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Appendix A. Aethalometer model 19	
  
 20	
  
Introduced by Sandradewi et al. (2008), the deconvolution of Black Carbon concentrations 21	
  
into its two main constituents (wood burning and fossil fuel) is based on i) the fact that black 22	
  
carbon is emitted only from the two aforementioned combustion sources; and ii) enhanced 23	
  
absorption of wood combustion in ultraviolet wavelengths due to emission of Polycyclic 24	
  
Aromatic Hydrocarbons (PAH) and humic-like substances (HULIS). Multi-wavelengths 25	
  
Aethalometer measurements highlight of the absorption spectral dependence and thus allow 26	
  
for such a deconvolution. 27	
  
Absorption coefficients can be related to wavelengths and absorption coefficients of traffic 28	
  
and wood burning conditions (eq. A.1, A.2, A.3, A.4). 29	
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𝑏!"# 𝜆!" = 𝑏!"# 𝜆!" !" + 𝑏!"# 𝜆!" !!      (A.4.) 1	
  
 2	
  
In the case of this study, the 470 nm and the 950 nm channels were used in the calculation, as 3	
  
well as an absorption coefficient of 2.1 and 1.0 for pure wood burning and traffic, 4	
  
respectively. Fig. A.1. illustrates the choice αwb. Besides a noticeable correlation between the 5	
  
Angstrom exponent and m/z 60 (tracer of levoglucosan), pure and local (i.e. fresh) wood 6	
  
burning condition is observed during the night of the 5th - 6th February (as described in the 7	
  
discussion paper), where the Angstrom exponent reaches 2.06. 8	
  
Diurnal patterns of the two BC components correspond very well to the expected emission 9	
  
dynamics of the traffic and wood-burning source (Fig. A.2.). BCff presents a clear peak during 10	
  
the morning and a broaden peak during the evening; and BCwb exhibits a peak during evening 11	
  
hours. 12	
  
 13	
  

 14	
  
Figure A.1. Timeseries of the absorption Angstrom exponent and m/z 60 (referring to 15	
  
levoglucosan fragmentation) from the ACSM. 16	
  
 17	
  

 18	
  
Figure A.2. Diurnal variations of BCwb and BCff 19	
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Appendix B. Choosing the appropriate number of factors 1	
  
OA source apportionment 2	
  
 3	
  
The appropriateness of OA source apportionment solutions was investigated by varying the 4	
  
numbers of factors from 2 to 6. The most obvious change of Q/Qexp slope occurs at 3 factors, 5	
  
indicating that the 3-factor solution is appropriate (Fig. B.1). 6	
  
The 4-factor solution presents two splitted BBOA factors, the sum of the two correlating very 7	
  
well to BBOA of the 3-factor solution (r2=0.96). 8	
  
 9	
  

 10	
  
 11	
  
Figure B.1. Q/Qexp variations over different number of factors 12	
  
 13	
  

 14	
  
Figure B.2. Factor profiles and timeseries for the 4-factor solution 15	
  

 16	
  

PM1 source apportionment 17	
  

Similarly, increasing the number of factors in the global PM1 source apportionment leads to 18	
  
noisy and unstable factors. The 5-factor solution presents two splitted semi-volatile secondary 19	
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aerosol factors, dominated by OOA and ammonium nitrate (Fig. B.3.). Moreover, bootstrap 1	
  
calculations (Table B.1.) highlight a lower stability of the fifth factor, making the 4-factor 2	
  
solution more appropriate. 3	
  

 4	
  

 5	
  

Figure B.3. Factor profiles (left) and time-series (right) of the 5-factor solution 6	
  

Table B.1. Bootstrap mapping of the 5-factor solution from the global PM1 source 7	
  
apportionment analysis. 8	
  

% of bootstrap 
mapping 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Unmapped 

Factor 1 100 0 0 0 0 0 

Factor 2 0 100 0 0 0 0 

Factor 3 0 0 100 0 0 0 

Factor 4 0 0 0 100 0 0 

Factor 5 2 15 0 0 77 6 

 9	
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Appendix C. Comparison between unconstrained and constrained PMF analysis 1	
  

An unconstrained PMF analysis was carried out prior to ME-2 constrained analysis. As 2	
  
obtained further with constrained ME-2, this PMF analysis led to a 3-factor solution; 3	
  
Comparisons between both output datasets are illustrated and summarized in Fig. C.1. and 4	
  
Table C.1. Only slight differences are noticeable with time-series and profiles correlation 5	
  
coefficient (r²) being higher than 0.85 and 0.72 respectively. The lowest correlation is 6	
  
observed for BBOA factor profile (r2=0.72), but does surprisingly not have an influence on 7	
  
factor timeserie (r2=0.98). A same feature is observed for HOA outputs (correlation 8	
  
coefficient of 0.83 and 0.95 for factor profile and timeserie respectively). This can be 9	
  
explained by the proximity of BBOA and HOA profiles (at least for some of the major m/z) 10	
  
but clearly distinct diurnal patterns (Lanz et al., 2007). 11	
  

The OOA factor timeserie from the unconstrained analysis presents an unrealistic temporal 12	
  
variation around February 6th, with a clear drop of modeled concentrations at the same time as 13	
  
intense peaks of BBOA and HOA, suggesting that constrained runs were more appropriate. 14	
  
An investigation of the influence of this episode is presented in Appendix F. 15	
  

Although discrepancies in the variability of timeseries are low, changes in slopes (Table C.1.) 16	
  
alter signal-to-noise ratios and could then influence the results of a subsequent PMF analysis. 17	
  
The PMF2 methodology was then applied using the OA factors from unconstrained analysis.  18	
  

 19	
  

 20	
  

FigureC.1.Factor profiles (left) and timeseries (right) of unconstrained and constrained runs 21	
  
during the 2012 late winter period in Paris. 22	
  

 23	
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Table C.1. Pearson correlations and slopes between constrained and unconstrained factor 1	
  
profiles and timeseries. 2	
  

 HOA BBOA OOA 

 profile timeserie profile timeserie profile timeserie 

r2 0.83 0.95 0.72 0.98 0.99 0.85 

slope  0.81  1.26  1.61 

	
  3	
  

	
  4	
  

FigureC.2. Factors profiles (left) and timeseries scatter plot (right) of the PMF2 analysis using 5	
  
OA factors from constrained and unconstrained PMF analysis	
  6	
  

	
   	
  7	
  



8	
  
	
  

Appendix D. Sensitivity tests on a-values chosen within OA source apportionment 1	
  

As performed in Lanz et al.(2008), and in order to investigate the role of a-values into the 2	
  
ME2 analysis, several constrained PMF analysis were performed using different a-values for 3	
  
BBOA and HOA reference profiles, from 0.05 to 0.80 (Table D.1.). Comparison of timeseries 4	
  
is showed in Fig. D.1 and D.2. For BBOA profile, correlation coefficients are always higher 5	
  
than 0.99, and slopes vary from ~0.90 to ~1.03, highlighting the poor influence of a-value 6	
  
variations. Higher discrepancies are observed within the variation of a-values for the HOA 7	
  
profile. However, Pearson coefficients remains satisfactory (higher than 0.98), and slopes 8	
  
vary from ~0.70 to ~1.10, but interestingly stay in the range of 30% relative uncertainty input 9	
  
for the global PM source apportionment analysis (Table 1 of the discussion paper). 10	
  

 11	
  

 12	
  

Figure D.1. Surface plot of slopes between timeseries using different a-values for BBOA 13	
  
constrained profile. All Pearson coefficients were higher than 0.99. 14	
  

 15	
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 1	
  

Figure D.2. Surface plot of slopes between timeseries using different a-values for HOA 2	
  
constrained profile. All Pearson coefficients were higher than 0.98. 3	
  

 4	
  

Table D.1.Parameters for a-value investigational runs 5	
  

Run # 1 2 3 4 5 6 7 8 

a-value BBOA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

a-value HOA 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

 6	
  
  7	
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Appendix E. Influence of the uncertainties used in the PM1 source apportionment 1	
  

Defining uncertainties of variables is one of the most important key-point prior to a PMF 2	
  
analysis. As OA factors present highest contribution to the Q/Qexp ratio (49%) in the PM1 3	
  
source apportionment (Fig. E.1.), their impact on the quality of the factorization was 4	
  
investigated by varying their relative uncertainty (in %) in the error matrix, calculated from 5	
  
Polissar et al. (1998). Increasing the uncertainty of OA factors from 20% to 50% (Fig. E.2.) 6	
  
does not have a significant impact on the variation of the Q for HOA, BBOA and NH4; leads 7	
  
to a fairly constant decrease of Q for SO4 and the two BC components. And for OOA and 8	
  
NO3, a two-step decrease is observed with a change of slope between 30% and 40%, meaning 9	
  
that this range of uncertainty leads to optimized fitting and minimized residuals, even though 10	
  
their thorough determination is not possible yet for reasons explained in the discussion paper. 11	
  

Results of the PM1 source apportionment using uOA=30% or 40% are very similar (Fig. E.3.) 12	
  
with coefficients of correlation greater than 0.9 for profiles and timeseries. Slopes between 13	
  
timeseries are very close to 1 except for the Traffic source where the uOA=40% solution 14	
  
presents an underestimation of 21%, mostly due to lower concentrations of ammonium nitrate 15	
  
in the factor profile. It is however important to note that the uOA=30% solution best fitted the 16	
  
total mass (sum of each variables), with a slope of 1.004 (compared to 0.98 with uOA=40%). 17	
  

Similarly, changing the uncertainty of the two BC components from 40% to 20% does not 18	
  
have a significant impact on factor profiles and timeseries (Table E.1.), as the latter as specific 19	
  
tracers of two distinct sources. 20	
  

Finally, increasing the uncertainty of the inorganic ions (NO3
-, SO4

2-, NH4
+ and Cl-) from 21	
  

15% to 40% leads to unstable solutions, where bootstrap analysis is not satisfactory (Table 22	
  
E.2.), and sulfate particularly badly modeled during pollution episodes. 23	
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 1	
  

Figure E.1. Contribution to the total Q/Qexp of each variable of the PM1 source apportionment 2	
  

 3	
  

Figure E.2. Sum of the Q/Qexp ratio for each variable with different uncertainties for OA 4	
  
factors 5	
  

 6	
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 1	
  

Figure E.3. Comparison of factor profiles and timeseries from the PM1 source apportionment 2	
  
using uOA = 30% and 40% 3	
  

 4	
  

Table E.1. Comparison (slopes and r2) of factor profiles and timeseries when using an 5	
  
uncertainty for the BC components of 20% instead of 40%. 6	
  

 Wood burning Traffic SV-Sec. Aer. LV-Sec. Aer 

 slope r2 slope r2 slope r2 slope r2 

timeseries 0.94 0.99 1.01 0.93 0.94 0.99 1.06 0.96 

profiles  0.99  0.94  0.99  0.99 

 7	
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Table E.2. Boostrap mapping of 4-factor solution using an uncertainty for the inorganic ions 1	
  
of 40% instead of 15%. 2	
  

% of bootstrap 
mapping 

Base LV-SA Base Traffic Base SV-SA Base Wood 
Burning 

Unmapped 

Boot LV-SA 69 0 3 2 26 

Boot Traffic 0 100 0 0 0 

Boot SV-SA 0 0 98 0 2 

Boot Wood 
Burning 

0 0 0 100 0 

 3	
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Appendix F. Comparison between the double PMF analysis with and without the intense 1	
  
initial Wood Burning episode(February 6th). 2	
  

As suggested by Norris et al. (2008), intense, sharp and sporadic events (e.g. fireworks) are 3	
  
usually put aside from any PMF analysis because of the non-representativeness of the source 4	
  
over the whole database. In our case, on the 6th of February, an intense peak of organic 5	
  
concentration is observed and can be linked to wood burning emissions. The influence of this 6	
  
episode on results presented in the manuscript is investigated here by performing the same 7	
  
double PMF analysis excluding this peak. OA source apportionment and global PM1 source 8	
  
apportionment were thus redone starting on February 7th. The comparison of profiles and 9	
  
timeseries is presented in Fig. F.1. Although some discrepancies are observed for factor 10	
  
profiles (r2>0.85), especially with different nitrate proportions, factor timeseries are very 11	
  
consistent to each other (r2>0.96) and present slopes close to 1. Therefore, the wood-burning 12	
  
episode observed on February 6th is assessed to have only little impact on final results. 13	
  

 14	
  

 15	
  

Figure E.1. Comparison of factor profiles and timeseries from the double PMF analysis when 16	
  
ex-/including the wood burning episode on February 6th. 17	
  

 18	
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 1	
  

Figure F.2. Timeseries from the double PMF analysis when ex-/including the wood burning 2	
  
episode on February 6th 3	
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