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Abstract

The wind is very important parameter of the stratospheric dynamics which can be af-
fected by many factors like tropospheric North Atlantic Oscillation (NAO) or El Nino
Southern Oscillation (ENSO), stratospheric Quasi-biennial Oscillation (QBO) or Sud-
den Stratospheric Warming (SSW) and solar activity. Due to lack of direct observa-5

tions we have to use reanalysis data, here NCEP/NCAR reanalysis. The behaviour and
trends of wind and its meridional component is analysed in this paper. The influence
of NAO on trend in wind is significant in the lower stratosphere (100 hPa) in Atlantic
sector; the trend is also affected by QBO, whereas influence of SSW is rather minor
and observable only in the middle stratosphere (10 hPa). The most interesting result10

seems to be the longitudinal distribution of the meridional wind component. We identify
two-core structure of strong but opposite winds, one at each hemisphere at 10 hPa,
and a four-core structure at 100 hPa. These structures are not associated with tides.
However, they appear to be related to the well-pronounced Aleutian pressure high at
the 10 hPa level.15

1 Introduction

The Upper Troposphere/Lower Stratosphere (UTLS) region represents a link for the
troposphere-stratosphere coupling as well as for chemistry-climate coupling (e.g.
Shepherd, 2007). Stratospheric winds play a main role in stratospheric chemistry
through transporting long-lived species, but they also could create transport barriers20

which could isolate the polar vortex in winter (Shepherd, 2007, 2008). Simultane-
ously with chemical processes, trace gas distribution moderates the radiative forcing
in stratospheric region. The changes of stratospheric wind (strengthening of westerly
polar vortex and its poleward shift) are coupled with ozone depletion and temperature
changes. The possible interaction between changes in the stratosphere dynamics and25

climate changes in the troposphere has been described by Hartmann et al. (2000).
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That is why it is important to understand the stratospheric circulation and the impact of
climate change on this circulation.

The stratospheric Quasi-biennial Oscillation (QBO) and downward feedback from
the stratospheric vortex to tropospheric weather systems have also been reported to
be relevant both in the context of weather prediction and climate (Baldwin and Dunker-5

ton, 1999; Baldwin et al., 2003; Sigmond et al., 2008; Marshall and Scaife, 2009; Wang
and Chen, 2010). Moreover, stratospheric wind affects vertically propagating atmo-
spheric waves which control the transport circulation in the stratosphere and meso-
sphere (Holton and Alexander, 2000). That is why we are going to study the behaviour,
trend and connection of winds to the other phenomena of middle latitude stratosphere10

and show their impact on climate and troposphere behaviour.
The stratospheric winds in meteorological analyses and reanalyses have some prob-

lems when we compare them with observations (e.g., Kozubek et al., 2014). One of
the reasons is that winds in reanalyses are derived from primarily calculated quan-
tities (i.e. geopotential height distribution). We usually replace unobserved variables,15

which the stratospheric wind is, by observed ones through the use of balance relation-
ships. For example the application of a mass-wind balance (Derber and Bouttier, 1999)
leads to a state in which the large number of temperature soundings provides a strong
constraint on the balanced wind component, i.e. approximately the geostrophic wind
(Baron et al., 2013). However, it is hard to derive the larger scale wind fields using the20

geostrophic assumption especially in the tropical region because the Coriolis parame-
ter vanishes at the equator and the solutions become numerically unstable (Hamilton,
1998; Žagar et al., 2004; Polavarapu et al., 2005).

Despite the importance of middle atmospheric observations, wind measurements,
which are assimilated in the models, are mostly limited to the troposphere. In the meso-25

sphere, winds are measured using optical techniques from satellites (Shepherd et al.,
1993; Hays et al., 1993; Killeen et al., 1999; Niciejewski et al., 2006), by ground-based
radar systems such as European Incoherent SCATter (EISCAT) (Alcayde and Fonta-

16389

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16387/2014/acpd-14-16387-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16387/2014/acpd-14-16387-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 16387–16409, 2014

Stratospheric winds:
longitudinal

distribution and
long-term trends

M. Kozubek et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

nari, 1986) and various meteor and other radars (Maekawa et al., 1993; Jacobi et al.,
2009).

Baron et al. (2013) suggest that winds can be derived down to 40 km by using emis-
sion lines from other molecules but they show that reliable measurement using this
method can be done only for higher levels (higher than 50 km). Other studies confirm5

these results. That is why Baron et al. (2013) recommend this method for observations
above the 50 km. Stratospheric winds have been measured from the ground using ac-
tive and passive techniques (Hildebrand et al., 2012; Rufenacht et al., 2012) and from
space by the High Resolution Doppler Imager (HRDI) on UARS covering 10–35 km and
60◦ S–60◦ N, using the molecular oxygen A- and B-bands (Ortland et al., 1996).10

In this paper we analyze the connection of stratospheric wind to the other phenom-
ena like Quasi-biennial Oscillation (QBO), Sudden Stratospheric Warming (SSW) or
North Atlantic Oscillation (NAO). Next we look at the distribution of meridional wind
component in the different pressure levels and try to find the possible reason for its
behaviour.15

The structure of the paper is as follows. In Sect. 2 the data and methods are de-
scribed. Then, in Sect. 3 the results of analysis are shown and in Sect. 4 briefly dis-
cussed. Section 5 provides the conclusions.

2 Data and methods

We have used NCEP/NCAR-1 reanalysis (further on NCEP/NCAR). The NCEP/NCAR20

reanalysis was described in detail by Kistler et al. (2001). This reanalysis provides
data from 1948 onwards, but data is more reliable from 1957 onwards, when the
first upper-air observations were established, and from 1979 onwards, due to the
beginning of satellite date assimilation. Data is available in the 2.5◦ to 2.5◦ grid
at 00:00, 06:00, 12:00 and 18:00 UTC. Vertical resolution is 28 levels with the top25

of the model at 2.7 hPa. The NCEP/NCAR analysis system efficiently assimilates
upper-air observations but it is only marginally influenced by surface observations be-
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cause model orography differs from reality (Kistler et al., 2001). According to Kozubek
et al. (2014) winds from the NCEP/NCAR reanalysis reveal the best results when
compare with ERA-40 and ERA-Interim reanalysis or observations at Prague-Libus,
ERA-40 has a problem with wind speed and direction distributions at 10 hPa in the
last four years (1998–2002) and ERA-Interim agreement with observations is slightly5

worse than that of NCEP/NCEP reanalysis. Moreover, neither ERA-40, nor ERA-
Interim separately covers the whole period 1970–2012. That is why we can consider
NCEP/NCAR reanalysis reliable and adequate for our analyses. The 10.7 cm radio so-
lar flux (from http://www.esrl.noaa.gov/psd/data/correlation/solar.data) is used for the
solar cycle analysis (solar max and solar min). The QBO data at 50 hPa is taken from10

http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/.
The analysis has been done for wind speed data from 30◦ N to 80◦ N but in this paper

we are mainly focused on middle latitudes (50◦, 52.5◦, 55◦ N) at two pressure levels
100 and 10 hPa. These two pressure levels represent the dynamics and conditions in
the lower (100 hPa) and middle (10 hPa) stratosphere at middle latitudes. The three15

selected latitudes represent middle latitude band from 49◦ N to 56◦ N. We analyzed
them separately to show the detail changes in each of the three latitudes but usually the
results are quite similar, therefore we present them predominantly only for one latitude.
We mostly use daily data from 00:00 UTC but for one analysis we have to choose also
06:00 and 12:00 UTC (analysis of diurnal and semidiurnal tides). The selected latitudes20

are separated into four sectors (0–90◦ E – European sector, 90–180◦ E – Asian sector,
180–300◦ W – Pacific-American sector, and 300–360◦ E – Atlantic sector). The wind
speed is calculated from gridded u and v components. In analyses we have used either
total wind, or u (zonal) and v (meridional) components separately.

We look for time development in each sector at both pressure levels. The statistical25

significance threshold of trends has been set on 95 % level (using standard MATLAB
routine). We compare behaviour of wind speed in different sectors. Then we divide
data of the whole period into several groups according to QBO, NAO or solar cycle
influence. We again compute trends separately for all these groups with significance
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threshold 95 %. These analyses have been done for total wind speed or for u and v
components, respectively.

We have computed averages through the whole period (1970–2012) for every grid
point from 20◦ N to 60◦ N and for every month. Comparison of wind speed distribution in
100 and 10 hPa at 00:00 UTC or wind speed distribution at 00:00, 06:00 and 12:00 UTC5

(06:00 and 12:00 for analysis of diurnal and semidiurnal tides) separately for u and v
components has been done.

3 Results

3.1 Long-term trends in winds

In this section we would like to show the influence of different stratospheric/ tropo-10

spheric phenomena on the stratospheric wind speed. Figure 1 shows time develop-
ment of winter averages (October–March) of wind speed for different sectors of 52.5◦ N.
We have done analysis also for other latitudes (50◦ N and 55◦ N) and the results were
very similar (not shown here). On the top panel we can see results for 100 hPa. The
behaviour of Atlantic sector (300–360◦ W) is different from other sectors (Pacific, Euro-15

pean). There is significant positive trend (95 % level) from 1970 till 1996 and negative
trend after 1996 in the Atlantic sector. The peak value of wind speed and turnaround of
trend in 1996 coincide with the total ozone trend turnaround in northern middle latitudes
(e.g., Harris et al., 2008). The trends in other three sectors are also insignificant. Gen-
erally stronger winds occur in Atlantic sector, especially after 1985. At pressure level20

10 hPa no significant trend can be found. The behaviour is rather chaotic and qualita-
tively similar for all four sectors. There are stronger winds in Atlantic (300–360◦ W) and
European (0–360◦ E) sectors, in some years the wind is two times stronger in Atlantic
than Asian sector (42 m s−1 and 17 m s−1, respectively for 1998).

Due to different behaviour in Atlantic sector we compare time series of wind speed25

and NAO index. NAO is selected because it influences the winds in Atlantic sector in
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troposphere and its effect could be observed even in the lower stratosphere. Figure 2
shows the results. The trends in winds and NAO for three different periods (1958–
1970, 1971–1995 and 1996–2009) are similar in tendency, an insignificant negative
trend before 1970, a significant positive trend for 1970–1995, and a significant negative
trend after 1995. Thus winds at 100 hPa in Atlantic sectors are influenced by NAO much5

more than in other sectors, which do not display a significant trend. This is physically
plausible results.

Now we show winter (December–February only) trends for two periods (1970–1995
and 1995–2012). This analysis will show us the influence of different stratospheric
phenomena (QBO or SSW) on the stratospheric winds (dynamics). We have to start at10

1970 because before this year the reliability of NCEP/NCAR reanalysis data is lower
(Kozubek et al., 2014). We use daily data and that is why these two periods (25 and
17 years) should be long enough for our analyses. The results are presented in Table 1.
We divide data into several groups. The first two groups show results for winters when
either major SSW occurs or does not occur. This analysis should reveal the influence of15

major SSW on dynamics in different sectors of middle latitudes. Some statistically sig-
nificant trends (95 % level) at 100 hPa for all three analysed latitudes are found mainly
in the Atlantic sector. Generally positive trend is seen in 1970–1995 and negative one
in 1995–2012 which agree with previous studies. At 10 hPa there are no statistically
significant trends for group with major SSWs but again a positive tendency in 1970–20

1995 and a negative tendency in the second period are observed. The second group
without major SSWs reveals again positive tendency in the first period and negative
one in the second. However, we can find several significant trends in both periods,
even though weaker than corresponding trends at 100 hPa. These results indicate that
major SSWs at 10 hPa support a tendency to absence of significant trends (change of25

wind during the major SSW). No substantial impact of major SSWs on trends in winds
is found for 100 hPa; trends with and without major SSWs are very similar.

The third and fourth groups in Table 1 show trends for years when the east or west
phase of QBO occur, respectively. At 100 hPa we can found significant trend mainly
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for period 1970–1995 in Atlantic and European sectors. Again we can found change
from positive (in the first period) to negative (in the second period) trends, which is well
pronounced for the west phase of QBO, whereas there is no systematic change for the
east phase of QBO. There is no typical behaviour at 10 hPa for the east or west phase of
QBO. At 10 hPa the tendency to change from positive (1970–1995) to negative (1995–5

2012) trends can be seen for both phases of QBO but again it is more pronounced for
the west phase of QBO. There are almost no differences between trends in the east
and west QBO phases for positive trends in 1970–1995 but negative trends in 1995–
2010 in European and Atlantic sectors are much more negative for the west phase of
QBO. Thus the results show that for both pressure levels trends and their change in10

the mid-1990s are evidently better pronounced for the west than east phase of QBO.
We have done similar analysis separately for each month; the results are similar to the
whole winter results (December–February).

3.2 Impact of solar cycle on winds

Another analysis, which has been done, is comparison between years in the solar cycle15

maximum and minimum in different QBO phases. This analysis will show the connec-
tion between solar cycle and stratospheric dynamics (QBO and wind speed). Strato-
spheric dynamics and chemistry is influenced by solar activity especially at higher lev-
els. Again we show winter (October–March) averages but we have also results from
each winter month. The results for absolute wind speed are shown on the first two20

panels of Table 2. At 10 hPa we can observe a difference between solar maximum
and minimum for the west QBO. The wind speed in solar minimum is stronger (by 2–
5 m s−1) than in solar maximum especially in European and Atlantic sectors. The east
QBO does not reveal a systematic difference; moreover sometimes wind in solar max-
imum is stronger than in solar minimum. At 100 hPa if there are some differences, they25

are mainly for the east QBO, not west like at 10 hPa. The two bottom panels show the
same analysis as top ones but for v (meridional) wind component. An analysis for zonal
wind component may be found in many studies but we have not found in literature such
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an analysis for meridional component. At 10 hPa we observe slightly stronger winds
in solar minimum than solar maximum for the east QBO. At 100 hPa we cannot find
any significant differences for both phases of QBO. This analysis was done also for
each month and the biggest differences of absolute wind speed and v component were
found in December and January. These results confirm that solar activity influence5

mainly higher part of the stratosphere.

3.3 Longitudinal distribution of stratospheric meridional winds

Because we have found different signs in different sectors during the previous analysis
of meridional wind component (see Table 2, bottom panels), we have computed the
whole possible period (1958–2012) averages of this component for each grid point from10

60◦ N to 20◦ N for January and/or July, respectively. The results are shown in Figs. 3
and 4. The top panel show results for 10 hPa and bottom for 100 hPa. Figure 3 reveals
at 10 hPa a strong poleward wind on the east hemisphere of the middle and higher
latitudes. This poleward wind changes into equatorward on the west hemisphere at
10 hPa (similar amplitude as on the east hemisphere). Generally winds are stronger at15

10 hPa (up to 20 m s−1) than at 100 hPa (up to 10 m s−1). At 100 hPa there are two cores
with negative (equatorward) and two cores with positive (poleward) values. The same
analysis, but for July, is shown on Fig. 4. This analysis shows that the observed feature
occurs only in winter. The winds are weaker than in January and the distribution is much
less compact compared with January, especially at 10 hPa, whereas at 100 hPa there is20

again a tendency to four core patterns but at lower latitudes than in January. We have
done the same analysis for higher pressure levels (up to 5 hPa) and the differences
between east and west hemisphere have been growing with increasing height.

Figure 5 show averages through period 1957 to 2012 for January at 10 hPa pressure
level but we compare data from 00:00 UTC (top panel), 06:00 UTC (middle panel) and25

12:00 UTC (bottom panel). There are almost no differences in main features. That is
why we can conclude that the two core structure with opposite meridional winds is not
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caused by diurnal or semidiurnal tides. The other possibility for this structure could be
dynamical reasons which are discussed in the next paragraph.

Figure 6 shows a distribution of geopotential height at 10 and 100 hPa. The Aleu-
tian pressure high centred at about 40–55◦ N, 180◦ E is well developed at 10 hPa. This
height can block the zonal winter eastward winds. This results in poleward winds on5

front side and in equatorward winds on the backside as a consequence of flow along
this massive anticyclone. This coincides with the observed two core structure at 10 hPa
with the poleward meridional component of wind on the eastern hemisphere and the
equatorward meridional component on the western hemisphere. At 100 hPa at least
on the western hemisphere (not at eastern one) the distribution of geopotential height10

(Fig. 6) seems to support the four core structure in winds (Fig. 3). The summertime dis-
tribution of geopotential heights at 10 hPa does not display any well-pronounced struc-
ture and, therefore, no pronounced structure is developed in meridional wind (Fig. 4).

4 Discussion

Our results, which concern higher middle latitudes, coincide with the result of Scaife15

et al. (2005) that NAO as a tropospheric phenomenon affects zonal winds in the lower
stratosphere (and vice versa); we added to that finding that contrary to the lower strato-
sphere, trends in winds in the middle stratosphere (10 hPa) are not influenced signifi-
cantly by NAO. Our results also show that QBO as a stratospheric phenomenon, which
influences the stratosphere at all heights, affects trends at both the 100 and 10 hPa lev-20

els, whereas major sudden stratospheric warming (SSW), which is substantially better
developed at 10 hPa than at 100 hPa, affect trends measurably only at 10 hPa. The
influence of QBO and SSWs and their combination on the stratosphere has been dis-
cussed in many papers, e.g. recently by Watson and Gray (2014). The influence of
QBO on global stratospheric circulation, so called Holton-Tan effect, has first been ob-25

served by Holton and Tan (1980).
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Perhaps the most interesting result offers the analysis of geographic distribution of
meridional component of stratospheric wind in the form of the well-pronounced two-
core structure at 10 hPa in winter. The meridional wind has not been studied often.
We have not found in literature any analysis of its geographic distribution without zonal
mean averaging. The wintertime longitudinal distribution at 10 hPa can be explained5

neither by diurnal, nor by semidiurnal tides, because there are no differences between
the longitudinal distribution of meridional winds at 00:00, 06:00 and 12:00 UTC (Fig. 5).
However, the geopotential height analysis reveals a possible reason for this longitudi-
nal distribution. The well-developed large Aleutian high at 10 hPa in Fig. 6 can block
the zonal flow and pushes winter eastward winds to flow poleward on western side of10

the Aleutian pressure high and back equatorward on its eastern side. This is in qual-
itative agreement with the behaviour of meridional wind in Fig. 3. This feature can at
least partly explain the longitudinal distribution of winds at 10 hPa. As for 100 hPa, the
distribution of geopotential heights at the western hemisphere seems to support the
observed four-core longitudinal distribution of winds but such effect is largely absent15

at the eastern hemisphere. Further investigations of origin of the two- and four-core
longitudinal structure of stratospheric winds will be done in near future but even these
basic results show that we have to be careful when zonal mean averages are used for
analyses, because in such a way we can miss important information.

5 Conclusions20

Analysis of wintertime midlatitude NCEP/NCAR reanalysis data at 100 and 10 hPa lev-
els in higher middle latitudes reveals noticeable influence of stratospheric (QBO) and
tropospheric (NAO) phenomena on the trends in winds in the stratosphere. It also ex-
hibits a reversal of trends in winds in the mid-1990s in accord with change of trend in
ozone. A remarkably stronger trends in wind observed at 100 hPa (not at 10 hPa) in25

Atlantic sector are related to trends in NAO. Even though NAO is a tropospheric phe-
nomenon, it can affect the dynamics at least in the lower stratosphere. The effect of
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QBO, which means much more pronounced trend and its change in the west phase of
QBO than in the east phase, is evident in both pressure levels. Major sudden strato-
spheric warmings (SSWs) support tendency to absence of significant trends in winds
at 10 hPa; they have no substantial impact on trends in winds at 100 hPa.

Another analysis is comparison of stratospheric winds in the winter northern mid-5

dle latitudes between years of the solar cycle minimum and maximum under different
QBO conditions. The results differ for 100 and 10 hPa and for total or meridional wind
(Table 2), so a clear overall pattern cannot be established.

The analysis of geographic distribution of meridional component of stratospheric
wind in winter is shown in Fig. 3 for 20–60◦ N. It reveals well pronounced longitudinal10

distribution of winds at latitudes above 30–35◦ N with two cores of strong but oppo-
site meridional winds, one at each hemisphere (eastern and western) at 10 hPa, and
a somewhat less pronounced four-core structure at 100 hPa. In summer such a well-
pronounced core structure is absent (Fig. 4). The two-core structure at 10 hPa is not
caused by tides as it is demonstrated by Fig. 5. We have identified the strong and well-15

developed large Aleutian pressure high at 10 hPa Fig. 6, which appears to contribute
to the two-core structure and which is capable to explain qualitatively this structure.
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Table 1. Winter (December–February only) trends (m s−1 per year) of total wind speed for two
periods (1970–1995 and 1996–2012). Major SSW – only years when the major SSW (according
to WMO definition) occur, no SSW – years when no SSW occurs, east QBO – only years when
the east phase of QBO occurs, west QBO – only years when the west phase of QBO occurs.
Top panel 100 hPa, bottom panel 10 hPa. 70–95 means 1970–1995 and 95–12 means 1995–
2012. Significant trends on 95 % level are highlighted by bold numbers.

100 hPa
latitude 50◦ N 52.5◦ N 55◦ N

sector 0–90 90–180 180–300 300–360 0–90 90–180 180–300 300–360 0–90 90–180 180–300 300–360

70–95 0.07 −0.02 0.06 0.15 0.06 −0.04 0.06 0.16 0.05 −0.02 0.06 0.12

m
aj

or
S

S
W

95–12 −0.13 0.00 −0.22 −0.60 −0.15 0.01 −0.26 −0.64 −0.18 −0.05 −0.29 −0.57

70–95 0.11 0.04 0.09 0.20 0.12 −0.01 0.14 0.27 0.11 −0.01 0.09 0.25

no
S

S
W

95–12 −0.14 −0.01 −0.19 −0.55 −0.09 −0.06 −0.18 −0.53 −0.12 0.00 −0.26 −0.55

70–95 0.10 −0.18 −0.01 0.09 0.07 −0.20 −0.02 0.09 0.06 −0.18 −0.03 0.09

ea
st

Q
B

O

95–12 −0.26 0.10 0.08 −0.35 −0.26 0.07 0.04 −0.43 −0.27 0.00 −0.01 −0.48

70–95 0.05 0.02 0.11 0.26 0.08 0.03 0.14 0.28 0.10 0.04 0.15 0.28

w
es

t
Q

B
O

95–12 0.04 0.05 −0.27 −0.54 −0.06 −0.08 −0.36 −0.62 −0.18 −0.22 −0.43 −0.68

10 hPa
50◦ N 52.5◦ N 55◦ N

0–90 90–180 180–300 300–360 0–90 90–180 180–300 300–360 0–90 90–180 180–300 300–360

70–95 0.00 0.05 0.03 0.01 −0.01 0.07 0.04 0.04 −0.01 0.09 0.05 0.08

m
aj

or
S

S
W

95–12 0.16 −0.06 −0.25 −0.16 0.08 −0.11 −0.28 −0.21 −0.02 −0.13 −0.31 −0.26

70–95 0.05 0.04 0.09 0.11 0.00 0.07 0.08 0.14 0.07 0.14 0.04 0.17

no
S

S
W

95–12 −0.07 −0.15 −0.19 −0.06 −0.08 0.00 −0.24 −0.12 0.06 −0.07 −0.20 −0.18

70–95 0.16 0.15 0.02 0.11 0.22 0.17 0.04 0.20 0.29 0.20 0.08 0.29

ea
st

Q
B

O

95–12 0.15 −0.27 −0.33 0.07 0.00 −0.31 −0.40 −0.07 −0.19 −0.31 −0.47 −0.26

70–95 0.23 0.04 0.10 0.22 0.22 0.05 0.11 0.26 0.20 0.07 0.12 0.28

w
es

t
Q

B
O

95–12 −0.43 −0.36 −0.21 −0.55 −0.56 −0.45 −0.25 −0.60 −0.65 −0.51 −0.32 −0.65
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Table 2. Winter (October–March) averages of wind speed (m s−1) for different latitudes and
sectors. Top panels total wind speed for two pressure level, bottom panel v (meridional) wind
component for two pressure levels. Min-east: years under solar minimum and the east phase of
QBO conditions; min-west: years under solar minimum and the west phase of QBO, the same
for solar maximum conditions.

50◦ N 52.5◦ N 55◦ N latitude
0–90 90–180 180–300 300–360 0–90 90–180 180–300 300–360 0–90 90–180 180–300 300–360 sector

min-east 33.24 21.13 19.38 28.40 34.68 23.02 20.44 29.66 35.76 25.11 21.85 30.76

10
hP

a

max-east 32.62 20.09 20.74 29.55 34.70 22.12 21.63 31.15 36.47 24.43 22.79 32.56
min-west 34.31 21.16 20.83 31.03 36.61 23.34 22.27 33.18 38.54 25.84 24.01 35.09
max-west 32.29 20.65 19.28 28.20 34.05 22.54 20.47 29.43 35.39 24.70 21.99 30.68

min-east 18.30 20.94 18.81 19.99 18.60 19.12 18.39 20.39 18.98 17.88 18.11 20.67

10
0

hP
a

max-east 16.91 20.03 17.61 18.51 17.21 18.10 16.94 18.70 17.64 16.85 16.46 18.74
min-west 18.28 21.05 18.35 18.95 18.48 19.23 17.83 19.25 18.76 17.94 17.43 19.48
max-west 18.23 20.92 17.57 18.42 18.56 19.04 16.95 18.52 18.92 17.70 16.50 18.56

min-east 1.59 7.23 −6.02 −2.00 1.29 8.74 −6.78 −2.25 0.84 10.23 −7.60 −2.56

10
hP

a
v

max-east 1.39 6.84 −5.80 −1.23 1.20 8.25 −6.61 −1.41 0.85 9.66 −7.49 −1.64
min-west 1.60 7.87 −6.62 −1.71 1.40 9.47 −7.57 −1.95 1.10 11.06 −8.62 −2.25
max-west 1.77 6.69 −5.89 −1.66 1.60 8.11 −6.71 −2.00 1.28 9.50 −7.63 −2.33

min-east −2.82 1.46 0.14 2.34 −3.35 1.83 −0.04 2.78 −3.86 2.34 −0.25 3.16

10
0

hP
a

v

max-east −2.94 1.53 −0.04 2.73 −3.43 1.91 −0.25 3.19 −3.91 2.47 −0.50 3.56
min-west −2.84 1.49 −0.11 2.86 −3.38 1.93 −0.41 3.47 −3.91 2.51 −0.75 4.00
max-west −2.80 1.40 0.20 2.29 −3.28 1.75 0.05 2.67 −3.75 2.27 −0.17 2.98
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Figure 1. Time development – winter averages (October–March) of wind speed in four different
sectors of 52.5◦ N for period 1958–2012. Top panel is for 100 hPa, bottom panel for 10 hPa.
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Figure 2. Comparison of wind speed at 100 hPa, 52.5◦ N, sector 300–360◦ E and NAO index
for three different periods.
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Figure 3. Plot of average meridional wind speed (m s−1) component for January, 1958–2012,
20–60◦ N, 180◦ E–180◦ W. Top panel 10 hPa, bottom 100 hPa.
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Figure 4. The same as Fig. 3 but for July.
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 Figure 5. Plot of average meridional wind speed (m s−1) component at 10 hPa for Jan-
uary, 1958–2012, 20–60◦ N, 180◦ E–180◦ W. Top panel 00:00 UTC, middle 06:00 UTC, bottom
12:00 UTC.
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Figure 6. Plot of average geopotential height (km) for January, 1958–2012, 20–60◦ N, 180◦ E–
180◦ W. Top panel 10 hPa, bottom 100 hPa.
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