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Abstract

Real-time mass spectra of non-refractory species in submicron aerosol particles were
recorded in a tropical rainforest in the central Amazon Basin during the wet season from
February to March 2008, as a part of the Amazonian Aerosol Characterization Exper-
iment (AMAZE-08). Organic material accounted on average for more than 80 % of the
non-refractory submicron particle mass concentrations during the period of measure-
ments. Ammonium was present in sufficient quantities to partially neutralize sulfate.
In this acidic, isoprene-rich, HO,-dominant environment positive-matrix factorization
(PMF) of the time series of particle mass spectra identified four statistical factors to ac-
count for the 99 % variance of the signal intensities of the organic constituents: an HOA
factor having a hydrocarbon-like signature and identified as regional and local pollution,
an OOA-1 factor associated with long-range transport, an OOA-2 factor implicated as
associated with the reactive uptake of isoprene oxidation products, especially of epoxy-
diols to acidic haze, fog or cloud droplets, and an OOA-3 factor consistent with the
fresh production of secondary organic material (SOM) by a mechanism of gas-phase
oxidation of biogenic volatile organic compounds (BVOC) followed by gas-to-particle
conversion of the oxidation products. The OOA-1, -2, and -3 factors had progressively
less oxidized signatures. Aqueous-phase oxidation of water-soluble products of gas-
phase photochemistry might have been also involved in the formation of the OOA-2
factor. The campaign-average mass concentrations were in a ratio of 7 : 5 for the OOA-
2 compared to the OOA-3 pathway, suggesting the comparable importance of particle-
phase compared to gas-phase pathways for the production of SOM during the study
period.

1 Introduction

Aerosol particles in the atmosphere make an important contribution to the Earth’s
radiation budget (IPCC, 2013). They can directly scatter and absorb shortwave and
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longwave radiation, and they can indirectly affect radiative forcing and precipitation
by modifying cloud properties. The assessment of the impact of human perturbations
on climate requires an understanding of the natural functioning of the aerosol-cloud-
climate system. During the wet season, the pristine Amazon Basin provides a unique
environment for studying the sources and atmospheric evolution of natural aerosol par-
ticles and hence understanding the role of aerosol particles in biosphere-atmosphere
interactions (Andreae, 2007; Martin et al., 2010a). Tropical forest emissions and long-
range transport from outside of the basin are major contributors to the number and
mass budgets of Amazonian aerosol particles during the wet season because regional
biomass burning emission is largely suppressed by heavy rainfall (Martin et al., 2010a).
The forest ecosystem emits biogenic volatile organic compounds (BVOC) that can be
oxidized in the atmosphere, principally by reaction with photochemically produced hy-
droxyl radical and ozone molecules. Some of the oxidized products have sufficiently low
vapor pressure to condense and form secondary organic material (SOM) in the particle
phase. The oxidation of BVOC correlates with available sunlight, resulting in daytime in-
creases in the particle-phase mass concentrations of typical BVOC-oxidation products,
such as dicarboxylic acids (Graham et al., 2003a). In particular for Amazonia where
the emission of the BVOC is dominated by isoprene, the concentrations of isoprene
oxidation tracers (e.g., 2-methyltetrols and Cg-alkene triols) increase in the particle
phase (Claeys et al., 2004, 2010). In addition to the biogenic SOM, the forest can also
directly emit primary biological particles containing potassium, phosphorus, sugars,
sugar alcohols, and fatty acids (Graham et al., 2003a; Elbert et al., 2007; Pdschl et al.,
2010; Pohlker et al., 2012). The forest also emits gases important to the particle mass
concentrations of inorganic ions. Ammonia can partition from the gas phase to acidic
particles (Trebs et al., 2005). Reduced sulfur gases can undergo atmospheric oxidation
to produces sulfuric acid that condenses to the particle phase (Andreae et al., 1990).
The Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08) investi-
gated the sources and properties of Amazonian particles (Martin et al., 2010b). Evi-
dence from AMAZE-08 led to the conclusion that there was a large-scale contribution
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of biogenic SOM to the mass concentration of submicron aerosol particles (up to 90 %),
at least during the wet season (Chen et al., 2009; Pdschl et al., 2010; Schneider et al.,
2011). Primary biogenic particles enriched in potassium salts in the submicron size
range were suggested as seed particles that provided surfaces for the condensation
of SOM (Péhlker et al., 2012). These bio-related particles participated in the regula-
tion of the hydrological cycle of the forest by serving as nuclei for cloud formation and
subsequent precipitation (Gunthe et al., 2009; Prenni et al., 2009). In addition to par-
ticle production tied to the forest ecosystem, lidar observations provided evidence of
episodic long-range advection of African smoke and Saharan dust (Baars et al., 2011).
These intrusions were temporally consistent with increases of heavily oxidized organic
particles (Chen et al., 2009) indicative of long atmospheric residence times as well as
increases in the concentrations of ice nuclei (Prenni et al., 2009).

Condensational growth has been reported as an important pathway of biogenic SOM
production in Amazonia (Graham et al., 2003a; Chen et al., 2009). Péhlker et al. (2012)
further proposed a significant role of liquid-phase processing for Amazonian aerosol
particles. Laboratory studies have demonstrated the production of organic acids and
oligomers from the OH-initiated aqueous-phase oxidation of the photooxidation prod-
ucts of isoprene, e.g., glyoxal, methacrolein (MACR), and methylvinyl ketone (MVK)
(Lim et al., 2010), as well as the acid-catalyzed reactive uptake of isoprene epoxy-
diol (IEPOX) isomers produced by the photooxidation of isoprene under HO,-dominant
conditions (Surratt et al., 2010; Lin et al., 2012). HO,-dominant conditions refer to the
fate of peroxy radicals with respect to reaction with HO, or NO. For SOM produced
by these particle-phase pathways, a fraction of the mass may remain in the particle
phase after dehumidification. The relative importance to SOM mass concentration of
such particle-phase reaction pathways compared to gas-phase-oxidation followed by
condensation is, however, still poorly understood (Martin et al., 2010a; Ervens et al.,
2011). Field characterization is crucial for constraining the relative importance of differ-
ent reaction pathways.
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The present study analyzes multiple data sets collected during AMAZE-08 in relation
to one another and in the context of the chemistry and properties of submicron particles
in the Amazon Basin during the wet season. Positive-matrix factorization of the time
series of particle mass spectra is used to identify statistical factors that differ in mass
spectral patterns (Zhang et al., 2011). The properties of these factors, in conjunction
with the auxiliary data sets, are used to investigate the relative importance of different
possible sources of fine-mode organic mass concentration in Amazonia during the wet
season.

2 Site and instrument description

Ground-based measurements were carried out at a rainforest site during the wet sea-
son from 7 February to 13 March 2008 (Martin et al., 2010b). The site (02°35.68’ S,
60°12.56' W, 110 ma.s.l.) located 60 km NNW of Manaus and faced 1600 km of nearly
pristine forest to the east to the Atlantic Ocean. The site was accessed by a 34 km
unpaved road from Highway 174 (Supplement Fig. S1). The ten-day back trajecto-
ries indicated that during the measurement period the air masses mainly originated
from the northeast over the Atlantic Ocean in the direction of Cape Verde and the
Canary Islands. Air was sampled at the top of a tower (“TT34”; 38.75m) above the for-
est canopy (33 m). Instrumentation deployed during AMAZE-08 is described in Martin
et al. (2010b) and Sects. A and B of the Supplement.

The present study focuses mostly on statistical analysis of the data sets of an Aero-
dyne high-resolution Aerosol Mass Spectrometer (HR-AMS) in the context of com-
plementary data sets of other instruments. Several non-standard aspects of the AMS
analysis are summarized here in the main text. Mass concentrations were adjusted to
standard temperature and pressure (noted as STP; 273.15K and 10° Pa). Additional
details on sampling by the AMS and data analysis are provided in Sect. A of the Sup-
plement.
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The AMS collection efficiency, corrected for undetected particle mass concentra-
tion mainly due to particle bounce on the vaporizer, was evaluated by compar-
ison of the AMS data sets with those of other instruments. The description of
other concurrent measurements and the comparisons among the measurements are
provided in Sect. B of the Supplement and Supplement Fig. S2. The estimated
campaign-average value of effective density (o) for submicron Amazonian particles
is 1390 + 150 kg m™° (Supplement Fig. S3), corresponding to the organic material den-
sity (0org) Of 1270+ 110kg m=S. Supplement Table S1 lists the regression coefficients
for the multi-instrument data comparison. For a collection efficiency of unity, the AMS
data agreed within measurement uncertainty with the other data sets. By comparison,
the collection efficiency recommended for many other locations worldwide is 0.5 (Mid-
dlebrook et al., 2012). Images of filter samples showed that spherical organic particles,
appearing as like-liquid droplets, were the main population in the submicron fraction of
the ambient particle population for AMAZE-08 (P&schl et al., 2010). This observation is
consistent with the collection efficiency of unity because liquid particles do not bounce
from the AMS vaporizer (Matthew et al., 2008).

Atomic ratios of oxygen-to-carbon (O:C), hydrogen-to-carbon (H:C), nitrogen-to-
carbon (N:C), and sulfur-to-carbon (S:C), as well as the organic-mass-to-organic-
carbon (OM:OC) ratios, were calculated from the high-resolution “W-mode” data
(Aiken et al., 2008). Corrections described by Chen et al. (2011) and Canagaratna
et al. (2014) were included for organic material having keto-, hydroxyl-, and acid-
functionalities. These functionalities undergo thermally induced dehydration and de-
carboxylation on the AMS vaporizer, leading to increased values of (CO™)yy : (CO3 )org
and (HyO0™ )y : (CO3 )org @s compared to the values presented in Aiken et al. (2008).

Positive-matrix factorization (PMF; Paatero and Tapper, 1994) was conducted on
the organic mass spectra of the medium-resolution “V-mode” data (m/z 12 to 220)
taken to unit-mass resolution. The analysis used the PMF evaluation panel of Ulbrich
et al. (2009) (version 4.2; “robust mode”). Further aspects of the analysis and out-
put evaluation are provided in Sect. C of the Supplement. Because of the low mass
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concentrations during AMAZE-08, the signal-to-noise ratios were insufficient for satis-
factory PMF analysis of the high-resolution data. PMF results are reported herein for
unit mass resolution.

3 Results and discussion
3.1 Mass concentrations and comparisons of data sets

Figure 1 shows time series of measurements by the AMS and other instruments dur-
ing AMAZE-08. The AMS detects the non-refractory (NR) chemical components of
the submicron fraction of the ambient particle population (NR-PM;) (Fig. 1a—c). Or-
ganic material and sulfate were the two major components identified by the AMS, with
correspondingly low concentrations of ammonium and negligible concentrations of ni-
trate and chloride. The campaign-average organic particle mass concentration was
0.76 £0.23 ug m~3, corresponding to 0.45+0.13ugC m~2 of organic carbon and an
OM: OC ratio of 1.7. This concentration is lower than the range of 0.59t0 1.13pugC m™>
reported for PM, 5 in previous wet-season campaigns (Martin et al., 2010a), explained
by the differences in the sampled diameter domains. Some organic material can be
present in a diameter range of 1 to 2.5 um (Péschl et al., 2010), which was not mea-
sured in the present study.

The campaign-average sulfate mass concentration of 0.19 £ 0.06 pg m™° agreed well
with the average value of 0.19 + 0.06 ug m~2 measured by ion chromatography (IC) and
the value of 0.21 £ 0.04 g m~° measured by particle-induced X-ray emission (PIXE) for
the fine-mode (PM,) filters. The average fine-mode sulfate mass concentrations for pre-
vious campaigns ranged from 0.17 to 0.26 pg m~2 in the wet season, and sulfate was
found predominately in the submicron range (Martin et al., 2010a). There was there-
fore consistency across campaigns and instruments for sulfate mass concentrations.
Our data did not provide evidence for substantial contributions of organosulfate species
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during AMAZE-08, at least at concentrations above uncertainty levels (see further in
Sect. A of the Supplement).

Ammonium accounted for 2 % of the submicron particle mass concentration. The
campaign-average mass concentration was 0.03 +0.01 pug m~2, in agreement with the
average value of 0.04 £ 0.01 ug m~ obtained for the fine-mode filters by the IC analy-
sis. Chloride concentrations were transiently larger (up to 26 ng m'3) during some pe-
riods, with a campaign-average concentration of 2ngm™, which was consistent with
the filter average. Nitrate had a campaign-average concentration of 7 +£2ng m~2. This
value was greater than the average fine-mode concentration of 4 + 1 ng m~° measured
by IC, possibly because of increased instrument uncertainties at low concentrations.
Another possibility, substantial evaporative losses of nitrate during filter sampling, is
not anticipated for the hygroscopic, acidic particles present during the measurement
periods for the prevailing relative humidity. The AMS-measured nitrate accounted for
0.6 % of the total submicron particle mass concentration. As a test against possi-
ble significance of organonitrates (which also fragment to the NOy, ions in the AMS
(Farmer et al., 2010)) to results of the present study, a limiting assumption that as-
signs all AMS-measured nitrate to organonitrates increases the average O: C ratio by
< 0.01 for the elemental analysis and corresponds to a maximum of 5 % contribution of
organonitrates to the total organic particle mass concentration for an assumed molec-
ular weight of 360 g mol ™" (Chen et al., 2011). The low mass concentration of particle-
phase organonitrates is expected because of the low prevailing NO, concentrations
and humid environment (Day et al., 2010; Liu et al., 2012).

Black carbon, mineral dust, and sea salt are common refractory components that are
not quantified by the AMS. The multiangle absorption photometer (MAAP) instrument
provides an optically based measurement of the black-carbon-equivalent (BCe) mass
concentration, without size resolution (Petzold et al., 2002). The campaign-average
concentration was 0.13 ug m~° (Fig. 1d). Under a limiting assumption that all black
carbon occurred in the submicron fraction of the atmospheric particle population, this
concentration corresponded to 11 % of the submicron mass concentration (inset of
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Fig. 1e). The relative contribution of black carbon varied significantly during the course
of AMAZE-08 (Fig. 1e), perhaps corresponding to the occasional advection of urban
pollution from Manaus or biomass burning from Africa (Kuhn et al., 2010; Rizzo et al.,
2013). This interpretation is supported by the covariance of BCe with sulfate.

Major fine-mode trace elements of mineral dust, including Si, Al, Fe, and Ca, had
campaign-average mass concentrations of 0.12, 0.05, 0.04, and 0.01 pg m'3, respec-
tively, as analyzed for fine-mode filter samples by PIXE. An important source of the
mineral dust was long-range transport from Africa. Previous campaigns in the Amazon
found that about 20 % of the mineral dust occurred in the submicron domain (Fuzzi
et al., 2007). Using this result for AMAZE-08 implies that mineral dust contributed
about 0.1 ug m~ to the average mass concentration of the submicron particle popu-
lation (Malm et al., 1994). The modified pie chart is shown in Supplement Fig. S4. The
campaign-average mass concentrations of fine-mode metallic elements (V, Cr, Mn, Ni,
Cu, Zn, Pb, and Mg in total of 2ng m‘s) measured by PIXE were sufficiently low dur-
ing AMAZE-08 to confirm the absence in the submicron particle mass concentration
of significant metals from anthropogenic sources. The campaign-average mass con-
centration of fine-mode Na* measured by IC was 0.02 ug m~>. This result suggests
a minimal contribution of sea salt from Atlantic Ocean to the submicron particle mass
concentration because sea salt is predominantly distributed in the supermicron domain
(Fuzzi et al., 2007).

Figure 1f shows the time series of the particle light scattering coefficient measured by
nephelometry at 550 nm for PM-. The elevated scattering coefficients during 22 Febru-
ary to 3 March 2008 were driven by elevated mineral dust concentrations in the coarse
mode, along with elevated submicron sulfate, BCe, and organic material arising from
the advection of the Manaus pollution plume as well as long-range transport from
Africa (Sect. B of the Supplement and Supplement Fig. S5). Other temporal max-
ima corresponded to increases of submicron particle mass concentration. Figure 1g
shows the elemental compositions of the submicron organic material measured by the
AMS. The O:C and H:C ratios, corrected as described in Canagaratna et al. (2014),
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were 0.60 £ 0.16 (one standard deviation) and 1.60 £ 0.18 on average, respectively.
The 10/90 quantiles were 0.42/0.75 and 1.42/1.80, respectively. The N:C ratios
were 0.03 £ 0.01, similar to those observed in some urban areas (Aiken et al., 2008;
Docherty et al., 2011).

Ammonium and sulfate mass concentrations had high correlation (R2 = 0.95) dur-
ing AMAZE-08 (Supplement Fig. S6). The molar ratio of NHZ : SOi' was 0.80 (Fig. 2),
meaning that there was insufficient ammonium to neutralize sulfate (i.e., requiring a mo-
lar ratio of 2) for the submicron particle population. Similar molar ratios have been re-
ported in several previous studies in the central and northeast Amazon Basin (Talbot
et al., 1988, 1990; Gerab et al., 1998; Graham et al., 2003b). Some of the unbalanced
sulfate can be potassium sulfate (Fuzzi et al., 2007; Pdhlker et al., 2012). The fine
mode mass concentration of K¥ measured by IC and PIXE was 0.03 ug m~2 on aver-
age. By comparison, at a deforested, pasture site in the southern parts of the Amazon
Basin, the particle-phase ammonium can be enriched above sulfate concentrations
and mainly balanced by organic acids (Trebs et al., 2005).

These earlier studies also examined the overall charge balance of the fine mode
when including cations of Na*, K*, Ca®*, and Mg®* (Talbot et al., 1988, 1990; Gerab
et al., 1998; Graham et al., 2003b). For AMAZE-08, the charge concentration of inor-
ganic anions was nearly balanced by that of the inorganic cations for the fine mode.
Specifically, the species SOi‘, NO;, and CI™ contributed 93, 5, and 2 % of the anions,

respectively. The species NHj, K*, Na™, Mg?*, and Ca®* contributed 40, 20, 15, 15,
and 10 % of the cations, respectively.

Diel profiles of organic, sulfate, ammonium, nitrate, and chloride mass concentra-
tions measured by the AMS are shown in Fig. 3. The temporal trends of the four
species were highly correlated, with a minimum in mass concentrations near daybreak
and a maximum in the afternoon. Nighttime rainfall efficiently removed particle mass
concentration after local midnight, suggesting an absence of strong sources of sub-
micron particles during the night. From the morning to the afternoon, photochemical
production of SOM, convective mixing of particles from aloft, and regional advection
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sustained mass concentrations, with quick recovery after daytime rainfall. Precipitation
was typically local whereas advection was typically regional at a larger scale than pre-
cipitation. The decrease and the recovery as a campaign average during the afternoon
resulted from frequent rain events around that time of day (e.g., Supplement Fig. S7).
The organic particle mass concentration during the day increased even as tempera-
ture rose and relative humidity dropped, both of which can provide a thermodynamic
driving force for the re-partitioning of semivolatile species from the particle phase to
the gas phase (Pankow, 1994). Possible explanations include (1) sufficiently strong
daytime production of SOM to outweigh evaporative sinks, (2) significant production of
low-volatility SOM (Ervens et al., 2011; Ehn et al., 2014), or (3) slow evaporation rate
of SOM (Vaden et al., 2011).

3.2 Multivariate factor analysis of the organic mass spectra

Multivariate analysis by positive-matrix factorization (PMF) of the temporal series of
the organic component of the mass spectra was carried out for 12 < m/z < 220 at unit-
mass resolution. In overview, four statistical factors were identified and labeled as HOA,
OOA-1, O0OA-2, and OOA-3 (Fig. 4) (cf. Sect. C of the Supplement). The four factors
HOA, OOA-1, OOA-2, and OOA-3 respectively accounted for 2, 18, 14, and 66 % of
the variance in the data matrix, implying a residual variance of <1 %. Time series of
the mass concentration of each statistical factor are shown in Fig. 5. The four factors
HOA, OOA-1, OOA-2, and OOA-3 represented on average 14, 14, 34, and 38 % of the
organic particle mass concentration. By definition, the mass spectrum of the organic
chemical component itself was at any time point a linear mix of the statistical factors,
plus residual.

The HOA factor (Fig. 4a) was dominated by the ion series C H, ., C,H;,_;, and
CnH;n_3 (m/z 27, 29, 39, 41, 43, 55, 57, 67, 69...), similar to that reported for other
locations (e.g., Zhang et al., 2005; Docherty et al., 2011; Robinson et al., 2011) and
to that observed for engine exhaust (Canagaratna et al., 2004). This statistical fac-
tor is typically taken as an organic component associated with fossil fuel combustion

16162

Jaded uoissnosiq

Jaded uoissnosiq

| Jaded uoissnosiq |

Jaded uoissnosiq

ACPD
14, 16151-16186, 2014

Fine-mode organic
mass concentrations
and sources in
AMAZE-08

Q. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/16151/2014/acpd-14-16151-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/16151/2014/acpd-14-16151-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

emissions that have not undergone substantial atmospheric oxidation. This factor was
especially prevalent in the early part of the experiment. During this time period, other
pollution tracers such as sulfate and NO, were also at elevated concentrations. Re-
gional pollution from Manaus and local emissions (e.g., nearby roads, highway, gener-
ator, and pump oil) were plausible contributors to the mass concentration of the HOA
factor (Ahim et al., 2009; Rizzo et al., 2013), which accounted for 14 % of the organic
mass concentration as a campaign average. For comparison, other studies have re-
ported that the HOA factor accounted for 0 to 21 % of the mass concentrations for
remote locations and up to 53 % for urban regions (Jimenez et al., 2009).

The factors OOA-1, OOA-2, and OOA-3 were ranked by the 7, : f43 ratios (high to
low) and labeled based on Zhang et al. (2011), where f,,/, represents the fractional
contribution of the signal intensity at m/z to the statistical factor. The signal intensity
was dominated at m/z 44 by the CO, fragment and at m/z 43 by the C,H;0" and
CsH7 fragments. The fy, : 43 ratio has been used in some settings as a surrogate for
the extent of oxidation (i.e., “atmospheric aging”) of SOM (Ng et al., 2010, 2011).

The OOA-1 factor had the feature of a singularly dominant peak at m/z 44 (Fig. 4b)
and was believed to be mainly associated with long-range transport of African biomass
burning. A dominant peak at m/z 44 has been linked to organic material that has
undergone extensive oxidation during a prolonged atmospheric residence time (Ng
et al., 2010). As described in Chen et al. (2009), organic material was delivered by
long-range transport during some periods of AMAZE-08, and this material was con-
tinuously oxidized during the advection process. The source of this material was plau-
sibly Africa biomass burning, as supported by concurrent lidar measurements (Baars
et al., 2011) and satellite observations (Ben-Ami et al., 2010). South American biomass
burning was much less significant during the wet season (Martin et al., 2010a). The
mass concentration of the OOA-1 factor correlated with the concentrations of biomass
burning tracers, such as chloride (,‘?2 = 0.52), potassium (R2 = 0.35), and black car-
bon (,‘?2 = 0.43) in the submicron particle population (Fig. 5b) (Cubison et al., 2011).
For comparison, the mass concentrations of the other three factors (HOA, OOA2, and
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OOA-3) did not correlate with these tracers (/:1’2 < 0.10 for chloride; R? < 0.02 for potas-
sium; and R? < 0.20 for black carbon with each of the three factors). The sulfate mass
concentration was also elevated when the OOA-1 concentration was high (Fig. 1). The
relative intensity of m/z 60, which is the typical marker for fresh biomass burning and
attributed to the product levoglucosan, was less than the recommended threshold value
of 0.35 % for background conditions (Docherty et al., 2008) (Supplement Fig. S8). As
biomass burning particles become more oxidized due to ongoing atmospheric reac-
tions downwind of African fires, the peak at m/z 60 was observed to diminish and that
at m/z 44 was observed to increase (Capes et al., 2008).

Features of the OOA-2 factor included (1) a fy, : f45 ratio greater than unity and (2)
a prominent peak at m/z 82 distinct from adjacent ions along with elevated m/z 53
(Fig. 4c). These features were similar to those reported for the tropical rainforest of
Borneo (OP3) (Robinson et al., 2011), the rural area of southwest Ontario, Canada
(BAQS-Met 2007) (Slowik et al., 2011), and the downtown Atlanta (isoprene-rich),
Georgia, USA (SEARCH) (Budisulistiorini et al., 2013). The OOA-2 factor of AMAZE-
08 accounted for on average 34 % of the organic mass concentration, compared to
23 % for Borneo (named as the “83Fac” factor), up to 50 % for Ontario during peri-
ods of high isoprene emissions (named as the “UNKN” factor), and 33 % for Atlanta
(named as the “IEPOX-OA” factor). Robinson et al. (2011) concluded that this fac-
tor derived from SOM produced by isoprene photooxidation. Lin et al. (2012) demon-
strated the formation of 3-methyltetrahydrofuran-3,4-diols as a contributor to the m/z
82 signal detected by the AMS and dervied from the acid-catalyzed intramolecular re-
arrangement of IEPOX isomers in the particle phase. Although IEPOX was not directly
measured during AMAZE-08, the time series of the OOA-2 mass concentration cor-
related with isoprene concentration (R2 = 0.65) as well as with the sum concentration
of first-generation isoprene oxidation products, specifically MVK + MACR (F?2 =0.74)
(Fig. 5c). Budisulistiorini et al. (2013) showed that the OOA-2 factor resembled the
spectrum of the organic material produced in chamber experiments by the reactive up-
take of gaseous IEPOX isomers by acidic particles, especially with respect to m/z 82.
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Kuwata et al. (2014) confirmed this result in another chamber study. Uptake of isoprene
IEPOX isomers depends on the liquid water content and the inorganic composition of
the particles (Lin et al., 2012; Budisulistiorini et al., 2013; Nguyen et al., 2014). The
atmosphere during AMAZE-08 was humid, HO,-dominant, and isoprene-rich, with the
presence of acidic submicron particles. These conditions favored the gas-phase pro-
duction and the particle-phase reactive uptake of IEPOX isomers (Surratt et al., 2010),
which were associated with m/z 82 by AMS characterization.

Particle-phase production pathways for secondary organic material in haze, fog, and
cloud droplets can be several fold. In addition to IEPOX uptake and reaction, aqueous-
phase chemistry of water-soluble products of gas-phase photochemistry can produce
lower-volatility oxidized organic material, such as oxalate and dicarboxylic acids (Er-
vens et al., 2011). Péhlker et al. (2012) reported an abundance of carboxylate func-
tionalities of Amazonian particles consistent with aqueous processing. The oxidized
material produced by aqueous-phase oxidation can help to explain the higher 7,4 in
the OOA-2 factor compared to the mass spectra observed in laboratory experiments
that studied the uptake of IEPOX isomers (Lin et al., 2012; Budisulistiorini et al., 2013;
Nguyen et al., 2014). Pdhlker et al. (2012) also showed evidence of multiphase pro-
cessing, i.e., a COOH-rich core and a C-OH-rich shell for single particles. The C-OH-
rich shell was consistent with the production of polyols by IEPOX uptake and reaction
(Lin et al., 2012). The OOA-2 factor during AMAZE-08 therefore plausibly represented
the reactive uptake of IEPOX isomers and other gas-phase species by haze, fog, and
cloud droplets.

The OOA-3 factor had distinct peaks at m/z 43, 55, and 91 (Fig. 4d). These fea-
tures were also prominent in reference mass spectra recorded for SOM produced by
oxidation of BVOCs in an environmental chamber for conditions relevant to the Ama-
zon Basin (Fig. 6) (see further in Sect. D of the Supplement) (Shilling et al., 2009;
Chen et al., 2011, 2012). In these laboratory studies, dry ammonium sulfate seed
particles were used. SOM derived from isoprene (Cs) had a prominent peak at m/z
43. SOM derived from precursors of monoterpene a-pinene (C4,) and sesquiterpene
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pB-caryophyllene (C45) had prominent peaks at m/z 55 and m/z 91. A linear combi-
nation of the three chamber spectra largely reproduced the OOA-3 factor (Supplement
Fig. S9; 50 % isoprene SOM, 30 % a-pinene SOM, and 20 % [-caryophylene SOM).
Other studies have also reported similar features for SOM derived from (-pinene and
limonene as well as various tree emissions under chamber conditions (Kiendler-Scharr
et al., 2009; Kostenidou et al., 2009). A plausible interpretation therefore is that the
OOA-3 statistical factor was associated with freshly produced SOM similar to that pro-
duced in the chamber experiments, i.e., on a timescale of several hours by a mecha-
nism of gas-to-particle partitioning of the BVOC oxidation products. In support of this
interpretation, the temporal variation of the OOA-3 mass concentration tracked that of
the BVOC concentrations (Fig. 5d). The OOA-3 factor contributed on average to about
38 % of the organic particle mass concentration.

Figure 7 shows the campaign-average diel profiles of the mass concentrations of the
PMF factors. The HOA mass concentration showed a daytime minimum, suggesting
the buildup of local pollution during the night and the removal by convective mixing
during the day. The OOA-1 mass concentration peaked around noon without great
variation throughout the day. This temporal behavior is expected for homogeneous
mixing in the atmospheric column without in situ sources, i.e., as for material arriving
by long-range transport. The small daytime increase was consistent with the daytime
convective downward mixing of older, oxidized particles from aloft. By comparison, the
OOA-2 and OOA-3 mass concentrations peaked in the early afternoon while the BVOC
concentrations were high (cf. Fig. 3c of Chen et al., 2009). This temporal behavior was
consistent with photochemically driven production of SOM.

Figure 8 shows the time series of fractional contribution by each of the four sta-
tistical factors identified by PMF analysis. The relative importance of processes as
contributors to the organic particle mass concentration differed with time. As an exam-
ple, Fig. 8 highlights two focus periods. During the first period, the average fractional
contribution by the OOA-2 factor was five times greater than that of the OOA-3 fac-
tor. During the second period, by comparison, the fractional contribution by the OOA-3
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factor was three times greater than that of the OOA-2 factor. The average organic mass
concentrations of the two periods were 1.84 and 0.59 ug m~3, respectively. As a cam-
paign average, the mass fractions contributed by the OOA-2 and OOA-3 factors were
approximately 1:1. The mass concentrations were in a ratio of 1.4: 1.

4 Conclusions

The submicron particle mass concentration in the Amazonian rainforest during the wet
season of 2008 was dominated by organic material. The environment was humid, HO,-
dominant, isoprene-rich, with the presence of acidic particles in the submicron fraction
of the atmospheric aerosol. The time series of the mass spectra of the organic com-
ponent of the submicron particles was analyzed by positive-matrix factorization. Four
statistical factors labeled HOA, OOA-1, OOA-2, and OOA-3 were identified. The HOA
factor was interpreted as representing regional and local pollution and accounted for
14 % of the organic particle mass concentration. The OOA-1 factor, accounting for
another 14 % of the organic particle mass concentration, was highly oxidized and plau-
sibly related to long-range transport of African biomass burning particles. The OOA-2
and OOA-3 factors were both interpreted as tied to the production of biogenic SOM and
together accounted for > 70 % of the organic particle mass concentration (Fig. 8). The
OOA-2 factor was consistent with the reactive uptake of isoprene oxidation products
such as IEPOX by acidic aerosol particles, including haze, fog, and cloud droplets. The
OOA-3 factor had mass spectral features of freshly formed biogenic SOM, believed to
represent gas-to-particle condensation followed by oxidation of gas-phase BVOCs. Ac-
cording to this interpretation, the OOA-2 factor was associated with sustained particle-
phase SOM production, and the OOA-3 factor was associated with sporadic, episodic
SOM production by processes of gas-to-particle conversion. Processes are depicted
in Fig. 9 concerning the production and further reactions of SOM.

Although multivariate statistical factors do not correspond to segregated individual
chemical components (e.g., unlike molecules or families of molecules), the factors
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nevertheless can be indicative of the relative importance of different atmospheric emis-
sions and pathways. With this caveat in mind, the PMF analysis herein finds that the
factor mass concentrations were, on average, in a ratio of 1.4:1 for the OOA-2 com-
pared to the OOA-3 pathway and were dominated alternatively by the OOA-2 and OOA-
3 components, suggesting comparable importance of gas-phase and particle-phase
(including haze, fog, and cloud droplets) production of SOM during the study period.

The Supplement related to this article is available online at
doi:10.5194/acpd-14-16151-2014-supplement.
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Figure 1. Time series of observations during AMAZE-08. (a—c) Organic, sulfate, ammonium,
nitrate, and chloride mass concentrations measured by AMS. (d) Black-carbon-equivalent mass
concentrations measured by filter-based reflectance (fine-mode) analysis as well as optically
derived by MAAP (637 nm) and aethalometer (660 nm) measurements. (€) Component mass
fractions of (a) to (d). For (d), MAAP data were used. The inset pie chart represents the cam-
paign average. (f) Scattering coefficient measured by nephelometry at 550 nm. Only particles
of 7um and smaller passed through the sampling inlet. (g) Elemental ratios O:C, H:C, N:C,
and S: C for the submicron organic particles, as determined by high-resolution AMS data. Ex-
cept for (f), the data represent the submicron or fine-mode fraction of the ambient particle
population. Concentrations are normalized to STP conditions (see main text). Periods in gray
were influenced by local generator exhaust plume during times of local wind reversal and were
excluded from the shown data sets and analysis.
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Figure 2. Scatter plot of ammonium and sulfate mass concentrations (gray circles). The red
symbols show campaign-average values reported in the literature for other measurements in

S0z [nmol m™]

the Amazon Basin, both in the wet and dry seasons.
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Figure 3. Diel profiles of (top) the temperature and relative humidity at the top of the measure-
ment tower, (middle) normalized AMS-measured speciated mass concentrations (maximum
concentrations in pg m~2 (STP) are shown in parentheses), and (bottom) percent occurrence
of rain. Data represent mean values.
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Figure 5. Time series of mass concentrations for the statistical factors HOA, OOA-1, OOA-
2, and OOA-3 (left axes) and time series of the concentrations of tracer species, includ-
ing NO,, CO, AMS chloride, AMS potassium, aethalometer black-carbon, methyl vinyl ke-
tone + methacrolein, isoprene, monoterpenes, and sesquiterpenes (right axes). The BVOCs
were measured by PTR-MS (Karl et al., 2009).
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