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Abstract

Ensembles of air quality models have been formally and empirically shown to outper-
form single models in many cases. Evidence suggests that ensemble error is reduced
when the members form a diverse and accurate ensemble. Diversity and accuracy are
hence two factors that should be taken care of while designing ensembles in order
for them to provide better predictions. There exists a trade-off between diversity and
accuracy for which one cannot be gained without expenses of the other. Theoretical
aspects like the bias-variance-covariance decomposition and the accuracy-diversity
decomposition are linked together and support the importance of creating ensemble
that incorporates both the elements. Hence, the common practice of unconditional av-
eraging of models without prior manipulation limits the advantages of ensemble aver-
aging. We demonstrate the importance of ensemble accuracy and diversity through an
inter-comparison of ensemble products for which a sound mathematical framework ex-
ists, and provide specific recommendations for model selection and weighting for multi
model ensembles. To this end we have devised statistical tools that can be used for
diagnostic evaluation of ensemble modelling products, complementing existing opera-
tional methods.

1 Introduction

A forecast is considered complete if it is accompanied by an estimate of its uncer-
tainty (AMS, 2002). This generally requires the embedding of the modelling process
into either a deterministic perturbation scheme (e.g., tangent linear, direct decoupled)
or a probabilistic framework (e.g., Monte Carlo). Such approaches are used to quan-
tify the effects of uncertainties arising from variations in model input (e.g., initial and
boundary conditions, emissions) or model structure (e.g., parameterizations, numeri-
cal discretization).
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Deterministic approaches are fast but they rely on the validity of the linearized ap-
proximation of error growth (Errico, 1997). The availability of computing means in recent
years has boosted the application of the probabilistic approach (Leith, 1974) because
it can sample the sources of uncertainty and their effect on the prediction error in
a non-linear fashion without requiring model modifications. However, the sampling of
the whole range of uncertainty could be quantified with the construction of very large
sets of simulations that correspond to alternative configurations (data or model). This
is unrealistic for 3-D models and leads to a hybrid scheme called ensemble forecasting
(Molteni et al., 1996; Tracton et al., 1993). It is probabilistic in nature but it generally
does not sample the input uncertainty in a formal mathematical way, limiting the extent
of the available mathematical bibliography to interpret the results.

Single model ensembles (e.g. Mallet et al., 2006) assume the model is perfect and
consist from a set of perturbed initial conditions and/or physics perturbations. It is tra-
ditionally used in weather forecasting, which is primarily driven by the initial conditions
uncertainty. Multi model ensembles (e.g., Galmarini et al., 2004) (MME) quantify prin-
cipally the model uncertainty as they are generally applied to the same exercise (i.e.
input data). This approach is usually implemented in air pollution and climate modelling
studies, where the uncertainty is predominantly process driven. The models in a MME
should ideally have uncorrelated errors. Under such condition, the deterministic fore-
cast generated from the MME mean is better than any single-model forecast due to the
averaging out of the errors (Kalnay, 2003). Besides that, the MME spread quantifies
the output uncertainty, providing an estimate of the forecast reliability.

The simulation error of the ensemble mean outperforms the one of the individual
ensemble members only if the assumption that the models are i.i.d. (independent and
identically distributed around the true state), is satisfied (Knutti et al., 2010). The i.i.d.
assumption, however, is seldom object of verification and is rarely met in practice,
with the net result that the simple ensemble mean does not guarantee the lowest error
(higher accuracy) among all possible combinations. In such cases, the ensemble mean
brings redundant information particularly for the upper and lower quartiles, making for
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example the analysis of extremes risky. Extra effort is required in order to obtain an
improved deterministic forecast such as the MME mean for i.i.d. members. The opti-
mal solution requires some training phase, during which the models are manipulated
towards the construction of an ensemble with a symmetric distribution around the truth.
This can be achieved through either a weighting scheme that keeps all members (e.g.,
Potempski and Galmarini, 2009) or with a reduced ensemble (Galmarini et al., 2013;
Solazzo et al., 2013) that makes use of only an effective number of models. Both ap-
proaches result in the optimum distribution of the models in the respective workspace.

Ensembles tend to yield better results when there is a significant diversity among
the models. Many ensemble methods, therefore, seek to promote diversity among the
models they combine. However, a definite connection between diversity and accuracy
is still lacking. An accurate ensemble does not necessarily consist of independent mod-
els. There are conditions under which an ensemble with redundant members could be
more accurate than one with independent members. Seen from another angle, similar
to diversity, ensembles also tend to produce better results when they contain negatively
correlated models. Ideally, the most accurate ensemble consists of members that are
identically distributed around the observations. This property could not be parameter-
ized as a monotonic function of characteristic properties for the selected members like
independence, redundancy, etc.

In this work, we demonstrate the properties of a MME through the unprecedented
database built from regional air quality models within the Air Quality Modelling Evalu-
ation International Initiative (AQMEII). The idea is to exploit ways to promote the prop-
erties, through model selection or weighting, that guarantee a symmetric distribution of
errors. This will require a training phase and will lead to a comparison between static
and dynamic weights and their temporal scales predictability. Our motivation is to depict
some best practices for air quality ensembles.

The paper is structured as follows: in Sect. 2, theoretical evidence on multi-model
ensembles is presented. In Sect. 3, an example serves to show the contributing fac-
tors to the ensemble error. In Sect. 4 we analyse different properties of the ensemble
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and their impact on the output error using the AQMEII data. In Sect. 5 we extent the
results obtained in the previous section into spatial forecasting. Conclusions are drawn
in Sect. 6.

2 Theoretical considerations

The aim of this section is to outline the documented mathematical evidence towards

the reduction of the ensemble error. The following notation is used throughout the text:
Ensemble members (output of modelling systems) f;
M
Ensemble f=2wf > w=1
i=1
Desired value (measurement) u

where M is the number of available members and w; are the weights.

3 The bias-variance-covariance decomposition of the error

The bias-variance decomposition states that the squared error of a model can be bro-
ken down into two components: bias and variance.

MSE (7) =E [(F-u)z]
e[ ][] e
=Var [?—u] + [Bias (?,u)r (1)
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The two components usually work in opposition: reducing the bias causes a variance
enhancement, and vice versa. The dilemma is thus finding an optimal balance between
bias and variance in order to make the error as small as possible (Geman et al., 1992;
Bishop, 1995).

The error decomposition of a single model (case M =1 in Eq. 1) can be extended
to an ensemble of models, in which case the variance term becomes a matrix whose
off-diagonal elements are the covariance among the models and the diagonal terms
are the variance of each model:

Var [?— u] ~Var [% > 1 - u] - #Var [Z (f, - u)]

1
=5 D Var(f; - ) +2 ) Cov (fi — u,f; - 1)
i<j
1

111 M -1
= [M > Var(f; —u)] = | 7w z Cov (f; — u,f; - 1)
2 1<J

=%VarE + (1 - &) CovE

= \12 [ Z 1 2
[Blas (f,u)] = [M > fi- u] = [M > (- u)] = bias
Thus, the squared error of ensemble can be broken into three terms, bias, variance

and covariance. Substituting the terms in Eq. (1), the bias-variance-covariance decom-
position (Ueda and Nakano, 1996; Markowitz, 1952) is presented as follows:

-\ —2 1— 1\——
MSE (f) = bias + MvarE + (1 - M) covE (2)
Equation (2) is valid for uniform ensembles, i.e. w; = ﬁ The terms bias and varE are

the average bias and variance of the ensemble members error (modelled time-series
15808
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minus observed time-series) respectively while the new term covE is the average co-
variance between pairs of distinct ensemble members error. From Eq. (2) follows:

— The more ensemble members we have, the closer is Var [7 - u] to covE;

— 2 -

— bias and varE are positive defined, but covE can be either positive or negative.

The error of an ensemble of models not only depends on the bias and variance of
the ensemble members, but also depends critically on the amount of correlation among
the model’s errors, quantified in the covariance term. The covariance term indicates the
diversity or disparity between the member networks as far as their error estimates are
concerned. Hence, the more diverse the individual members an ensemble has, the
less correlated they would be, which seems obvious. Given the positive nature of the
other two terms and the trade-off between them, the quadratic error is minimized only
in cases the covariance term is as little as possible. The lower the covariance term,
the less the error correlation amongst the models, which implies reduced error of the
ensemble. This is the main reason why diversity in ensembles is extremely important.

3.1 The accuracy-diversity decomposition of the error

Krogh and Vedelsby (1995) proved that at a single datapoint the quadratic error of the
ensemble estimator is guaranteed to be less than or equal to the average quadratic
error of the component models:

_ 2 M M \2
(f—#> =zWi(f/—#)2—zW/(f/—f) 3)
i=1 i=1

Equation (3) shows that for any given set of models, the error of the ensemble will
be less than or equal to the average error of the individual models. Of course, one of
the individuals may in fact have lower error than the average, and lower than even the
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ensemble, on a particular pattern. But, given that we have no criterion for identifying
that best individual, all we could do is pick one at random. In other words, taking the
combination of several models would be better on average over several patterns, than
a method which selected one of the models at random.

The decomposition (3) is composed by two terms. The first is the weighted aver-
age error of the individuals (accuracy). The second is the diversity term, measuring
the amount of variability among the ensemble member predictions. Since it is always
positive, it is subtractive from the first term, meaning the ensemble is guaranteed lower
error than the average individual error. The larger the diversity term, the larger is the
ensemble error reduction. Here one may assume that the optimal error belongs to the
combination that minimizes the weighted average error and maximizes the variability
among the ensemble members. However, as the variability of the individual members
rise, the value of the first term also increases. This therefore shows that diversity itself
is not enough; we need to get the right balance between diversity and individual accu-
racy, in order to achieve lowest overall ensemble error (accuracy-diversity trade-off).

Unlike the bias-variance-covariance decomposition, the accuracy-diversity decom-
position is a property of an ensemble trained on a single dataset. The exact link be-
tween the two decompositions is obtained by taking the expectation of the accuracy-
diversity decomposition, assuming a uniform weighting. It can be proved that (Brown
et al., 2005):

E l%(7‘-— )2—l%<f-—f)2 —%2+lvarE+ 1—l covE
v\ =y 2\ B M M
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The Q term constitutes the interaction between the two parts of the ensemble error.
This is the average variance of the models, plus a term measuring the average devia-
tions of the individual expectations from the ensemble expectation. When we combine
the two sides by subtracting the diversity term from the accuracy term from the average
MSE, the interaction terms cancel out, and we get the original bias-variance-covariance
decomposition back. The fact that the interaction exists illustrates why we cannot sim-
ply maximize diversity without affecting the other parts of the error — in effect, this
interaction quantifies the accuracy-diversity trade-off for uniform ensembiles.

3.2 The analytical optimization of the error

The two presented decompositions and their inter-connection are valid for uniform en-
sembles, i.e. w; = % Both indicate that error reduction in an ensemble can be achieved
through selecting a subset of the members that have some desired properties and tak-
ing their arithmetic mean (equal weights). An alternative to this approach would be the
use of non-uniform ensembles. Rather than selecting members, it keeps all models
and the burden is passed to the assignment of the correct weights. A brief summary of
the properties of non-uniform ensembles is presented in the following paragraphs.

The construction of the optimal ensemble has been exploited analytically by Potemp-
ski and Galmarini (2009). They provide different weighting schemes for the case of
uncorrelated and correlated models by means of minimizing the MSE. Under the as-
sumed condition of the models independence of observations and assuming also that
the models are all unbiased (bias has been removed from the models through a sta-
tistical post-processing procedure), the formulas for the one-dimensional case (single-
point optimization) are given in Table 1. Also, whether correlated or not, the models are
assumed as random variables (i.e. their distribution is identical).

The optimal weights correspond to the linear combination of models with the min-
imum MSE. This can be considered as a transfer function that distributes identically
the models around the truth. Using equal weights, the ensemble mean has lower MSE
than the candidate models given specific conditions. For example, the arithmetic mean
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of a 3-member ensemble, where models are uncorrelated, has lower MSE than the
best candidate model only if the MSE ratio (worst/best) of the models is lower than 4.
In other words, the RMSE ratio may not exceed 2, implying that the individual members
should not be very different. The conditions for correlated models are more restrictive.
Further, unlike the case of uncorrelated models, optimal weights for correlated models
can be negative (Table 1).

3.3 Weakness of the traditional practice

The material presented in this section demonstrated clearly through a well-defined
mathematical formulation that building ensembles on the basis of “including as more
models as possible to the pool and taking their arithmetic mean” is generally far from
optimal as it relies on conditions that are normally not fulfilled. At the same time, it
provided the necessary ingredients for ensemble building, using either the entire mem-
bers with weights assigned or a subset of them with equal weights. Specifically, the
optimization of the ensemble error:

— through the bias-variance-covariance decomposition, points towards the bias cor-
rection of the models and the use of uncorrelated or negatively correlated ensem-
ble members (equal weights, sub-ensemble);

— through the accuracy-diversity decomposition, relies on finding the trade-off point
between accurate and diverse members (equal weights, sub-ensemble);

— through analytical formulas, provides weights for all ensemble members de-
pendent on their error covariances (Potempski and Galmarini, 2009) (unequal
weights, full ensemble);

Unlike the simple arithmetic mean of the entire ensemble, it is clear that all aforemen-
tioned cases require a learning process/algorithm. The aim of this work is to assess
and compare the predictive skill of three ensemble products with well-defined mathe-
matical properties, namely:
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1. the arithmetic mean of the entire ensemble (mme)

2. the arithmetic mean of an ensemble subset (mme <), linked to the error decom-
positions (2.1, 2.2)

3. the weighted mean of the entire ensemble (mmW), linked to the analytical opti-
mization (2.3).

4 Example

In this section, we present a theoretical example aimed at illustrating the basic ingre-
dients of ensemble modeling discussed. Fourteen samples of 5000 records each have
been generated; thirteen corresponding to output of model simulations and one act-
ing as the observations. These synthetic time-series have been produced with Latin-
hypercube sampling (McKay et al., 1979). The reason of selecting Latin-hypercube
sampling over random sampling, besides the correct representation of variability across
all percentiles (Helton and Davis; 2003), is its ability to generate random numbers with
predefined correlation structure (Iman and Conover, 1982; Stein, 1987).

Figure 1 shows the RMSE distribution of the mean of all possible combinations of
the ensemble members (M = 13) as a function of the ensemble size (k =1,...,M). The
number of combinations of any k members is given by the factorial (%), resulting in
a total of 8191 combinations in this setting (e.g., 286 for kK = 3, 1716 for k = 6, etc.). In
the case of i.i.d. random variables (top row, left plot), increasing the number of members
(k) moves the curves toward more skillful model combinations, as anticipated from the
bias-variance-covariance decomposition. Further, the optimal weights do not deviate
from the equal weighting scheme (with small random fluctuations though) traditionally
used in the MMEs. Hence, the optimal combination (mme <) and the optimal weighted
combination (mmW) coincide. However the i.i.d. situation is unrealistic for MME, there-
fore we will examine the ensemble skill by perturbing independently the three statistical
measures of bias, variance and covariance.
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Bias has been introduced into the ensemble by shifting the distribution of two-third
of the models by a small amount, making one-third of the models unbiased, one-third
biased positively and one-third biased negatively. The RMSE distribution of all possible
combinations (top row, right plot) does not appear symmetric with respect to the mean
RMSE, with particular distortions at the maximum RMSE for k < 4 (i.e., one-third of
models). This upper bound is delineated from the ensemble combinations of all biased
members of equal sign. Several combinations with multi-model error lower than the
error of the full ensemble mean exist; at the same time, the whole RMSE distribution
spans higher values compared to the i.i.d. case (note the change in scale). The optimal
combination uses all unbiased models plus same amounts of biased equally members
from both sides. As for the weighted ensemble, no clue can be inferred as its weights
by definition assume unbiased models.

The effect of variance perturbations is displayed in the middle row. One third of
the members (with ids 10—13 in particular) had deflated (left) or inflated (right) vari-
ance. Due to the bias-variance dilemma, the case with smaller variance achieves lower
RMSE for low k (at the expense of PCC though) while the opposite is true for the cases
exhibiting larger variance. The optimal weighted combination gives higher weight to the
under-dispersed members and lower weight to the over-dispersed ones.

All examined cases so far were uncorrelated. Next, a positive correlation (bottom
row, left plot) has been introduced among the first three members (ids 1-3) and sepa-
rately, a negative correlation between two members (bottom row, right plot), with ids 5
and 8 namely. The upper (lower) bound of the error distribution of the combinations is
distorted towards higher (lower) values by introducing positively (negatively) correlated
members. Positively correlated members bring redundant information, where individual
errors are added rather than cancelled out upon MME averaging. The optimal combi-
nation, for the case of positive correlations utilizes all i.i.d. members plus only one from
each redundant cluster; for negative ones, it tends to use only anti-correlated mem-
bers. The same is seen also for the optimal weighted scheme: positively correlated
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members are treated as one, negatively correlated are significantly promoted over the
i.i.d. members.

To summarize, ensemble averaging is a good practice when models are i.i.d. In re-
ality, models depart from this idealized situation and MME brings together information
from biased, under- and over-dispersed as well as correlated members. Under these
circumstances, the equal weighting scheme or the use of all members well masks
the benefits behind ensemble modelling. This example serves as a practical guideline
to better understand the real issues faced when dealing with biased, inter-dependent
members.

5 Empirical evidence

We now investigate the ensemble properties mentioned in the theoretical introduction
using real-life spatially aggregated time-series from AQMEII (Rao et al., 2011). AQMEII
was started in 2009 as a joint collaboration of the EU Joint Research Centre, the US-
EPA and Environment Canada with the scope of bringing together the North American
and European communities of regional scale air quality models. Within the initiative
the two-continent model evaluation exercise was organized which consisted in having
the two communities to simulate the air quality over north America and Europe for the
year 2006 (full detail in Galmarini et al., 2012a). Data of several natures were collected
and model evaluated (Galmarini et al., 2012b). The community of the participating
models, which forms a multi-model set in terms of meteorological driver, air quality
model, emission and chemical boundary conditions, is presented in detail in Galmarini
et al. (2013). The model settings and input data are described in detail in Solazzo
et al. (2012a, b), Schere et al. (2012), Pouliot et al. (2012), where references about
model development and history are also provided.

The analysis considers hourly time-series for the JJA period. For European ozone,
the ensemble constitutes from thirteen models that give rise to 8191 different combina-
tions (ensemble products). All data used refer to Phase | of the initiative. The evaluation
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of the examined ensemble products (mme, mmW, mme <) will rely on several indices
of error statistics. We present them in Table 2. Those metrics can be used for the val-
idation of each single ensemble configuration (f;) as well as for the ensemble mean
(fens)-

Once the basic ingredients have been identified, a spatial analysis will follow in the
next section.

5.1 Issue 1: properties of the MME error

According to the bias-variance-covariance decomposition, bias is an additive factor to
the MSE and model outputs should be corrected for their bias before any ensemble
treatment. The analytical optimization of the ensemble error and the defined weights
(Table 1) also assume bias corrected simulations. Here we do not intend to review the
available algorithms for the statistical bias correction (e.g., Dosio and Paurolo, 2011);
the correction applied in this work refers to a simple shift of the whole distribution
without any scaling or multiplicative transfer function.

The RMSE of each possible combination as a function of the ensemble order jus-
tifies the statement obtained theoretically (Fig. 2, top left), namely that the RMSE of
the ensemble mean is lower than the mean error of the single models. This does not
prevent individual model errors to be lower than the ensemble mean error. The curve,
although it originates from real data (EU4r), shares the same properties with its syn-
thetic counterpart (previous section). Specifically:

— the ensemble average reduces the maximum RMSE as the order is increased

— a plateau is reached at the mean RMSE for k < M, indicating that there is no
advantage, on average, to combine more than kK members (k ~ 6).

— a minimum RMSE, among all combinations, systematically emerges for ensem-
bles with a number of members kK < M (k ~ 3-6).
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The probability density function (pdf) of the RMSE plotted for k = 6 (similar for other
values) demonstrates that there exist many combinations with lower error than the en-
semble mean or the minimum of ensemble mean and best single model. Those skilled
groupings represent roughly 40 % of the total combinations in the first case, quasi con-
stant across different sub-regions and below 40 % with high variability across different
sub-regions (due to the spatial variability of best model’s skill) in the second case. This
number is small (below 50 %) with hon-random structure, implying that random draws
from the pool of models is highly unlikely to produce better results than the ensemble
mean; at the same time, it is high enough to leave space for significant improvements
of the mme. The fractional contribution of individual models (for k = 6) to those best
sub-groups is given with the red numbers. The normalization has been done with the
number of combinations that includes each model id (for k = 6 it equals 792). For exam-
ple, among all combinations, at k = 6, that may contain the model with id 12, two-thirds
of them (67 %) are skilful. The percentages indicate preference to combinations includ-
ing more frequently some models (e.g., 4, 6, 9, 12) but at the same time they do not
isolate any single model. Further, the optimal weights of the full ensemble given with
the bar plot (multiplied by a factor of 10) have a complex pattern as a result of differ-
ent model variances and covariances. Definitely, they depart from homogeneity (equal
weighting scheme shown with the red straight line).

The error, variance and covariance (with observations) of the thirteen ensemble
members are presented in a Taylor plot (Fig. 2, top right). They visually form three clus-
ters. Low skill cluster includes models 1, 2 and 10 that have the highest error, minimum
correlation with observed data and appear under-dispersed. Model 5 also belongs to
that group but has improved variance. The intermediate skill cluster contains models 3,
6, 7, 11 and 13 with average (11, 13) to low (3, 7, 6) error, correlation ranging from 0.8
(11, 13) to 0.9 (6) but all models are under-dispersed. The highest skill cluster (4, 8, 9,
12) includes members with low error, high correlation and the right variance ratio (with
a light over-dispersion though). Compared with the participation statistics of the previ-
ous graph, we see that the models contributing more frequently to skilled combinations
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belong to highest skill cluster; the contrary is true for the low skill cluster. Good mod-
els have at least twice as much probability to form good ensemble groups compared
to low skill models. On the other hand, even low skill models can yield good results
under proper combination scheme. Overall, the multi-model average (mme) is a robust
estimate with lower error than the candidate models but with reduced variance.

According to the presented decompositions, the combinations with reduced error
should have a better balance between accuracy and diversity than the ensemble mean.
A 2-dimensional plot of accuracy vs. diversity, with RMSE displayed as a third dimen-
sion (in color) is shown in Fig. 2 (middle row, left). The black lines define the convex
hull in the (accuracy, diversity) space of specific ensemble order, ranging from 2 in the
outer polygon to 12 (i.e. M-1) in the innermost one. As expected theoretically, the sep-
arate optimization of accuracy and diversity will not produce the best ensemble output.
For all ensemble orders, the optimal combination consists of accurate averaged repre-
sentations of sufficient diversity between members, i.e. with an ideal trade-off between
accuracy and diversity. In particular, all skilled combinations are clearly seen in this
stratified chart; they form a well-defined area, traceable according to the ensemble or-
der, that contains combinations with accuracy better than the average accuracy and
ideal diversity (within a wide-range though) for the specific accuracy. For example,
combinations of average accuracy form skilled ensemble products only if their diversity
is very high. Analogously, combinations with very good accuracy form skilled ensemble
products only if their diversity is not relatively high. Diversity with respect to the ensem-
ble mean can be derived independently to the observations. This however is not true for
the accuracy part implying that a minimum training is required. Last, we observe that
as ensemble order increases, accuracy and diversity become more and more bounded
(with accuracy being more disperse than diversity), limiting any improvement. The en-
semble product with the right trade-off between accuracy and diversity (mme <), im-
proves the error and also replicates better the observed variance (Fig. 2, top right).
The same conclusion is also reached for the ensemble product generated through an
analytical optimization (mmW).
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Similar results are obtained in terms of the variance-covariance decomposition in
Fig. 2 (middle row, right). Here the convex hull areas, ranging from 3 to 12, move to-
wards lower mean variance and higher mean covariance with increasing ensemble
order. Higher spread is evidenced for the covariance term. As we include more mem-
bers in the ensemble, the variance term in the decomposed error formula is becoming
lower but the covariance term is deteriorated. Skilful combinations have relatively low
covariance. Ensembles consisting of highly correlated members bring redundant er-
rors in the ensemble that does not cancel out upon averaging, producing overall bigger
errors.

The conditions granting an ensemble superior to the best single model is also at-
tempted in Fig. 2 (last row). We have seen that the mme error is a function of accu-
racy and diversity (or variance and covariance). An analytical optimization of this error
(Potempski and Galmarini, 2009) yields the necessary conditions for being lower than
the one of the best model (Table 1). For uncorrelated models, the only constrain is the
skill difference (MSE ratio) of the worst over the best single model; for correlated mod-
els, itis more complex and it also related to the amount of redundancy in the ensemble,
i.e. the error dependence. The explained variation by the highest eigenvalue reflects
the degrees of freedom in the ensemble (and hence the redundancy). The pairwise plot
as a function of the RMSE ratio of mme over the best single model (for ensemble or-
der = 6, left) shows that mme can outscore any single model provided the model error
ratio and redundancy follows a specific pattern. For example, the benefits of ensemble
averaging are devalued if we combine members that have big differences in skill and
dependent errors.

The distribution of the models around the truth should possess higher symmetry for
the case of the skilled combinations. This thought is illustrated in Fig. 3 by means of
the cumulative density function of the full ensemble (left plot) and the reduced optimal
one consisting of only 3 models (right plot). The ensemble mean is a good candidate
for the interquartile range but its ability to capture extremes (tails of the distribution)
is weaker since the majority of models systematically over- or under-estimate extreme
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concentrations (over for min, under for max). The optimal combination (right plot) cor-
responds to the models that are generally distributed randomly around the truth, i.e.
when put together their errors cancel out upon averaging. This is evidenced across all
percentiles. Such combinations are capable for studies ofextreme events. At the same
time, their previsions have lower spread (i.e. uncertainty). As seen before, for the se-
lected ensemble order (k = 3), the skilful combinations have small error covariance
(they are both accurate and diverse).

To summarize, the unconditional averaging of ensemble members is highly unlikely
to systematically generate a forecast with higher skill than its members across all per-
centiles as models generally depart significantly from behaving as an i.i.d. sample. Fur-
ther, the ensemble mean is superior to the best single model given conditions that re-
late to the individual skill of the members and the ensemble redundancy. Good practice
includes bias correction of the models and the construction of a “balanced” ensemble
through either a weighting approach (straightforward) or through the clustering of mem-
bers with the desired properties (in the form of accuracy/diversity, variance/covariance,
redundancy, etc). In the next section we explore some measures to achieve such clus-
ters.

5.2 Issue 2: clustering measures

Given a dataset of N instances X = {X;,X,,..., Xy}, a clustering algorithm generates
r disjoint clusters based on a distance metric. Each clustering solution is a partition
of the dataset X into K; (1 </ <r) disjoint clusters of instances. A typical output of
a clustering algorithm is a dendrogram, where redundant models are grouped together
and the level of similarity among groups is based on the distance between the ele-
ments of the input matrix. Clustering algorithms are sensitive to the controlling options
(the agglomerative method, the distance metric, the number of clusters and the cut-off
distance) that need to be determined case by case (Fern and Brodley, 2004). Here,
we use the the unweighted pair-group average as the agglomeration method and the
standard Euclidean distance as the distance metric. The clustering algorithm has been
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utilized against two different input matrices, namely the corr (e;, ;) and the corr (d;,
d;) (for details see Solazzo et al., 2013). Common practice suggests cutting the den-
drogram at the height where the distance from the next clustered groups is relatively
large, and the retained number of clusters is small compared to the original number of
models (Riccio et al., 2012). For this reason, the cut-off value (the threshold similarity
above which clusters are to be considered disjointed) is set to 0.10 for corr (d;, d;) and
0.4 for corr (e;, €;).

The application of the above produced five disjointed clusters (Fig. 4, top row). Look-
ing at the corr (e;, e;) dendrogram (left plot) or the corr (d;, d;) dendrogram (right plot),
for example, the two main branches at the top further split into two more at a relatively
low similarity level, suggesting a plausible way to proceed. A parallel inspection at the
Taylor plot (Fig. 2) reveals the similarities of each cluster in terms of error, correlation
and variance. Clustering according to corr (d;, d;) generates the visual clusters of the
Taylor plor while corr (e;, ;) clustering is coarser. Many ensemble combinations with
non-redundant members can be inferred from those plots; in addition, combinations
that should be avoided are also marked.

A decomposition of each deterministic model’s error into spectral components pro-
vides another roadmap for clustering models. Using four components (ID, DU, SY, LT:
for details see Galmarini et al., 2013) with the Kolmogorov—Zurbenco filter (Zurbenko,
1986), it is evident that the models with particularly high total error have all deficien-
cies with specific spectral component (Fig. 4, bottom row). The diurnal component in
models 1, 2, 5 and 10 has error similar to the total error of the other models (from all
components). If we repeat the analysis with two-component decomposition (ID+DU,
SY+LT) that has limited energy leak between them, the conclusion still remains the
same. Models with particular high systematic errors, as evidenced through the spectral
decomposition that reflects process-based performance, should be treated with cau-
tion within the ensemble. We do not argue that there is no benefit from using them but
that their unconditional use is not fundamentally correct.
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The integrated skill of the selected clusters through dendrograms or spectral analysis
is compared through a Taylor plot (Fig. 4, bottom row). For all combinations, their trace
is found in an area of high competence. At the same plot it is also displayed the skill of
two products based on spectral optimization, namely the kzFO (1st order combination
of the four optimal spectral components; see Galmarini et al., 2013) and kzHO (higher
order combination of two quasi-independent spectral components: ID+DU, SY+LT).
The kzFO provides a clear improvement over mme while the kzHO boosts further the
mme < skill. The mean of those five independently generated products shows an im-
provement over the mme (Fig. 2). Further, the spread of the formed ensemble products
is lower compared to the deterministic model’s scatter, resulting in lower uncertainty.
Averaging ensemble products produced through an elegant mathematical approach
that constrains their properties is a potential pathway to improved forecasts with lower
uncertainty. Last, we should point that no model was eventually excluded by the com-
binations but all deterministic models have been utilized in at least one ensemble prod-
uct.

To summarize, good practice includes the clustering of members through multiple
different algorithms that operate on dissimilar properties (like redundancy, diversity,
negative correlation, spectral decomposition, etc). Averaging those combinations gen-
erated independently, hence having in principle uncorrelated errors, form a ground for
skilled forecasts of lower uncertainty compared to the ensemble mean, increasing fur-
ther the forecast reliability.

5.3 Issue 3: ensemble training

In this section we will test the temporal and spatial robustness of our ensemble prod-
ucts. We will work on the concepts of the least error combinations (mme < and mmW)
using time series from different AQMEII sub-regions. Throughout this exploratory anal-
ysis (hindcast), we will derive the spatiotemporal properties of the weights and the
ensemble constitution.

15822

| Jadeq uoissnosiqg | Jaded uoissnasiq

Jaded uoissnosiq

Jaded uoissnosiq

©)
do

ACPD
14, 1580315865, 2014

De praeceptis
ferendis

|. Kioutsioukis and
S. Galmarini

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

The bias-variance-covariance decomposition requires negative correlation learning
algorithms (e.g., Liu and Yao, 1999; Lin et al., 2008; Zanda et al., 2007); the accuracy-
diversity decomposition relies on learning diversity algorithms (e.g. Kuncheva, L. and
Whitaker, 2003; Brown et al., 2005). The use of uncorrelated or diverse members alone,
which are easily calculated through various metrics, does not imply an accurate en-
semble. For this reason, a global handy approach to optimal ensemble forecasting
and member selection, based on proven mathematical statements, still does not ex-
ist (ensemble output can be optimized through analytical formulas only for diagnostic
problems). Therefore, the optimal approach under the current mathematical state is the
ensemble training prior to forecasting, utilizing various approaches for model weight-
ing (e.g., Gneiting et al., 2005; Potempski and Galmarini, 2009) or sub-selecting (see
Solazzo et al., 2013 for a presentation of reducing dimensionality approaches linked
to redundancy). Some key elements of this process explored hereafter include the
learning period, the algorithms and their controlling properties, the effective number of
models and the weight stability.

Learning period and scheme. The selection of the necessary training period should
take into account the memory capacity of the atmosphere. Using complexity the-
ory (e.g., Malamud and Turcotte, 1999), the ozone time-series demonstrates non-
stationarity and strong persistence (e.g., Varotsos et al., 2012). This encourages the
use of a scheme derived from an accurate recent representation of ozone to medium-
range forecasts (e.g. Galmarini et al., 2013).

Following the evidences presented in Sect. 4.1, bias-reduction should be always ap-
plied prior to any ensemble manipulation. For this purpose, all simulations have been
de-biased at each examined window size (e.g., 1 day, 3 months, etc). Results are
shown for JJA 2006 at four selected sub-regions (AQMEII database), using variable
window size (1 day, 2 days, 4 days, 23 days, 46 days, 92 days) and weighting/sub-
selecting scheme (mme, mmW, mme <). The dependence of the (RMSE ) on the aver-
aging window is shown in Fig. 5. The following inferences can be drawn:
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1. Error: The skill of the deterministic models, even after bias-correction, varies with
location. A very good model at one site may perform averagely in another. As for
the ensemble products:

— mme. The error of the ensemble mean is superior to the mean of the individ-
ual model errors (proved analytically) but is not necessarily better than the
skill of the “locally” best model.

— mmW. The error of the weighted ensemble mean (mmW) is always superior
since it has been analytically derived to minimize the MSE. For small window
sizes (less than 4 days), the mmW error is superior to the theoretically derived
ensemble error if models were uncorrelated (= (var)/nm).

- mme<. The optimal error derived from a reduced-size ensemble mean
(mme <) with the optimal accuracy-diversity trade-off is always lower than
the error utilizing the full ensemble since models are not i.i.d. It is also, by
construction, always lower than the best model’s error and higher than the
mmW’s error.

2. Temporal sensitivity of the error: As the window size decreases, the (RMSE ) de-
crease due to the lowering of the error variance (bias correction is applied once
in the 92 days case and 92 times in the daily cases). The relative amount of de-
crease for mme is inversely proportional to the diurnal variability because bias
correction has a more pronounced impact in cases with lower variance (Fig. 6).
For example, the largest (smallest) change is seen in EU2r (EU3r) that demon-
strates the least (highest) variability. The cases with high variability, where the
majority of models fail to simulate well, have a prominent improvement if treated
with more sophisticated ensemble products such as the mmW and mme <. On
the other hand, in cases where mme is better compared to the individual models,
as in the EU2r case (narrow distribution of intermediate levels), the possibility for
ensemble improvements is suppressed.
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3. mme vs. best model: In terms of the ensemble error gain, it is variable as it de-

pends significantly on the individual model distributions around the truth. Without
loss of generality, if we consider the 92 day case, we see that for all models the
MSE ratio (worst/best) is lower than 4.37 (EU1r: 4.37, EU2r: 2.96, EUSr: 1.99,
EU4r: 2.60). If models were uncorrelated, their mme would always be superior to
any single model since all ratios are smaller than 14 (= M + 1). Figure 5 shows
that only in EU4r mme is better than the individual models. This occurs because
for correlated models, the condition is also restricted by the redundancy (eigen-
values spectrum). The RMSE ratio of mme over the best single model for the joint
restrictions in the case of M (= 13) correlated models (Fig. 2) shows that only
in EU4r the explained variation by the highest eigenvalue has the correct value
for the specified model MSE ratio [EU1r (67, 2.5), EU2r (64, 1.8), EU3r (76, 1.5),
EU4r (59, 1.7)]. The isolines with RMSE ratio lower than one reflect the cases with
a balanced distribution of members. Indeed, in EU4r (and EUZ2r), the distribution of
the models around the observations is more symmetric, as can be seen in Fig. 6.
On the other hand, a significant departure from symmetry can be seen for EU1r
and EUSr, resulting in a sub-optimal ranking of the mme. The distribution around
the truth in the weighted ensemble (mmW) and the sub-ensemble (mme <) has
always higher symmetry compared to mme, as can be seen in the same Figure.

. mme vs. mme <: The estimation of the optimal weights is straightforward (Ta-

ble 1), but the sub-selection of members in mme < is not. Since mme < uses
equal weights, we can apply the concepts deployed by the two error decomposi-
tions and compare those properties with the ones of mme. We can then examine
whether they can provide guidance towards members selection. Figure 7 displays
the accuracy ratio (mme </mme) vs. the corresponding diversity ratio for all (92
in total) 1 day segments. At the same figure, variance ratio vs. its corresponding
covariance ratio is also shown. The color scale indicates the mse ratio between
the two ensemble means. Error minimization through mme <, for all examined
sub-regions, demonstrates that the optimal combination:
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— Improves mme < accuracy over mme and by a smaller portion lowers its di-
versity (i.e. in big ensembles diversity is distorted less than accuracy). In
other words, between accuracy and diversity, the controlling factor in those
experiments in terms of error minimization is accuracy more than diversity.
This is partially explained by the fact the accuracy values have higher spread
over diversity.

— Lowers mme < variance over mme (fewer members) and by a higher portion
lowers its covariance. In other words, between variance and covariance, the
controlling factor for error minimization is covariance more than variance.

Those findings indicate that, for example, focusing on learning diversity algorithms
(maximize diversity) does not guarantee an improvement over the mme whilst the min-
imization of the model’s error covariance is more promising.

Effective number of models. Next we discuss the concept of the effective number
(Ng) of models. In principle, N reflects the degrees of freedom in the system (i.e.
number of non-redundant members that cover the output space ideally and hence, can
be used to generalize). It is not a property of the physical system (e.g. its principal
modes of oscillation). An analytical way to calculate N is through the formula pro-
posed by Bretherton et al. (1999). Using eigen-analysis, it estimates the number of
models needed to reproduce the variability of the full ensemble (Fig. 8). Depending on
the matrix whose skeleton is investigated (i.e. error, diversity, etc), different numbers
arise for Ng;. For example, applying the eigen-analysis on the error matrix, regardless
if normalized or not, it yields N4 = 3. If N is calculated using the diversity, it equals
5. The largest value (7) is obtained when N is calculated using the d,, matrix. Al-
ternatively, one may calculate all possible combinations of models and plot them as
a function of sub-ensemble size (as seen in Fig. 2). Comparing the range of Ny found
through eigen-analysis (3—7) with the one found through error optimization (plateau of
the minimum RMSE curve in Fig. 2), we observe that they coincide. In other words, the
Ngi calculated using the d,,, (or diversity) matrix should provide the upper boundary of
the ensemble size.
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Last, the fact that Ny is generally less than the full ensemble size should not be
conceived that some models are useless. In fact, all models are likely to participate in
the optimal Ny combination, with different frequencies though (Fig. 8). Unlike models,
as it has been demonstrated, many model combinations are useless.

Weight stability. We now explore the temporal robustness of the weighting schemes
in order to identify the predictive skill of the products. The spread of the weights (Fig. 9)
is presented for two window sizes, 1 day (92 cases, left) and 92 days (1 case, right).

— The mmW weights arise from an analytical optimization approach and they are
real numbers (i.e. can be negative). The significant error minimization seen ear-
lier (Fig. 5) for the daily simulations originates from a highly variable weighting
scheme, lacking any autocorrelation pattern (not shown). The weights calculated
over the whole JJA period (bar plot, right) do not generally have the same magni-
tude with the mean weights of the daily blocks (red circle).

— The mme < weights arise from an exploratory optimization approach and they
are binary numbers (0/1). The contribution (frequency) of each model in the daily
scheme (left panel), besides the peaks that vary by sub-region (a model is not
optimal at all locations: for example, model 10 is frequently used in EU2r and
never in EU4r), contain non-zero contribution from all ensemble members. Daily
and seasonal contributions have more similarities than in the mmW case.

— Although calculated with different approaches, the weight peaks at seasonal scale
(in absolute values) of the mmW and mme < are coherent.

Besides the day to day variability of the weights, we also explore another aspect of
their temporal variability. The weights have been re-calculated for variable time-series
length that is progressively increasing from 1 to 92 days, for the four European sub-
regions (Fig. 10). Although no convergence actually occur, the mmW weights tend to
stabilize after 40-60 days. The same is approximately also true for the effective number
of models. Linked to the previous discussion, it provides a lower bound for the training
window length that generates robust weight estimates.
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To summarize, the relative skill of the deterministic models radically varies with lo-
cation. The error of the ensemble mean is not necessarily better than the skill of the
“locally” best model, but its expectation over multiple locations is, making the ensem-
ble mean a skilled product on average. A continuous spatial superiority over all single
models is feasible in ensemble products such as mmW and mme <. As those products
require some training phase, good practice includes first, the identification of the tem-
poral window length that allows robust (i.e. almost stationary) estimates for the weights
and the effective number of models (memory scale of the system) and then, the training
of the ensemble at those temporal scales.

5.4 Issue 4: ensemble predictability

In the previous section we estimated weights for the full ensemble (mmW) or a subset
of it (mme <) in a diagnostic mode. Following the explored temporal sensitivity of the
weights and N, in this section we examine the robustness of those estimates into
future cases. Are they capable of making accurate predictions or they just overfit the
data over the historic epoch?

Two different sets of weights will be examined for each model, namely static (weights
calculated over a 60 day window and applied on the remaining 30 daily forecasts) and
dynamic (weights calculated over the most recent temporal window —day0O— and applied
on its successive —day0+1-). The reasoning behind the dynamic weighting testing is
that, although weights (mmW) lack any autocorrelation pattern (i.e., what is optimal
yesterday is not optimal today), this does not imply that this quasi-optimal weighting
for tomorrow is not still a good ensemble product (mmW weights are real, hence there
are infinite weighting vectors where only one is optimal but there should exist many
combinations without major skill difference from the optimal).

In view of the sensitivity of the dynamic weights vs. the static ones, we investigate the
skill of the ensemble products (mmW, mme <) and compare it with mme. Two additional
products are also considered: the 1%, of the total members that maximize diversity
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(divMX1) or minimize error covariance (covMN1). The following conclusions can be
inferred from Fig. 11 for the daily forecasts:

— Diversity alone generally does not outscore mme, neither with static nor with dy-
namic weights. It gives similar results but can also produce worse forecasts when
mme is well balanced between accuracy and diversity (EU2r). This experiment
shows that there may exist many diverse combinations of low accuracy. On the
other hand, covariance (covMN1) is a more powerful indicator for ensemble opti-
mization than diversity (divMX1).

— The weights derived through analytical optimization (mmW) do not correspond to
products with similar properties between consecutive days. Dynamic weighting
can result at high MSE values for the prediction day. On the other hand, static
weights outscore all other products.

— Mme < is always superior to the mme, in all examined modes (historic, prognostic
with static/dynamic weights).

Weighting is a risky process (Weigel et al., 2010) and its robustness should be thor-
oughly explored prior to operational forecasting. In diagnostic mode (H), mmW min-
imizes the error achieving an order of magnitude lower MSE compared to the other
ensemble products (Table 3). In prognostic mode, the minimum error is obtained with
mmW utilizing static weights, followed by mme < with static weights also. It is particu-
larly noticeable the significant reduction of the peak MSE cases in those two schemes.
An improvement similar to the one obtained through the mmW scheme (bias correction,
model weighting) has been documented in weather forecasting (Krishnamurti et al.,
1999); the phenomenological different approaches in model weighting are however
equivalent. Dynamic weights could be also used for the reduced ensembles, based ei-
ther on diversity (divMX1), covariance (covMN1) or error (mme <) measures, but they
lead to erroneous forecasts for the analytically optimized ensemble output (mmW).
We should point that those are the best expected results as they rely on ideally bias-
corrected simulations.
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To summarize, the predictability skill intensely depends on the temporal autocorrela-
tion of the selected cost function (e.g. combinations of peak diversity, covariance, error,
etc). Good practice suggests the use of static over dynamic weighting scheme for pre-
diction purposes with the mmW or mme < ensemble products. The use of dynamic
scheme was also found competitive for mme < but it was prone to false forecasts using
the mmW.

6 Spatial application

In the previous section we have seen that in prognostic mode, mmW with static weights
results in the least error previsions. In view of the operational evaluation, we now ex-
plore the spatial extension of the method. Specifically, using observed and modelled
time-series at the station level rather than at the regional level, we test the spatial
forecast skill of mme, mmW and mme < on a blind time-series. The approach is the
following: using two-thirds of the JJA time series (training dataset) we train the mmW
and mme < models and then we apply the weights learned into the remaining one-third
of the records (test dataset). All the presented skill hereafter refers to the test dataset.

Skill. The composite skill of the selected ensemble products, originating from all
blind forecasts at the 451 stations (aggregated) is presented in a Taylor plot (Fig. 12)
together with the single determinist models. The benefits of ensemble treatment, either
in the form of simple averaging models (mme) as well as using more sophisticated
techniques (mme <, mmW) are clearly evident. Besides the error (RMSE), mme < and
mmW also improve the correlation and the variance of the output with respect to mme.
As seen in the cumulative density function plot, the improvement is reflecting the better
capture of the 50 % of values outside the interquartile range, i.e. the lower than 25th
and the higher than 75th percentile values.

The results are now spatially disaggregated and the latitudinal and longitudinal fore-
cast skill of mme, mmW and mme < is shown in Fig. 13 for the gross error (RMSE)
and the ability to capture the upper tail of the distribution, i.e. extremes (hit rate). The
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weighted ensembile, in the form of mmW or mme <, significantly improves both indices
over the ensemble mean. The advancement is happening at all single locations, as the
cdf plot of the RMSE ratios with mme displays. The error is lowered by up to 35 % for
mmW and 25 % for mme <. Half of the stations experience RMSE lowering in the mmW
(mme <) case by up to 13% (10 %) and the other half in the range 13 % t0 35% (10 %
to 25%). The tendency for larger improvement is found at the sites with the higher
RMSE using the mme, except the Po valley area where the small improvement through
the mmW and mme < indicate possibly inconsistencies of the deterministic models.
The histogram of the errors from all stations for (mme, mme <, mmW) has a mean of
(21.7, 19.6, 18.6) and a standard deviation of (5.8, 5.2, 4.6) implying that besides skill,
forecast uncertainty also benefits from a similar improvement.

In view of the extremes, the correct identification of concentrations over the
120 ug m~° threshold value (right plot), has a clear latitude dependence in mme (the
southern the better for ozone) that is considerably corrected in both mmW and mme <,
with a more homogeneous pattern in mmW. The median hit rate of mme is 28 % and
becomes 44 % in mme < and nearly doubles (52 %) in mmW. One quarter of the total
stations laying at middle to high latitudes experience the highest improvement; a hit
rate of less than 10 % in mme becomes up to 40 % in mmW and 30 % in mme <.

Weights. Figure 14 displays the mmW weight for each participating model at the
observed sites (one figure per candidate model) for the training dataset. Although the
optimization has been applied at each monitoring station individually, it can be inferred
that the weighting pattern (per model) shows more of a coherent image across the
continent, rather than a random design, reflecting a robust error covariance across
the continent. On the opposite case, it can provide a mean for discriminating the per-
formance of individual models. This spatial robustness of the weights is particularly
important for the re-gridding of the results at locations not used in the training. The
discontinuities observed at the spatial pattern of the weights at some sites are also
present in the RMSE plot obtained with those weights (Fig. 13), indicating a probable
error at the measurement site rather than the models. Last, the similarities seen earlier
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in the zero-dimensional case between the mmW and mme < weights (frequency of
model use) are also present in the spatial case.

Effective number of models. The calculation of My (Bretherton et al., 1999) using
the corr (e;, e;) or corr (d;, d;) matrices frames the bounds of the effective number of
models. We find them to vary between 2 and 8, through a homogeneous spatial pattern
(Fig. 15). Indeed, using analytical error minimization over all combinations (i.e. the one
with the right trade-off between accuracy and diversity), M. covers all bins between 2
and 8, peaking at 3 to 4 members. The spatial variability is due to the absence of any
filtering in the latter case. At half of the stations, evenly distributed across the domain,
mme < uses only either 3 or 4 models, while over 80 % of the sites need 2—-5 models
from the pool.

We investigate now the statistical properties of the three ensemble products as
a function of the M4 calculated from the minimum error. The mean is well captured by
all products (Fig. 16). It is decreasing for small M4 (< 4) and remains roughly constant
for higher values. This indicates that ensembles tend to be more symmetric at lower
concentrations, pointing again that one of the areas where mme fails is extreme values,
since only few models actually capture them. The latter statement is augmented from
the Coefficient of Variation plot. It unfolds the differences in the statistical distribution
of the three ensemble products. The spread (range) of concentrations is monotonically
decreasing as M increases. For My < 4, this is due to equal reductions in mean and
standard deviation, for My > 4 it is due to decrease in standard deviation only (as CoV
is decreasing but mean is stable). The statistical distributions of three ensemble prod-
ucts start to converge for My > 6, i.e. when the range of concentration is well bounded
below 120 pg m=3. Finally, skewness and kurtosis do not demonstrate any significant
dependence from M4 (not shown).

The findings of the previous paragraph for the statistical distribution are explored
hereafter for the skill with respect to M4 (Fig. 16). The dissimilarities among the three
ensemble products are clearly unfolded in all examined skill scores. The correlation
(PCC) with observations is nearly independent of the My for mme < and mmW. On
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the other hand, mme has notably lower PCC for My < 4, pointing again to the discrep-
ancies in capturing the whole range of variability when there is a significant amount
of extreme records (over 120 ug m‘3). Similar result is found for the standard devia-
tion ratio (STDR). In terms of error (RMSE), it is a decreasing function of M 4 and the
three ensemble products start to converge for My > 6. As M4 increases, the distri-
bution of the models around the observations is gradually becoming more symmetric,
hence the gain from mmW or mme < is minimized as the mme sample has already
a quite symmetric distribution. Taken together with the distribution convergence seen
in the previous paragraph, the results demonstrated that the MME sample resembles
the properties of an i.i.d. sample only for cases without extreme percentiles, since only
few models are able to forecast them. In turn, this points that as long as the variance
of some models departs significantly from the observed variance, the benefits from
improvements in the ensemble skill in the form of mme < or mmW over mme become
substantial. Last, the improved hit rate (hitR) in mmW and mme < over mme seen in
Fig. 13, has a coherent pattern across all M4 values, as also seen in Fig. 16.

The contribution of different members as a function of My is investigated (Fig. 17).
For My > 6, when the concentration range is more or less captured by all models, an
even distribution of the selected models is found. Contrary, for the wide-most range
(Mg < 4), the contributions from specific models are particularly evident. Compared to
the Taylor plot (Fig. 12), the models with the least frequency of selection had either
lower STDR or higher RMSE. On the other hand, the most frequently used models be-
longed to a cluster of skilled contributors (low RMSE, high PCC, high STDR), however
the selection among them took into account their joint contribution (error correlation)
hence not all were selected.

Variance Inflation. According to the error decomposition presented in the introduc-
tion, bias correction has a net effect on the ensemble error. Further, the combination
of models with variance close to the observed one, as well as the mixture of nega-
tively correlated models are two other properties towards realistic ensemble represen-
tations. So far we dealt only with bias corrected simulations; here we present a plot of
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the model’s skill if we also correct the model’s variance. As the purpose of this work is
not the evaluation of the different correction strategies, we apply a simple multiplicative
correction factor to the whole bias-corrected time series. The results are presented in
Fig. 18 through a comparison of the composite skill (PCC, RMSE, STDR) in Taylor
plots as well as through binned bias plots.

The skill of the numerical models in simulating ozone (1st column) is enhanced with
the inclusion of the variance correction, which is also reflected in the ensemble prod-
ucts and in particular in mme and mme <. As expected, the second correction is also
accompanied with an increase in the effective number of models as it yields more
symmetric fields. The binned mean bias plot demonstrates that the ensemble prod-
ucts retain the same ability sequence in the two schemes across all ranges (i.e. 1st
mmW, 2nd mme <, 3rd mme) with the known overestimation tendency for concentra-
tions below 75 ug m~ and underestimation above that threshold. The differences be-
tween the schemes and products become substantial for the limited records exceeding
the 180 ug m~° value. In general, the mmW provides noteworthy better forecasts over
mme < and mme even with fewer corrections (for example mmW with only bias correc-
tion scores better than mme < with bias and variance correction); this also applies for
mme < over mme.

For the other two pollutants (NO, and PM,,), some of the results seen in ozone are
also valid like the improvement in the model's skill and the increase of the effective
number of models. Compared to ozone simulations, the distance between the three
ensemble products is lower in the Taylor plot indicating a mild improvement over mme.
This is also confirmed through the analysis of the binned mean bias. In addition, the
seasonality expressed through the PCC is lower in the case of NO, and PM,, This
points out that mme < and mmW improve the skill of mme up to a point, further im-
provement requires an advancement of the core uncertainty factors inside the deter-
ministic models like the emissions, the boundary conditions and the parameterization
of physical processes.
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The gross improvement in the RMSE of the multi-model ensemble mean achieved
through the bias and variance correction compared to only bias correction was 0.6 %
for Oz, 2.1 % for NO, and 11.8 % for PM,,_On the other hand, the improvement in the
RMSE achieved through the exploitation of the ensemble mean in the form of mmW or
mme < was 8.6 % for O3, 14.9 % for NO, and 13.5 % for PM,, Hence, even with bias
and variance corrections on the models of an ensemble, superior improvements can
be achieved through the optimization of an error decomposition approach.

7 Summary and conclusions

Ensemble forecasting with multi model ensembles improves the forecast skill by reduc-
ing the non-linear error growth and averaging out individual models’ error components.
The mme (equal weights) is a spatiotemporal robust estimate of the actual state with
increased accuracy (single errors cancel out) but with variance lower than the obser-
vations. Its skill degrades outside the interquartile range due to the inefficiency of the
majority of the models to simulate extreme percentiles, where hence averaging brings
mainly redundant information. The last property limits the usefulness of the ensemble
mean, particularly for the study of extreme events, unless a mechanism that account
for ensemble redundancy is taken into account. Possible pathways to eliminate this dis-
tortion and yield ensemble output with symmetric residuals across all distribution bins
are:

— mmW (optimize error through model weighting; keep all models): for short-range
forecasting (horizon < 4 days), it achieves lower error than the theoretical one for
uncorrelated equally weighted ensemble. However, the variability of those weights
at that scale is beyond any predictability. Nevertheless, learning over long time-
periods (~ 2months) and using those weights even at small time scales proved
robust and accurate. Its skill outperformed all other ensemble products as well as
individual models.
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— mme < (optimize error through trade-off between accuracy and diversity; average
on selected subset of models): for the 13 member ensembile, the effective num-
ber of models was in the range 2—-8, with the peak between 3 and 4. Hundreds of
ideal combinations exist within this range that can be detected through different
algorithms applied on specific properties (e.g. error correlation, redundancy, di-
versity, negative correlation etc.) The learning algorithms work better with a direct
optimization of the error rather than a dependent function of it (e.g., diversity). Its
skill was significantly better over mme and individual models and it demonstrated
the highest robustness with respect to the length of the training period.

An adaptive learning algorithm (weights or members) applied recursively can be
seen as an application of a flow-dependent error covariance. Its usefulness was
demonstrated for the case of mmW and mme <, where risky practices were also iden-
tified (e.g., mmW with dynamic weights). Compared to the traditional ensemble mean,
the use of non-redundant sub-ensembles results in lower forecast uncertainty and in-
creased sKill for studies of the extremes. However, as the skill of even the best model
is limited for very high values (e.g. > 150 pug m~° 0O3), so does the skill of the ensemble
products. Hence, besides any statistical post-treatment of the ensemble to coherently
improve forecast skill, there is a need for continuous model improvement, especially for
cases that depart from intermediate levels.

The skill of the three candidate ensemble products was also cross-validated as
a function of the symmetry of the model distribution around the truth. With increas-
ing symmetry, the three products were converging. Those cases were occurring for
intermediate concentration ranges, that all models are somehow tuned to replicate. As
the ensemble was becoming more assymetric, the error gain from mme < or mmwW
over mme was gradually increasing, reaching on average 15 % and 30 % respectively.
All the extreme records were found in the assymetric era of the ensembile.

Hence, an ensemble may contain infinite number of models but the ideal ensemble
should be constructed from this pool based on some criteria that reflect a symmetrical
error distribution. The multi model mean defines the threshold point from where the
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non-trivial problem of weighting or sub-selecting should progress further. A general
roadmap of good practices is attempted hereafter:

1. Generate a raw ensemble.
2. Apply bias correction techniques to remove systematic errors.

3. Optimize distribution symmetry over a training set of proper size using either all
members or a subset of them. The first approach concludes with a weighting
scheme, the second with the identification of the effective number of models and
the allowed/forbidden combinations of members that can be sampled to constitute
effective ensembles. The extent of the training dataset is confined from physical
concepts as well as the statistical properties of the specific ensembile.

4. Average the weighted or reduced ensemble.

The above procedure does not imply any spatial or cross-variate dependence. It
aims at optimizing ensemble averaging at single locations for single variables. A frame-
work for the optimization of the ensemble skill for multivariate spatial dependence, like
the multi-dimensional optimization (Potempski and Galmarini, 2009) or the ensemble-
copula coupling (Schefzik et al., 2013), will be assessed in a future study.

Acknowledgements. The authors wish to thank Efisio Solazzo for his constructive comments
on the manuscript.
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Table 2. Indices of skill and redundancy.
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Root Mean Square Error (RMSE)
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Figure 1. Ensemble error (RMSE) from all possible combinations of candidate models. The
red curve on each plot represents the mean of the distribution of any k-model combinations
while the blue curves form the min and max of the each respective distribution. [top left] i.i.d.,
[top right] bias perturbation, [middle] variance perturbation, [bottom] covariance perturbation.
Please read text for explanations. At the same plot, the bar chart expresses the optimal weight
of each model in the full ensemble and the straight red line symbolizes the equal weight value.
In this case, the horizontal axis represents the id of the model.
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Figure 2. [top left] Ensemble error (RMSE) from all possible combinations of candidate models
(EU4r). The notation is similar to Fig. 1. The numbers in red express the fractional contribution
of each model to skilled combinations. [top right] Multi aspects of individual model skill through
Taylor plot. [middle] Four dimensional representation of accuracy — diversity (left) and variance
— covariance (right), with respect to RMSE (color scale) and ensemble order (isolines). The
isolines represent the multi-dimensional convex hull as a function of ensemble order. Isolines
shrink with increasing ensemble order [bottom] The RMSE ratio of mme over the best sin-
gle model as a function of redundancy (explained variation by sm) and model skill difference
((MSE)/ MSE (best), evaluated from all combinations of 6th order (left) and 13th order (right).
The diagram on the right has been evaluated at all observation sites.
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Figure 4. [Top] The potential use of various indices as proxies for clustering low error combi-
nations, based on corr (¢;, e;) dendogram (left) and corr (d;, d;) dendrogram (right). [Middle]
Process contribution to model’s error: the MSE of the deterministic models (1-13) and the
ensemble products as a function of physical processes, decomposed with two variants of the
Kolmogorov-Zurbenko filter. The left plot utilizes four spectral components (ID, DU, SY, LT) and
the right plot only two (ID+DU, SY+LT). The latter case has less energy leak between the
components, as quantified by all the higher-order interactions (ho term). The mme”* is the mme
averaged over the subset without significant systematic errors. [Bottom] Skill of selected statis-
tical ensemble products for M = 5 by means of a Taylor plot: (1) em dendrogram cluster [5, 6,
8,9, 12], (2) dm dendrogram cluster [5, 6, 7, 8, 13] (3) kz filter removal (mme*) [3, 4, 6, 7, 8, 9,
12]. In addition, kzFO is the first order kz model [ID: 7, DU: 6, SY: 12, LT: 12] and kzHO is the
higher order kz model [ID+DU: 4, 6, 9, 11, 12; SY+LT: 1, 3, 6, 10, 12].
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Figure 5. The mean RMSE of the models (colored lines) as a function of window size (1-92
days). In addition, selected ensemble products are also displayed: mme (thick black), (mm;)
(thick dotted-black), mmW (thick red), mme < (thick dotted red). The bars show the theo-
retical minimum value (< var >/nm) for uncorrelated models. [Bottom] The link between the
two decompositions for ensembles of order M (= 13). The colorbar reflects the RMSE ratio
(mme/best).
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Figure 9. Weight Sensitivity for mmW (top) and mme < (bottom), for the 92 daily segments
(left) and the seasonal 92-days segment (right). For mmW, the boxplots present the weights
over all examined daily cases (day-to-day variability) while the barplots show the weight over
the one seasonal case (red circles indicate the mean value of the weights derived from all daily
cases). For mme <, the barplots show each model’'s frequency of participation in the optimal
sub-ensemble.

Printer-friendly Version

Interactive Discussion

Jaded uoissnosiq

15855


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

ACPD
14, 1580315865, 2014

Jaded uoissnosiq

De praeceptis
= = . ferendis
[ [0
€ 3 € : S
2 = g |. Kioutsioukis and
S 2r = @ .
D 1 o 2] S. Galmarini
z . = c
(2]
-1 6
25 2;0 20 50 80 2
'U .
Day Count .8 Title Page
D
- Abstract Introduction
i .
p 2 O
< = Q
= 5 2r S
T L 1 %)
=0 =0 ¢ EDE
-1 : -1F : : -
0 20 40 60 80 0 20 40 60 80 S
Day Count Day Count @
Figure 10. Variability of weights (thin lines) and effective number of models (thick lines) as Full Screen / Esc
a function of time-series length. Each thin-line represents a different model. The effective num- o
ber of models is calculated through eigenanalysis (black) or error minimization (green). =
% Printer-friendly Version
(2]}
2 Interactive Discussion
Ny
e
.

15856


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

ACPD
14, 1580315865, 2014

Jaded uoissnosiq

200 200 - 200
- ; & P © % ; _ *i Do ]
B renf EUIE g % @ ..Eﬁ;d% e B ] UM "32? B P De praeceptis
§, : e} : E, iog §, : 0.0 .
w " o w e o > w " 4 — ferendls
&b ol.o : : [ 9 g a
= ¢ : o s : = o © = ® :
o H : o o 0 L " - . .
0 50 100 150 200 150 200 0 50 100 150 200 0 50 100 150 200
MSE (divMX1) MSE (mm) MSE (mme<) MSE (covMN1) g |. Kioutsioukis and
w0 a0 20 20 o S. Galmarini
D 150} EU2F D 150).. EU2E D 150} EU2E D 10} EU2F @
£ : £ £ £ : h
E E 1o} e8.2 E 082 E o =
w w 00 O w eyece) w o
B sl a s O sl ool B B sl o BT 5
= : = = : = : T .
El[I i 50 WﬁD 150 200 1UEI 200 UD 50 100 Wéﬂ 200 9 5.[I WﬁD 150 200 m Tltle Page
MSE (divMX1) MSE (mm) MSE (mme<) MSE (covMN1) S
100 T 7 dg 10— 100 T oo 0 100 T do = Abstract Introduction
@ | Eun 09 T o o & P - : °
E Yl E |9 ° . Eusr | E c@é,"@" £ 0 & & _
\u_-‘, BOO bt G I 500 @Q,@ o,c,).; ...... & ,u_; 500} wo .......... .c; E‘, 500} o.. oo Conclusions References
2 2 Gop 2 S ; ‘ @ : : i
= C = oo = Eusr: = s EUsr o
% 200 400 600 800 1000 % 200 400 nauu E[rla 1000 % 200 400 600 GO0 1000 % 200 400 600 800 1000 o bles Figures
MSE (divMX1) MSE (mmW) MSE (mme<) MSE (covMN1) 2
200 200 200 8
gm BUAL i D 150 @ o BV gm BUAE i 5 n n
Em e < E Em o@é"g 2 Em 8% 0 =)
& . 7 7 G & © Y
: | : S
i) 0 i)
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 ('D
MSE (divMX1) MSE (mmW) MSE (mme<) MSE (covMN1) = Back Close
Figure 11. The MSE of the examined ensemble products (divMX1, mmW, mme <, covMN1) Full Screen / Esc

vs. the mme, for the 92 cases of 1 day blocks. Blue for the dynamic weights, red for the static.

From top to bottom, EU1r to EU4r. Printer-friendly Version

Interactive Discussion

Jaded uoissnosiq

15857 -


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

ACPD
14, 1580315865, 2014

Jaded uoissnosiq

De praeceptis
ferendis

RMSE 1

|. Kioutsioukis and
S. Galmarini

obs
——mme |...|
— mmW

—— mme<

Title Page

Jaded uoissnosiq

Abstract Introduction

N
]

Standard deviation

Conclusions References

0-iif

Tables Figures

i i
a0 120 150 180 210 240
Ozone

Figure 12. Aggregation of the spatial results from the 451 stations for the test dataset. [top left]
The skill of mme, mme < and mmW in a Taylot plot together with the deterministic models. [top
right] The cdfs of mme, mme < and mmW alongside the obs. Back

Jaded uoissnosiq

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Jaded uoissnosiq

(®)
S

15858


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15803/2014/acpd-14-15803-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

(]

cdf
d

; mme
mmWimme | 25}..4. Ao my
mme</mme : mme<

r

0 1) SaiF S
06 08 1 12 0 02 04 06 08 1

RMSE ratio hit rate (%)
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Figure 16. [Top] Statistical properties of mme, mme < and mmW forecasts vs. obs from the
451 stations for the test dataset as a function of My: mean and coefficient of variation (Stan-
dardDeviation/Mean). The shadow area in the mean plot shows the 10th and 90th percentile of
the observed concentrations. [Middle, Bottom] Forecast Skill of mme, mme < and mmW from
the 451 stations for the test dataset as a function of M: PCC, RMSE, STDR and hitR.
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Figure 17. Frequency of model use in mme <, from the 451 stations for the test dataset as

a function of M.
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Figure 18. The Taylor diagrams on the 1st row refer to only bias correction (db1) while on the
2nd row refer to bias plus variance correction (db4). The bar plot on the 3rd row show the
distribution of the effective number of models in the two schemes. The line plots at the last row
compare the binned bias of the two correction schemes (db1: dotted, db4: line); the percentage
of values within each bin is also given. Each column shows a different pollutant (O3, NO,,
PM,,). The plots have been produced from the aggregated time series incorporating all the
stations of the test dataset.
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