

Supplement of

Exploring the chemical fate of the sulfate radical anion by reaction with sulfur dioxide in the gas phase

N. T. Tsona et al.

Correspondence to: N. T. Tsona (narcisse.tsonatchinda@helsinki.fi)

Table S1: Gibbs free energy (ΔG^o at 298 K) and enthalpy (ΔH^o) of the most stable species involved in the SO₂ and SO₄⁻(H₂O)_n collisions. The ΔG^o 's are shown in Fig. 3 in the main article. The energies are calculated relative to SO₂ + SO₄⁻(H₂O)_n and the units are kcal mol⁻¹.

n	$\mathrm{SO_2SO_4^-(H_2O)}_n$		Transition sate		$\mathrm{SO_3SO_3^-(H_2O)}_{\mathrm{n}}$		$\mathrm{SO}_3 + \mathrm{SO}_3^-\mathrm{(H_2O)}_\mathrm{n}$	
	ΔG^o	ΔH^o	ΔG^o	ΔH^o	ΔG^o	ΔH^o	ΔG^o	ΔH^o
0	-5.6	-14.1	4.4	-5.6	-9.5	-19.4	11.9	11.7
1	-3.6	-11.7	5.2	-5.4	-7.3	-18.0	10.4	10.0
2	-2.5	-10.3	8.3	-3.8	-5.1	-15.0	9.8	9.4

Table S2: Gibbs free energy $(\Delta G^o \text{ at } 298 \text{ } K)$ and enthalpy (ΔH^o) of hydration of the SO₄⁻(H₂O)_{n-1}, SO₂SO₄⁻(H₂O)_{n-1}, and SO₃SO₃⁻(H₂O)_{n-1} anions. The ΔG^o 's are shown in Fig. 4 in the main article. Units are kcal mol⁻¹.

\overline{n}	$\mathrm{SO}_4^-(\mathrm{I}$	$(H_2O)_{n-1}$	SO_2S	$O_4^-(H_2O)_{n-1}$	SO_3SC	$O_3^-(H_2O)_{n-1}$
	ΔG^o	ΔH^o	ΔG^o	ΔH^o	ΔG^o	ΔH^o
0	-3.3	-11.9	-1.3	-6.7	-1.0	-8.5
1	-3.1	-11.3	-1.9	-7.2	-0.9	-6.2

Table S3: Collision rate constant $(k_{\text{coll},(\text{R1})})$ of SO₂ and SO₄⁻(H₂O)_n, oxidation rate constant $(k_{\text{ox},(\text{R2a})})$ of SO₂ in the SO₂SO₄⁻(H₂O)_n reactant complex, and evaporation rate constant $(k_{\text{evap},(\text{R2b})})$ of SO₂ from SO₂SO₄⁻(H₂O)_n, for Reactions (R1), (R2a), and (R2b), respectively in the main article. Calculations are performed at 298 K.

n	$k_{\rm coll,(R1)} \ ({\rm cm}^3 {\rm \ s}^{-1})$	$k_{\rm ox,(R2a)}$ (s ⁻¹)	$k_{\text{evap},(\text{R2b})}$ (s ⁻¹)
0	1.4×10^{-9}	$2.8 \times 10^{+5}$	$2.3 \times 10^{+6}$
1	1.4×10^{-9}	$2.2 \times 10^{+6}$	$6.0 \times 10^{+7}$
2	$1.3 imes 10^{-9}$	$7.7 \times 10^{+4}$	$4.1 \times 10^{+8}$

Table S4: Relative concentration of the most stable anionic species involved in the SO₂ + $SO_4^-(H_2O)_n \longrightarrow SO_3SO_3^-(H_2O)_n$ reaction at thermal equilibrium, calculated at different SO₂ concentrations, different relative humidities, and T = 298 K. The values are shown in Fig. 5 in the main article.

Species	RH = 10 %		RH = 50 %		RH = 90 %	
	$2 \text{ ppb } SO_2$	$200 \text{ ppb } SO_2$	$2 \text{ ppb } SO_2$	$200 \text{ ppb } SO_2$	$2 \text{ ppb } SO_2$	$200 \text{ ppb } SO_2$
SO_4^-	45.3	24.9	6.5	5.7	2.4	2.2
$\mathrm{SO}_4^-\mathrm{(H_2O)}_1$	35.5	18.9	24.6	21.8	16.1	15.4
$\mathrm{SO}_4^-(\mathrm{H_2O})_2$	19.3	10.6	68.9	61.1	81.5	77.6
$SO_2SO_4^-$	$1.1 imes 10^{-3}$	$6.2 imes 10^{-2}$	$1.6 imes 10^{-4}$	$1.4 imes 10^{-2}$	$5.8 imes 10^{-5}$	$5.6 imes10^{-3}$
$SO_2SO_4^-(H_2O)_1$	3.2×10^{-5}	$1.8 imes 10^{-3}$	2.3×10^{-5}	$2.0\times1010\text{-}3$	1.5×10^{-5}	1.4×10^{-3}
$SO_2SO_4^-(H_2O)_2$	2.6×10^{-6}	1.4×10^{-4}	9.3×10^{-6}	$8.3 imes 10^{-4}$	1.1×10^{-5}	$1.0 imes 10^{-3}$
$SO_3SO_3^-$	0.8	44.7	0.1	10.3	4.2×10^{-2}	4.0
$SO_3SO_3^-(H_2O)_1$	$1.5 imes 10^{-2}$	0.8	1.1×10^{-2}	0.9	$7.0 imes 10^{-3}$	0.7
$SO_3SO_3^-(H_2O)_2$	$2.3 imes 10^{-4}$	1.3×10^{-2}	8.1×10^{-4}	0.1	$9.6 imes 10^{-4}$	0.1

$\rm SO_2SO_4^-(H_2O)_n$		Transition sate			$SO_3SO_3^-(H_2O)_n$			
n = 0	n = 1	n = 2	n = 0	n = 1	n = 2	n = 0	n = 1	n = 2
21	19	17	i497	i427	i485	15	18	12
28	26	21	27	22	27	19	24	19
61	38	27	42	30	31	120	38	22
107	43	36	94	55	41	252	104	33
136	81	39	159	81	49	268	114	48
270	86	54	180	100	77	338	152	82
332	102	73	320	155	83	405	255	124
371	158	87	347	192	96	457	271	142
373	213	106	461	222	170	498	335	144
503	288	140	498	296	181	506	372	265
518	328	155	504	314	196	538	400	269
538	334	224	523	345	217	594	410	270
689	348	263	626	364	320	784	462	277
913	421	272	944	489	347	1004	498	303
1092	508	281	1106	493	356	1041	507	313
1140	521	299	1149	526	377	1158	537	357
1213	527	337	1233	538	388	1255	562	407
1261	615	357	1247	610	447	1272	597	462
	683	397		643	488		785	498
	912	507		982	495		1005	520
	1132	519		1110	517		1039	537
	1148	537		1178	531		1158	550
	1209	562		1229	660		1247	576
	1277	577		1253	716		1282	629
	1684	694		1684	751		1679	748
	3766	919		3757	968		3755	1000
	3807	1127		3812	1111		3825	1046
		1147			1151			1174
		1180			1233			1238
		1280			1253			1245
		1666			1669			1668
		1679			1686			1680
		3749			3597			3784
		3771			3646			3786
		9040			2027			2820
		3848			3037			0009

Table S5: Harmonic frequencies (in cm⁻¹) of the most stable $SO_2SO_4^-(H_2O)_n$, transition state, and $SO_3SO_3^-(H_2O)_n$ structures shown in Fig. 2 in the main article.

 Table S6: CAM-B3LYP Cartesian coordinates (in angström) of the most stable reactant complexes shown in Fig. 2a in the main article.

$\mathrm{SO}_2\mathrm{SO}_4^-$			
0	2.825107	0.156760	-1.355518
0	2.363947	1.064713	0.947284
S	2.209459	-0.138952	-0.012337
0	2.666257	-1.420147	0.562402
0	0.670207	0.008367	-0.061607
\mathbf{S}	2.127117	2.248396	-2.372085
0	3.445617	2.908847	-2.503388
0	1.576002	1.727531	-3.643685
$SO_2SO_4^-(H_2O)_1$			
S	1.980451	0.641827	0.721950
0	1.139850	-0.591538	0.328050
0	2.783577	0.590480	-0.623185
0	2.855993	0.400330	1.894622
0	1.160261	1.880159	0.806900
0	2.321708	2.940800	3.312736
Н	1.735131	2.957448	2.541186
Н	2.745530	2.078596	3.184058
S	-0.787099	0.125042	-1.313735
0	-0.609772	-0.866320	-2.395438
0	-1.964964	-0.101901	-0.452406
$\overline{\mathrm{SO}_2\mathrm{SO}_4^-(\mathrm{H}_2\mathrm{O})_2}$			
S	1.439944	0.973647	1.793171
0	0.631056	-0.213030	1.371916
0	2.630048	1.218150	0.831591
0	1.856718	0.909621	3.220749
0	0.766009	2.306109	1.423134
0	1.867679	3.763925	3.954101
Н	2.004482	2.803407	3.982481
Н	1.444814	3.869923	3.092787
\mathbf{S}	-0.058883	-0.142039	-1.127406
0	0.547748	-1.404722	-1.595099
0	-1.529623	-0.166151	-0.995913
0	0.782775	-1.732526	4.006224
Н	1.235760	-0.878163	4.074384
Η	0.471752	-1.702303	3.091549

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} -0.101278\\ 1.170106\\ -0.931491\\ -0.844527\\ 0.745785\\ -0.225163\\ 0.370711\\ 0.065664\\ \hline \\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \hline \end{array}$
S-1.4402300.004819O-2.266101-0.061322O-1.6871441.206203O-1.328814-1.269272O-0.0508170.239308S1.7598570.046819O2.5507531.150015O2.255850-1.316524Monohydrated transition state-O-2.329767-0.421493S-1.196992-0.239488O-0.006242-0.051023S1.8553380.424969O2.791611-0.563594O-1.1892011.013112O-0.815365-1.459901	$\begin{array}{c} -0.101278\\ 1.170106\\ -0.931491\\ -0.844527\\ 0.745785\\ -0.225163\\ 0.370711\\ 0.065664\\ \hline \\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \hline \end{array}$
O-2.206101-0.061322O-1.6871441.206203O-1.328814-1.269272O-0.0508170.239308S1.7598570.046819O2.5507531.150015O2.255850-1.316524Monohydrated transition state-0.0239488O-0.006242-0.0239488O-0.006242-0.051023S1.8553380.424969O2.791611-0.563594O-1.1892011.013112O-0.815365-1.459901	$\begin{array}{c} 1.170106\\ -0.931491\\ -0.844527\\ 0.745785\\ -0.225163\\ 0.370711\\ 0.065664\\ \hline \\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \hline \end{array}$
O -1.087144 1.200203 O -1.328814 -1.269272 O -0.050817 0.239308 S 1.759857 0.046819 O 2.550753 1.150015 O 2.255850 -1.316524 Monohydrated transition state - -0.0239488 O -2.329767 -0.421493 S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	$\begin{array}{c} -0.931491\\ -0.844527\\ 0.745785\\ -0.225163\\ 0.370711\\ 0.065664\\ \hline \\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \hline \end{array}$
O -1.328814 -1.269272 O -0.050817 0.239308 S 1.759857 0.046819 O 2.550753 1.150015 O 2.255850 -1.316524 Monohydrated transition state -0.006242 -0.0239488 O -2.329767 -0.421493 S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	$\begin{array}{c} -0.844527\\ 0.745785\\ -0.225163\\ 0.370711\\ 0.065664\\ \hline \\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \hline \end{array}$
O -0.050817 0.239308 S 1.759857 0.046819 O 2.550753 1.150015 O 2.255850 -1.316524 Monohydrated transition state -0.0329767 -0.421493 S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	$\begin{array}{c} 0.745785 \\ -0.225163 \\ 0.370711 \\ 0.065664 \\ \hline \\ 0.517842 \\ -0.441137 \\ 0.748501 \\ -0.004021 \\ 0.572228 \\ 1.225701 \\ \end{array}$
S 1.759857 0.046819 O 2.550753 1.150015 O 2.255850 -1.316524 Monohydrated transition state -2.329767 -0.421493 S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	$\begin{array}{c} -0.225163\\ 0.370711\\ 0.065664\\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \end{array}$
O 2.550753 1.150015 O 2.255850 -1.316524 Monohydrated transition state -2.329767 -0.421493 O -2.329767 -0.421493 S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	$\begin{array}{c} 0.370711\\ 0.065664\\ \hline \\ 0.517842\\ -0.441137\\ 0.748501\\ -0.004021\\ 0.572228\\ 1.225701\\ \end{array}$
O 2.255850 -1.316524 Monohydrated transition state -2.329767 -0.421493 S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	$\begin{array}{c} 0.065664 \\ \hline 0.517842 \\ -0.441137 \\ 0.748501 \\ -0.004021 \\ 0.572228 \\ 1.225701 \end{array}$
Monohydrated transition stateO-2.329767-0.421493S-1.196992-0.239488O-0.006242-0.051023S1.8553380.424969O2.791611-0.563594O-1.1892011.013112O-0.815365-1.459901	$\begin{array}{c} 0.517842 \\ -0.441137 \\ 0.748501 \\ -0.004021 \\ 0.572228 \\ 1.225701 \end{array}$
O-2.329767-0.421493S-1.196992-0.239488O-0.006242-0.051023S1.8553380.424969O2.791611-0.563594O-1.1892011.013112O-0.815365-1.459901	0.517842 -0.441137 0.748501 -0.004021 0.572228 1 225701
S -1.196992 -0.239488 O -0.006242 -0.051023 S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	-0.441137 0.748501 -0.004021 0.572228 1.225701
O-0.006242-0.051023S1.8553380.424969O2.791611-0.563594O-1.1892011.013112O-0.815365-1.459901	0.748501 -0.004021 0.572228
S 1.855338 0.424969 O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	-0.004021 0.572228
O 2.791611 -0.563594 O -1.189201 1.013112 O -0.815365 -1.459901	0.572228
O -1.189201 1.013112 O -0.815365 -1.459901	1 995701
O -0.815365 -1.459901	-1.223791
	-1.201766
O 2.116984 1.844369	0.311342
O -2.629181 -3.364716	0.112114
Н -1.924277 -3.068719	-0.485471
Н -2.847237 -2.526576	0.545472
Dihydrated transition state	
0 -2.567018 -0.272583	0.270936
S -1.419593 -0.021122	-0.667424
O -0.335635 0.246156	0.546368
S 1.668734 0.141362	0.066934
O 2.123141 -1.204656	0.475244
O -1.500465 1.206192	-1.480792
O -0.945216 -1.229555	-1.401743
O 2.276825 1.281250	0.784734
O 0.701323 -3.788804	1.694419
Н 1.214615 -3.038128	1.371561
Н -0.180803 -3.656497	1.296207
O -1.768424 -3.247548	0.390130
Н -1.422550 -2.748183	-0.374576
Н 9.98/197 9.56/1972	0.839504

 Table S7: CAM-B3LYP Cartesian coordinates (in Angström) of transition states of Reaction (R2a) shown in Fig. 2b in the main article.

 Table S8: CAM-B3LYP Cartesian coordinates (in angström) of the most stable products shown in Fig. 2c

 in the main article.

$SO_3SO_3^-$			
0	-2.285527	-1.272200	0.074224
0	1.354358	-1.253234	-0.844887
S	-1.532961	0.004227	-0.134058
0	-2.281204	1.283057	0.075057
0	-0.217287	0.001692	0.802499
S	1.430941	-0.000759	-0.066685
0	1.358507	1.252459	-0.844088
0	2.275230	-0.002543	1.139135
$SO_2SO_2^-(H_2O)_1$			
0	-2.063805	0.700313	-1.360015
S	-0.968260	1.022031	-0.420948
0	-0.058720	-0.560305	-0.525162
S	0.688809	-1.095623	0.814563
0	1.877765	-0.257936	1.145047
0	-1.308100	1.080047	1.014685
0	0.031778	1.992716	-0.911407
0	0.886521	-2.561979	0.605815
0	-1.101392	2.329077	-3.656536
Н	-0.441615	2.483259	-2.964533
Н	-1.689470	1.706418	-3.203686
$SO_3SO_3^-(H_2O)_2$			
0	-1.667021	0.614603	-0.966407
S	-0.529326	1.317177	-0.335222
0	0.744377	0.055458	-0.294183
S	0.398848	-1.301994	0.561063
0	1.342783	-1.377415	1.713003
0	-0.693795	1.664172	1.092608
0	0.181790	2.307262	-1.176177
0	0.349590	-2.449484	-0.389988
0	-1.377994	1.775058	-3.714589
Η	-0.676964	2.208156	-3.207836
Η	-1.754491	1.186529	-3.044135
0	0.893961	4.209023	1.063875
Н	0.393316	3.493059	1.481254
Н	0.913757	3.909106	0.144287