1 Supplementary Material

- 2 Table S1: Summary of gas-phase, aerosol, meteorological and hydrological measurements at the
- 3 Manitou Experimental Forest Observatory.

4

Chemistry tower				
Measurement	Technique	Instrumentation	Institution	Time coverage
Wind speed and direction, temperature, humidity and pressure	2D sonic anemometer	Vaisala, Model WXT520 deployed at 4 heights (1.8, 7.0, 14.1, and 27.8 m)	NCAR	Aug 2009 - present
Wind speed and direction, turbulence	3D sonic anemometer	Campbell Scientific model CSAT-3 at 25.1 m	NCAR	September 2008 – present
CO2, water, latent heat, sensible heat fluxes	Eddy Covariance and by using canopy gradients	Campbell Sonic Anemometer, Li- COR 7000 and 6262 CO2/H2O EC inlet at 25.1 m. Gradient at 6 measurement heights (1.6, 5.0, 8.5, 12.0, 17.7 and 25.1 m)*.	NCAR	Sensible Heat Flux: September 2008-June 2012; Others: November 2009 - present
Photosynthetically- active radiation (PAR)	Quantum sensor	Licor model LI190SA at 2 m and 28 m; Apogee LQS Sensors (2, 4, 8 m)	NCAR	August 2009 – present
Direct and diffuse beam PAR	Quantum sensor	Delta T Instruments, model BF3 (28 m)	NCAR	November 2009 – present
NO, NO2, NOx	NO by O3-induced chemiluminescence, NO2 converted to NO using heated Molybdenum catalyst at 380 °C	Ecophysics, Model 88Y at 6 sampling heights (*see heights above)	NCAR	June 2009 – June 2012
СО	Non-dispersive infrared absorption	Thermo Environmental model 48 at 3 m	NCAR	Summer of 2010, July 2011-June 2012
SO2	UV-fluorescence	Thermo- Environmental, Model 43C-TLE (*see heights	NCAR	June 2009- June2012

		above)		
Ozone	UV absorption	2B technologies	NCAR	June 2009-
		model 205 (*see		June2012
		heights above)		
Volatile organic	Proton transfer	Ionicon	NCAR,	2008 (DOY
compounds (Methyl	reaction mass	Quadropole, Univ.	University of	240-284),
butanol, isoprene,	spectrometry (PTR-	Innsbruck Time of	Innsbruck,	2009 (DOY
monoterpenes, other	MS, PTR-TOF-MS)	Flight (TOF).		121-246),
Alkenes, aromatics,		Above canopy		2010 (DOY
alcohols, ketones,		concentrations,		220-312),
aldehydes)		eddy covariance		2011 (DOY
		fluxes and gradient		201-238)
Size-Resolved Particle	Fast size distributions	measurements TSI Fast Mobility	Indiana	July - August
Number Fluxes (10-200	coupled with eddy	Particle sizer	University	2011
nm)	covariance	(FMPS, model	Oniversity	2011
1111)	covariance	(1991)		
Size Distributions of	Ultraviolet (for	WIBS-4 & UHSAS	University of	July - August
PBAP 0.6-20 µm, 1-	primary biological		Manchester,	2011
100 µm. Total aerosol	particles) and optical		UK	
size distribution and in-	(bulk) particle sizers			
canopy aerosol fluxes,	profiling canopy using			
0.055-1.0 μm	tower winch			
Micrometeorology Tow	er			
Measurement	Technique	Instrumentation	Institution	Time
****		~	NGAR	coverage
Wind speed, direction,	3D sonic anemometer	Campbell	NCAR	July 2009 –
sonic temperature		Scientific, model		July 2012
		CSAT-3. 5 levels:		
		2, 8, 16, 29 and 43		
CO2 1120		m sampled at 20 Hz	NCAD	N. 2000
CO2, H2O	Infrared gas analysis	LI-COR 7500. 4	NCAR	Nov 2009 –
CO2, H2O	Infrared gas analysis	LI-COR 7500. 4 levels: 2, 8, 16, 43	NCAR	Nov 2009 – July 2012
		LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz		July 2012
	Infrared gas analysis Barometer	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220	NCAR NCAR	July 2012 Nov 2009 –
Atmospheric pressure	Barometer	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz	NCAR	July 2012 Nov 2009 – July 2012
Atmospheric pressure Temperature, Relative	Barometer Radiation shielded and	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala		July 2012 Nov 2009 – July 2012 July 2009 –
Atmospheric pressure Temperature, Relative	Barometer Radiation shielded and aspirated humitter and	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5	NCAR	July 2012 Nov 2009 – July 2012
Atmospheric pressure Temperature, Relative	Barometer Radiation shielded and	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29	NCAR	July 2012 Nov 2009 – July 2012 July 2009 –
Atmospheric pressure Temperature, Relative	Barometer Radiation shielded and aspirated humitter and	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled	NCAR	July 2012 Nov 2009 – July 2012 July 2009 –
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature 4-component net	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen,	NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012 Nov 2009 –
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen, model CNR-1.	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature 4-component net	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen, model CNR-1. Above-canopy	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012 Nov 2009 –
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature 4-component net	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen, model CNR-1. Above-canopy measurement at	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012 Nov 2009 –
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature 4-component net	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen, model CNR-1. Above-canopy measurement at 22m. Upwelling	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012 Nov 2009 –
Atmospheric pressure Temperature, Relative humidity	Barometer Radiation shielded and aspirated humitter and resistive temperature 4-component net	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen, model CNR-1. Above-canopy measurement at 22m. Upwelling and downwelling	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012 Nov 2009 –
CO2, H2O Atmospheric pressure Temperature, Relative humidity Radiation	Barometer Radiation shielded and aspirated humitter and resistive temperature 4-component net	LI-COR 7500. 4 levels: 2, 8, 16, 43 m sampled at 10 Hz Vaisala PTB220 sampling at 1 Hz NCAR–Vaisala 50Y Humitter. 5 levels: 2, 8, 16, 29 and 43 m sampled at 1 Hz Kipp and Zonen, model CNR-1. Above-canopy measurement at 22m. Upwelling	NCAR NCAR	July 2012 Nov 2009 – July 2012 July 2009 – July 2012 Nov 2009 –

Peripheral measurements-1 (gas-phase)				
Measurement	Technique	Instrumentation	Institution	Time coverage
Volatile Organic Compounds (concentrations)	Total Organic Gas Analyzer (TOGA); Fast GCMS method	Custom cryo-trapping and desorption GC system with quadrupole MS detection (60 seconds per GC run); Apel et al. 2010	NCAR	August 2010
NO3, N2O5	Cavity Ringdown Spectroscopy	NOAA custom-built system (Dube et al. 2006; Wagner et al. 2011)	Reed college and NOAA	July - August 2011
HOx (OH, HO2, and RO2)	Chemical ionization mass spectrometry	Extrel quadrupole system with a Custom made ionization system (Eisele and Tanner, 1991)	NCAR	August 2010, August 2011
H2SO4	Chemical ionization mass spectrometry	Extrel quadrupole system with a Custom made ionization system (Eisele and Tanner, 1993)	NCAR	August 2010, August 2011
OH reactivity	Laser pump-probe Laser induced fluorescence (LIF)	Tokyo Metropolitan University LIF (Sadanaga et al. 2004)	Tokyo Metropolitan University	Summer 2010
Formaldehyde (HCHO) concentration and flux	Fiber Laser-induced fluorescence (FILIF)	Madison FILIF instrument (Hottle et al. 2012)	University of Wisconsin Madison	August 2010 (DOY 224-237; 241-243 flux, 217-237; 241-243 conc.)
Glyoxal (CHOCHO)	Laser-Induced Phosphorescence (LIP)	Madison LIP instrument (Huisman et al. 2008)	University of Wisconsin Madison	August 2010 (DOY 227-243)
Intermediate and semivolative gas- phase organic compounds	Cryotrapping followed by temperature programmed desorption into electron impact mass spectrometry (EI-MS)	Instrument described in Cross et al. 2013	Massachusetts Institute of Technology	July - August 2011
Peripheral measuren				
Chemical composition of nano-particles	Thermal Desorption Chemical Ionization Mass Spectrometry (TDCIMS)		NCAR	July 2008, August 2011
Particle size distributions	1. nano-Scanning Mobility Particle Siz	1-TSI model 3085 er nano-DMA with	NCAR	February 2010 – Jan 2012

	(SMPS, 3-50 nm); 2. regular SMPS (40-350 nm); 3. optical particle counter (200 nm – 2 um)	model 3025 CPC; 2-TSI model 3081 Long-DMA with model 3760 CPC; 3-Particle Measurement Systems Lasair (model 1002)		
Particle size distributions (5 nm - 32 µm)	Wide Range Aerosol Spectrometer (WRAS)	Grimm Model EDM 665	Max Planck Institute for Chemistry	July - August 2011
Particle size distributions	Scanning mobility particle sizer	TSI model 3080 classifier using TSI model 3081 long column DMA and TSI model 3010 CPC.	University of Colorado, Boulder	July 2011 – June 2012
Particle size distributions of total particles and fluorescent biological particles $(0.5 - 20 \text{ um})$	Ultraviolet aerodynamic particle sizer (UV-APS)	TSI model 3014	Max Planck Institute for Chemistry	July 2011 – June 2012
Ice nuclei (IN) and bioaerosol characterization	Multiple Orifice Uniform Deposition Impactor (MOUDI) analyzed via droplet freezing technique (UBC) and fluorescence microscopy (MPIC)	MSP Model 110-R	Max Planck Institute for Chemistry and University of British Columbia	July - August 2011
Particle elemental composition, characterization, and imaging	Low-volume filters (gold-coated Nuclepore) analyzed via scanning electron microscopy (SEM)	Scanning electron microscopy	Max Planck Institute for Chemistry	July - August 2011
Particle elemental composition and characterization	Low-volume impactors (silicon nitride windows) analyzed via scanning transmission x-ray microscopy with near- edge x-ray absorption fine structure analysis (STXM-NEXAFS)	X-ray microscopy and near-edge x-ray absorption	Max Planck Institute for Chemistry	July - August 2011
Particle imaging	Low volume impactors (TEM grids) analyzed via transmission electron microscopy (TEM)	Transmission electron microscopy	Max Planck Institute for Chemistry	July - August 2011
Biological organism	High-volume filters	Digitel DHA-80	Max Planck	July - August

DNA speciation	(glass fiber) analyzed via polymerase chain reaction (PCR) technique		Institute for Chemistry	2011
Culturable biological particle identification and ice activity	Direct-to-agar impactor samplers (time-resolved/slit and size-resolved/6-stage) analzed via PCR and drop freezing	Andersen	Max Planck Institute for Chemistry	July - August 2011
Cloud condensation nuclei (CCN)	Continuous-flow streamwise thermal- gradient CCN chamber sampling bulk (2008) and size selected particles	Droplet Measurement Technologies model CCN-100 with TSI DMA and particle counter	Colorado State University (2010-2011); Washington State University (2008);	July 2008, May 2010- December 2011
Ice Nuclei (IN)	Continuous Flow Diffusion Chamber (CFDC)	Made in house, following Rogers et al. 2001	Colorado State University	July 2008, July – August 2011
Primary biological aerosol particle (PBAP) speciation	Sampling with offline analysis	Biosampler with PCR/sequencing	Colorado State University	July - August 2011
Black carbon mass, size distribution and mixing state	Single Particle soot spectometer	Droplet Measurement Technologies, model SP2	Los Alamos National Laboratory	July - August 2011
3-wavelength aerosol absorption and scattering	3-Wavelength Photoacoustic Sensors, 2-Vis/IR, 1- UV	Droplet Measurement Technologies, model PASS-3	Los Alamos National Laboratory	July - August 2011
Aerosol volatility- resolved 3-wavelength aerosol absorption and scattering	Thermal denuder with 3-Wavelength Photoacoustic Sensors, 2-Vis/IR, 1- UV	Droplet Measurement Technologies, model PASS-3	Los Alamos National Laboratory	July - August 2011
Sub-micron non- refractory bulk and size-resolved aerosol composition	Aerosol mass spectrometry	HR-TOF-AMS (DeCarlo et al. 2006)	University of Colorado, Boulder;	July - August 2011
Aerosol volatility- resolved aerosol composition	Thermal denuder (Huffman et al. 2009) with aerosol mass spectrometry	Aerodyne thermal denuder with HR- TOF-AMS (deCarlo et al. 2006)	University of Colorado, Boulder	July - August 2011
Aerosol volatility- resolved 3-wavelength aerosol absorption and scattering	Thermal denuder with 3-Wavelength Photoacoustic Sensors, 2-Vis/IR, 1- UV	Droplet Measurement Technologies, model PASS-3	Los Alamos National Laboratory	July - August 2011
Sub-micron non- refractory bulk and	Aerosol mass spectrometry	HR-TOF-AMS (DeCarlo et al.	University of Colorado,	July - August 2011

size-resolved aerosol		2006)	Boulder;	
composition Aerosol volatility- resolved aerosol composition	Thermal denuder (Huffman et al. 2009) with aerosol mass spectrometry	Aerodyne thermal denuder with HR- TOF-AMS (deCarlo et al. 2006)	University of Colorado, Boulder	July - August 2011
MBO-derived epoxides	High volume filter samples	Filter sampler and offline GC/MS and LC/MS analysis	University of North Carolina	July - August 2011
Organic speciation, bio- markers including precursor-specific SOA tracers, EC/OC and 14C of EC/OC for PM2.5	High volume filter samples	Filter sampler and offline analysis	United States EPA	July - August 2011
Lipids, carbohydrates, proteins constituents of aerosol	High volume filter samples	Quartz filters with offline analysis	University of Colorado, Boulder	Summers of 2008, 2009, 2011
Particulate elemental carbon and organic carbon	Thermal-optical method	Sunset EC/OC	University of Colorado, Boulder	July - August 2011
Peripheral measuremen	nts-3 (mixed gas+aeroso	l-phase)		
Aerosol- and gas-phase chemistry of ambient air in a highly oxidizing enviroment	Ambient sampling via oxidant flow reactor with addition of OH, NO3, O3	2 x Potential Aerosol Mass (PAM) oxidant flow reactors (Kang et al. 2007, Ortega et al. 2013); Oxidants: OH, O3, NO3; analysis byAerodyn AMS, PTR-TOF-MS and SMPS	University of Colorado, Boulder; University of Innsbruck	July - August 2011
NO2, PANs, HNO3, Alkyl nitrates (gas & aerosol using denuder)	Thermal Desorption - Laser induced fluorescence	Custom-built system (Day et al. 2002, Rollins et al. 2010)	Reed College and University of California, Berkeley	July - August 2011
Gas- and particle-phase organic acids composition and partitioning-1	Micro-Orifice Volatilization Impactor High- Resolution Time-of- Flight Chemical Ionization Mass Spectrometer (MOVI- HRToF-CIMS) using acetate reagent ion	Aerodyne Research Inc. MOVI- HRToF-CIMS (Yatavelli et al. 2012, Yatavelli et al. 2013)	University of Colorado, Boulder	July - August 2011
Gas- and particle-phase organic acids composition and partitioning-2	Atmopsheric Pressure Chemical Ionization Ion Trap Mass Spectrometry using	Custom-built instrument (as described by Hoffman et al. 2002	University of Mainz	July - August 2011

	O2- reagent ion (APCI-IT-MS)	and Vogel et al. 2013)		
Simultaneous bulk and speciated organics in gas and particle phases	Thermal Desorption Gas Chromatography Mass Spectrometry and Aerosol Mass Spectrometry	Semi-Volatile Thermal desorption Aerosol Gas chromatograph / Aerosol Mass Spectrometry (SV- TAG-AMS; Zhao et al. 2013)	University of California Berkeley	July - August 2011
Ambient neutral molecular clusters	Chemical ionization mass spectrometry	Cluster-Chemical Ionization Mass Spectrometer (Zhao et al. 2010)	NCAR	July 2008
Peripheral measureme	nts-4 (hydrological)			
Precipitation (rain)	Tipping buckets	Texas Electronics model USW525. 11 tipping buckets distributed around Chemistry flux tower	NCAR	July 2009- present
Precipitation (total)	Weighing total precipitation gauge	Environmental Technologies Inc., Noah-II (5 minute averaging)	NCAR	February 2010-present
Snow depth	Laser snow depth sensor	Jenoptik, Inc. SHM30	NCAR	2010-present.
Soil moisture	Frequency domain reflectometry	Decagon EC-5 probes (3 sites around flux tower extending 1 m into soil)	NCAR	June 2010- present
Soil temperature	Thermistor	Campbell Scientific T107 (co-located with soil moisture above).	NCAR	June 2010- present
Peripheral measureme			NGAD	
Sap flow	Compensation Heat Pulse Method	Made in house, following Burgess et al. 2001	NCAR	May 2010- December 2011
Soil VOC emissions	Static (University of Colorado) and dynamic (NCAR) chamber approaches, measuring VOC abundances by PTR- MS	Custom-built chambers with automated lid control. Measurements by Ionicon PTR-MS and NCAR PTR- MS	NCAR, University of Colorado Boulder	July 2008
Leaf-level photosynthesis and	2-channel infrared gas analyzer (CO2 +	Licor Model 6262	NCAR	Campaign- style

respiration	H2O)			measurements each growing season (2008- 2012)
Leaf-level BVOC emission measurements	VOC trapping onto solid adsorbents followed by GC-FID /MS analysis	Flow through cuvettes with light and temperature control	NCAR	Campaign- style measurements each growing season (2008- 2012)
Tree branch gas exchange	Infrared gas analysis	LiCor Model 6400	University of Colorado, Boulder	July - August 2011
Tree branch VOC emissions	Proton transfer reaction mass spectrometry (PTR- MS)	Ionicon PTR-MS	University of Colorado, Boulder	July - August 2011
Peripheral measurement				
Understory radiation and flux of latent heat, sensible heat water and CO2	Eddy covariance, radiometer	Campbell C-SAT sonic anemometer; open-path infrared gas analyzer and krytpon hygrometer	NCAR	2011-2012
NO2 photolysis	Actninic flux filter radiometry	Metcon jNO2 filter radiometers	NCAR	Outside and within canopy (August 2010, July-Aug 2011)
Actinic flux (product of phosolysis frequencies)	Spectrally-resolved diode array	Metcon Spectrograph with Diode Array Detector	NCAR	Top of chemistry tower (July- August 2011).
Actinic flux and jNO2	Diode array actinic flux spectroradiometer (DAAFS)	Metcon with jNO2 filter	University of Houston	August 2011
Water isotopes	Cavity ring-down spectrometry	Picarro L2120-i	Univ. of Arizona (2010), Univ. Colorado, Boulder (2011)	August 2010, May-October 2011
Boundary layer height and atmospheric structure	Ceilometer	Vaisala CL-31 (Haman et al. 2012)	University of Houston	August 2010, July-August 2011

5

6 Abbreviations:

7 NOAA – National Oceanic and Atmospheric Administration

8 NCAR – National Center for Atmospheric Research

- 9 EPA Environmental Protection Agency
- 10 CPC Condensational Particle Counter
- 11 DMA Differential Mobility Analyzer
- 12 UHSAS Ultra-high Sensitivity Aerosol Spectrometer
- 13 EC/OC Elemental Carbon/Organic Carbon

14

15

- Table S2: Selected studies of BEACHON (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen) field campaigns at the Manitou Experimental
- Forest Observatory.

BEACHON SRM08 (Southern Rocky Mountain 2008)		
Emphasis	Citation	
PTR-MS measurements of BVOC; interpretation of mass spectra	Kim et al. 2010	
Mass spectrometer measurements of neutral sulfuric acid clusters	Zhao et al. 2010	
Characterizing neutral clusters containing sulfuric acid and amines	Zhao et al. 2011	
BEACHON ROCS (Rocky	y Mountain Organic Study).	
Emphasis	Citation	
Formaldehyde flux measurements using laser- induced fluorescence (LIF)	DiGangi et al. 2011	
Fast glyoxal and formaldehyde measurements and comparison to other Ponderosa Pine forest	DiGangi et al. 2012	
Leaf and needle BVOC contribution to whole ecosystem fluxes	Greenberg et al. 2013	
Comparison of BVOC measurement techniques	Kaser et al. 2013a	
Measurements and modeling results above- canopy ponderosa pine emissions	Kaser et al. 2013b	
Evaluation of HO _x sources in an ecosystem dominated by MBO and MT emissions	Kim et al. 2013	
Nocturnal evapotransporation in an open- canopy forest through isotopic analysis of H ₂ O	Berkelhammer, et al. 2013	
BEACHON RoMBAS (Rocky M	Iountain Biogenic Aerosol Study).	
Emphasis	Citation	
Exposed monoterpene resin effects on ecosystem MT emissions	Eller et al. 2013	
Measurements of particle and gaseous organic nitrate species.	Fry et al. 2013	
Rain effects on the concentration of biological particles and ice condensation nuclei	Huffman et al. 2013	
Isoprene and 232-MBO measurements using NO+ ionization mass spectrometry	Karl et al. 2012	
Year-long characterization of aerosol hygroscopicity	Levin et al. 2012	
Aerosol hygroscopicity and aerosol chemical	Levin et al. 2013	

composition in summer

Rain effects on populations of ice nuclei	Prenni et al. 2013
Size- and time-dependent vertical aerosol flux	Pryor et al. 2013
measurements	
Cluster analysis to characterize constituents of	Robinson et al. 2013
bio-aerosol samples	
Seasonal cycles of fluorescent biological	Schumacher et al. 2013
aerosol particles	
Correlations between ice nuclei and fluorescent	Tobo et al. 2013
biological aerosol particles	
Gas- and particle-phase partitioning of organic	Yatavelli et al. 2013
acids	
Organosulfates as tracers for MBO-derived	Zhang et al. 2013
SOA formation	