that the minimum values are the ones that are influenced by
clouds. If the minimum values increase in time, this could mean that the cloud prop-5

erties (such as cloud optical depth) changed over the past 23 years. However, this is
difficult to prove without direct information or measurements on cloud amount and/or
properties.

4.2.3 Total ozone column

The monthly anomalies of TOC show a positive trend of 2.6 % (±0.4 %) per decade10

(significant at 99 %) (Fig. 4). Significant positive trends occur in spring and summer
(Table 4), with the trend in spring being the largest one. As opposed to the seasonal
trends of erythemal UV dose and global radiation, the ones for TOC are positive for
each season. We would expect an increase in TOC over the past 23 years to be ac-
companied by a decrease in erythemal UV dose, which is not the case for the Uccle15

time series. This indicates that other variables might contribute to the change in ery-
themal UV dose and the contribution of TOC might be washed out by the influence of
these other variables.

Both the minimum and maximum TOC values increased significantly (99 % level)
at the same rate (+3.0 % (±0.6 %) per decade for the minimum values and +3.1 %20

(±0.6 %) per decade for the maximum values) over the past 23 years. A clear shift
can be seen in the frequency distribution (Fig. 5) of the daily TOC values. During the
second period (2003–2013), higher values are more frequent than during the previ-
ous period (1991–2002), which is supported by the increase in median values from
319.3 DU (1991–2002) to 327.9 DU (2003–2013). The entire curve of the frequency25

distribution is shifted, which means that the minimum values of the distribution have
also increased between the two decades. After a period with lower TOC values in the
1990s, it seems that ozone has been recovering over the past 10 years.
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4.2.4 AOD at 320.1 nm

While the overall trends of erythemal UV dose, global solar radiation and TOC are
all positive, the AOD values at 320.1 nm show a negative trend of −8 % (±5 %) per
decade. This trend however is not significant (Fig. 4). The seasonal trends (Table 5)
show that the summer and autumn trends are significantly negative, with the largest5

trend being observed during autumn. Due to a lack of sufficient clear sky data, it was
not possible to determine the winter trend for AOD.

There are no significant changes in the minimum and maximum AOD values over
the 1991–2013 period. From the relative frequency distribution of the daily AOD values
(Fig. 6), it can be seen that the frequency of lower AOD values (AOD< 0.4) was higher10

during the second period (2003–2013). Also the frequency of high AOD values (AOD>
0.7) has decreased towards the second decade. This is in agreement with the overall
decrease in AOD over the last 23 years. However, this is not obvious from the median
values as they decreased only slightly from 0.38 (1991–2002) to 0.36 (2003–2013).

4.3 Comparison of Uccle trends with other stations15

4.3.1 Erythemal UV dose

Long term UV trends for different locations around the world have been the subject
of many research articles and it is worth checking the consistency of our results with
these studies even though the time periods are never exactly the same as the one
studied in this paper (1991–2013). Some trends (observed or modeled/reconstructed)20

found in literature are presented in Table 6. Looking at these trends, it can be seen that
for the stations with comparable latitude to Uccle (45–55◦ N, stations in blue in Table 6),
the trends in UV range from −2.1 to +8.6 % per decade. The increase of 7 % (±2 %)
per decade observed at Uccle falls within the range of trends reported in literature.
On a more global scale, Zerefos et al. (2012) examined UV irradiance over selected25

sites in Canada, Europe and Japan between 1990 and 2011. The results (based on
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observations and modeling for all stations) showed an increase in UV irradiances of
3.7 % (±0.5 %) and 5.5 % (±0.3 %) per decade at respectively 305 and 325 nm. For
Europe, only the trend at 325 nm (3.4 % (±0.4 %) per decade) was significant. The
COST 726 action (Litynska et al., 2009; www.cost726.org) calculated trend values for
European sites and saw a mean positive trend of 4.5 % (±0.5 %) per decade since5

1980 (derived from reconstruction models, based on TOC and measured total solar
irradiance).

4.3.2 Global solar radiation

Concerning the global solar radiation, many publications agree on the existence of
a solar dimming period between 1970 and 1985 and a subsequent solar brightening10

period (Norris and Wild, 2007; Solomon et al., 2007; Makowski et al., 2009; Stjern et al.,
2009; Wild et al., 2009; Sanchez-Lorenzo and Wild, 2012). Different studies have calcu-
lated the trend in global radiation after 1985. The trend in global radiation from GEBA
(Global Energy Balance Archive; http://www.iac.ethz.ch/groups/schaer/research/rad_
and_hydro_cycle_global/geba) between 1987 and 2002 is equal to +1.4 (±3.4) W m−2

15

per decade according to Norris and Wild (2007). Stjern et al. (2009) found a total
change in the mean surface solar radiation trend over 11 stations in Northern Europe of
+4.4 % between 1983 and 2003. In the fourth assessment report of the IPCC (Solomon
et al., 2007), 421 sites were analyzed and between 1992 and 2002, the change of all
sky surface solar radiation was equal to 0.66 W m−2 year−1. Wild et al. (2009) investi-20

gated the global solar radiation from 133 stations (from GEBA/World Radiation Data
Centre) belonging to different regions in Europe. All series showed an increase over the
entire period, with a pronounced upward tendency since 2000. For the Benelux region,
the linear change between 1985 and 2005 is equal to +0.42 W m−2 per year, com-
pared to the Pan-European average trend of +0.33 W m−2 per year (or +0.24 W m−2 if25

the anomaly of the 2003 heat wave is excluded) (Wild et al., 2009). Our trend at Uccle
of +0.5 (±0.2) W m−2 year−1 (or +4 % per decade) agrees within the error bars with the
results from Wild et al. (2009), but seems to be somewhat at the high end range.
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4.3.3 Total ozone column

Ozone and its trends have been the subject of scientific research since the discovery of
ozone depletion. Many studies agree that ozone has decreased since 1980 to the mid
1990s as a consequence of anthropogenic emissions of Ozone Depletion Substances
(ODS). This period of decrease is followed by a period of significant increase (Stein-5

brecht et al., 2006; Harris et al., 2008; Vigouroux et al., 2008; Krzyścin and Borkowski,
2008; Herman, 2010; Bais et al., 2011). For the period before the mid 1990s, studies
report on decreasing ozone values at Brussels (Bojkov et al., 1995 and Zerefos et al.,
1997), Reading (Bartlett and Webb, 2000), Lerwick (Smedley et al., 2012), Arosa (Bo-
jkov et al., 1995 and Staehelin et al., 1998), Hohenpeissenberg (Bojkov et al., 1995),10

Sodankylä (Glandorf et al., 2005) and Thessaloniki (Glandorf et al., 2005) (see Table 7).
After the mid-1990s, most studies report on a plateau or a limited increase in ozone. For
example, Smedley et al., 2012, found no clear ozone trend in the 1993–2008 period for
Reading. Ozone observations from a Brewer instrument at Hoher Sonnblick (by Fitzka
et al., 2012), showed a small but significant increase between 1997 and 2011. Similar15

behavior was reported for Jungfraujoch in Vigouroux et al., 2008. Our result (a trend of
+2.6 % per decade) compares well with the trend observed at Hoher Sonnblick (which
is the only station with a time period comparable to the one at Uccle). From Fig. 3, it
can be seen that a negative trend occurred in the TOC values before 1998 and that this
trend was followed by an positive one. However, both trends are not significant at Uccle.20

It is difficult to unambiguously attribute the ozone trends to changes in ODS because
other factors also contribute to ozone variability and trends. These factors are large
volcanic eruptions, arctic ozone depletion, long term climate variability, changes in the
stratospheric circulation and the eleven year solar cycle (Harris et al., 2008; Vigouroux
et al., 2008). According to Rieder et al., 2013, the Equivalent Effective Stratospheric25

Chlorine and the 11-year solar cycle can be identified as major contributors, but the in-
fluence of dynamical features (such as the El Niño Southern Oscillation, North Atlantic
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Oscillation and Quasi-Biennial Oscillation) on the ozone variability and trends can not
be neglected at a regional level.

4.3.4 AOD at 320.1 nm

Trend analysis studies of long time series of AOD are still very scarce at the moment.
Some studies however do report on aerosol trends (Table 8). Mishchenko and Ge-5

ogdzhayev (2007) observed a significant decrease in AOD from 1991 to 2005 over
much of Europe within the GACP (Global Aerosol Climatology Project; http://gacp.giss.
nasa.gov/) data. Alpert et al. (2012) studied AOD trends from MODIS (MODerate res-
olution Imaging Spectroradiometer) and MISR (Multi-angle Imaging SpectroRadiome-
ter) satellite measurements over the 189 largest cities in the world and saw a de-10

crease in AOD over Europe for the 2002–2010 period. The decadal trend observed by
de Meij et al. (2012) over Europe between 2000 and 2009 was negative for MODIS
(−30 %), MISR (−9 %) and AERONET (−25 %). Zerefos et al. (2012), who investigated
the AOD over Europe, Japan and Canada, discovered a general decline in AOD ex-
ceeding 10 % year−1. For Europe specifically, the trend of AOD varied between −16.6 %15

(±6 %) per decade when using the GACP dataset and −42.8 % (±5.7 %) for the MODIS
dataset. The (insignificant) trend observed at Uccle (−8%±5% per decade) lies within
the range of trends observed at other European stations. The long term AOD decrease
over much of Europe is quite consistent with the supposed reversal from increasing to
decreasing anthropogenic sulfur and black carbon emissions owing to the enactment20

of clean air legislation in many countries (Mishchenko and Geogdzhayev, 2007; Chiac-
cio et al., 2011; Alpert et al., 2012; de Meij et al., 2012; Hsu et al., 2012; Nabat et al.,
2013). This change occurred after 1988–1989, the time period when a maximum was
reached in the emissions of sulfate aerosols over Europe (Chiaccio et al., 2011). Many
scientists believe that the decadal changes in aerosols have influenced the amount of25

solar radiation reaching the surface of the Earth and that the decrease in aerosols has
played a part in the switch from global dimming to global brightening (which occurred
around 1980–1990) (Augustine et al., 2008; Chiaccio et al., 2011). According to Wild
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et al. (2009), the reduction of aerosols may have played a role during the 1990s but
not after 2000. Decreases in cloudiness or cloud albedo may have enabled the contin-
uation of the increase in surface solar radiation over Europe beyond 2000, despite the
stabilization of aerosol concentrations.

4.4 Multiple linear regression analysis5

Before applying the Multiple linear regression (MLR) technique, it has to be verified
that the explanatory variables (global solar radiation, TOC and AOD) are independent
variables. This is done by calculating the correlation coefficients between these param-
eters. The correlation coefficients between the three variables are low enough (< 0.25)
to allow using these variables as independent explanatory variables for the multiple10

regression analysis. As opposed to the previous analysis methods, the MLR is applied
to daily values (instead of monthly anomaly values. For UV and global radiation, the
daily sums are used, whereas for ozone and AOD, daily mean values are used.

4.4.1 MLR analysis of daily values using OZON, RAD and AOD

The MLR analysis has been applied to 1246 simultaneous daily values of erythemal15

UV dose (Sery), global solar radiation (Sg), total ozone (QO3
) and AOD (τaer) between

1991 and 2008. (The amount of regression days was highly limited by the available
AOD measurements.) The resulting regression equation is:

Sery = 690+0.000169×Sg −5.01×QO3
+70.0× τaer +ε (6)

20

(with Sery in J m−2; Sg in J m−2 and QO3
in DU).

The adjusted R2 value of the multiple regression is 0.94, which means that Sg,
QO3

and τaer together explain 94 % of the variation in daily Sery. When looking at the
changes in Sery caused by the variation of each of the three parameters (calculated by
multiplying the standard deviation of each parameter with its corresponding regression25
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coefficient and dividing this by the average Sery value), it is clear that Sg (whose vari-
ation leads to a change in Sery of 56 %) has the biggest influence on Sery, followed by
QO3

(change in Sery of −9 %) and τaer (change in Sery of 1 %).
The data from 2009–2013 are used to validate the model (see Fig. 7). The re-

gression equation between the modeled and measured erythemal Sery values (f (x) =5

0.93x+113.45 with x: measured values) and the correlation coefficient (0.96) reveal
the good agreement between model and reality. The Mean Bias Error (MBE) of the
model is −3 %, meaning that the model has a slight tendency to underestimate the
measurements, which can be seen in Figs. 7 and 8. The Mean Absolute Bias Error
(MABE), which is a useful measure to evaluate the overall performance of the model,10

equals 18 %. This means that the model proposed here, estimates the Sery with a mean
error of 18 %. Figure 7 and the upper panel of Fig. 8 show that in some cases, negative
Sery doses are modeled, which is a sign that the model does not always give realistic
results. This is the case only during winter, when the Sg values are much lower than
during the other seasons. When moderate to high QO3

values are combined with low15

Sg values, this leads to negative modeled Sery values according to the regression equa-
tion. From Fig. 8 it is also clear that there is a seasonal cycle in the residual values.
Therefore, it would be better to perform the multiple regression analysis on a seasonal
scale.

4.4.2 Seasonal MLR analysis using total ozone column, global solar radiation20

and Aerosol Optical Depth

The multiple regression equations for the different seasons are presented below:
Spring:

Sery = 1016+0.0001542×Sg −5.660×QO3
+92.11× τaer +ε (7)

25

Summer:

Sery = 2010+0.0001481×Sg −6.737×QO3
−134.2× τaer +ε (8)
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Autumn:

Sery = −195+0.000143×Sg −1.22×QO3
+120× τaer +ε (9)

Winter:

Sery = 325+0.0000750×Sg −1.50×QO3
+101× τaer +ε (10)5

For all seasons, more than 80 % of the total variation in Sery is explained by the

combination of Sg, QO3
and τaer. This could be concluded from the adjusted R2 values

for each season. What might seem strange is the negative value of the constant term
in the regression equation for autumn. However, the p value for this term is higher than10

0.05, which means that this coefficient does not significantly differ from zero at the 95 %
significance level.

From Fig. 9 and Table 9, it can be concluded that the seasonal models perform
well in estimating the measured Sery values. The correlation between the modeled and
measured values varies between 0.90 (in winter) and 0.97 (in autumn). The regression15

equations are shown in both Fig. 9 and Table 9. The negative MBE values (except for
autumn which has a value close to 0) show that each model has a tendency to un-
derestimate the measured values. The summer model performs best with an absolute
mean model error of only 6 %. The relative residuals (shown in Fig. 10) are smallest in
summer, which again points out that the performance of the summer model in estimat-20

ing the measured Sery is the best. The spring and autumn models have much higher
relative residuals.

Changes in the variation of Sg (Table 10) are the most important and lead to changes
in erythemal UV dose between 18 % (in summer) and 53 % (in autumn). The influence
of the variation in QO3

and τaer is much smaller. Changes in the variation of QO3
always25

lead to negative changes in Sery (from −2 % in summer to −15 % in winter), whereas the
influence of a change in variation of τaer varies from a negative value (−1 % change in
Sery) in summer to positive values in the other seasons, with a maximum of 4 % in winter
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(Table 10). τaer and Sg have their lowest contribution in summer. QO3
on the other hand

has the lowest contribution in autumn. The influence of QO3
is highest during winter and

spring and this is in accordance with the variation in QO3
itself which is largest during

winter and early spring. For τaer also, the absolute contribution to the variation in Sery
is the highest in winter. As the path length of UV irradiance is higher during winter,5

aerosols and ozone have more opportunity to influence UV irradiance on its way to the
Earth’s surface.

The influence of τaer on Sery in the seasonal models is positive (except in summer)
which is also the case when the τaer is used as the only explanatory variable in the mod-
els. This does not agree with what was observed in the trend analysis of the monthly10

anomalies time series, where an increase in erythemal UV dose is accompanied by
a decrease in AOD. It has to be taken into account however, that the negative general
AOD trend is not significant. Also, this negative trend in AOD is too much driven by
the high, but sparse values at the beginning of the studied time period. Depending on
the circumstances and the physical and optical properties of aerosols, the influence15

of AOD on global and UV irradiance can be either positive or negative. An increase
in AOD could lead to an increase in global and UV radiation if the increase in AOD
was caused by an increase in the amount of small scattering aerosol particles. These
small particles would enhance the multiple scattering and reflection of UV irradiance,
which in turn would increase the UV irradiance observed at the surface of the Earth.20

However, when the amount of small particles exceeded a certain (yet, herein not pos-
sible to determine) threshold value, extinction would take over and from this point, an
increase in AOD would lead to a decrease in UV irradiance. Both the composition of
aerosols (which determines whether a mixture is absorbing or scattering) and the size
of the particles determine whether an increase in AOD will lead to either an increase25

or a decrease in UV irradiance. At Uccle, there is not sufficient information on both pa-
rameters to unambiguously characterize the influence of AOD on UV irradiance. Antón
et al. (2011) already reported that it is hard to determine the effect of aerosols due to
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their temporal and spatial variability and the difficulties associated with their character-
ization.

It has already been shown that Sg has the largest influence on Sery, so an important
issue that needs to be addressed is whether QO3

and τaer are actually necessary to
capture the variation in Sery. This was investigated by performing the MLR analysis5

using (1) only Sg, (2) Sg combined with QO3
and (3) Sg combined with τaer as explana-

tory variables. The adjusted R2 value, the MABE and the correlation between modeled
and measured Sery values are given in Table 11. From these values, it becomes clear
that τaer only has a minor contribution to the regression model and that to describe the
changes in Sery, τaer might not be needed, except perhaps for spring. It has to be taken10

into account that τaer is known to have an influence on Sg, hence it’s influence on Sery
is already partly represented by the factor Sg. So we could say that τaer contributes in
an indirect way, through Sg, to the variation in Sery. It’s direct contribution to Sery only
is negligible. For this reason it seems unnecessary to include τaer in the MLR analysis.
QO3

seems to be a more important explanatory variable, as the adjusted R2 increases15

for all seasons (except summer) and the MABE of the models decreases (except in
summer) when combining Sg and QO3

. The correlation between modeled and mea-
sured values does not change much, except in winter (from 0.75 when using only Sg
to 0.89 when combining Sg and QO3

).

5 Conclusions20

Of the variables known to influence the UV irradiance that reaches the ground, the
variability of global solar radiation, total ozone column and Aerosol Optical Depth (at
320.1 nm) are studied by performing a change-point analysis, a trend analysis and
a multiple linear regression analysis. This is done in order to determine their changes
over a 23 year time period (1991–2013) and their possible relation with the observed25

UV changes at Uccle, Belgium. The erythemal UV dose, TOC and AOD are measured
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by the Brewer spectrophotometer instruments and the global solar radiation measure-
ments are performed by a CM11 pyranometer.

For TOC and erythemal UV dose, a significant change point (or a significant shift in
the mean of the monthly anomalies) was detected around February/March 1998, which
has no known instrumental cause. The timing of the change point in ozone corresponds5

to results found in literature where studies define the change around this time period
as the start of ozone recovery, following the regulations of the Montréal Protocol.

The trend over the past 23 years was determined for each variable using their
monthly anomaly values. An overall positive trend was present in the time series of
erythemal UV dose, global solar radiation and TOC of respectively +7 % (±2 %), +4 %10

(±1 %) and +2.6 % (±0.4 %) per decade. In contrast, the trend of AOD, equal to −8 %
(±5 %) per decade, is (insignificantly) negative over the investigated time period. The
sign and magnitude of the trends observed at Uccle agree with results found in liter-
ature for stations of comparable latitude. The increase in global solar radiation since
1991 could be interpreted as a sign of continuing global brightening over Belgium. The15

decrease in sulfur and black carbon emissions after 1989, which resulted in enhanced
global solar radiation at the Earth’s surface, is most probably also the driving mecha-
nism for the decrease in AOD, which in turn could have an influence by increasing the
UV irradiance.

For both erythemal UV dose and global solar radiation, there is an increase in the20

frequency of higher values towards the second part of the study period (2003–2013),
without the entire frequency distribution shifting. This could be explained by a decrease
in cloudiness towards 2003–2013. Several studies report on a decrease in cloud cover
over the past decades and a tendency for cumuliform clouds to replace stratiform
clouds (Norris and Slingo, 2009; Eastman and Warren, 2013). This would increase25

both global solar radiation and UV irradiance due to enhanced scattering. However,
other parameters (such as ozone and aerosols) could also influence the values of ery-
themal UV dose and global solar radiation. As opposed to erythemal UV dose and
global solar radiation, a clear shift can be seen in the entire frequency distribution of
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daily TOC values, with both minimum and maximum values having increased from the
1991–2002 period to the 2003–2013 period, which supports literature findings about an
ozone recovery around the end of the 1990s. From the frequency distribution of daily
AOD values, it can be derived that between 1991 and 2002, higher AODs were more
frequently present than during the last period (2003–2013), which is in agreement with5

the overall decrease over the last 23 years.
The seasonal trends of the four variables were also studied and are similar between

erythemal UV dose and global solar radiation, with a positive trend for all seasons
except winter. The TOC trend is positive for spring and summer. Normally, we would
expect a positive TOC trend to be accompanied with a negative trend in erythemal UV10

dose. The fact that the observed trends have the same sign, could indicate that the
change in UV irradiance is not only influenced by a change in total ozone values. The
AOD trend is negative during summer and autumn. The trend in spring is not significant
and not enough winter data were present to calculate a winter trend.

To investigate the influences of global solar radiation, TOC and AOD on the erythe-15

mal UV dose, a multiple linear regression was performed using daily values between
1991 and 2008. The three variables together explain 94 % of the total variation in the
observed erythemal UV dose. Global solar radiation has the largest influence on the
erythemal UV dose, followed by TOC and AOD. Data of 2009–2013 were used to val-
idate the model and the MBA and MABE were calculated to evaluate the model per-20

formance in terms of overestimation and average error. The MBE value of the model
is −3 %, which means that the model has a slight tendency to underestimate the mea-
sured UV irradiance values. The average error of the model in the estimation of the
measurements is equal to 18 %. Overall, the model represents reality well, however
sometimes (only during winter) negative erythemal UV dose values were modeled. For25

this reason, seasonal regression models have been developed.
All seasonal models perform rather well in explaining the variation in UV irradiance

(with adjusted R2 values larger than 0.8). The negative MBE values show the models’
tendencies to underestimate UV irradiance. Again, global solar radiation has the largest
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influence on erythemal UV dose, followed by TOC and AOD. The summer regression
model performs best, based on the very low MABE values.

What is seen in reality (i.e. an increase in erythemal UV dose accompanied with an
increase in TOC and a decrease in AOD) is not always what is represented by the
models. According to the regression models, TOC and AOD respectively always have5

a negative and positive influence on erythemal UV dose. However, as global solar radi-
ation is obviously the most important factor in explaining the variation in erythemal UV
dose, the increase in TOC (which would be expected to lead to a decrease in erythe-
mal UV dose) and the change in AOD seem to be compensated for by the increase in
global radiation.10

The question that remains is whether TOC and AOD are needed as explanatory
variables in the multiple linear regression models. It has been shown that the contribu-
tion of AOD to explaining the variation in erythemal UV dose is very small and it can be
concluded that this variable is not really needed in the multiple linear regression model.
Also its influence is already partly represented by the global radiation parameter. To-15

tal ozone column however, does seem to be a more important factor in capturing the
variation in erythemal UV dose and cannot be discarded from the regression models.
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Table 1. Comparison of Brewer and Cimel AOD values (2006–2013).

Correlation Slope Intercept

DS 320 nm Brewer#016 0.97 1.004±0.006 −0.067±0.003
DS 320 nm Brewer#178 0.99 1.007±0.005 0.017±0.002
SS 340 nm Brewer#178 0.98 0.993±0.007 0.073±0.002
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Table 2. Seasonal trends of erythemal UV doses (1991–2013).

Season Trend per decade Signifiance level

Spring +9 %(±3 %) 99 %
Summer +6 %(±2 %) 99 %
Autumn +7 %(±3 %) 95 %
Winter −12 %(±4 %) 99 %
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Table 3. Seasonal trends of global solar radiation (1991–2013).

Season Trend per decade Signifiance level

Spring +6 %(±3 %) 95 %
Summer +2 %(±2 %) not significant
Autumn +6 %(±3 %) 95 %
Winter −4 %(±4 %) not significant
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Table 4. Seasonal trends of total ozone (1991–2013).

Season Trend per decade Signifiance level

Spring +3 %(±1 %) 95 %
Summer +1.6 %(±0.6 %) 95 %
Autumn +1.8 %(±0.9 %) not significant
Winter +3 %(±2 %) not significant
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Table 5. Seasonal trends of AOD at 320.1 nm (1991–2013).

Season Trend per decade Signifiance level

Spring +2 %(±7 %) not significant
Summer −18 %(±8 %) 95 %
Autumn −36 %(±14 %) 95 %
Winter Not enough data
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Table 6. Trends of UV radiation at different stations from (a): Bais et al. (2007), (b): Krzýscin
et al. (2011), (c): Smedley et al. (2012), (d): Fitzka et al. (2012), (e): den Outer et al. (2010) and
(f): Chubarova (2008).

Station, Country Latitude/Longitude Period Trend/decade Reference

Measured UV trends

Sodankylä, Finland 67.42◦ N/26.59◦ E 1990–2004 +2.1 % (60◦ SZA) (a)
Jokioinen, Finland 60.80◦ N/23.49◦ E 1996–2005 −1.9 % (60◦ SZA) (a)
Norrköping, Sweden 58.36◦ N/16.12◦ E 1996–2004 +12 % (60◦ SZA) (a)
Bilthoven, the Netherlands 52.13◦ N/5.20◦ E 1996–2004 +8.6 % (60◦ SZA) (a)
Belsk, Poland 51.83◦ N/20.81◦ E 1976–2008 +5.6 % (b)
Reading, UK 51.45◦ N/0.98◦ W 1993–2008 +6.6 % (c)
Hradec Kralove, Czech Rep. 50.21◦ N/15.82◦ E 1994–2005 −2.1 % (60◦ SZA) (a)
Lindenberg, Germany 47.60◦ N/9.89◦ E 1996–2003 +7.7 % (60◦ SZA) (a)
Hoher Sonnblick, Austria 47.05◦ N/12.96◦ E 1997–2011 +14.2 % (65◦ SZA) (d)
Thessaloniki, Greece 40.63◦ N/22.95◦ E 1990–2004 +3.4 % (60◦ SZA) (a)

Reconstructed or
Modeled UV trends

Sodankylä, Finland 67.42◦ N/26.59◦ E 1980–2006 +3.6 % (e)
Jokioinen, Finland 60.80◦ N/23.49◦ E 1980–2006 +2.8 % (e)
Norrköping, Sweden 58.36◦ N/16.12◦ E 1980–2006 +4.1 % (e)
Moscow, Russia 55.75◦ N/37.62◦ E 1980–2006 +6 % (f)
Bilthoven, the Netherlands 52.13◦ N/5.20◦ E 1980–2006 +2.9 % (e)
Hradec Kralove, Czech Rep. 50.21◦ N/15.82◦ E 1980–2006 +5.2 % (e)
Lindenberg, Germany 47.60◦ N/9.89◦ E 1980–2006 +5.8 % (e)
Thessaloniki, Greece 40.63◦ N/22.95◦ E 1980–2006 +4.4 % (e)
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Table 7. Trends of total ozone at different stations from (a): Glandorf et al. (2005), (b): Smedley
et al. (2012), (c): Bartlett and Webb (2000), (d): Bojkov et al. (1995), (e): Zerefos et al. (1997),
(f): Fitzka et al. (2012), (g): Staehelin et al. (1998) and (h): Vigouroux et al. (2008).

Station, Country Latitude/Longitude Period Trend/decade Reference

Sodankylä, Finland 67.42◦ N/26.59◦ E 1979–1998 −5.7 % (a)
Lerwick, UK 60.15◦ N/1.15◦ W 1979–1993 −5.8 % (b)
Reading, UK 51.45◦ N/0.98◦ W 1993–1997 −5.9 % (c)
Brussels, Belgium 50.84◦ N/4.36◦ E 1971–1994 −2.6 % (d)
Brussels, Belgium idem 1993–1996 −15.0 % (e)
Hradec Kralove, Czech Rep. 50.21◦ N/15.82◦ E 1994–2005 −2.2 % (d)
Hohenpeisenberg, Germany 47.80◦ N/11.00◦ E 1968–1994 −3.5 % (d)
Hoher Sonnblick, Austria 47.05◦ N/12.96◦ E 1997–2011 +1.9 % (f)
Arosa, Switzerland 46.77◦ N/9.67◦ E 1964–1994 −2.7 % (d)
Arosa, Switzerland idem 1970–1996 −2.3 % (g)
Jungfraujoch, Switzerland 46.55◦ N/7.98◦ E 1995–2004 +4.1 % (h)
Thessaloniki, Greece 40.63◦ N/22.95◦ E 1993–1996 −4.0 % (e)
Thessaloniki, Greece idem 1990–1998 −4.5 % (a)
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Table 8. Absolute and relative trends of AOD at different stations from (a): Alpert et al. (2012),
(b): Nyeki et al. (2012), (c): Fitzka et al. (2012), (d): Kazadzis et al. (2007).

Station, Country Latitude/Longitude Period Trend/decade Reference

Berlina, Germany 52.50◦ N/13.40◦ E 2002–2010 −20.5 % (a)
Berlinb, Germany idem 2002–2010 −17.9 % (a)
Berlinc, Germany idem 2002–2010 −12.3 % (a)
Warsawa, Poland 52.30◦ N/21.00◦ E 2002–2010 −2.4 % (a)
Warsawb, Poland idem 2002–2010 −0.4 % (a)
Warsawc, Poland idem 2002–2010 +12.9 % (a)
Ruhr Areaa, Germany 51.50◦ N/7.50◦ E 2002–2010 −15.7 % (a)
Ruhr Areab, Germany idem 2002–2010 −9.3 % (a)
Ruhr Areac, Germany idem 2002–2010 −9.3 % (a)
Parisa, France 48.90◦ N/2.40◦ E 2002–2010 −8.1 % (a)
Parisb, France idem 2002–2010 +5.0 % (a)
Parisc, France idem 2002–2010 +9.8 % (a)
Hohenpeisenberg, Germany 47.80◦ N/11.00◦ E 1995–2010 −10.6 % (b)
Hoher Sonnblick, Austria 47.05◦ N/12.96◦ E 1997–2011 −5 to −6 % (c)
Barcelonaa, Spain 41.40◦ N/2.20◦ E 2002–2010 −8.8 % (a)
Barcelonab, Spain idem 2002–2010 +4.2 % (a)
Barcelonac, Spain idem 2002–2010 −2.3 % (a)
Thessaloniki, Greece 40.63◦ N/22.95◦ E 1997–2006 −29.0 % (d)
Madrida, Spain 40.40◦ N/3.70◦ W 2002–2010 −18.3 % (a)
Madridb, Spain idem 2002–2010 −10.0 % (a)
Madridc, Spain idem 2002–2010 −7.4 % (a)

MODIS-Terra, MODIS-Aqua and MISR measurements are represented by respectively a “a”, “b” and “c” after the station
name.
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Table 9. Performance of the seasonal regression models.

Spring Summer Autumn Winter

Correlation 0.95 0.93 0.97 0.90
Regression equation y = 0.89x+145.17 y = 0.94x+104.36 y = 0.90x+102.48 y = 0.91x+8.13
MBE −4 % −2 % 0.06 % −7 %
MABE 14 % 6 % 15 % 15 %
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Table 10. Seasonal changes in UV caused by changes in Sg, QO3
and τaer.

Spring Summer Autumn Winter

τaer 1 % −1 % 2 % 4 %
QO3

−9 % −4 % −2 % −15 %
Sg 37 % 18 % 53 % 32 %
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Table 11. Results of MLR analysis with only Sg, Sg combined with QO3
and Sg combined with

τaer as explanatory variables.

Sg Sg +QO3
Sg + τaer

Adjusted R2

Spring 0.85 0.90 0.85
Summer 0.81 0.85 0.81
Autumn 0.95 0.95 0.95
Winter 0.65 0.81 0.65

MABE (in %)

Spring 14.53 14.40 14.33
Summer 6.39 6.21 6.21
Autumn 15.45 15.25 14.89
Winter 22.20 14.25 21.47

Correlation modeled and measured UV values

Spring 0.93 0.95 0.93
Summer 0.91 0.93 0.91
Autumn 0.96 0.96 0.96
Winter 0.75 0.89 0.76
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Figure 1. Improved cloud screening procedure.
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Fig. 2. The black line represents the detrended time series of monthly anomalies of erythemal
UV dose (1991-2013). The red (dashed) lines represent the (insignificant) positive trends before
and after the detected change point. The grey lines represent the mean before and after the
change point.
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Figure 2. The black line represents the detrended time series of monthly anomalies of erythe-
mal UV dose (1991–2013). The red (dashed) lines represent the (insignificant) positive trends
before and after the detected change point. The grey lines represent the mean before and after
the change point.
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Fig. 3. The black line represents the time series of monthly anomalies of total ozone column
(1991-2013). The blue (dashed) line represents the (insignificant) negative trend before the
detected change point and the red (dashed) line represents the (insignificant) positive trend
after the change point. The grey lines represent the mean before and after the change point.

42

Figure 3. The black line represents the time series of monthly anomalies of total ozone column
(1991–2013). The blue (dashed) line represents the (insignificant) negative trend before the
detected change point and the red (dashed) line represents the (insignificant) positive trend
after the change point. The grey lines represent the mean before and after the change point.
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Fig. 4. Trends of monthly anomalies at Uccle for erythemal UV dose (upper left panel, global
solar radiation (upper right panel), total ozone column (lower left panel) and AOD at 320.1 nm
(lower right panel) for the time period 1991-2013. The blue lines represent the time series,
whereas the red lines represent the trend over the time period.
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Figure 4. Trends of monthly anomalies at Uccle for erythemal UV dose (upper left panel, global
solar radiation (upper right panel), total ozone column (lower left panel) and AOD at 320.1 nm
(lower right panel) for the time period 1991–2013. The blue lines represent the time series,
whereas the red lines represent the trend over the time period.

16583

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16529/2014/acpd-14-16529-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16529/2014/acpd-14-16529-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 16529–16589, 2014

UV time series
analysis

V. De Bock et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0

1

2

3

4

5

6

7

8

9

10

11

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Re
la
tiv

e 
fr
eq

ue
nc
y 
(%

)

TOC (DU)

1991‐
2002

2003‐
2013

Fig. 5. Relative frequency distribution of daily TOC values for the two time periods: 1991-2002
(in blue) and 2003-2013 (in red).
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Figure 5. Relative frequency distribution of daily TOC values for the two time periods: 1991–
2002 (in blue) and 2003–2013 (in red).
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Fig. 6. Relative frequency distribution of daily AOD values for the two time periods: 1991-2002
(in blue) and 2003-2013 (in red).
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Figure 6. Relative frequency distribution of daily AOD values for the two time periods: 1991–
2002 (in blue) and 2003–2013 (in red).
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Fig. 7. Scatterplot of the measured and modeled erythemal UV doses at Uccle for the
2009-2013 validation period. The red line represents the regression line of the data
(f(x)=0.93x+113.45). The black line is the f(x)=x line.
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Figure 7. Scatterplot of the measured and modeled erythemal UV doses at Uccle for the 2009–
2013 validation period. The red line represents the regression line of the data (f (x) = 0.93x+
113.45). The black line is the f (x) = x line.
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Fig. 8. Validation of the multiple linear regression equation: the upper panel shows the mea-
sured (in blue) and modeled (in red) erythemal UV values; the lower panel presents the abso-
lute residuals.
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Figure 8. Validation of the multiple linear regression equation: the upper panel shows the mea-
sured (in blue) and modeled (in red) erythemal UV values; the lower panel presents the absolute
residuals.
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Fig. 9. Scatterplots of the measured and modeled erythemal UV doses at Uccle for the 2009-
2013 validation period for spring (upper left panel), summer (upper right panel), autumn (lower
left panel) and winter (lower right panel). The red lines represent the regression lines of the
data and the black lines are the f(x)=x lines.
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Figure 9. Scatterplots of the measured and modeled erythemal UV doses at Uccle for the
2009–2013 validation period for spring (upper left panel), summer (upper right panel), autumn
(lower left panel) and winter (lower right panel). The red lines represent the regression lines of
the data and the black lines are the f (x) = x lines.
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Fig. 10. Relative residuals (=(measured-modeled)/measured*100) of the seasonal multiple
regression models. The colors represent the different seasons: blue=spring; red=summer;
green=autumn; orange=winter.
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Figure 10. Relative residuals (= (measured−modeled)/measured×100) of the seasonal multi-
ple regression models. The colors represent the different seasons: blue=spring; red=summer;
green=autumn; orange=winter.
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