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Abstract

Online non-refractory submicron Aerosol Mass Spectrometer (AMS) measurements in urban
areas have successfully allowed the apportionment of specific sources and/or physical and
chemical properties of the organic fraction. However, in order to be fully representative of PM
pollution, a comprehensive source apportionment analysis is needed by taking into account all
major components of submicron aerosols, creating strengthened bonds between the organic
components and pollution sources. We present here a novel two-step methodology to perform
such an analysis, by taking advantage of high time resolution of monitoring instruments: the
Aerosol Chemical Speciation Monitor (ACSM) and the multi-wavelength absorption
measurements (Aethalometer AE31) in Paris, France. As a first step, organic aerosols (OA) were
deconvoluted to hydrocarbon-like OA (HOA), Biomass Burning OA (BBOA) and Oxygenated
OA (OOA) with Positive Matrix Factorization, and black carbon was deconvolved into its wood
burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with
organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride),
leading to a four-factor solution allowing highly time-resolved characterization of the major
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sources of PM;. Outputs of this PMF? include two dominant combustion sources (wood burning
and traffic) as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to
be emitted by both wood burning and traffic, the latter sources occurred to significantly
contribute also to OOA.

1. Introduction

The source apportionment of aerosolized particulate matter has become one of the main concerns
of air quality studies as well as stakeholder initiatives. This is primarily related to growing
evidence of their adverse health effects (Pope and Dockery, 2006; Pope et al., 2004), impacts on
air quality, by means of frequent exceedances of EU limit values at urban sites, and, globally,
climate change, through its direct and indirect effects on the Earth’s radiative balance (Haywood
and Boucher, 2000; Rosenfeld et al., 2008). Moreover, despite geographical disparities, the
understanding of the particulate matter in urban areas remains complex by virtue of its chemical
composition and the multitude of emission sources.

The organic aerosol (OA) fraction gathers in itself all of the aforementioned challenges. It is
especially complex and dynamic, exhibiting an outstanding number of molecules, structures,
transformation pathways, and physical and chemical properties. While primary OA are linked to
local/regional emission sources (e.g. traffic and biomass burning), secondary OA usually result
from the chemical transformation of pre-existing particles or from the condensation of gaseous
precursors through several oxidation reactions, and thus present diverse degrees of oxidation.
This issue is emphasized by strong discrepancies between laboratory and ambient measurements,
and traditional SOA formation models, which could underestimate secondary particle formation
and/or the condensation of Oxidized Primary Organic Aerosols (OPOA) (Robinson et al., 2007),
especially for wood burning (Adler et al., 2011; Grieshop et al., 2009; Heringa et al., 2011;
Robinson et al., 2006) and traffic (Chirico et al., 2010; Platt et al., 2013; Sage et al., 2008;
Weitkamp et al., 2007) emissions.

Previous worldwide high-time resolution measurements of the chemical composition of non-
refractory submicron aerosols (nitrate, sulfate, ammonium, chloride and organic matter),
performed by Aerosol Mass Spectrometers (Aerodyne Research, Inc., ARI), highlight the
quantitative predominance of OA, and have enhanced the understanding of the chemical and
physical transformations of OA (Jimenez et al., 2009). The Aerosol Chemical Speciation Monitor
(ACSM, ARI) shares the same technology and measurement principle as the regular AMS,
except for size distribution information, and allows for robust long term ambient monitoring (Ng
et al., 2010). Through the use of source-receptor model toolkits based on Positive Matrix
Factorization (PMF; Ulbrich et al., 2009; Canonaco et al., 2013), both instruments allow for the
deconvolution of OA into several subgroups characterized by their fragmentation fingerprints.
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Such source apportionment (SA) studies are nowadays widely reported in the literature (e.g. Lanz
et al., 2010; Zhang et al., 2011; Crippa et al., 2013a) and have led to a significant improvement of
our understanding of OA sources and atmospheric ageing. This type of statistical analysis
commonly leads to the identification of several organic factors presenting various degrees of
oxidation and/or having mass spectra signatures which can be related to specific tracers of a
given emission source. Oxidized Organic Aerosol (OOA) are thought to be linked to Secondary
Organic Aerosols (SOA) which can be further divided into semi-volatile and low-volatile
fractions (SV-OOA and LV-OOA, respectively); while Hydrogenated Organic Aerosols (HOA)
are usually considered as Primary Organic Aerosols (POA) emitted by combustion of fossil fuels
(gasoline, diesel or crude oil for instance). Other OA sources such as Biomass Burning Organic
Aerosols (BBOA) or Cooking Organic Aerosols (COA) were also observed depending on the site
location and the season of study (Lanz et al., 2007; Allan et al., 2010; Crippa et al., 2013b;
Crippa et al., 2013c).

However, OA source apportionment does not address the mass of the contributions from different
pollution sources, as other carbonaceous (e.g. Black Carbon) and inorganic species (nitrate,
sulfate and ammonium) account for a significant fraction of PM; mass. Since the AMS also
allows for the measurement of non-refractory inorganic compounds, some alternative and
innovative approaches recently make use of PMF analyses including the latter species. For
instance, Sun et al. (2012) proposed the combination of organic MS and specific inorganic
fragments to investigate the links between these two fractions. More recently, McGuire et al.
(2014) used the total AMS mass spectra to simultaneously take organic and inorganic fragments
into account. These novel methodologies are of prime interest for an improved understanding of
pollution sources and their evolution in the atmosphere. The combination of measurements
obtained from different instruments is also quite helpful. In this context, Crippa et al. (2013b)
combined organic AMS data with PTR-MS data, creating strengthened bonds between particulate
phase organics and their gaseous precursors. Including tracer measurements of other individual
species, molecules, or elements (e.g. BC fractions, levoglucosan, transition metals) may also
greatly improve PM; source apportionments. On-line measurements of specific organic tracers
and transition metals might be envisaged for networking activities in near future. For BC, among
the various instruments that already allow its monitoring in ambient air, the multi-wavelength
Aethalometer (Magee Scientific) offers the possibility for absorption spectral dependence
analyses of the various absorbing materials (e.g. fossil fuel BC and wood burning BC, as defined
by Sandradewi et al., 2008 and Favez et al., 2010).

Here, we propose a novel methodology using conventional AMS/PMF approaches and external
datasets. This methodology shares the same goal than innovative approaches mentioned above,
but has been developed with ACSM measurements, which shows less sensitivity than High
Resolution AMS measurements. The first step of the presented work aims to identify and
characterize wintertime OA sources and transformation processes in the region of Paris, as
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usually performed with mass spectrometer datasets for about 10 years. Then, going beyond a
single OA source apportionment, the resulted organic tracers combined with inorganic species
(nitrate, sulfate, ammonium and chloride) and source specific black carbon concentrations, are
used for PM; source apportionment.

2. Methodology

2.1. Measurement site and instrumentation

Measurements were conducted at the SIRTA atmospheric supersite (Site Instrumental de
Recherche par Télédétection Atmosphérique, 2.15° E; 48.71° N; 150m a.s.l.; (Haeffelin et al.,
2005); http://sirta.ipsl.fr). This site is located about twenty kilometers southwest of Paris and is
representative of suburban background conditions of the Ile-de-France region (Sciare et al., 2011;
Crippa et al., 2013b; Freutel et al., 2013). Data presented here are part of the long-term in-situ
aerosol properties monitoring observations performed from mid-2011 onwards at SIRTA within
the EU-FP7 (European Union Seventh Framework Programme for Research) ACTRIS program
(Aerosols, Clouds, and Trace gases Research InfraStructure Network; http://www.actris.net). We
selected the period from January 31% to March 26™ 2012 for its representativeness of late winter —
early spring conditions, a period of the year with frequent exceedances of the European daily
PM threshold (50 pg/m’) and a significant contribution towards exceeding the annual mean
PM, s target value (20 pg/m’). The combination of enhanced domestic heating emissions and
stagnant atmospheric conditions in late winter — early spring is propitious for the accumulation of
pollutants within the boundary layer, and for photochemical processes influencing air quality
(Favez et al., 2012; Waked et al., 2013; Bressi et al., 2013). An overview of meteorological
parameters and submicron aerosol chemical composition during the selected period is shown in
Fig. 1, illustrating the occurrence of high concentrations of organics initially and ammonium
nitrate later in the measurement period.

Since summer 2011, measurements of the chemical composition of non-refractory submicron
aerosol have been carried out using an ACSM. This recent instrument shares the same general
structure with the AMS but has been specifically developed for long-term monitoring. An
exhaustive description of this instrument is available in Ng et al. (2011). Briefly, submicron
particles are sampled at 3 L/min with a PM; 5 cut-off, and sub-sampled at 85 mL/min through an
aerodynamic focusing lens toward a conical porous tungsten vaporizer heated to 600°C. Non-
refractory submicron particles are then flash-vaporized, ionized with electron impact at 70 eV.
Ions are detected by a quadrupole mass spectrometer with a scan rate and m/z window of
500 ms.amu” and [10; 150], respectively. As described by Ng et al. (2011), instrument mass
calibration was performed by injecting generated mono-disperse 300 nm ammonium nitrate
particles into both ACSM and CPC, and assuming a particle density of 1.72 g/cm’ and a shape
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factor of 0.8, the response factor (RF) of nitrate and relative response factor of ammonium could
be calculated. Performed in November 2011, i.e. 3 months before the start of this study, the RF of
nitrate and the relative ionization efficiency (RIE) of ammonium were 2.31 .10™" amps/pg/m’
and 6.0, respectively. Twenty scans (ten scans at ambient conditions, ten “blank” scans with
filtered air) allowed for the continuous measurement of the concentrations of total non-refractory
organics, nitrate, sulfate, ammonium, and chloride every 29 min.

Aerosol light absorption coefficients (b,,s) were obtained every 5 minutes at seven different
wavelengths (370, 470, 520, 590, 660, 880 and 950 nm) using a Magee Scientific Aethalometer
(model AE31) equipped with a PM; s cut-off inlet. As previously highlighted, ambient BC mass
size distributions predominantly show a size range between 0.1 and 1 pm (e.g. Healy et al., 2012;
Laborde et al., 2013); thus, very little bias is assumed when combining PM; s BC and NR-PM;
species. This instrument was operated at a flow rate of 5 L/min. Due to the methodology used
within the Aethalometer (filter-based measurement), absorption coefficients directly obtained
from this instrument are affected by various sampling and analytical artefacts (mostly referred as
multiple scattering and loading effects) which need to be carefully compensated (Collaud Coen et
al., 2010). In the present work, the correction procedure introduced by Weingartner et al. (2003)
was applied to our dataset, as fully described in Sciare et al. (2011). Multi-wavelength absorption
measurements were then used to apportion BC to two main fractions: fossil fuel BC (BCs) and
wood burning BC (BC,y), following the “Aethalometer model” methodology (Appendix A)
introduced by Sandradewi et al. (2008) and successfully applied to the same instrument and at the
same site one year earlier than the present study (Sciare et al., 2011). This model assumes that the
enhanced absorption at near UV wavelengths is due to absorbing organic molecules (Brown
Carbon, BrC) linked to wood-burning emissions. Although brown carbon may originate from
other sources than wood burning emissions, to the best of our knowledge, there is no study in
ambient conditions showing at near-UV wavelengths used by the Aethalometer significant
absorption from BrC related to other sources than biomass burning. The consistency of such a
deconvolution is furthermore illustrated by the good correlation (r*=0.73, N=2040) obtained
between BC,, and m/z 60 from the ACSM (commonly used as a biomass burning tracer; Aiken
et al., 2009), contrasting with the poor correlation between m/z 60 and BC (r’=0.23, N=2040).

The consistency of ACSM and AE31 measurements has been checked performing 3-h PM;
chemical mass closure obtained through the comparison of the sum of individual chemical
species monitored using both instruments with total PM; concentrations measured independently
using a co-located TEOM-FDMS. This comparison shows a rather low correlation coefficient of
0.65 (N=394), that might be attributed to likely high uncertainties of TEOM-FDMS
measurements at low PM; concentrations and that is comparable to the ones previously obtained
within such mass closure exercises (r* of 0.68 and 0.71 respectively for Sun et al., 2012 and
Budisulistiorini et al., 2013). However the slope of 0.99 obtained from this comparison tends to



O 00 N O U b

10

11
12
13
14
15

16

17

18
19
20
21
22
23
24
25

26

27

28
29
30
31

reinforce the validity of the combination (and the calibration) of both ACSM and AE3l
instruments to characterize the major chemical components of the PM; mass.

2.2 Source apportionment methods

Developed about 20 years ago (Paatero and Tapper, 1994), PMF is nowadays intensively used for
the source apportionment of atmospheric PM pollutants using filter-based as well as on-line
measurements. Briefly, time series of chemical species (or organic mass spectra for ACSM data)
arranged as a matrix (X), are factorized into a linear combination of a factor (i.e. source profile)
and timeserie sub-matrices (F and G, respectively) following:

Xij = XpJip-fpj T €ij (D

where x;jj correspond to the elements of matrix X, p represents the number of factors in the
solution, gj, and f,,; correspond to the element of matrices G and F representing respectively time
series and profiles (mass spectra for ACSM) of each factor, and e;; correspond to residuals not
fitted by the model for each data point. G and F matrices are resolved for a minimum value of Q,
defined as:

e2
0=%3(%) )
ij
where o;; represents the measurement uncertainty of each data point.

The analysis of ACSM organic mass spectra was performed using SourceFinder (SoFi v4.5,
http://www.psi.ch/acsm-stations/me-2). This toolkit, implemented along with AMS and ACSM
data processing software in Igor Pro (Wavemetrics, Inc.), was recently developed by Canonaco et
al. (2013). It allows users to take advantage of the Multilinear-Engine (ME-2) algorithm (Paatero
and Hopke, 2003), where a priori information might be introduced in form of known factor
profiles and/or factor time series into the PMF analysis (Lanz et al., 2008). In this study the a-
value technique of the ME-2 solver was employed, where the constrained factor profiles were
allowed to vary within the scalar value “a” (eq. 3).

f}',solution = f} + a-fj (3)
where f represents one factor profile in the F matrix.

Timeseries and uncertainty matrices were both obtained from the ACSM data analysis software
(acsm_local Igor procedure v1520) (Zhang et al., 2005; Ng et al., 2011; Ulbrich et al., 2009). In
our study, the two matrices contain 73 mass fragments (m/z), from m/z=12 to m/z=100, and 2040
samples. Previous AMS measurements performed in Paris (Crippa et al., 2013b, 2013c) offered
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the opportunity to implement a priori factor profiles specifically representative of the Ile-de-
France wintertime pollution; HOA and BBOA factor profiles were retrieved from the AMS
spectral database (http://cires.colorado.edu/jimenez-group/AMSsd/, Ulbrich et al., 2009). The
model was run several times, testing several numbers of (unconstrained) factors and a-values, as
presented in the Appendix B, C and D of the supporting material. The best solutions are
presented and discussed in section 3.2.

The second step of the source apportionment strategy presented here consists of a PM; source
apportionment using outputs of the preliminary OA source apportionment described above,
source specific black carbon concentrations from the Aethalometer model (BCy, and BCy) and
inorganic species (SO4>, NO3", NH,", CI') from ACSM measurements. This was performed using
the EPA PMF software v3.0 (http://www.epa.gov/heasd/research/pmf.html, Norris et al., 2008).
Based on the ME-2, this model has been extensively used for source apportionment from off-line
measurements (Viana et al., 2008). Two approaches are available in the EPA software to input
the uncertainty matrix; one can either input a predetermined uncertainty matrix, or only Limits Of
Detection (LOD) and relative uncertainties (u in %) for each variable, where the final uncertainty
Uj; for the i"™ species at j™ row is eventually calculated following (Polissar et al., 1998) (eq. 4):

Z-LODi if C; < LOD;
Uji = 4)
Y \[uiz - C2 + LODZ if C; > LOD;

Uncertainties of the concentrations of ACSM inorganic species from mass spectra were largely
underestimated in the version of the ACSM analysis package used here, resulting in signal-to-
noise ratios (S/N) which were too high for use in PMF analysis (Paatero and Hopke, 2003).
Therefore, they were eventually obtained using the Polissar approach (eq. 4). Moreover, the use
of a single methodology for uncertainty calculations has the advantage to lead to a homogeneous
error matrix. LODs for the inorganic species were calculated as 3 times the standard deviation
calculated during a 3-day period, where a total filter was inserted at the ACSM inlet (Table 1).
For OA PMF outputs, bootstrapping is an efficient tool to estimate uncertainties of their chemical
profiles. Nevertheless, the distribution of factor timeseries from a bootstrap analysis is not
currently available. Alternatively, LODs and relative uncertainties of OA factors were
empirically determined in order to give enough weight to organic matter in the second PMF
analysis When applying the law of propagation of errors to concentration and error matrices, the
median and average OA uncertainties are about 12% and 18%, respectively. Then, assuming that
prior PMF analysis should add additional errors, the relative uncertainties of OA factors were set
to 30%. Similarly, for BC,, and BCy, a relative uncertainty of 40% was used as an extended
uncertainty applied to the 20% error of BC concentrations due to the Weingartner correction
(Favez et al., 2009). Finally, a relative uncertainty of 50% was set for potassium because major
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measurement artifacts with C;H;" fragment may occur (Ji et al., 2010) but are hardly quantifiable
using unit-mass resolution ACSM data. The “weight” of a given variable in PMF analysis can be
related to the relative uncertainty used through the Polissar approach. Too low, the considered
variable may be explained by only one factor; too high, an unspecific distribution of this species
in all factor profiles is likely to occur. An investigation of the impacts of uncertainty changes is
described in Appendix E of the supporting material. Results of these sensitivity tests are
supporting the validity of values initially chosen.

EPA PMF v3.0 also allows the empirical implementation of additional uncertainties following
signal-to-noise ratios (Paatero and Hopke, 2003). Usually, species with a S/N ratio below 0.2,
between 0.2 and 2, or greater than 2 are respectively considered as “bad”, “weak”, or “strong”.
“Bad” variables are excluded from the dataset; “weak” variables get their uncertainties tripled,
while uncertainties of “strong” variables stay unchanged. In the present study, all variables were
considered as “strong”, except for chloride and potassium, set as “weak’ as they exhibit low S/N
ratios and are not specific tracers of a given emission source.

2.3. Non-parametric Wind Regression analysis
In an attempt to assign a geographical origin to the main sources of submicron aerosols and to
perform a cross-validation of these results, a Non-parametric Wind Regression analysis (NWR)
was performed on PMF? outputs. Developed by Henry et al. (2009), the NWR is a source-to-
receptor model using kernel smoothing methods to estimate the average concentration of a
pollutant given wind directions and wind speeds. The objective of NWR is thus to
calculate E (6|9), the smoothed concentration field of the pollutant given any predictor variable
coordinates (0, ¥) representing wind direction and wind speed (eq. 5).
Zliv=1 Ky (Q_Wi) K, (ﬂ;lYi) -G

g

SNACONACD

where Ci, Wj and Y are the measured concentration, wind direction and wind speed at t;; ¢ and h,
the smoothing parameters; and K; and K, the two kernel functions defined as :

E6]9) =

()

Ki(x) = e %, o <x < oo ©)
K,(x) = 0.75- (1 —x2),-1<x<1=0 (7)
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Smoothing parameters ¢ and h can be calculated using Gaussian distribution equations (Full
Width at Half Maximum), but their empirical determination leads to similar results, since
reasonable variations from their theoretical values do not change the final interpretation.

Meteorological data used for NWR were obtained from continuous 1-min measurements carried
out on the campus of the Polytechnic School (4 km East of measurement site) with an A100R
Campbell Scientific anemometer and a W200P Campbell Scientific weathervane at 25 m above
ground level (a.g.l.), above any impediment (e.g. trees or buildings) that could affect the
measurement of a particular wind sector.

3. Results & Discussion

3.1. Temporal trends of aerosol chemical composition

During the late 2012 winter, average PM,; chemical composition (Fig. 2a) was clearly dominated
by organic matter and secondary inorganic salts (mostly ammonium nitrate), which is fully
consistent with the wintertime PM, s chemical composition reported by Bressi et al. (2013) for the
Paris region.

Three distinct periods (I, II and III) were considered here (Fig. 2a&b). The first period, from
January 30™ to February 19™ is characterized by high concentrations of organic matter and BC,y
(44% and 5.5% of PM, on average, respectively), low temperatures (-1.9°C on average, and
below 0°C all day long during the two-third of the period) and wind originating essentially from
the NNW-NNE sector. A very intense organic peak is observed on the 5" of February, and
reaches maximum concentration (of about 70 pg/m’) at 23h UTC. Along with high organic
loading, a significant amount of BCyy, is also observed during that period, suggesting an intense
wood burning emission episode. In addition, combined with low temperatures (below 0°C),
which increase domestic heating emissions, low wind speeds enable the accumulation of local
pollutants within the boundary layer, exacerbating measured concentrations. The influence of this
intense episode to the results of the PMF? analysis is investigated in Appendix F.

The second period, from February 19" to March 10", exhibits lower PM concentrations
(15 pg/m’ on average), higher ambient temperatures and lower atmospheric pressure. Minor
BC. and BCy peaks are observed (e.g. on February 20", 27", 29"™) and associated with low wind
speeds from the N-NNE sector, suggesting an influence of (local) combustion sources from Paris
city.

The third period, from March 10™ to March 26™ is characterized by the highest temperatures and
daily temperature amplitudes (maximum of 15°C in one day) along with dynamic winds blowing
from all directions with an SW-NE axis. Also, higher PM concentrations with a significantly
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enhanced role of ammonium nitrate are observed, whose temporality (fast diurnal increases and
decreases) is related to its gas-particle partitioning.

3.2. Preliminary OA source apportionment

As explained above, the first step of the PMF? analysis was conducted using SoFi constraining
both HOA and primary BBOA (pBBOA) factor profiles which remain difficult to differentiate
(Lanz et al., 2007). This constrained analysis was carried out with a-value of 0.05 and 0.1 for
HOA and pBBOA reference profiles, respectively, and remaining factors staying unconstrained.
The three-factor solution (designated to HOA, p-BBOA and OOA) presented in Fig. 3 gave most
satisfactory results. As presented in Appendix B, any higher number of factors led to unstable
solutions. Outputs from constrained analysis were largely consistent with preliminary
unconstrained PMF outputs (Appendix C) and ranging a-values from 0.05 to 0.80 for HOA
and/or pBBOA reference profiles within the constrained analysis also exhibits quite stable
solutions (Appendix D). It is also to note that COA could note be clearly deconvolved in this
study, although it has been identified with previous AMS measurements at SIRTA by Crippa et
al. (2013b), essentially due to lower sensitivity and narrower m/z scan range from ACSM
measurements.

Based on the ME-2 outputs, OOA represents up to 78% of the average organic mass (Fig. 4a), in
good agreement with worldwide and European OOA high proportions (Zhang et al., 2007; Lanz
et al., 2010). The contributions of HOA and pBBOA were 9.9% and 12.3%, respectively, on
average, which is consistent with results obtained for Paris urban background conditions during
winter 2009 (10-15% for each factors) by applying PMF analysis to AMS organic mass spectra
(Crippa et al., 2013b). As expected, diurnal variations obtained for the three factors (Fig. 4b)
indicate predominant nighttime contributions for pBBOA and OOA (mainly due to the
subsidence of the boundary layer height and the condensation of semi-volatile material in the
particulate phase at low temperatures) and increases of HOA during traffic peaks. These diurnal
profiles are also in good agreement with those obtained using AMS-PMF during wintertime in
the region of Paris (Crippa et al., 2013b). We thus conclude that outputs chosen for the present
source apportionment are representative of those typically obtained from AMS (or ACSM) —PMF
analysis.

Conceptually speaking and applied to OA mass spectra, this model gathers m/z fragments into
factors regarding the chemical structures of parent organic molecules (hydrocarbons, carboxylic
acids, aromatics, ketones etc.) as well as their temporality, and thus does not lead to direct
information of pollution sources. The organic chemical composition of aerosol pollution sources
may indeed not be limited to one kind of molecular structure. Here, the high temporal correlation
between pBBOA and HOA (r*=0.85 for the whole campaign, but down to 0.55 when discarding

10
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the intense local wood smoke event on February 6™) contrasts with the poor correlation between
BC. and BCy (1°=0.09), and thus could suggest a common source of pBBOA and HOA. In this
respect, combining the obtained OA factors with inorganic species and specific combustion
tracers (BC constituents) in a second PMF analysis could allow for the apportionment of the main
submicron aerosol sources and processes.

Nevertheless, as PMF model doesn’t necessarily reconstruct the input data perfectly: residuals
could then still contain some pieces of information, and could increase the uncertainty of the
outputs, potentially leading to erroneous results from a subsequent PMF analysis. Here, residuals
of key variables (m/z 43, 44, 55, 57 and 60) all follow an unimodal Gaussian distribution
centered at zero (Fig. 5a). Moreover, the sum of all organic m/z (row-wise) was compared to the
sum of OA factors (HOA, BBOA and OOA). The regression (Fig. 5b) shows a slope very close
to 1 (1.01) and a very satisfactory r* (> 0.99). This highlights the fact that i) Q and residuals were
satisfactorily minimized; i1) no significant information remain unaccounted from this OA PMF
analysis; 1i1) in our case, residuals from this OA PMF analysis as it has been performed would
have little weight in the subsequent PMF calculation.

3.3. PM;, source apportionment and geographical origins

PM, source apportionment (i.e. the second step of the PMF? methodology) was carried out using
US EPA PMF v3.0 in order to allow bootstrap analyses (this option being unavailable so far
using SoFi v4.5). The optimal number of factors was determined using atmospheric relevance of
factor profiles and then bootstrap analysis. The four-factor solution featured the most stable and
realistic results with very satisfactory bootstrap analysis (Table 2), and was used to identify two
factors corresponding to distinct pollution sources, biomass and fossil fuel combustion; and two
factors relative to secondary material characterized by one of their physical properties, semi-
volatile and low-volatile secondary aerosols. Factor profiles and time series are presented in
Fig. 6.

3.3.1 Wood-burning factor

The wood-burning factor includes significant contributions from pBBOA, HOA, and OOA. For
pBBOA and BC,y, respectively, 90% and 85% of the total mean concentration fall within the
wood-burning factor. This factor also accounts for 30% of total HOA (Fig. 9), which is in
accordance with the fact that HOA concentrations were found to be present within wood burning
emissions of combustion processes (DeCarlo et al., 2010; Poulain et al., 2011). The very high
concentration of OOA in this factor suggests that the secondary organic material is associated
with wood burning, possibly originating from condensation of VOCs and atmospheric ageing
(SOA and OPOA formation, respectively). This is consistent with recent laboratory studies (May
et al., 2013) showing that the majority of biomass burning POA is semi-volatile and emphasizing
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the role of fast SOA formation processes from Intermediate VOCs. However, the OOA found in
this profile should not be representative of the whole diversity of wood-burning related SOA,
since its formation may occur over various time-scales.

The average OM,-to-BCy, ratio calculated here is 10.3 (where OM,,, equals the sum of the
concentration of the three organic constituents in the wood-burning factor). When assuming that
OOA 1n this factor is only secondary, the OMyyp primary-t0-BCyyp ratio decreases to 4.7 (where
OMub primary=OMyp-OOAyp). Part of wood burning OOA could be considered as primary
(Weimer et al., 2008; Grieshop et al., 2009; Heringa et al., 2011) but its apportionment remains
very challenging due to the lack of identification of specific secondary organic tracers.

Using the PMF? methodology introduced here, the average contribution of the wood burning
source to total OA is found to be of about 35% during the present study. This contribution is very
consistent with the one obtained for Paris urban background conditions during winter 2009
(about 30%) when applying PMF analysis to combined AMS and PTR-MS (Proton-Transfer
Reaction Mass Spectrometer) organic mass spectra (Crippa et al., 2013b). Indeed, the use of
additional tracers (VOCs or BC,, and BCy) leads to a better characterization of wood burning
emissions, especially by taking into account secondary related organic material (Fig. 10). The
wood burning factor contributes up to 17% to the PM; mass on average (Fig. 7b), but significant
sporadic episodes are noticeable, especially on February 2" and 12", rising to 66% and 38% of
PM,, respectively. Wind regression (Fig. 8) highlights clear local emissions with high
concentrations linked to low wind speeds (below 5 km/h), underlining the significance of local
wood burning emissions to wintertime pollution events.

3.3.2 Fossil fuel combustion factor

A fossil fuel combustion factor was identified accounting for, on average, 11% of the total PM;
mass (Fig. 6b). This factor includes strong contributions from HOA and BCg concentrations
(60% and 80%, respectively) (Fig. 6). The predominance of traffic emissions within this factor is
highlighted by its diurnal variation, in phase with traffic peaks (Fig. 7a).

Another striking feature is that OOA represents about half of OA in this profile (Fig. 9). While
primary traffic emissions of OOA are unlikely to be predominant, fast oxidation and
condensation processes (Chirico et al., 2011, Carbone et al., 2013) could explain the high
concentrations of OOA in this factor. The OMg-to-BCy ratio of 1.15 found here is very consistent
with the ratio of 1.05 obtained from measurements carried out in September 2012 in a highway-
tunnel near Paris (Petit et al., unpublished data), although tunnel measurements can be impacted
by gas-particle partitioning (Chirico et al., 2010, 2011). Despite challenging uncertainties of these
results, these two features particularly highlight the presence of secondary organic material from
traffic emissions in ambient measurements. Ammonium and nitrate in this factor (in
stoichiometric proportion) suggest condensation of these species with mobile emissions, as
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previously highlighted in the region of Paris by Healy et al.(2013). Wind regression shows clear
local emissions (high concentrations at low wind speed), and additionally a diffuse concentration
field from the directions between the North and the East. This suggests the transport of traffic
carbonaceous emissions with ammonium nitrate or its gaseous precursor (NH3;, HNO3/NOy) over
the Ile-de-France region (the influence of Paris city emissions cannot be highlighted with this
method) (Fig. 8).

3.3.3. Semi-volatile Secondary Aerosol

The Semi-volatile Secondary Aerosol factor is characterized by a large contribution from (semi-
volatile) ammonium nitrate and, to a lesser extent, of OOA (76% and 23% of mass in factor,
respectively) (Fig. 6). This factor is found to represent about 57% of PM; (Fig. 7b). The nitrate
appears to be fully neutralized by ammonium (only 2% of cation excess).

Temporal variations show a clear diurnal pattern (Fig. 7a), with a decrease of concentrations
during the afternoon linked to the gas-phase partitioning of condensed semi-volatile material
following ambient temperature variations. Since atmospheric (trans)formation pathways of
secondary organic and inorganic aerosols are different, no thorough assessments can be
undertaken to link the amount of OOA in this factor profile to a specific atmospheric process or
source; here the OOA should only be characterized as mainly semi-volatile.

The NWR for this factor exhibits two distinct hotspots in the N and NNE wind sector at wind
speeds above 10 km/h; as well as a diffuse signal between the aforementioned wind sectors;
highlighting probable trans-boundary transport from highly industrialized regions upwind of the
region of Paris (Belgium, the Netherlands and Western-Germany) (Fig. 8). This result is in
accordance with 1) the European concentration distribution of nitrogen oxides, nitric acid and
ammonia, reported by Pay et al. (2012); i1) previous PMF analysis identifying an ammonium
nitrate rich factor in this region of France (Waked et al., 2013; Bressi et al., 2013b); and iii) the
Lenschow methodology (Lenschow et al., 2001) applied in Paris (Ghersi et al., 2012).

3.3.4 Low-volatility Secondary Aerosol

The last identified factor is assigned as Low-volatility Secondary Aerosol and accounts for 15%
of the total PM; on average. This factor contains most of the sulfate as well as significant
amounts of ammonium, OOA, and some nitrate. It also includes half of total non-refractory
chloride, suggesting secondary aerosols from industrial emissions. Moreover, the presence of
primary aerosols in the factor profile, especially BCy¢, suggests that part of BCy is internally
mixed with secondary organic aerosols and sulfates.

The diurnal cycle shows a rather flat pattern, as less volatile oxidized aerosols do not evaporate at
ambient temperatures (by definition) (Fig. 7a). Wind regression allows the identification of a
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very specific hotspot located in the NE wind sector at wind speeds above 20 km/h (Fig. 8). At
lower wind speeds, a diffuse but significant signal appears in NW wind sector. These two sectors
are well known to contribute to sulfur dioxide emissions through i) a dense network of
petrochemical cracking facilities, and ii) intense shipping traffic in the English Channel (Pay et
al., 2012; Waked et al., 2013; Bressi et al., 2013b). Long-range transport is also consistent with a
low degree of diurnal variation. As for the semi-volatile secondary aerosol factor, it should be
noted that it is not expected that organic and inorganic species exhibit constant ratio during time.
This kind of approximation is however inherent to PMF analysis, even if a better separation of
the different type of inorganic/organic aerosols may be achieved through the use of high-
resolution mass spectrometry and/or specific organic and elemental tracers (which were not
available here).

4, Conclusion

We are using here a novel methodology to perform the source apportionment of PM; highly time-
resolved data. This method has been applied to wintertime pollution in the Paris region from
early February to late March 2012. First, high time resolution organic aerosol concentrations
were measured by ACSM and statistically analyzed by PMF in order to investigate sources and
transformation processes of OA. This OA source apportionment led to the identification of three
factors that are commonly observed in industrialized regions during winter (HOA, pBBOA and
OOA). However, the two combustion OA factors (HOA and pBBOA) seem to share a common
source as suggested by the simultaneous correlation of HOA with BC,,, and BCy. Instead of only
documenting poor or satisfactory correlations between OA factors and external tracers, co-
variations were more thoroughly investigated through a second factorization analysis step.

A second PMF analysis, including OA factors, inorganic species and BC fractions (BCs and
BC.b) were then achieved to investigate major sources of submicron aerosols, leading to a
considerably improved characterization of local and regional signal combustion sources. Wood
burning was found to significantly contribute to HOA and OOA, characterizing primary and
secondary related wood burning contributions in a single source specific factor. Therefore,
pBBOA remains a specific tracer of biomass burning, but does not fully represent the total
contribution to the mass of this source. HOA, commonly used as a tracer of traffic, is found here
to also originate from wintertime local wood burning emissions. Moreover, OOA is found to
significantly contribute to the traffic organic mass. Nevertheless, as for OOA present in the
wood-burning factor, this may not be representative of the whole diversity of traffic related SOA,
since its formation could occur over various time-scales.

The robustness of the methodology used here has been investigated through various sensitivity
tests. First of all, the validity of the preliminary unconstrained PMF analysis leading to OA
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factors has been checked against a recently proposed constrained analysis. For the latter one, a-
values chosen for p-BBOA and HOA reference profiles have been carefully investigated. It
appeared that a wide range of a-values (from 0.05 to 0.8) led to similar results, in terms of
timeseries’ slopes (0.7-1.1) and correlation coefficients (> 0.98). Then, the determination of the
relative uncertainties of OA factors and BC fractions used in the second PMF analysis has been
cross-validated. While BC uncertainties do not significantly change final results, a 30-40%
uncertainty range for OA factors also lead to similar results. Finally, bootstrap analysis on PMF*
outputs showed very satisfying results for the 4-factor solution, whereas the adding of a fifth
factor leads to unstable solutions.

To our knowledge, this is the first time that two consecutive PMF analyses have been performed
in order to optimize the characterization of PM; pollution sources. This methodology is
especially efficient when characterizing the mass of wintertime PM; pollution sources in urban
areas and helped to strengthen the bonds between OA factors and pollution sources. It shares the
same goal than other innovative approaches including inorganic compounds, as recently proposed
for measurements obtained using high resolution AMS (Sun et al., 2012; Crippa et al., 2013c;
McGuire et al., 2014). It also allows distributing OA factors usually obtained from PMF analysis
applied to organic mass spectra to more specific PM; sources. Furthermore, similarly to the
methodology proposed by Crippa et al. (2013b) for AMS and PTR-MS datasets, such an
approach may offer various interesting possibilities for future analyses, such as the inclusion of
on-line measurements of metals to apportion specific sources (e.g. shipping, petrochemical
facilities, smelters) or size distribution information to identify and/or characterize transformation
processes.
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Table 1. Limits of Detection (in pg/m’) and relative uncertainties (in %) for each species used in
the second PMF analysis.

HOA BBOA OOA NO; SO4 NH4 Cl K BCywp  BCyr

LoD 0. 0.1 01 012 028 051 01 002 01 0.1
(ng/m’)

u (%) 30 30 30 15 15 15 20 50 40 40

Table 2. Bootstrap mapping of the 4-factor solution from the global PM, source apportionment
analysis.

% of bootstrap Base SV-SA Base Wood Base LV-SA Base Traffic
mapping burning
Boot SV-SA 100 0 0 0
Boot Wood 0 100 0 0
burning
Boot LV-SA 0 0 100 0
Boot Traffic 0 0 0 100
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Figure 1. Meteorological parameters (ambient temperature, pressure, wind speed and direction);
fossil fuel and wood burning fraction of black carbon measured by an Aethalometer; and Aerosol
mass concentration of organics, nitrate, sulfate, ammonium and chloride measured by ACSM

(note different scales).
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Figure 2. a) Mean PM, chemical composition over the 2012 late winter period (average
PM, = 21.7 pg/m’) b) Average PM, chemical composition (in pg/m’) and ambient temperature

over several periods.
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