
Supplementary Information  

1 FROST framework derivations 

1.1 Normalising cooling-rate dependence 

In this derivation we want to know the temperature required in order to attain a specific 

fraction frozen in a cooling experiment, and how this changes with the cooling rate. For a 

population of droplets containing a specific IN species, starting at a temperature T0 – upon 

cooling the fraction of droplets frozen ( ) after nr steps (of time or temperature) can be 

calculated with the product of the probability for an event not happening (    ) at each 

consecutive step. Once we have this then the probability of an event happening is (      ) 

so that: 
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where, 
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J(Tk) is the nucleation rate coefficient at time step k, s is the surface area of IN and  tr is the 

time step of the cooling experiment. Incorporating Eq. (2) into Eq. (1) gives: 
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Over a small change in temperature the nucleation rate coefficient, J(T), can be approximated 

by a linear relationship:    (  )       . To calculate  ( ) for any number of  tr steps 

this can be expanded: 
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Therefore it can be se seen that: 
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Incorporating into Eq. (3): 
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The summation term can be removed using a geometric summation of series where  
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Rearranging Eq. (5) identifies the series: 
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Substituting the RHS into the geometric summation of series formula where a = 1; r = 

exp(λ T); and         (therefore       ) gives: 

     (   (  ))

       (  )
 
  [   (   )]    

     (   )
 

(7) 

This now needs to be rearranged and solved for the number of steps   : 
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A change in the cooling rate from r1 to r2 results in a change in the number of steps required 

to reach fraction  , so that    (   )   (   ): 
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where    is constant in both simulations, and    is dependent on the cooling rate. Introducing 

the constant      (   )  (     (   )) gives: 
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When (      (  ))    , Eq. (13) is approximated by the following equation:  
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This condition breaks down when the temperature T0 (for J(T0)) is close to the temperature at 

which a cooling experiment simulation (cooled from 273.15 K) exceeds a cumulative fraction 

frozen of 0.9. 

Cancelling terms in Eq. (14) provides: 
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Multiplying the change in    by the temperature step    (constant in both cases) provides a 

formula for the change in temperature: 
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Substituting    
  

    
 and      

  

    
 into Eq. (16) provides us with a formula that can be used 

to calculate the change in temperature observed at a fraction f upon a change in cooling rate: 
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Using      ⁄  the relative change in cooling rate described by   (    ⁄ ) can also be 

expressed as a relative change in time   (    ⁄ ): 
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1.2 Reconciling isothermal experiments with cooling experiments 

For the framework to be consistent between all experiments the residence-time dependence 

and the cooling-rate dependence need to be reconciled. The aim is to derive a formula that 

can be used to describe the entire time-dependent behaviour (cooling-rate and residence-time 

dependence) of an IN species. The cooling-rate dependence manifests because the time-step 

at each temperature increases, or decreases, therefore we hypothesise that there is a similar 

dependence for changes in residence time in isothermal experiments.  

In order to reconcile the two experimental we need to understand how the change in cooling 

rate corresponds to a change in residence time for an isothermal simulation. To start off we 

need to equate the fraction frozen in a cooling experiment simulation (denoted as ‘cool’) to 

that of an isothermal experiment simulation (denoted as ‘iso’), so that      ( )      ( ). 

As per the section above, the number of droplets frozen at a specific temperature (upon 

cooling from T0 = 273.15 K) can be determined by calculating the product of the probability 

that an event does not occur between T0 and T, with the probability of an event occurring per 

droplet as (      ). For the cooling experiment, from Eq. (3), we have: 
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The probability of a freezing event occurring in an isothermal experiment follows Eq. (19) 

but temperature    is constant so that  (  )    ( ):  
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In the isothermal simulation, the total time for a fraction to be reached is simply a product of 

the time step and number of steps where                      . Incorporating this into Eq. 

(20) gives: 
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For a specific fraction frozen, Eq. (21) can be equated to Eq. (19) so that  

     ( )      ( )   Realising that  ( ) for the isothermal simulation equals  ( ) in the 

cooling experiment after ncool steps gives: 
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where the LHS represents the cooling experiment simulation and the RHS, the isothermal 

experiment simulation. Solving for            gives: 
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From Eq. (4) we know that for a nucleation rate coefficient represented by    (  )      

 , in a cooling experiment simulation  (  )     (     )  [   (   )]
  and in an 

isothermal simulation  (      )     (         )     (     )  [   (   )]
     . 

 

Replacing  (  ) and  (      ) in Eq. (23) gives: 
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Cancelling out terms gives: 
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We can remove the summation term using a geometric summation of series, in order to do 

this we need to reverse the summation sequence using  

∑  (       )
     

   

 ∑  (  ) 

     

   

 

so that: 
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The Summation of series can be performed using the following formula: 
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which gives:  
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Substituting    (         (       ))  we can see that where    , [   (   

      )]
       → 0. Rearranging so that    

                  

   
 
           

   
, we can see that 

this limit is reached for all cases except when, together, Tiso is very high ( > -5 °C) and   is 

very shallow (| |   ). 

So, assuming that the isothermal experiment is below this temperature: 
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A Taylor expansion of    (         ) will result in [          
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satisfied when the simulation temperature step          .  
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Substituting        
      

      
, where         
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Using a standard cooling rate          , for which we have chosen -1 K min
-1

, allows us to 

reconcile the isothermal and cooling rate experiment simulations. For cooling rate 

experiments, replacing 
1r  in Eq. (17) with           and    with the experimental cooling rate 

r, in K min
-1

, gives the shift in temperature (named β) as a function of cooling rate: 
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For isothermal experiments, replacing       with           in Eq. (31) gives the time required 

for an isothermal experiment to be comparable to a normalised cooling experiment. 

Substituting    in Eq. (18) with totalt  in Eq. (31), and    with the experimental residence time 

t, in seconds, gives β as a function of residence time: 
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Experimental data can now be modified and normalised using  erimentTT exp' , where 'T  is 

the normalised temperature, and 
erimentTexp

 the temperature of the experiment data point. 

 


