Supplementary Information

1 FROST framework derivations

1.1 Normalising cooling-rate dependence

In this derivation we want to know the temperature required in order to attain a specific
fraction frozen in a cooling experiment, and how this changes with the cooling rate. For a
population of droplets containing a specific IN species, starting at a temperature To — upon
cooling the fraction of droplets frozen (f) after n, steps (of time or temperature) can be
calculated with the product of the probability for an event not happening (P,,;) at each

consecutive step. Once we have this then the probability of an event happening is (1 — P,,;)

so that:
n
r (1)
f(nr) =1- l_[Pnot,k
k=0
where,
Pnot,k = exp(_](Tk) SStr) (2)

J(Ty) is the nucleation rate coefficient at time step k, s is the surface area of IN and &t; is the

time step of the cooling experiment. Incorporating Eg. (2) into Eq. (1) gives:

& & ©
fo) =1- | [exp(—Tasee) = 1-exp| = ) T ssty
k=0 k=0

Over a small change in temperature the nucleation rate coefficient, J(T), can be approximated
by a linear relationship: InJ(Ty) = AT, + c¢. To calculate J(T) for any number of &t steps

this can be expanded:

J(Ty=0) = exp(AT, + c)

J(Ty=1) = exp(A(Ty + 8T) + ¢) = exp(AT, + ¢) - exp(AST)



J(Ty=2) = exp(A(Ty + 8T + 6T) + ¢)
= exp(A(Ty) + ¢) - exp(AST) - exp(A6T)
= exp(A(T,) + ¢) - exp(A8T)?

J(Ty=3) = exp(A(Ty + 8T + 6T + 6T) + ¢)
= exp(AT, + ¢) - exp(AST) - exp(A6T) - exp(AST)
= exp(AT, + ¢) - exp(A6T)3

Therefore it can be se seen that:

J(Ty) = exp(AT, + ¢) - [exp(A8T)]* = J(To) - [exp(A8T)]* (4)

Incorporating into Eq. (3):

nr ()
f) =1 —exp| =s-8t.-J(Ty) ) [exp(A6T)I*
k=0
The summation term can be removed using a geometric summation of series where
n—1 . 1—n
ar™ =a 1—7”.
k=0
Rearranging Eq. (5) identifies the series:
Ny 6)
—In(1 - f(1,)) 3 (
= exp(A8T)]*
A MEPALLCE

Substituting the RHS into the geometric summation of series formula where a = 1; r =
exp(AdT); and n — 1 = n, (therefore n = n,. + 1) gives:

~In(1 = (1)) _ 1= [exp@8T)]"*! ™)
s-6t, - J(T)) 1 —exp(A8T)

This now needs to be rearranged and solved for the number of steps n,.:

~In(1— f(n,)) - (1 — exp(AST)) 8
[ f@0) - (1 = exp@asT) (©)

TR = exp(A6T(n, + 1))



In(1 - f(n,)) - (1 — exp(A6T)) (10)
" [1 [ 5+ 6t -] (To) ]m ot
—nl1 —In(1 - f(n,)) - (1 — exp(A8T)) (11)
A _l s+ 8t, - J(To) AT

A change in the cooling rate from ry to r, results in a change in the number of steps required
to reach fraction f, sothat f = f(n,,) = f(n,2):

1 12
1— [— In(1 - £) - (1 — exp(A6T)) m] -

Nyy — Ny = In
1 _ 1 AST

1-— [— In(1—f)- (1 —exp(A8T)) sot, '](To)]

where §T is constant in both simulations, and &t is dependent on the cooling rate. Introducing

the constant C = —In(1 — f) - (1 — exp(A8T)) gives:

- (13
_ _ s - 6ty J(To) ) 1
Ny — Ny =10 1_[ ] BT
S+ 6try  J(To)
When (S - 6t - J(T,)) < C, Eqg. (13) is approximated by the following equation:
o [Eos sty 1 (14)
T2 = M = st - J(Ty)| AT

This condition breaks down when the temperature T, (for J(To)) is close to the temperature at
which a cooling experiment simulation (cooled from 273.15 K) exceeds a cumulative fraction

frozen of 0.9.
Cancelling terms in Eq. (14) provides:

6 tr1

] (15)
M5t,,] 28T

Nyy — Ny =

Multiplying the change in n, by the temperature step 6T (constant in both cases) provides a

formula for the change in temperature:

5tr1] _ l (16)
A

AT = (N, — n,1)6T =1n [5tr2

Substituting r; = ;—T and r, = :t—T into Eq. (16) provides us with a formula that can be used
Tl 12

to calculate the change in temperature observed at a fraction f upon a change in cooling rate:



1

AT = In [r—l] -— (17)
rpl —A

Using r = AT/t the relative change in cooling rate described by In(r;/r,) can also be

expressed as a relative change in time In(t,/t;):

t,] 1
AT =1In [—2] — (18)
tl _A

1.2 Reconciling isothermal experiments with cooling experiments

For the framework to be consistent between all experiments the residence-time dependence
and the cooling-rate dependence need to be reconciled. The aim is to derive a formula that
can be used to describe the entire time-dependent behaviour (cooling-rate and residence-time
dependence) of an IN species. The cooling-rate dependence manifests because the time-step
at each temperature increases, or decreases, therefore we hypothesise that there is a similar

dependence for changes in residence time in isothermal experiments.

In order to reconcile the two experimental we need to understand how the change in cooling
rate corresponds to a change in residence time for an isothermal simulation. To start off we
need to equate the fraction frozen in a cooling experiment simulation (denoted as ‘cool’) to

that of an isothermal experiment simulation (denoted as ‘iso’), S0 that f.,01(T) = fiso (T).

As per the section above, the number of droplets frozen at a specific temperature (upon
cooling from Ty = 273.15 K) can be determined by calculating the product of the probability
that an event does not occur between Ty and T, with the probability of an event occurring per

droplet as (1 — P,,;). For the cooling experiment, from Eqg. (3), we have:

Ncool (19)
feom(T) = 1= exp| = > J(Ty)sdt,

k=0
The probability of a freezing event occurring in an isothermal experiment follows Eq. (19)

but temperature T}, is constant so that J(T},) = J(T):

Niso (20)
fiso(T) =1—-exp| — Z](T) SOtiso | = eXp( _](T) "5+ Otigo niso)



In the isothermal simulation, the total time for a fraction to be reached is simply a product of
the time step and number of steps where ti,ta1iso = Miso * Otiso- INCOrporating this into Eq.
(20) gives:

fiso (T) =1- exp( _](T) S ttotal,iso)- (21)

For a specific fraction frozen, Eq. (21) can be equated to Eg. (19) so that
feool(T) = fiso(T). Realising that J(T) for the isothermal simulation equals J(T) in the

cooling experiment after ngy, Steps gives:

Ncool (22)
1—exp| — Z J(T) sbt, | =1 —exp(J(Tn,,,,) * S trotaliso)
k=0

where the LHS represents the cooling experiment simulation and the RHS, the isothermal

experiment simulation. Solving for tyytaiso 9iVes:

Ncool (23)

1
trotaliso = ](T—) Z ](Tk) * Ot ool
Mcool’ 170y

From Eq. (4) we know that for a nucleation rate coefficient represented by InJ(Ty) = ATy +
c, in a cooling experiment simulation J(T,) = exp(AT, + ¢) - [exp(A8T)]* and in an

isothermal simulation J (T, ) = exp(ATy,, , + ¢) = exp(ATy + ¢) * [exp(A6T)]"eool,

ol cool

Replacing J(T}) and J(T,,. ) in EQ. (23) gives:

cool

6tcool ) eXp(ATO + C) ’ (ZZ;OOOI[exp(/1 ' STcool)]k) (24)
exp(/lTO +c)- [exp(/l : STcool)]nCOOI

ttotal,iso (Tncool) =

Cancelling out terms gives:

Ncool (25)
trotaliso (Trcoot) = Stcool Z [exp(A - Tcoon)] ¥[exp(A - 8Tco01)] oot
k=0
Ncool (26)

ttOtal,iSO(Tncool) = Stcoo] ) Z [exp(/l . STCOOI)] (k_ncool)
k=0



We can remove the summation term using a geometric summation of series, in order to do

this we need to reverse the summation sequence using

Ncool Ncool
Z a(k_ncool) = Z Cl(_k),
k=0 k=0
so that:
Ncool (27)
ttotal iso (Tncool) = btcool Z [eXp(A ' 6Tcool)]_k
k=0

The Summation of series can be performed using the following formula:

n pntl
Z ark _,
-7
k=0
which gives:
1—[exp(—2- é‘Tcool)]ncoorl-1 (28)

ttOtal,iSO(Tncool) = 6tC°°l . 1-— exp(—/l : 6Tc001)

Substituting y = (A 8Teoo1 - (Mool + 1)) We can see that where y >» 1, [exp(—A4-

5Tc001nc001+6Tc001 — Tiso+5Tcool
A1 !

8T 00100ttt > 0. Rearranging so that y = , We can see that

this limit is reached for all cases except when, together, Tis, is very high ( > -5 °C) and A is

very shallow (|]A| > 1).
So, assuming that the isothermal experiment is below this temperature:

Stcool (29)
Ltotal iso (Tncool) BT exp(—A4 - 6Tco01)

A Taylor expansion of exp(—A-dT.,) Wwill result in [1 ASTCOO1+—(’15T°°°‘)

M .| When 26Tcoo1 > 1/, (16Tcoo)?,  €Xp(=2- 6Te0) = 1= A8Teor. This is
satisfied when the simulation temperature step A87T ¢y < 1.

Stoo) (30)
ttotal,iso (Tncool) - #’;OZ
coo



cool

_ oT
Substituting 7.o01 = —=2=, Where 140 < 0
‘Stcool

— Stcool — 1 (31)
A Teool * Otcool A Teool

ttotal,iso (Tncool)

Using a standard cooling rate rganqara, for which we have chosen -1 K min™, allows us to
reconcile the isothermal and cooling rate experiment simulations. For cooling rate

experiments, replacing r, in Eq. (17) with rgangarg @nd r, with the experimental cooling rate

r, in K min™, gives the shift in temperature (named $) as a function of cooling rate:

Ao (L (32)
B(r) = AT = —Aln<|r|)

For isothermal experiments, replacing 7o With 7gtandara 1IN EQ. (31) gives the time required
for an isothermal experiment to be comparable to a normalised cooling experiment.

Substituting t; in Eq. (18) with t,, in Eq. (31), and t, with the experimental residence time

t, in seconds, gives S as a function of residence time:

o1 At (33)
B(t)_AT_—Aln( 60 )

Experimental data can now be modified and normalised using T'=T, — 3, where T' is

Xperiment

the normalised temperature, and T, the temperature of the experiment data point.

Xperiment



