

Supplement of

A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

N. Hiranuma et al.

Correspondence to: N. Hiranuma (seong.moon@kit.edu)

This supplementary information provides additional details for 1) temporal plots of the AIDA experiments during INUIT campaigns, 2) the n_s interpolation to draw initial n_s -isolines in the T-RH_{ice} space, 3) an indication of continuous increase in n_s after depletion of superaturation, and 4) the method used to constrain n_s to >100% RH_{ice}.

920

921 AIDA experimental profiles for INUIT campaigns

922

Figure S1 shows the temporal profiles of AIDA experiments during INUIT campiagns, including mean gas T, RH measured by TDL, depolarisation measured by SIMONE and N_{ice} measured by welas. The temporal n_s profiles were formulated based on these data.

926

927

Figure S1. Temporal plots of the AIDA experiments of INUIT campaigns including A. INUIT01_30, B.
INUIT04_10, C. INUIT04_08 and D. INUIT01_26. Panel-arrangements are identical to Fig. 1.

930

931

932	Fitting procedure to generate initial n _s -isolines
933	
934	In order to connect discrete constant ns values derived from AIDA experiments plotted in
935	the T-RH _{ice} space (Fig. 2), isolines were initially fitted by assuming $RH_{ice, (ns)}$ to be a function of
936	T. A bundle of n_s -isolines (2.5x10 ⁸ m ⁻² < n_s < 1.0x10 ¹² m ⁻²) was derived from the following
937	second degree polynomial fit equations:
938 939 940 941 942 943 943 944 945 946 947	$\begin{split} & RH_{ice,}(n_s) = f(T) \\ & RH_{ice,}(n_s = 1.0x10^{12}) = 305.62 + (6.8767 \text{ x T}) + (0.062894 \text{ x T}^2) \\ & RH_{ice,}(n_s = 1.0x10^{11}) = 312.94 + (7.5808 \text{ x T}) + (0.067883 \text{ x T}^2) \\ & RH_{ice,}(n_s = 1.0x10^{10}) = 334.74 + (8.2497 \text{ x T}) + (0.06897 \text{ x T}^2) \\ & RH_{ice,}(n_s = 5.0x10^9) = 334.17 + (8.2704 \text{ x T}) + (0.068525 \text{ x T}^2) \\ & RH_{ice,}(n_s = 1.0x10^9) = 355.52 + (9.2094 \text{ x T}) + (0.07642 \text{ x T}^2)) \\ & RH_{ice,}(n_s = 5.0x10^8) = 383.61 + (10.414 \text{ x T}) + (0.087181 \text{ x T}^2) \\ & RH_{ice,}(n_s = 2.5x10^8) = 434.61 + (12.552 \text{ x T}) + (0.10605 \text{ x T}^2) \end{split}$
948	Note that the number in RH_{ice} -bracket represents n_s values in m^{-2} .
949	
950	Evidence of n _s increase after saturation depletion due to further cooling
951	
952	Figure S2 shows an example of continuous increase in n _s after depletion of superaturation
953	and resulting max n_s after the peak RH_{ice} while continuous cooling at T > -50 °C, which is
954	indicative of a predominant T influence. As opposed to the strong influence of RH_{ice} at T < -60
955	°C, observed strong temperature-dependency was routinely observed for other experiments for T
956	> -50 °C (not shown).

957

958Figure S2. n_s for hematite particles as a function of temperature under water subsaturated conditions from959INUIT04_10. While continuous cooling (from right to left) proceeds, concurrent increase in n_s after depletion of960supersaturation at $RH_{ice} = 123$ % is observed. Color scale represents n_s in m⁻².961

962 <u>Constraining n_s to >100% RH_{ice}</u>

963

The n_s-isolines governed by Eqn. S1 are not analogous to observed ice nucleation data 964 because the fit is blind to the presence of ice saturation conditions and therefore prone to an 965 artifact (i.e., nucleation under ice subsaturation conditions). Without any corrections, modelling 966 967 studies can be biased and mislead by concealed n_s values. Hence, we invariably confine the n_sisolines (2.5 x 10^8 m⁻² < n_s < 7.5 x 10^{10} m⁻²) to RH_{ice} >100% (Fig. 4A) and corrected RH_{ice} by the 968 following procedures. First, an upper bound of the n_s (= 7.5 x 10¹⁰ m⁻²) is assigned as the 969 reference isoline hovering above 100% RH_{ice} at any T between -36 °C and -78 °C. Next, to 970 relocate concealed isolines to $RH_{ice} > 100\%$, we introduced the constant, c, as: 971

972

973
$$c = \frac{RH_{ice,(n_s=7.5\times10^{10})}-100}{100-RH_{ice,(n_s=2.5\times10^8)}} \equiv \frac{a}{b}$$
(S2)

974

975 in which, a/b is evaluated at each temperature step (every 0.1 °C for -36 °C to -78 °C). 976 Accordingly, the scaled RH_{ice} for a given n_s, $RH_{ice,(n_s)}$, is estimated as:

977

978
$$RH_{ice,(n_s)} = \frac{RH_{ice,(n_s=7.5\times10^{10})} + c \cdot RH_{ice,(n_s)}}{c+1}$$
(S3)

979

As can be seen in Figure S3, the ratio of a and b (at -45 °C as an example) is set to be a constant

981 in order to scale the $RH_{ice,(ns)}$. An ensemble of $RH_{ice,(ns)}$ -T is represented in Figure 4A.

982

983 Figure S3. An example of visualizing the relationship between uncorrected- and corrected RH_{ice} as a function of n_s 984 at -45 °C.