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 9 

Abstract 10 

In order to understand the impact of ice formation in clouds, a quantitative understanding of 11 

ice nucleation is required, along with an accurate and efficient representation for use in cloud 12 

resolving models. Ice nucleation by atmospherically relevant particle types is complicated by 13 

inter-particle variability in nucleating ability, as well as a stochastic, time-dependent, nature 14 

inherent to nucleation. Here we present a new and computationally efficient Framework for 15 

Reconciling Observable Stochastic Time-dependence (FROST) in immersion mode ice 16 

nucleation. This framework is underpinned by the finding that the temperature dependence of 17 

the nucleation rate coefficient controls the residence-time and cooling-rate dependence of 18 

freezing. It is shown that this framework can be used to reconcile experimental data obtained 19 

on different time scales with different experimental systems, and it also provides a simple 20 

way of representing the complexities of ice nucleation in cloud resolving models. The routine 21 

testing and reporting of time-dependent behaviour in future experimental studies is 22 

recommended, along with the practice of presenting normalised datasets following the 23 

methods outlined here. 24 

1 Introduction 25 

Clouds are known to exert a significant radiative impact on the Earth’s energy budget with 26 

lower altitude clouds making the largest net contribution due to their dominating albedo 27 

effect and global spatial extent (Hartmann et al., 1992). Observational studies have shown 28 

that these clouds are commonly supercooled and can exist in a mixed-phase state (Zhang et 29 
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al., 2010). Sassen and Khvorostyanov (2007) showed that the radiative properties of these 1 

mixed-phase clouds are dominated by the supercooled liquid phase, with increasing ice 2 

content decreasing their cooling effect. Therefore, along with cloud lifetime effects an 3 

enhanced ice formation process could lead to a significant climatic radiative impact. The 4 

formation and sublimation of ice particles also has direct impacts on cloud dynamics through 5 

latent heat processes (Dobbie and Jonas, 2001), and the cold rain process, estimated to 6 

account for 50 % of all precipitation in mid-latitude regions and 30 % in tropical regions (Lau 7 

and Wu, 2003), is sensitive to the cloud ice water content. Therefore a thorough 8 

understanding of how ice is formed, along with an appropriate representation in models, is 9 

clearly important for correctly quantifying the impact of clouds on climate and weather. 10 

In the atmosphere relatively pure liquid droplets will tend to supercool down to around 237 K 11 

before freezing homogeneously. The inclusion of an ice nucleating particle (INP) can act as a 12 

catalyst and allow freezing to occur at higher temperatures. This process is generally split 13 

into four primary pathways determined by the interaction between the INP and the parent 14 

phase (Vali, 1985): immersion freezing occurs when the INP is immersed within a 15 

supercooled liquid droplet; contact freezing through an outside-in or inside-out contact 16 

between an INP and the air-liquid interface of a supercooled droplet; deposition mode occurs 17 

under ice supersaturated conditions via deposition of water vapour onto the INP surface 18 

without the formation of bulk liquid water; and condensation mode involves the condensation 19 

of water vapour onto the INP prior to freezing. Observational studies show strong evidence 20 

that above homogeneous freezing temperatures the formation of ice is commonly preceded by 21 

the activation of the liquid phase, hence the glaciation of an air parcel transitions through a 22 

mixed-phase regime (Ansmann et al., 2009; de Boer et al., 2011; Field et al., 2012; 23 

Westbrook and Illingworth, 2013). Ansmann et al. (2009) found that in 99 % of cases the 24 

production of ice occurred after the formation of a liquid phase, and similarly, de Boer et al. 25 

(2011) found that air parcels under ice supersaturated conditions did not produce ice until 26 

after a liquid layer was formed. This suggests that deposition and condensation mode ice 27 

nucleation play a secondary role in the glaciation of these clouds. Contact nucleation is not 28 

thought to be significant in deep convection (Cui et al., 2006; Phillips et al., 2008), but may 29 

be important in some situations, particularly where droplets are evaporating (Ansmann et al., 30 

2005; Durant and Shaw, 2005; Moreno et al., 2013). This study focuses on the immersion 31 

freezing mode due to its potential primary atmospheric importance.  32 
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Heterogeneous ice nucleation is fundamentally a stochastic process, meaning that the 1 

probability of nucleation at a specific temperature depends on both the INP surface area and 2 

the time available for nucleation. In addition to the variability in freezing temperature 3 

associated with the stochastic nature of nucleation, there is often a strong inter-particle 4 

variability with some particles capable of nucleating ice at much higher temperatures than 5 

others. The ability for an INP to catalyse ice nucleation is dependent on its physiochemical 6 

properties; these may be crystallographic, chemical, or surface features such as cracks or 7 

defects that provide sites where the energy barrier to nucleation is at a local minimum 8 

(Pruppacher and Klett, 1997).  9 

Experimental studies have shown that atmospherically relevant INPs exhibit an extremely 10 

diverse range in their ability to nucleate ice heterogeneously (Murray et al., 2012; Hoose and 11 

Mohler, 2012). For example, bacteria species belonging to the Pseudomonas genera catalyse 12 

freezing at temperatures above 265 K and exhibit a steep function of freezing rate (Wolber et 13 

al., 1986; Mortazavi et al., 2008), whereas mineral dust has been found to catalyse freezing at 14 

lower temperatures and exhibit a weaker gradient (Niedermeier et al., 2011). Along with this 15 

variability in nucleating ability, the importance of the stochastic, time-dependent nature of ice 16 

nucleation is also reported to vary between INP species. Repeated freeze-thaw cycles of 17 

single droplets performed by Vali (2008) with two soil samples resulted in < 1 K variation in 18 

freezing temperatures, which was much smaller than the variability in freezing temperature 19 

over an array of droplets. On this basis Vali (2008) argued that the time-dependence of 20 

nucleation is of secondary importance. Similarly, Ervens and Feingold (2013) recently 21 

performed a sensitivity study which highlighted changes in temperature as being the most 22 

important factor in droplet freezing sensitivity. Nevertheless, a number of studies show that 23 

there is a sensitivity of ice nucleation to time. For example, Kulkarni and Dobbie (2010) used 24 

a deposition mode stage and reported that the fraction of dust particles activated to ice 25 

increased with time under constant temperature and RH conditions. Using an immersion 26 

mode cold-stage instrument with cooling rates from 1 to 10 K min
-1

, Murray et al. (2011) 27 

found that the freezing of droplets containing kaolinite (KGa-1b) was consistent with a 28 

stochastic model which required no inter-particle variability. Broadley et al. (2012) used the 29 

same instrument with the mineral dust NX-illite and found that under isothermal conditions 30 

nucleation continued with time. Similarly, Welti et al. (2012), using an ice nucleation 31 

chamber to test their kaolinite sample (Fluka), found that the fraction of droplets frozen 32 
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increased with increasing residence time; the authors also found that a factor of ten change in 1 

residence time had the same effect on the fraction frozen as a temperature change of 1 K. 2 

Wilson and Haymet (2012) have shown that repeated freezing and thawing cycles for a single 3 

droplet results in a distribution of freezing temperatures. The width of this distribution varies 4 

for different droplets and different materials, potentially indicating a range of time-dependent 5 

behaviour. More recently, Wright and Petters (2013) performed a series of freeze-thaw 6 

simulations and found that the mean variation in freezing temperature for their ensemble of 7 

droplets was dependent on the slope of the nucleation rate coefficient dln(Js)/dT, with cooling 8 

rate and INP surface area having little effect on the observed variation. Wright et al. (2013) 9 

tested a range of INP species and found variability in their cooling-rate dependence. For the 10 

minerals kaolinite, and montmorillonite, along with flame soot, the median freezing 11 

temperature of a droplet population decreased by ~3 K upon a factor of ~100 increase in 12 

cooling rate. Conversely, the bacterial based species Icemax
™

 showed no change for the same 13 

increase in cooling rate. 14 

In summary, the stochastic, or probabilistic, nature of nucleation in some materials is more 15 

important or more apparent than in others and is rarely quantified. In order to fully 16 

understand the impact of different INP species and populations on clouds it is important to 17 

both fundamentally understand the nucleation mechanism and correctly represent this process 18 

in an efficient framework for use in cloud resolving models (CRMs). 19 

The main objective of the work presented in this paper is to develop a framework that can be 20 

used to describe the time-dependence of nucleation as well as the inter-particle variability 21 

inherent to many nucleating materials. In this study we use a multiple component stochastic 22 

model to establish the key relationships between the nucleation rate coefficient of an INP and 23 

its observable time-dependent behaviour, which are then captured in a simple framework. 24 

This framework bears some resemblance to the empirically derived modified singular 25 

description presented by Vali (1994), but here we link the term describing the residence-time 26 

and cooling-rate dependence to the temperature dependence of the nucleation rate coefficient. 27 

We then go on to use this framework to analyse several experimental datasets and discuss the 28 

implications for modelling ice nucleation in cloud models.  29 
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1.1 Immersion mode freezing models 1 

1.1.1 The single-component stochastic freezing model 2 

Nucleation is thought to be a process where random fluctuations in ice-like clusters within a 3 

supercooled droplet result in a freezing event only if a cluster reaches a critical size. For 4 

homogeneous nucleation, the probability of a critical cluster forming rapidly increases with 5 

decreasing temperature (Stan et al., 2009; Murray et al., 2010). Additionally, the probability 6 

is increased for both larger droplet volumes and longer time scales. The inclusion of particles 7 

that can serve as INPs provide a surface which favours cluster formation, and therefore 8 

catalyse nucleation. The probability of a droplet freezing in this mode is a stochastic, time-9 

dependent process with the temperature-dependent nucleation rate coefficient Js(T) expressed 10 

per unit surface area, per unit of time. In the single-component stochastic freezing model it is 11 

assumed that every INP within a population can be described with the same Js(T), which is 12 

consistent with nucleation by some materials including the mineral kaolinite (Murray et al., 13 

2011) and silver iodide (Heneghan et al., 2001). Classical nucleation theory (CNT) can be 14 

used to link Js(T) to a conceptual contact angle, θ, which is defined as the angle between the 15 

particle and ice cluster and is used as a measure of how efficiently a material nucleates ice. 16 

1.1.2 Singular freezing models 17 

Singular or deterministic models have been developed in light of the observation that the 18 

variability in freezing temperatures for an entire population of droplets in a cooling 19 

experiment can be significantly higher than that of a single droplet upon multiple freeze-thaw 20 

cycles (e.g., Vali (2008)). The range of freezing temperatures can also be much greater than 21 

the shift in temperature observed for a change of cooling rate. These observations have been 22 

used to argue that the time-dependence of nucleation is of secondary importance in 23 

comparison to the inter-particle variability in atmospheric aerosol (Vali, 2008). The reason 24 

why there is such strong inter-particle variability in ice nucleating ability is very poorly 25 

understood, but could arise for a number of reasons: inhomogeneity of surface properties 26 

such as cracks, grain boundaries or pores have been shown to preferentially trigger nucleation 27 

(Pruppacher and Klett, 1997); a complex ice nucleating population with multiple constituent 28 

INP species, such as may exist within soil, could also present a range of nucleating efficiency 29 

within a single population (Conen et al., 2011; Atkinson et al., 2013); and small inclusions of 30 

a very active material, such as lead containing nanoparticles, can dominate and thus 31 
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determine the ice nucleating ability of larger ‘host’ particles (Cziczo et al., 2009). The 1 

concept of active sites has been introduced to describe this heterogeneity in ice nucleating 2 

ability in many samples, and singular freezing models have been developed to link this 3 

variable distribution to the freezing probability (Levine, 1950; Vali, 1971; Connolly et al., 4 

2009; Sear, 2013). Nucleation on active sites, whatever their physical form, is a stochastic 5 

process (as will be discussed in Sect. 1.13 below), but within the singular model it is assumed 6 

that a particle or active site on that particle will trigger ice nucleation at a specific 7 

temperature independent of time. An advantage of this simplifying assumption is that the 8 

varying ice nucleating efficiency of an INP population or species can be represented as a 9 

simple function of temperature.  10 

1.1.3 Multiple-component freezing models 11 

In order to describe both the stochastic nature of ice nucleation and the varying efficiency of 12 

INPs in a physically based framework, a number of multiple-component freezing models 13 

have been developed. These descriptions use a distribution of sites or droplets displaying a 14 

range of nucleating characteristics to define the ice nucleating variability. Each component is 15 

assumed to approximate to a single-component model with a single function describing the 16 

nucleation rate against temperature.  17 

Marcolli et al. (2007) used a variety of probability density functions (PDFs) to represent 18 

populations of particles, each characterised by a particular contact angle (0 ≤ θ ≤ π), in order 19 

to fit CNT to their immersion freezing data. This was then extended to include an active site 20 

distribution, which assumed that a single INP may have multiple nucleation sites on its 21 

surface, determined by the probability of an active site occurring per contact angle. A 22 

proportion of nucleating surface area per contact angle was then calculated assuming a 23 

standard size for a single active site; thus, larger particles will be more likely to contain sites 24 

of better nucleating ability than smaller particles. Lüönd et al. (2010) used a similar method 25 

to reconcile their experimental data. A multiple-component framework capable of describing 26 

both internally and externally mixed populations was presented by Murray et al. (2011). This 27 

was extended by Broadley et al. (2012) into the Multiple Component Stochastic Model 28 

(MCSM), which replaced CNT with a simple function to describe Js(T) for each component. 29 

In their study this function was systematically adjusted using a Gaussian distribution to 30 

represent a population with varying droplet freezing ability and is discussed in more detail in 31 
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Sect. 2. The ‘Soccer ball model’ was developed by Niedermeier et al. (2011) using a similar 1 

approach to Marcolli et al. (2007): in their description each particle is divided into a number 2 

of sites or patches, with each site randomly assigned a contact angle (0 ≤ θ ≤ π) from a 3 

Gaussian distribution. It can be seen that having a small number of sites per INP will result in 4 

a population with diverse ice nucleating ability, whereas more sites will increase the 5 

probability of a specific site occurring per INP, so that the population tends towards a 6 

uniform nucleating ability. More recently, Wright and Petters (2013) and Wright et al. (2013) 7 

used a similar description to Broadley et al. (2012) to simulate cooling and freeze-thaw 8 

experiments. 9 

All of these multiple-component models can be used to describe the inter-particle variability 10 

of ice nucleating efficiency within a population, and also the fundamental stochastic nature of 11 

ice nucleation. However, a significant increase in complexity is introduced through the 12 

treatment of separate populations and PDFs. Due to this, their use in CRMs is limited. 13 

Clearly, a framework is required that can adequately describe variable ice nucleating ability 14 

and stochastic behaviour in a computationally efficient way.  15 

2 The Multiple Component Stochastic Model 16 

The MCSM, presented in Broadley et al. (2012), divides a population of particles, or 17 

nucleation sites, into sub-populations of equally efficient entities. Each sub-population can 18 

then be treated as a single component with a uniform nucleating behaviour allowing the use 19 

of the single-component stochastic freezing model; the summation of these populations then 20 

represents the entire population. Assuming each droplet contains a single INP with surface 21 

area A (cm
2
) we can calculate the number of droplets that will freeze in a time increment δt at 22 

temperature T for a single component, denoted by i: 23 

 ))(exp(1 ,sliquid,frozen
tATJnn ii,ii
 , (1) 

where  inliquid,  is the number of liquid droplets at the beginning of the time step, 
i

n
,frozen
 is the 24 

number of frozen droplets, and )(,s TJ i  is the nucleation rate coefficient (cm
-2 

s
-1

). Upon 25 

subsequent steps the number of available droplets is adjusted so that .,frozen,liquid1liquid, iii nnn   26 

The exponential term describes the fractional probability NOTP  of an event not happening, 27 

where 1NOT P  represents an increasing probability that no freezing event will occur. For 28 
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this study we use a simple linear temperature-dependent function to define )(,s TJ i  of a single 1 

component following Broadley et al. (2012) and Wright and Petters (2013):  2 

  iii TTJ  ,sln , (2) 

where -λi represents the gradient of  TJ i,sln  and i  the relative nucleating efficiency of the 3 

component. Others have used CNT to describe the temperature dependence of )(,s TJ i  4 

(Marcolli et al., 2007; Lüönd et al., 2010; Niedermeier et al., 2011), but measured nucleation 5 

coefficients approximate to Eq. (2) over the range of freezing temperatures observed during a 6 

single freezing experiment (typically <10 K) (Kashchiev et al., 2009; Stan et al., 2009; 7 

Ladino et al., 2011; Murray et al., 2010; Murray et al., 2011).  8 

In order to extend Eq. (2) to multiple-component systems, each sub-population, behaving as 9 

an independent single component, is characterised by a specific φi and then weighted using a 10 

PDF to calculate a probability of occurrence P(φi). Thus, the number of droplets in each sub-11 

population is  i,i PNn liquid  where N  is the total number of droplets in the simulation. 12 

Although there is evidence for multiple components the distribution of such components is 13 

not currently known and difficult to infer. Therefore, for simplicity a Gaussian distribution 14 

was used following previous studies (Niedermeier et al., 2010; Broadley et al., 2012; Wright 15 

and Petters, 2013); characterised by a mean µ and standard deviation σ (see Fig. 1). The 16 

MCSM can now be defined by summing the number of droplets frozen in each sub-17 

population for a given time increment: 18 

 



n

i

iii tATJnN
1

,sliquid,frozen
))(exp(1  . 

(3) 

To investigate the sensitivity of the MCSM to time-dependence (manifesting as a cooling-rate 19 

and residence-time dependence) an idealised box model was used to represent an immersion 20 

mode droplet freezing experiment under constant cooling or isothermal conditions in which 21 

droplet volume was assumed to be constant with no condensational growth or evaporation. 22 

Freezing events were assumed to only occur within a single time step and within the bulk 23 

volume. Additionally, freezing of one droplet was assumed to have no effect on the 24 

remaining liquid population.  25 
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3 Deriving a new immersion mode framework 1 

3.1 Cooling-rate dependence  2 

In these simulations we look at the sensitivity of the MCSM to changes in cooling rate. The 3 

aim is to identify the variables that control the cooling-rate dependent behaviour of a 4 

population of droplets. On inspection of Eq. (3) it is evident that for a constant finite negative 5 

increment δT, an increase in cooling rate results in a similar decrease in time δt, and therefore 6 

a decrease in the probability of a freezing event occurring between T and T + δT. This is 7 

manifested in the number of droplets freezing per δT and results in the entire cumulative 8 

fraction frozen curve shifting to lower temperatures. This is demonstrated in Fig. 2, with two 9 

simulated populations of droplets: one with a uniform INP distribution (a single value of φi) 10 

and the other with a diverse INP distribution (broad range of φi). Both populations have 11 

λ = 2 K
-1

 where λ is defined as -dln(Js,i)/dT (i.e. the temperature dependence of the nucleation 12 

rate coefficient for each component). The simulated droplets were cooled at 1 and 10 K min
-1

. 13 

Fig. 2 illustrates how the shift in temperature (β) for a change in cooling rate is independent 14 

of the distribution of φi. The independence of β to the distribution of φi has been further 15 

investigated using a series of droplet cooling simulations where all the free variables in the 16 

MCSM were allowed to vary between runs, with the corresponding values shown in Table 1. 17 

The results from these simulations, shown in Fig. 3, suggest that the only characteristic of the 18 

INP population required to quantify its cooling-rate dependence is λ (-dln(Js,i)/dT). This is a 19 

similar conclusion to Broadley et al. (2012) and Wright and Petters (2013).  20 

This result can be understood by rearranging Eq. (1) to describe the change in temperature 21 

required to attain a specific cumulative frozen fraction for a given change in cooling rate (see 22 

Supplement for the full derivation). For a given population of droplets containing an 23 

immersed INP characterised by the function Js(T), the total fraction of droplets frozen 24 

liquidfrozen)( Nnnf r   upon cooling from 0T  to 
rnT  in 

rn steps, where liquidN is the number of 25 

droplets at 0T , can be described by: 26 

  
 











r rn

k

n

k

kkr tATJtATJnf
0 0

ss )(exp1)(exp1)(  , 
(4) 

where 
rn  denotes the total number of model steps using a cooling rate r, and δt is the time 27 

between steps k  and 1k . As in Eq. (1) the exponential term essentially describes the 28 
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cumulative probability of a freezing event not occurring in 
rn time steps, and can be expanded 1 

so that  kk TTJTJ )exp()()( 0ss  . By substituting Eq. (2) into Eq. (4) we can explicitly 2 

represent the nucleation rate coefficient: 3 

  







 



rn

k

k

r TTJtAnf
0

0s )exp()(exp1)(  . 
(5) 

The summation term can be removed using a geometric summation of series formula. Once 4 

rearranged we have a formula to calculate the temperature  nfT  at which a specific fraction 5 

frozen is reached: 6 

 

     
 

1
1exp11ln

1ln
0s

































TJtA

Tnf
δTnT r

rnf , 
(6) 

where δT is the change in temperature between steps k  and 1k . A change in cooling rate 7 

from r1 to r2 results in a change in the number of steps ∆nr to reach fraction f where 8 

2,1, rnrn fff   and therefore a change fT : 9 

 
  





















1
ln

0s1

0s2
2

TJtAC

TJtAC
TnTnT

r

r
r1rf , 

 

(7) 

where δT is constant for both cases, δt is dependent on the cooling rate, and 10 

    TfC  exp11ln . Cancelling terms in Eq. (7) and substituting 
11 rtTr   11 

and 
22 rtTr   provides a formula for the change in temperature, cool , observed at a 12 

specific fraction frozen for a given change in cooling rate: 13 











2

1
cool ln

1

r

r
T f


 . 

(8) 

Equation (8) is consistent with the results shown in Fig. 2 and Fig. 3, i.e. the systematic shift 14 

in cumulative fraction frozen for a change in cooling rate is only dependent on λ. If we 15 

assume that all components in a diverse species are characterised by a single value of λ this 16 

also holds true. Using observations by Vali and Stansbury (1966), Vali (1994) empirically 17 

found a similar relationship where  r10cool log66.0  . In our independently derived 18 

expression, we take the additional step of linking β to λ, which offers a physical insight to the 19 

properties of a particular ice nucleating material, i.e. the empirical relationship from Vali 20 
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(1994) above relates to the gradient of the species -dln(Js,i)/dT so that the distilled water 1 

droplets used in the study by Vali and Stansbury (1966) are characterised by the gradient 2 

λ = 3.5 K
-1

. 3 

3.2 Residence-time dependence  4 

In addition to droplet freezing experiments where droplets are cooled at some rate, other 5 

experiments (e.g. those using continuous flow diffusion chambers) involve exposing particles 6 

to a constant temperature for a defined period of time. In this section we show how 7 

measurements made with different residence-times under isothermal conditions in such 8 

instruments can be reconciled by extending the λ based formula presented in the previous 9 

section. Using tTr  the relative change in cooling rate described by  21ln rr  can also be 10 

expressed as a relative change in time  12ln tt : 11 











1

2
iso ln

1

t

t


 , 

(9) 

where βiso is the shift in temperature required to produce the same frozen fraction in two 12 

isothermal experiments with duration times of t1 and t2. 13 

3.3 σTfreeze in freeze-thaw experiments 14 

In freeze-thaw experiments single, or populations, of droplets are subjected to repeated cycles 15 

of freezing and thawing (Vali and Stansbury, 1966; Durant and Shaw, 2005; Vali, 2008; 16 

Fornea et al., 2009; Wright et al., 2013). For each cycle the freezing temperature Tfreeze is 17 

determined, and used to infer the stochastic nature of the tested material. A freeze-thaw 18 

experiment can be simulated when it is realised that one droplet being frozen n times at a 19 

cooling rate r is equivalent to n identical droplets being frozen a single time at a rate r. A 20 

single-component system where φ equals the median Tfreeze provides a population of identical 21 

droplets, which can be used with the MCSM to simulate a single cooling experiment. 22 

Applying a prescribed n droplets to the resulting f(T) curve provides the temperature at which 23 

each consecutive droplet freezes. These temperatures correspond to Tfreeze values from n 24 

freeze-thaw cycles, and therefore the standard deviation in Tfreeze can be determined, hereafter 25 

named σTfreeze (after Wright and Petters (2013)). A series of simulations were performed using 26 
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the MCSM where the median Tfreeze and λ were varied. A direct relationship between λ and 1 

σTfreeze was found and is described by:  2 




2691.1
freeze T

. 
(10) 

In a single-component system a variation in cooling rate will only result in a change to the 3 

median freezing temperature (by β K), therefore σT,freeze is also independent of the freeze-thaw 4 

experiment cooling rate. Equation (10) bears a significant resemblance to the relationship 5 

presented by Wright and Petters (2013):
05.1

freeze 21.1  T .  6 

3.4 Reconciling droplet freezing data from different instruments and on 7 

different time scales  8 

Since nucleation is a stochastic process, differences in experimental time scale and 9 

experimental technique need to be reconciled. First we reconcile isothermal data with cooling 10 

experiments so they are consistent with each other. This can be achieved by equating the 11 

simulated fraction frozen using both methods at the same temperature: 12 

   TfTf cooliso  , (11) 

where ‘cool’ denotes a cooling experiment simulation from T0 = 273.15 K and ‘iso’ an 13 

isothermal experiment simulation at a temperature T. The fraction frozen during an 14 

isothermal simulation is calculated similarly to a cooling experiment except the temperature 15 

remains constant throughout, thus we can use Eq. (4) to describe an isothermal simulation: 16 

    



iso

0

isosiso exp1
n

k

k tATJTf  , 
(12) 

   TJTJ k ss  , (13) 

therefore: 17 

    isoisosiso exp1 ntATJTf   , (14) 

Where ison is the total number of time steps, isot , for the isothermal simulation. Substituting 18 

Eqs. (14) and (4) into Eq. (11) gives: 19 
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     







 



cool

cool

0

coolsisoisos exp1exp1
n

k

kn tATJntATJ  , 
(15) 

which, when simplified gives the total time ( totalt ) required for an isothermal experiment to 1 

reach the same fraction as a cooling experiment at temperature T: 2 

   



cool

cool

cool

0

cools

s

isototal,isoiso
)(

1
n

k

k

n

n tTJ
TJ

Ttnt  . 
(16) 

Substituting in Eq. (2), after expanding as in Sect. 3.1, and rearranging gives: 3 

   



cool

cool

0

coolisototal, )exp(
n

k

k

n TtTt  . 
(17) 

Using a summation of series the summation term is removed and the formula can be 4 

simplified: 5 

 
 cool

cool

isototal,
exp1cool T

t
Tt n






 . 

(18) 

A Taylor expansion of  coolexp T   will result in the series 6 

    ...61211
3

cool

2

coolcool TTT   . When  2coolcool 21 TT   , 7 

  coolcool 1exp TT   . This is satisfied when the simulation temperature step         8 

 . We can then simplify this formula using coolcoolcool tTr  , where 0cool r , so that: 9 

 
coolcoolcool

cool
isototal,

1
cool rtr

t
Tt n










. 

(19) 

Assuming that the nucleation rate coefficient of a species is approximated by the functional 10 

form in Eq. (2), this gives the time required for an isothermal experiment to reach the same 11 

frozen fraction as in a cooling rate experiment at a specific temperature. Again λ (the gradient 12 

of the nucleation rate coefficient) controls the time-dependent nature of immersion mode 13 

droplet freezing.  14 

Now that isothermal and cooling experiments are reconcilable, artefacts introduced through 15 

the time dependent behaviour of an INP in an experiment can be normalised to a standard rate 16 

standardr , for which we have chosen 1 K min
-1

. For cooling experiments, replacing 
1r  in Eq. (8) 17 
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with standardr  and 
2r  with the experimental cooling rate r, in K min

-1
, gives β as a function of 1 

the absolute cooling rate: 2 

 















r
Tr

1
ln

1


 . 

(20) 

For isothermal experiments, replacing coolr  with standardr  in Eq. (19) gives the time required for 3 

an isothermal experiment to be comparable to a normalised cooling experiment. Substituting 4 

1t  in Eq. (9) with totalt  in Eq. (19), and 
2t  with the experimental residence time t, in seconds, 5 

gives β as a function of residence time: 6 

  






 


60
ln

1 t
Tt




 . 

(21)  

Experimental data can then be modified and normalised using  experiment' TT , where 'T  is 7 

the normalised temperature, and experimentT  the temperature of the experiment data point. 8 

For an INP species characterised by a specific λ, this immersion mode framework, named the 9 

Framework for Reconciling Observable Stochastic Time-dependence (FROST), can be used 10 

to reconcile and normalise data obtained through cooling and isothermal experiments.  11 

3.5 Incorporating the FROST framework into a singular model 12 

As discussed in Sect. 1.1.2, the singular freezing model is well suited to describing the 13 

inter-particle variability of ice nucleating ability, but it does not describe the time-dependent 14 

nature of nucleation. The probability of a droplet freezing is often described by the active site 15 

density (Demott, 1995),  Tns , (also called the ice active surface site density (Connolly et al., 16 

2009; Murray et al., 2012; Hoose and Mohler, 2012)) which describes the cumulative number 17 

of freezing events that can occur between T0 and T: 18 

    ATnTf  sexp1 . (22) 

Vali refers to a similar quantity (expressed per volume rather than surface area) as the 19 

cumulative nucleus spectrum (Vali and Stansbury, 1966; Vali, 1971; Vali, 2014). By 20 

rearranging Eq. (22) it can be seen that  Tns  (in units cm
-2

) is directly related to the 21 

cumulative fraction frozen: 22 
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 
  

A

Tf
Tn




1ln
s

. 
(23) 

It is therefore apparent that a systematic shift in the cumulative fraction frozen, caused by a 1 

change in the cooling rate or residence time, results in a systematic shift in  Tns  so that, 2 

upon incorporating Eq. (20) into Eq. (23) we find that for a specific cooling rate r (where 3 

r > 0): 4 

 
 





























 A

r
TnrTf



ln
exp1, s . 

(24) 

The differentiation of ns with respect to T results in the function k(T) that can be used to 5 

calculate the change in the fraction frozen occurring upon a lowering of T: 6 

 
 






























 TA

r
TkrTf



ln
exp1, , 

(25) 

where k(T) is in units cm
-2

 K
-1

. Equations (24) and (25) are consistent with the empirical 7 

‘modified singular’ equation presented by Vali (1994), but here we have linked the stochastic 8 

term to the temperature dependence of the nucleation rate coefficient.  9 

Similar equations can also be defined for isothermal experiments by incorporating Eq. (21) 10 

into Eq. (22) so that at a specific temperature, Tiso and residence time in seconds, t: 11 

  



























 
 A

t
TntTf

60
ln

1
exp1, s




. 

(26) 

Again, upon differentiation we obtain an equation for the change in fraction frozen upon a 12 

change in residence time from t  to tt  :  13 

  































 
 t

t
A

t
TktTf







1

60
ln

1
exp1, , 

(27) 

where  tt    has replaced T  through the incorporation of Eq. (19) into 14 

trT  60 ; r is in K min
-1

 and ∆t in seconds.  15 

 16 
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4 Testing the FROST framework 1 

In the previous section we presented the FROST framework which is a new immersion mode 2 

ice nucleation framework designed to represent both the inter-particle variability of ice 3 

nucleating efficiencies and the stochastic (time-dependent) nature of nucleation. In this 4 

section the FROST framework will be tested using a combination of original experimental 5 

droplet freezing data and literature data for atmospherically relevant INPs obtained from a 6 

range of methods and instruments. The terminology here follows that of Vali (2014) in that 7 

experimental data are presented using the freezing rate R. A normalisation of R to surface 8 

area A is used to comment on the relationship between R and the nucleation rate coefficient 9 

Js, as well as whether the species behaves as a single or multiple-component species. 10 

4.1 Kaolinite data (KGa-1b) from two cold-stage instruments  11 

In this example data from droplet freezing experiments on two cold-stage instruments, with a 12 

range of cooling rates, are combined to test the capability of the FROST framework. The first 13 

dataset, referred to as PICOLITRE, is taken from Murray et al. (2011). In their experiments 14 

micron sized droplets containing known amounts of kaolinite (KGa-1b, Clay Mineral 15 

Society) mineral dust and supported on a hydrophobic surface, were cooled at constant rates 16 

on a cold stage coupled with an optical microscope. Each experiment was characterised by a 17 

specific cooling rate and weight fraction of mineral per droplet. For this study four datasets 18 

are used (experiments vii, viii, ix and xi in Murray et al. (2011)) corresponding to cooling 19 

rates (weight fractions) of 5.4 (0.0034), 9.6 (0.01), 0.8 (0.01) and 5.1 (0.01) K min
-1

, 20 

respectively. For the second experimental dataset, referred to as MICROLITRE, a different 21 

cold-stage instrument was used, which has been described previously (O'Sullivan et al., 2014; 22 

Whale et al., 2014). In this experiment ~40 droplets of 1 µl volume containing known 23 

amounts of the same kaolinite sample as Murray et al. (2011) (KGa-1b) were held on a 24 

hydrophobic surface and cooled at constant rates with freezing events recorded optically. 25 

Four experiments were performed at cooling rates of 0.1, 0.2, 0.5, and 1.0 K min
-1

. All 26 

experiments were performed with a weight fraction of 0.01, corresponding to a surface area 27 

of 1.178 ± 0.3 cm
2
 per droplet calculated using a specific surface area of 11.8 ± 0.8 m

2
 g

-1
 28 

(Murray et al., 2011). The uncertainty in surface-area per droplet primarily arises from 29 

uncertainty in specific surface area measurements and droplet volume. The temperature 30 

uncertainty, arising from the temperature probe and observed range in melting temperatures, 31 
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has been estimated by Whale et al. (2014) as ± 0.4 K. Freezing data is limited to 1 

T > 252.65 K below which the substrate is observed to influence freezing behaviour. 2 

Surface-area normalised freezing rates (R/A) for the PICOLITRE and MICROLITRE 3 

experiments are shown in Fig. 4a. The larger droplets in the new MICROLITRE experiment 4 

contain significantly greater INP surface area per droplet than the PICOLITRE experiment, 5 

which increases the probability of freezing, resulting in higher freezing temperatures. The 6 

freezing rates plotted in Fig. 4a are derived using Eq. (1), hence the assumption in performing 7 

this analysis is that the species has a uniform INP distribution and behaves as a single-8 

component system, and thus the normalised freezing rate R/A is directly equivalent to the 9 

nucleation rate Js,i. However, at this stage we do not know if this assumption is valid.  10 

In a single-component system the gradient -dln(R/A)/dT, named ω following Vali (2014), is 11 

equal to λ (recall that λ = -dln(Js,i)/dT). If the system were multiple component then the slope 12 

ω will be smaller than λ because an inappropriate model was used (i.e. ω is a lower limit to 13 

λ). For a set of data obtained at a single cooling rate it is impossible to say if the sample is 14 

single or multiple component, further tests are required. Murray et al. (2011) did this by 15 

performing isothermal experiments in addition to experiments at various cooling rates and 16 

showed that the values of R/A derived from both styles of experiment were consistent and 17 

concluded that nucleation by kaolinite KGa-1b behaved as a single-component system below 18 

246 K and therefore R/A = Js,i. We expand on this earlier analysis with additional data for 19 

kaolinite KGa-1b at warmer temperatures and place it in the context of the FROST 20 

framework. To test whether the MICROLITRE dataset is also consistent with a single-21 

component system we performed an isothermal experiment, in addition to the experiments at 22 

various cooling rates.  23 

The isothermal experiment, shown in Fig. 4b, was performed at 255.15 K with droplets 24 

containing a weight fraction 0.01 of KGa-1b particles. We have plotted the decay of liquid 25 

droplets expected based on a value of Js,i at 255.15 ± 0.4 K determined from the linear fit to 26 

ln(R/A) in Fig. 4a. The expected exponential decay matches the measured decay; this is 27 

consistent with a uniform species, and thus a single-component system. The derived R/A 28 

values from experiments at cooling rates ranging from 0.1 to 1.0 K min
-1

 are shown in Fig. 4a 29 

and also show consistency with this system.  30 

In Fig. 5 we place the data from the cooling experiments in the context of FROST. If the INP 31 

species can be characterised with a single λ then the application of Eq. (20) will modify each 32 
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data point by  rTT  experiment' . With the correct value of λ in the FROST framework, the 1 

data will converge onto the curve of a 1 K min
-1

 cooling experiment for the species tested. 2 

Figures 5a, b, and c show the fraction frozen f(T), ns(T) values, and R/A(T) values from Fig. 3 

4a, respectively. The ns(T) values, derived using Eq. (23), depend on the cooling rate, with 4 

over a factor of five shift on changing the cooling rate by a factor of 10. On applying FROST 5 

with λ = 1.12 K
-1

 (thus assuming λ = ω from Fig. 4a) both the modified f(Tꞌ) and ns(Tꞌ) data 6 

converge (Figs. 5d and e, respectively). This additionally supports the claim that kaolinite 7 

KGa-1b is well represented by a single-component system (R/A = Js,i). 8 

An interesting and potentially significant issue is raised by this study of nucleation by 9 

kaolinite as the linear fit to the two independent datasets in Fig. 4a is made over 20 K which 10 

is at odds with CNT. CNT predicts curvature in lnJs versus T over 10’s of kelvin (Pruppacher, 11 

1995). This might suggest that there is a flaw in CNT theory, or alternatively it may be the 12 

case that there are multiple INP populations which happen to give the appearance of a single-13 

component system. However, the evidence presented here suggests that KGa-1b behaves as a 14 

single component, with consistent behaviour at high and low temperatures. This issue 15 

requires further study to understand this potentially important finding, but is beyond the focus 16 

of this paper.  17 

While nucleation by this kaolinite sample can be treated as a single component, this does not 18 

necessarily mean that this sample is uniform (i.e., there is no inter-particle variability) 19 

because there are many particles per droplet in the experiment. It is possible, but unlikely, 20 

that droplets contain a distribution of particles with diverse ice nucleating abilities, but where 21 

freezing in all droplets happens to be controlled by particles with similar ice nucleating 22 

activity. This is very unlikely given that the number of kaolinite particles in the PICOLITRE 23 

experiments ranges from just a few 10s to tens of thousands and all produce consistent values 24 

of Js (Murray et al., 2011). In contrast, the Fluka kaolinite sample used by Welti et al. (2012), 25 

which is known to contain particles of very efficient feldspar (Atkinson et al., 2013), is a 26 

diverse species (as will be demonstrated in Sect. 4.3).  27 

In summary, kaolinite KGa-1b from the clay mineral society is an example of a material 28 

which most likely has approximately uniform ice nucleating properties and can be described 29 

with a single-component stochastic model. 30 
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4.2 K-feldspar data from cold-stage instrument 1 

In this example we investigate and determine the cooling-rate dependence of K-feldspar 2 

using the microlitre droplet instrument as in the previous example. K-feldspar was recently 3 

shown to be the most important mineral component of desert dusts for ice nucleation 4 

(Atkinson et al., 2013). In these experiments ~40 droplets of 1 µl volume were cooled at 5 

constant rates of 0.2, 0.4, 1.0 and 2.0 K min
-1

 on a hydrophobic surface. Each droplet 6 

contained a weight fraction 0.001 of K-feldspar, corresponding to a surface area of 7 

1.85 × 10
-2

 ± 0.004 cm
2
 calculated using a specific surface area of 1.86 m

2
 g

-1
 (Whale et al., 8 

2014). 9 

Similar to the previous example Figs. 6a, b, and c show the experimental fraction frozen data 10 

f(T), and derived ns(T) and R/A(T) values, respectively. For the 0.2, 0.4 and 2.0 K min
-1

 11 

curves two separate experiments were performed and for the 1.0 K min
-1

 curve five 12 

experiments were performed. A systematic shift in f(T) outside of instrumental error (± 0.4 K) 13 

can be seen for the experiments at 0.2 and 2 K min
-1

, which indicates that there is a 14 

cooling-rate dependence for nucleation by K-feldspar. 15 

We now need to test if this data is consistent with a single or multiple-component system. 16 

Normalised freezing rates, R/A, for the 0.2 and 2.0 K min
-1

 runs are shown in Fig. 6c. If 17 

K-feldspar behaved as a single-component system then the two datasets would fall onto the 18 

same line, as they do for kaolinite in Fig. 4a. However, they do not fall on the same line; the 19 

R/A values are significantly different between the two cooling rates, hence this suggests that 20 

K-feldspar is a diverse species and requires a multiple-component model to describe its 21 

freezing behaviour. In this case Eq. (1) should not be used to derive values of nucleation rate 22 

coefficients since R/A ≠ Js,i.  23 

As stated in the previous section, with the correct value of λ in the FROST framework, the 24 

modified data will converge onto a single curve. Therefore, in order to determine the value of 25 

λ, a procedure was followed where λ was iteratively varied until ns(Tꞌ), where 26 

 rTT  experiment' , converged onto a single curve (using Eq. (20)). The best fit was 27 

determined by minimisation of the root-mean-square-error (RMSE) between the data and a 28 

linear fit to ln(ns) for data where Texperiment ≤ 262.65 K (-10.5 °C); this temperature was 29 

chosen to limit effects from anomalous high-temperature freezing events that are statistically 30 

unrepresentative of the INP species. This fitting procedure, with a RMSE value of 0.009, 31 
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resulted in λ = 3.4 K
-1

 and is shown in Fig. 6e. This value is significantly steeper than the 1 

gradients ω in Fig. 6c (0.85 and 0.9 K
-1

). Recall that for kaolinite, the gradient ω was used to 2 

normalise the ns values in Fig. 5e which suggests that that kaolinite is a uniform species. In 3 

K-feldspar the fact that ω ≠ λ (where λ = -dln(Js,i)/dT ) shows that K-feldspar exhibits a 4 

diverse nucleating ability across the population.  5 

Figure 6e also includes the fit to K-feldspar data presented in Atkinson et al. (2013). In their 6 

study the surface area of K-feldspar per droplet was increased by two orders of magnitude to 7 

examine the dependence of freezing rate on surface area and all experiments were performed 8 

at a cooling rate of 1 K min
-1

. The parameterisation from Atkinson et al. (2013), based on 9 

data with variable surface areas, is in good agreement with data from the present study. 10 

An isothermal experiment was also performed at Tiso = 262.15 K with 20 droplets (28 froze 11 

during cooling to Tiso) containing a weight fraction 0.001 of K-feldspar (see Fig. 7). For a 12 

uniform species the decay of liquid droplets over time will be exponential (as was the case for 13 

kaolinite KGa-1b in Fig. 4b), whereas a diverse species will result in a non-exponential 14 

decay. Inspection of the data in Fig. 7 shows that the decay of liquid droplets was not 15 

exponential, again consistent with a diverse population of INPs. To highlight this, we have 16 

plotted the decay expected from the two limiting values of R/A from Fig 6c at 262.15 K. The 17 

simulated decays, assuming a single-component system, clearly over predict the rate of 18 

decay. We also simulate what we would expect for a diverse population where we use the 19 

MCSM to produce the expected decay of droplets. The MCSM was initially used as a fitting 20 

tool to obtain a distribution that best reproduced the entire normalised f(Tꞌ) dataset in Fig. 6d, 21 

using the minimised value λ = 3.4 K
-1

 determined previously. This distribution (µ = 890.5, 22 

σ = 3.8) was then used to simulate an isothermal experiment. These simulations included the 23 

initial cooling period required to reach the supercooled temperature. There is clear 24 

consistency between the diverse simulation and the experimental data. This again shows 25 

strong evidence that the K-feldspar sample used is a diverse species and would require a 26 

multiple-component system to describe its freezing behaviour. 27 

This example is important as it illustrates that for a diverse INP species with multiple active 28 

components, the observed gradient ω of the derived R/A(T) values from a single experiment 29 

does not characterise its stochastic behaviour. For these species a series of experiments at 30 

different cooling rates or residence times must be performed in order to determine the value 31 

of λ that can be used to characterise its stochastic behaviour.  32 
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4.3 Mineral dust freezing experiments from the Zurich Ice Nucleation 1 

Chamber (ZINC) 2 

Welti et al. (2012) (hereafter WELTI) studied the dependence of freezing probability on 3 

residence time for droplets containing particles of mineral dust using the ZINC continuous 4 

flow diffusion chamber. The mineral dust used by WELTI was supplied by the chemical 5 

company Fluka as kaolinite, but contained a range of minerals including feldspar and it has 6 

been suggested that it is this feldspar content which controls its ice nucleating ability 7 

(Atkinson et al., 2013). In their experiment WELTI size-selected single particles, immersed 8 

them in supercooled droplets, and passed the droplets into the ZINC instrument. Within 9 

ZINC the droplets experienced isothermal conditions and the frozen fraction was determined 10 

using a depolarization detector. Variable flow rates and a series of detection points provide a 11 

range of residence times, and by performing experiments at several temperature WELTI built 12 

up f(T) curves for a range of residence times. For this study we use the data for 400 nm 13 

particles. The data is shown in Fig. 8a along with derived ns(T) and R/A(T) values in b and c, 14 

respectively. Similar to the K-feldspar data the R/A(T) values for the mineral dust do not fall 15 

onto a single line and show a separation between residence times consistent with a 16 

multiple-component system. Therefore, in order to determine the value of λ that describes the 17 

residence-time dependence, the same procedure was followed as in Sect. 4.2 for K-feldspar.  18 

Each data point represents a single isothermal experiment with a single residence time, t. 19 

Hence, Eq. (21) can be used to modify each data point with  tTT  experiment' , assuming 20 

that the species can be characterised by a single value for λ. Using derived ns(T) values, with 21 

INP surface area per droplet calculated assuming a spherical particle 400nm in diameter as 22 

per the experiment, λ was systematically varied until the ns(Tꞌ) values converged onto a single 23 

line, again described by an exponential fit to ln(ns). This resulted in λ = 2.19 K
-1

 with a ln(ns) 24 

RMSE of 0.047, and is shown in Fig. 8e. For comparison, an exponential fit describing the 25 

raw ns(T) data resulted in a RMSE of 0.076. The two exponential fits were used to reproduce 26 

the expected fraction frozen data for a 1 K min
-1

 cooling experiment, and are plotted along 27 

with the observed and normalised fraction frozen dataset in Fig. 8a and Fig. 8d respectively. 28 

The range of ω determined from the ln(R/A) fits in Fig. 8c was estimated as 1.2 K
-1

 at 29 

240.5 K and 0.2 K
-1

 at 237.5 K. These values are lower than the minimised value of λ 30 

(2.19 K
-1

) suggesting that the mineral dust sample used in the WELTI study is a diverse 31 
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species and requires a multiple-component model to describe its freezing behaviour, which 1 

agrees with the conclusions of WELTI. 2 

Similar to the kaolinite and K-feldspar examples the determined value of λ was used to 3 

reproduce the expected decay of liquid droplets over time. With CFDC instruments the 4 

cooling from ambient temperature to the experimental temperature is very rapid and therefore 5 

the distribution of INP efficiency per droplet can be assumed to be represented by the 6 

function of ns(Tꞌ) determined in Fig. 8e. To calculate the expected decay of liquid droplets 7 

with time Eq. (26) was used with the value of λ (2.19) determined previously. The 8 

experimental data, along with the expected decay, is shown in Fig. 9. It can be seen that at 9 

high temperatures (241 to 239 K) the FROST framework is able to reproduce the 10 

experimental decay very well. However, at lower temperatures (238 to 236 K) there are large 11 

differences, especially for longer residence times. The reported errors bars are large for the 12 

lowest temperature data and suggest an increasing uncertainty with decreasing temperature. 13 

Also the fraction of droplets frozen is expected to increase with decreasing temperature as 14 

stated by WELTI. This suggests a potential experimental issue, which would explain the 15 

discrepancies. 16 

Here the FROST framework has been used to both normalise isothermal experiments 17 

performed over a range of residence times, and determine a value of λ that can be used to 18 

potentially describe the cooling-rate and time-dependent behaviour of this mineral dust in 19 

simulations. This example additionally highlights the necessity to use relatively pure samples 20 

in order to limit uncertainties due to multiple INP species. 21 

4.4 Volcanic ash from ZINC and AIDA 22 

In this final example the framework is used to normalise droplet freezing data from two 23 

fundamentally different experimental methods. Following the eruption of Eyjafjallajökull in 24 

Iceland during April 2010, a single sample of volcanic ash was collected and analysed to 25 

investigate its freezing characteristics in the AIDA expansion chamber (Steinke et al. (2011), 26 

hereafter STEINKE) and the ZINC ice nucleating chamber (Hoyle et al. (2011), hereafter 27 

HOYLE). The ZINC instrument, as described in the previous section, was used to determine 28 

the total fraction of droplets frozen over a range of temperatures (230 ≤ T ≤ 247 K) with a 29 

residence time of 12 s at each temperature; each supercooled droplet contained a single 30 

immersed particle, which ranged from ~0.1 to 3 µm in diameter, D. The 84 m
3
 AIDA cloud 31 
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chamber is capable of simulating an ascending, cooling air parcel, and is coupled to an array 1 

of instruments, which were used to determine the freezing characteristics of the same 2 

volcanic ash sample; in this method the dust sample (~0.1 ≤ D ≤ ~15 µm) is dispersed into 3 

the cloud chamber prior to expansion. 4 

The ice nucleating efficiencies of the two datasets were compared in Murray et al. (2012) and 5 

the subsequent f(T) and ns(T) values are reproduced in Figs. 10a and b, respectively. 6 

Although the fraction frozen data appears to be consistent between studies, once plotted as 7 

ns(T) it is clear that the two datasets, albeit with similar gradients, do not show good 8 

agreement even though the same sample was used. Figure 10c shows the surface-area 9 

normalised freezing rates, R/A(T), calculated using the temporal conditions of each 10 

experiment. For the HOYLE data the experimental residence time of 12 s was used, and for 11 

the STEINKE a cooling rate of 1.074 K min
-1

 was used (determined from the point at which 12 

water saturation was reached, until the elapsed time of the experiment had reached 300 s as 13 

per Fig. 2 in STEINKE). Due to the non-cumulative nature of the STEINKE f(T) dataset a 14 

polynomial fit to the data was used to determine the differential fraction-frozen required to 15 

calculate R/A(T) values. The two datasets fall onto a single line with a ln(R/A) RMSE of 0.22 16 

with a gradient ω = -dln(R/A)/dT = 0.55 K
-1

. Following the previous two examples, λ was 17 

systematically varied until the ns(Tꞌ) values converged onto a single line described by an 18 

exponential fit to ln(ns), resulting in λ = 0.60 K
-1

. Applying this value to Eqs. (20) and (21) 19 

results in β(r) = -0.12 K and β(t) = -3.57 K for the STEINKE and HOYLE dataset, 20 

respectively. Figures 10d and e show the subsequently modified f(Tꞌ) and ns(Tꞌ) data, 21 

respectively. The modified fraction frozen data shows a difference between datasets due to 22 

the larger surface-area per droplet in the HOYLE experiments (also evident in Fig. 10b). The 23 

ns(Tꞌ) data is shown in Fig. 10e, with a linear fit to the combined dataset producing a ln(ns) 24 

RMSE of 0.25.  25 

In this example ω (0.55 K
-1

) and λ (0.60 K
-1

) are similar, which suggests that this INP species 26 

is reasonably described by a single-component system (where ω = λ). On application of 27 

λ = ω = 0.55 K
-1

 a fit to the modified data produces a RMSE of 0.26, which is very similar to 28 

the minimised RMSE value (0.25) used to determine λ, which supports this conclusion. 29 

However, Murray et al. (2012), from which these data were reproduced, state that the average 30 

surface-area per droplet determined for the HOYLE dataset may be over-predicted, which 31 

could potentially impact these results. The ns and R/A values would shift to higher values, and 32 
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subsequently ω would increase slightly and λ would also increase, but by a larger factor. In 1 

this scenario ω < λ which would suggest that the volcanic ash sample is a 2 

multiple-component system.  3 

Fornea et al. (2009) also performed an immersion mode experiment using a volcanic ash 4 

sample from Mount St. Helens. In their experiments single particles with a diameter of 5 

250 ≤ D ≤ 300 μm were immersed within five 2 μL droplets and each subjected to 25 6 

freeze-thaw events on a cold-stage instrument. Additionally, as a means of testing the 7 

sensitivity to cooling rate, droplets containing the same volcanic ash sample were subjected 8 

to freeze-thaw cycles, but cooled at different rates (1 to 10 K min
-1

). The freeze-thaw 9 

experiments resulted in an average σTfreeze of 2.0 K and the variable cooling experiments 10 

resulted in a shift in the average freezing temperature by 3.6 K (upon a change from 1 to 10 K 11 

min
-1

) without any change in σTfreeze. Applying these data to the FROST framework Eqs. (10) 12 

and (20) were used to determine λ, resulting in λ = 0.635 K
-1

 and λ = 0.640 K
-1

 for the freeze-13 

thaw and cooling experiments, respectively. The first important point worth noting is that 14 

these two values, determined from distinct experimental and analysis methods, show very 15 

good agreement. Secondly, a comparison to the values determined for the Eyjafjallajökull ash 16 

sample (ω = 0.55 K
-1

 and λ = 0.60 K
-1

) shows that there is a strong similarity with regards to 17 

the magnitude of λ. Even though these volcanic ash samples are from different sources these 18 

results suggest that they have similar time-dependent properties. These additional results 19 

provide evidence that the λ value determined for the Eyjafjallajökull sample is robust, and 20 

therefore supports the conclusion that the Eyjafjallajökull ash sample tested is a single-21 

component species.  22 

5 Discussion 23 

5.1 The sensitivity of freezing probability to the time-dependence of 24 

nucleation 25 

It is apparent that the stochastic behaviour of ice nucleation can manifest as both a 26 

residence-time and cooling-rate dependence. For INP species characterised by a single value 27 

of λ this collective time-dependence can be reconciled and predicted using the FROST 28 

framework. Within this framework a change in cooling-rate or residence-time can be seen as 29 

an equivalent shift in temperature along the function describing the nucleation rate. This 30 
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function is typically exponential and therefore can have a significant effect on the resulting 1 

freezing probability.  2 

A first-order indication of the potential importance of time-dependence is shown in Fig. 11 3 

where values of βcool and βiso for 0.4 ≥ λ ≥ 10 K
-1

 have been plotted. Each point represents the 4 

shift of a specific fraction frozen, by a temperature β K, that results from a fractional change 5 

in either cooling-rate or residence-time for a species with a specific value of λ as per Eqs. (8) 6 

and (9). This plot shows how materials with a small value of λ (corresponding to a shallow 7 

gradient ω in a single-component system) are more sensitive to timescale; with a decreasing λ 8 

corresponding to an increasing shift by β for the same change in timescale.  9 

The values of λ from this study and other experimental datasets in the literature (Vali and 10 

Stansbury, 1966; Vali, 2008; Fornea et al., 2009; Wright et al., 2013) have been included in 11 

Fig. 11; the values and associated study are additionally shown in Table 2. In each case the 12 

FROST framework was used to determine λ from cooling, isothermal and freeze-thaw 13 

experiments as per Eqs. (20), (21), and (10). It is clear that atmospherically relevant INPs 14 

exhibit a wide range of time-dependent behaviour. INP species that have a value of λ with a 15 

large magnitude (λ > 4 K
-1

), such as Icemax
™

, and Arizona Test Dust (ATD), will exhibit 16 

very little time-dependence and would likely be well approximated by a singular freezing 17 

model. For those with a small magnitude (especially λ < 1 K
-1

) such as kaolinite KGa-1b, 18 

volcanic ash, and black carbon, the significant cooling-rate and residence-time dependence 19 

must be taken into account. It is interesting to note that in many previous studies into the role 20 

of time-dependence (Vali and Stansbury, 1966; Vali, 2008; Welti et al., 2012), which formed 21 

the basis of the argument that time dependence is of secondary importance, the materials used 22 

have larger λ values and are therefore less sensitive to temporal conditions. 23 

It is also apparent from Fig. 11 that more efficient INP tend to exhibit a larger value of λ. 24 

This behaviour was also noted by Vali (2014). For example, bacterial INP and soils which 25 

contain some of the most efficient INP we know of also have the largest values of λ. 26 

Interestingly, CNT predicts that λ is larger at higher temperatures. However, there are also 27 

exceptions to this ‘rule’. Values of λ determined from Fornea et al. (2009) for peat and 28 

volcanic ash are very similar, but the peat sample nucleated ice at much warmer 29 

temperatures. More work needs to be done on what factors control the value of λ. 30 
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The finding that ice nucleation by different materials has different sensitivities to time is 1 

important because it changes the way we should frame the debate of whether 2 

time-dependence plays an important role in ice nucleation. In the past the question has been 3 

whether time-dependence is important, but this question should be rephrased to whether a 4 

particular INP species has a strong time-dependence or not, and at what point this stops 5 

having an impact on ice nucleation rates, i.e., is there a limiting value of λ beyond which the 6 

singular freezing model is adequate? 7 

5.2 Representing complex INP populations in cloud models 8 

The range in time-dependent behaviour shown for the INP species in Fig. 11 leads to the 9 

question of how to best implement this behaviour for a complex multiple-component INP 10 

sample, or population, where each component has a characteristic time-dependence, within a 11 

cloud model.  12 

The time-dependence of a population of INPs containing many separate species may be 13 

dominated by a single component, and therefore a single value or temperature dependent 14 

function of λ. Where distinct components are dominant in different temperature ranges it 15 

would be possible to have a temperature dependent function of λ to reflect the relative 16 

dominance of each component. For multiple-species aerosol where no single component is 17 

observably dominant, the population of particles/droplets would need to be split into separate 18 

components and treated as an externally mixed population.  19 

Several immersion mode freezing schemes have been developed that incorporate multiple 20 

components in order to improve the treatment of INP populations in models: Diehl and 21 

Wurzler (2010) used a simple fractional occurrence factor to model potential immersion 22 

mode droplets containing bacterial, mineral and soot INPs; Phillips et al. (2008) used 23 

classifications of dust/metallic, black carbon and organic aerosols in a similar method for 24 

modelling a population of INP species; and Barahona (2012) introduced the ice nucleation 25 

spectrum framework, capable of relating different aerosol properties to ice nucleation in the 26 

deposition mode, with the potential to extend to immersion freezing.  27 

Whilst these models are capable of describing separate species it may be more realistic to 28 

represent a series of dominant components so that the time-dependence and inter-particle 29 

variability can be accurately described for a complex, evolving INP population. To achieve 30 

this, the λ characterisation of each component needs to be determined through a series of 31 
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isothermal and cooling experiments on INP samples that have very high purities. Commonly 1 

tested samples, such as ATD and illite, are comprised of several mineralogical components 2 

and may therefore contain multiple INP species. Once λ has been determined for the 3 

individual or dominant component of the species then the normalised data can be used with 4 

the FROST framework.  5 

6 Conclusions 6 

The range of instruments and techniques that are used for characterising the freezing 7 

properties of INP species result in different temporal conditions, i.e. CFDC instruments 8 

routinely use a constant temperature and residence time, whereas cold-stage instruments and 9 

cloud chambers typically cool droplets at some rate to determine freezing behaviour. Taking 10 

into account the differences in timescale between these experiments and translating this 11 

information to cloud formation in the atmosphere has been a challenge.  12 

In this study we have developed a new framework to address this challenge. This framework 13 

is underpinned by the finding that the temperature shift observed upon  a change in cooling 14 

rate is directly related to the slope -dln(Js,i)/dT (λ). We also extended this relationship to 15 

freezing experiments conducted under isothermal conditions with varying residence times, 16 

and the variability in freezing temperature observed in freeze-thaw experiments. We refer to 17 

this framework as the Framework for Reconciling Observable Stochastic Time-dependence 18 

(FROST) and use it in combination with the singular freezing model. Therefore the FROST 19 

framework can be used to describe both the inter-particle variability and the stochastic nature 20 

of ice nucleation within a simple parameterisation. 21 

To test the FROST framework, data obtained from a variety of instruments (including the 22 

ZINC, AIDA expansion chamber and two cold-stage instruments) were analysed to determine 23 

the value for λ that best described the observed time-dependence of each species. It is striking 24 

that the parameter λ depends strongly on the material, with more efficient INPs tending to 25 

have the largest λ, and therefore weakest time-dependence, whereas less efficient INPs such 26 

as kaolinite (KGa-1b) have the smallest λ, and therefore strongest time-dependence. More 27 

work is needed in order to quantify λ for other atmospherically relevant INPs. 28 

 29 
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Appendix A 1 

Glossary of terms 2 

Notation Description 

Js,i(T) The nucleation rate coefficient (cm
-2

 s
-1

) for a single component i. 

λ 

 

The temperature dependence (K
-1

) of the nucleation rate coefficient of a 

single component -dln(Js,i)/dT. 

 R/A(T) The freezing rate, R, normalised to surface-area (cm
-2

 s
-1

) derived from 

experimental data using Eq. (1) and initially assuming a uniform INP 

species so that R/A = Js,i. 

ω The temperature dependence (K
-1

) of the normalised freezing 

rate -dln(R/A)/dT. If ω = λ then the species being tested is uniform and 

R/A = Js,i, whereas if ω ≠ λ then the species being tested is not uniform 

and R/A ≠ Js,i. 

β Systematic shift in temperature (K) of the fraction frozen f(T) upon a 

temporal change. 

β(r) Systematic shift in temperature (K) of the fraction frozen f(T) as a 

function of cooling rate (r) in K min
-1

 upon normalising to a cooling 

rate of 1 K min
-1

. 

β(t) Systematic shift in temperature (K) of the fraction frozen f(T) as a 

function of residence-time (t) in seconds upon normalising to a cooling 

rate of 1 K min
-1

. 

Tꞌ The modified temperature of an experimentally determined data point 

normalised to a cooling experiment at 1 K min
-1

 where Tꞌ = Texperiment + 

β. 

ns(T) Ice active site density, (cm
-2

) derived from experimental data using Eq. 

(23). 

ns(Tꞌ) ns(T) modified by a temperature β K as above, thus normalising all data 

points to a cooling rate of 1 K min
-1

. 
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f(Tꞌ) The cumulative fraction frozen, f(T) modified by a temperature β K, 

thus normalising all data points to a cooling rate of 1 K min
-1

. 
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 Tables 1 

Table 1. The range of MCSM variables used for droplet cooling simulations in Fig. 3: λ is -dln(Js,i)/dT; µ and σ are the mean 2 
and standard deviation of the PDF used to constrain the occurrence of each component with ‘formula’ referring to 3 
µ = 240λ  + 14.8; surface area of immersed INP per droplet A; and the fraction f at which the change in temperature (∆T = 4 
T(fr1)-T(fr2)) for a change in cooling rate r is calculated. All simulations were performed at cooling rates of 1 and 10 K min-1. 5 

Gradient λ / K
-1

 PDF mean µ PDF width σ Surface area A Fraction f 

0.2 ≤ λ ≤14 formula 1 1 x 10
-7 

cm
2
 0.5 

0.1 ≤ λ ≤ 16 formula 0.1 5 x 10
-7 

cm
2
 0.5 

0.04 ≤ λ ≤ 10 formula 1 10 x 10
-7 

cm
2
 0.25 

1 ≤ λ ≤ 16 formula 5 1 x 10
-7 

cm
2
 0.25 

2 ≤ λ ≤ 16 formula + 10 10 1 x 10
-7 

cm
2
 0.75 

0.02 ≤ λ ≤ 0.1 formula 1 1 x 10
-7 

cm
2
 0.1 

0.03 µ1 = 9, µ2 = 12 σ1 = 0.1, σ2 = 2 1 x 10
-7 

cm
2
 0.5 

1.0 µ1 = 255, µ2 = 265 σ1 = 1, σ2 = 2 1 x 10
-7 

cm
2
 0.5 

5.0 µ1 = 1255, µ2 = 1260 σ1 = 1, σ2 = 5 1 x 10
-7 

cm
2
 0.5 

10.0 µ1 = 2455, µ2 = 2465,  

µ3 = 2460 

σ1 = 1, σ2 = 1, σ3 = 5 1 x 10
-7 

cm
2
 0.5 

 6 

Table 2. Summary of λ values from various immersion mode studies determined using the FROST framework. 7 

Study and experimental method Material λ / K
-1

 

Vali and Stansbury (1966) - cooling Distilled water 3.5 

Vali (2008) – freeze-thaw Soil 

Distilled water 

6.3 

3.0 

Fornea et al. (2009) – freeze-thaw Black carbon 

Volcanic ash (Mt. St. Helens) 

Peat 

0.4 

0.6 

0.7 

Fornea et al. (2009) – cooling Volcanic ash (Mt. St. Helens) 0.6 

Hoyle et al. (2011) – isothermal 

  & Steinke et al. (2011) – cooling 

Volcanic ash (Eyjafjallajökull) 0.6 

Welti et al. (2012) – isothermal Kaolinite Fluka 2.2 

Wright et al. (2013)– freeze-thaw Icemax
™

 

ATD 

Montmorillonite 

Kaolinite KGa-2b 

Flame soot 

2.9 

2.3 

0.9 

2.2 

1.7 
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Filtered rain #1 

Filtered rain #2 

Filtered rain #3 

Filtered rain #4 

Unfiltered rain #1 

Unfiltered rain #2 

Unfiltered rain #3 

1.3 

2.0 

2.6 

1.9 

1.6 

1.4 

1.9 

Wright et al. (2013) – cooling Icemax
™

 

ATD 

Montmorillonite 

Kaolinite KGa-2b 

Flame soot 

Filtered rain #3 

Filtered rain #4 

Unfiltered rain #1 

23.0 

4.4 

1.8 

1.7 

1.4 

4.6 

4.6 

23.0 

This study – cooling and isothermal 

 

Kaolinite KGa-1b 

K-feldspar 

1.1 

3.4 

 1 

Figure captions 2 

Fig. 1. Principles of the Multiple Component Stochastic Model. Each symbol represents a sub-population approximated by a 3 
single-component system, as shown in (a), with gradient -dln(J)/dT = λ and intercept φ (proxy for nucleating efficiency). The 4 
probability of occurrence for each component, characterised by φ, is determined using a statistical distribution, as depicted in 5 
(b), with a mean μ and standard deviation σ. Applying this probability to a population of droplets results in an ensemble of 6 
droplets exhibiting a range of nucleating efficiencies as in (c). 7 

 8 

Fig. 2. Illustration of how the systematic shift in temperature (β) observed for a change in cooling rate is independent of the 9 
variability in ice nucleating ability. f(T) curves shown are for a uniform (σ = 0.01) and diverse (σ = 20) INP population 10 
where λ = 2 K-1, and cooled at a constant rate of 1 K min-1 (solid line) and 10 K min-1 (dashed line). β corresponds to the 11 
shift in temperature (K) observed when 50 % of droplets have frozen. 12 

 13 

Fig. 3. A direct relationship between λ (-dln(Js,i)/dT) and β (the shift in freezing temperature upon a factor of 10 change in 14 
cooling rate) is observed for all droplet cooling simulations. For each set of runs λ was systematically increased whilst the 15 
following variables were set: mean (µ) and standard deviation (σ) of the PDF, surface area of particle per droplet (A), and the 16 
fraction at which the change in temperature was calculated (f). More information can be found in Table 1. 17 

  18 

Fig. 4. Droplet freezing data for kaolinite (KGa-1b). (a) shows freezing rates normalised to surface area, R/A, against 19 
temperature determined from droplet freezing experiments with a range of cooling rates. Open symbols represent 20 
PICOLITRE experiments from Murray et al. (2011) and closed symbols represent MICROLITRE experiments. The black 21 
dashed line shows a linear fit to all data (ln(R/A) = -1.12T + 280). Temperature uncertainty for the MICROLITRE data (not 22 
shown) is estimated at ± 0.4 K, and uncertainty in R/A (not shown) is estimated at -17 % and +25 %. (b) shows the 23 
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exponential decay of liquid droplets during an isothermal experiment at 255.15 K together with a modelled experiment at the 1 
same temperature using the linear fit to all data in (a). The grey area follows the experimental uncertainty in T around the 2 
modelled isothermal. The experiment duration was 17 minutes, at which point one droplet remained unfrozen. 3 

 4 

Fig. 5. The freezing of droplets containing kaolinite (KGa-1b) in cooling experiments (MICROLITRE). (a) Raw f(T) data, 5 
(b) derived R/A(T), (c) ns(T) values, (d) the corresponding normalised f(Tꞌ) data, and (e) normalised ns(Tꞌ). Data was 6 
normalised using the value of λ determined directly from the linear fit to ln(R/A) against T in Fig. 4a and reproduced in (c). 7 
Temperature and R/A uncertainty is as in Fig. 4. Uncertainty in ns (not shown) is estimated as ± 20 %. 8 

  9 

Fig. 6. The freezing of droplets containing K-feldspar for a range of cooling rates. Layout as in Fig. 5. Brackets beside the 10 
cooling rates indicate the number of experiments performed and subsequently combined. Linear fits to derived ln(R/A) 11 
values for runs at 0.2 and 2.0 K min-1 are shown as solid lines in (c) resulting in ω = 0.85 and 0.9 K-1, respectively. Modified 12 
ns(Tꞌ) data was minimised in order to determine a value of λ that best describes the cooling rate dependence, resulting in λ = 13 
3.4 K-1. In this example ω ≠ λ suggesting that K-feldspar is a diverse INP species and behaves as a multiple-component 14 
system. The dashed line in (e) is a fit to K-feldspar experimental data taken from Atkinson et al. (2013). Temperature 15 
uncertainty is as in Fig. 4, and uncertainty in ns and R/A (not shown) is estimated as ± 25 %.  16 

 17 

Fig. 7. Decay of liquid droplets containing K-feldspar in an isothermal experiment at Tiso = 262.15 K, and simulated 18 
experiments assuming a uniform and diverse distribution. For the uniform distribution Js(Tiso) values were taken from Fig. 6a 19 
(thus assuming a single-component system where Js = R/A) and used with Eq. (1), resulting in a decay bounded by the range 20 
of R/A between the two cooling rates of 0.2 and 2.0 K min-1. For the diverse simulation the MCSM was used with parameters 21 
determined through fitting to the normalised K-feldspar dataset in Fig. 6: µ = 890.5, σ = 3.8 (see Fig. 1), and λ = 3.4 K-1 22 
(determined in Fig. 6). The shaded regions follow the instrument-based error of ± 0.4 K around Tiso. The triangular symbols 23 
indicate when freezing events occurred throughout the 120 minute duration of the experiment. 24 

  25 

Fig. 8. The freezing of droplets containing size-selected 400 nm kaolinite (Fluka) particles in a CFDC instrument from Welti 26 
et al. (2012). Layout as in Fig. 5. Residence times at constant temperature ranged from 1.11 to 21.4 s at temperatures from 27 
236 to 241 K. R/A(T) values, shown in (c), do not fall onto a single line and exhibit a consistent separation with increasing 28 
residence time. Modified ns(Tꞌ) data were minimised in order to determine a value of λ that best describes the time-29 
dependence, resulting in λ = 2.19 K-1. The minimised ns(Tꞌ) values and corresponding fit (RMSE = 0.047) are shown in (e). 30 
For comparison the same fitting function was applied to the raw ns(T) data (RMSE = 0.076) and is shown in (b). These two 31 
functions were used to reproduce a 1 K min-1 cooling experiment and are shown as dashed lines in (a) and (d). Error bars are 32 
reproduced from Welti et al. (2012). 33 

 34 

Fig. 9. Experimental fraction unfrozen data for droplets containing Fluka kaolinite (symbols) from Fig. 8a (Welti et al., 35 
2012) plotted as a function of time and temperature. We also plot the expected decay of liquid droplets with time determined 36 
using Eq. (26) with the function of ns(Tꞌ) in Fig. 8e and λ = 2.19 K-1. The expected decay at each temperature is shown as a 37 
dashed line.  38 

 39 

Fig. 10. Freezing of droplets containing volcanic ash sampled from the Eyjafjallajökull eruption in 2010. Layout as in Fig. 5. 40 
Red circles represent data presented in Hoyle et al. (2011) using the ZINC instrument, and blue squares represent data from 41 
Steinke et al. (2011) using the AIDA expansion chamber. ns(T) data in (b) was reproduced from Murray et al. (2012); f(T) 42 
values in (a) were also determined from this dataset. A fit to determined R/A values in (c) resulted in ω = 0.55 K-1. The raw 43 
ns(T) data was modified by iteratively decreasing λ until ns(Tꞌ) values collapsed on a single line, resulting in λ = 0.60 K-1. The 44 
similarity in ω and λ suggests that this volcanic ash sample behaves as a single-component system. 45 

 46 

Fig. 11. The shift in temperature β K that will result from a fractional change in cooling rate or residence time as a function 47 
of λ. Values include those determined from (i) this study, (ii) Wright et al. (2013) cooling experiments, (iii) Wright et al. 48 
(2013) freeze-thaw experiments, (iv) Fornea et al. (2009), (v) Vali (2008), and (vi) Vali and Stansbury (1966). INP samples 49 
are colour coded depending on INP type. Blue (solid and dashed) arrows correspond to rain samples (unfiltered and filtered) 50 
from the freeze-thaw experiments presented inWright et al. (2013). 51 
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