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Abstract

Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2
will benefit from the increasing measurement density brought by recent and future ad-
ditions to the suite of in situ and remote CO2 measurement platforms. In particular,
the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons5

(ASCENDS) satellite mission will provide greater coverage in cloudy regions, at high
latitudes, and at night than passive satellite systems, as well as high precision and ac-
curacy. In a novel approach to quantifying the ability of satellite column measurements
to constrain CO2 fluxes, we use a portable library of footprints (surface influence func-
tions) generated by the WRF-STILT Lagrangian transport model in a regional Bayesian10

synthesis inversion. The regional Lagrangian framework is well suited to make use of
ASCENDS observations to constrain fluxes at high resolution, in this case at 1◦ lati-
tude×1◦ longitude and weekly for North America. We consider random measurement
errors only, modeled as a function of mission and instrument design specifications
along with realistic atmospheric and surface conditions. We find that the ASCENDS15

observations could potentially reduce flux uncertainties substantially at biome and finer
scales. At the 1◦ ×1◦, weekly scale, the largest uncertainty reductions, on the order of
50 %, occur where and when there is good coverage by observations with low mea-
surement errors and the a priori uncertainties are large. Uncertainty reductions are
smaller for a 1.57 µm candidate wavelength than for a 2.05 µm wavelength, and are20

smaller for the higher of the two measurement error levels that we consider (1.0 ppm
vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada). Uncertainty reductions at the
annual, biome scale range from ∼ 40 % to ∼ 75 % across our four instrument design
cases, and from ∼ 65 % to ∼ 85 % for the continent as a whole. Our uncertainty reduc-
tions at various scales are substantially smaller than those from a global ASCENDS25

inversion on a coarser grid, demonstrating how quantitative results can depend on in-
version methodology. The a posteriori flux uncertainties we obtain, ranging from 0.01 to
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0.06 Pg C yr−1 across the biomes, would meet requirements for improved understand-
ing of long-term carbon sinks suggested by a previous study.

1 Introduction

Quantification of surface fluxes of CO2 and other greenhouse gases (GHG) over
a range of spatial and temporal scales is of critical importance for understanding the5

processes that drive source/sink variability and climate-biogeochemistry feedbacks.
The need to monitor GHG fluxes also follows from climate policy initiatives such as
the Kyoto Protocol and possible follow-on agreements, along with their implementation
(e.g., emissions trading and treaty verification). While direct “bottom-up” (inventory) ap-
proaches are considered accurate to within 10 % in the annual mean for fossil fuel CO210

emissions in North America (Gurney et al., 2009), “top-down” (inverse) methods are
the tool of choice to infer CO2 sources and sinks from the terrestrial biosphere and
oceans on a range of scales (Peters et al., 2007). In the top-down approach, fluxes are
inferred from atmospheric CO2 measurements by means of an atmospheric transport
model linking the measurements to fluxes upwind. The availability of abundant and15

accurate measurements and realistic transport models is key to the success of this
approach (e.g. Enting et al., 1995). Consequently, large investments have been made
in establishing reliable measurement networks, including in situ measurements of CO2
concentrations from the surface, towers, and aircraft (e.g. the NOAA ESRL Carbon
Cycle Cooperative Global Air Sampling Network (Dlugokencky et al., 2013), and the20

Earth Networks Greenhouse Gas Network, http://ghg.earthnetworks.com/), and satel-
lite missions dedicated to measurement of CO2 column amounts. The last include the
Greenhouse gases Observing SATellite (GOSAT) launched in January 2009 (Yokota
et al., 2009), the Orbiting Carbon Observatory 2 (OCO-2) to be launched in 2014 (Crisp
et al., 2008; Eldering et al., 2012), and the planned Active Sensing of CO2 Emissions25

over Nights, Days, and Seasons (ASCENDS) mission recommended by the US Na-
tional Academy of Sciences Decadal Survey (NRC, 2007).
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The objective of our study is to quantify the ability of ASCENDS column measure-
ments to constrain CO2 fluxes top-down at relatively high resolution. The ASCENDS
active measurement concept offers unique capabilities compared with passive satel-
lite systems that rely on thermal emission or reflected sunlight (Kawa et al., 2010).
These capabilities will enhance spatial and temporal coverage while providing high5

precision and accuracy. ASCENDS will extend coverage through its ability to sample in
small cloud gaps and through thin clouds without interference. In addition, since a lidar-
based system does not require the presence of the sun, it allows for observations of
high-latitude regions during winter. Measurements can be made both night and day,
thereby reducing sampling bias due to (and potentially providing constraints on) diur-10

nal variations in CO2 fluxes driven by ecosystem respiration and primary production.
Global studies of the impact of satellite measurements on top-down estimates of

CO2 fluxes, beginning with the study of Rayner and O’Brien (2001), have established
the benefit of using satellite measurements for constraining CO2 fluxes at a precision
level similar to or better than that provided by existing in situ networks. At present, these15

approaches estimate the reduction of flux uncertainties stemming from the availability
of satellite data using an inverse solution for relatively coarse grid boxes or regions
at weekly to monthly resolution (e.g. Houweling et al., 2004; Chevallier et al., 2007;
Feng et al., 2009; Baker et al., 2010; Kaminski et al., 2010; Hungershoefer et al., 2010;
Basu et al., 2013). The present study extends these global studies to the regional20

scale using simulated ASCENDS data. Regional trace gas inversions are well-suited
for making use of high-density satellite observations to constrain fluxes at fine scales.
Regional transport models are less computationally expensive to run than global trans-
port models for a given resolution, so it is more tractable to run a regional model at
high resolution. The more precise determination of source–receptor relationships al-25

lows one to solve for fluxes at a finer resolution. This reduces potential “aggregation
error” resulting from assuming fixed fine-scale flux patterns when optimizing scaling
factors on a coarser scale (Kaminski et al., 2001; Engelen et al., 2002; Gerbig et al.,
2003).
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We use a novel approach for our inversions that facilitates high-resolution evalua-
tion of satellite column measurements. The approach relies on a Lagrangian (airmass-
following) transport model, run backward in time from the observation points (recep-
tors) using ensembles of particles, to generate footprints describing the sensitivity of
satellite CO2 measurements to surface fluxes in upwind regions. This approach en-5

ables more precise simulation of transport in the near field than running source pulses
through an Eulerian (with fixed frame of reference) transport model, since, in the former,
meteorological fields are interpolated to the subgrid-scale locations of particles. Thus,
filamentation processes, for example, can be resolved (Lin et al., 2003), and represen-
tation errors (Pillai et al., 2010) are minimized. The Lagrangian approach, implemented10

in the backward (receptor-oriented) mode, offers a natural way of calculating the ad-
joint of the atmospheric transport model. The utility of Lagrangian particle dispersion
models is well established for regional trace gas flux inversions involving in situ obser-
vations (e.g. Gerbig et al., 2003; Lin et al., 2004; Kort et al., 2008, 2010; Zhao et al.,
2009; Schuh et al., 2010; Göckede et al., 2010a; Gourdji et al., 2012; Miller et al., 2012,15

2013; McKain et al., 2012; Lauvaux et al., 2012). A convenient feature of Lagrangian
footprints is their portability – they can be shared with other groups and readily applied
to different flux models, inversion approaches, and molecular species, thus enabling
comparisons based on a common modeling component. In addition, footprints for dif-
ferent measurement platforms can be merged easily in an inversion.20

In this observing system simulation experiment (OSSE), we utilize the Stochastic
Time-Inverted Lagrangian Transport (STILT) particle dispersion model (Lin et al., 2003)
driven by meteorological fields from the Weather Research and Forecasting (WRF)
model (Skamarock and Klemp, 2008) in a domain encompassing North America, in
a Bayesian inversion. The WRF-STILT (Nehrkorn et al., 2010) footprints are used to25

compute weekly flux uncertainties over a 1◦ latitude×1◦ longitude grid. This study fo-
cuses on land-based biospheric fluxes. We report results based on realistic sampling
and observation errors for ASCENDS and other input data fields for year 2007. Sec-
tion 2 provides details on our inputs and inversion methods, and presents examples of
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observation uncertainties, a priori flux uncertainties, and WRF-STILT footprint maps.
Section 3 presents posterior flux uncertainty results at various spatial and temporal
scales, as well as comparisons with other studies, including preliminary results from
a companion global ASCENDS OSSE. Section 4 discusses target and threshold re-
quirements for instrument design parameters with respect to addressing key scien-5

tific questions. It also discusses additional sources of uncertainty and limitations of
our analysis, as well as other considerations regarding ASCENDS. Section 5 contains
concluding remarks.

2 Methods

2.1 Inversion approach10

We use a Bayesian synthesis inversion method, which optimizes the agreement be-
tween model and observed CO2 concentrations and a priori and a posteriori flux es-
timates in a least-squares manner (e.g. Enting et al., 1995). Since we focus on un-
certainty levels in estimating the constraint on fluxes that ASCENDS observations will
provide, we did not perform a full inversion and computed only the a posteriori flux error15

covariance associated with the inversion solution. The a posteriori flux error covariance
matrix is given by

Ŝ =
(

KTS−1
ε K+S−1

a

)−1
, (1)

where

K is the Jacobian matrix relating fluxes to concentrations20

(Kx = c, where x is the vector of fluxes and c denotes concentrations)

Sε is the observation error covariance matrix

Sa is the a priori flux error covariance matrix.
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We directly solve for Ŝ, the square roots of the diagonal elements of which provide
the estimates of the a posteriori flux uncertainties.

We solve for flux uncertainties in each land cell on a 1◦×1◦ grid across North America
(from 10◦ N to 70◦ N and from 170◦ W to 50◦ W). The time span is 5 weeks in each
of the 4 seasons in 2007 (the first 4 weeks of January, April, July, and October plus5

the week preceding each of those months). We focus on weekly flux resolution in this
study, rather than daily or higher resolution, for computational efficiency. In addition, the
Decadal Survey called for a satellite mission that can constrain carbon cycle fluxes at
weekly resolution on 1◦ grids (NRC, 2007). The ASCENDS observations would likely
also provide significant constraints on fluxes at higher resolutions such as daily, as10

suggested by test inversions not reported here.
We solve Eq. (1) using the standard matrix inversion function in the Interactive Data

Language (IDL) software package. We verified the solution using the alternative singu-
lar value decomposition approach (Rayner et al., 1999), again in IDL. Given the large
dimensions of the matrices- more than 15 000 10 s average observations each month15

and 13 205 weekly flux elements over each 5 week period, the procedure requires large
amounts of computer memory but a modest amount of processing time-several hours
per monthly inversion on the NASA Center for Climate Simulation high-performance
computing system.

2.2 Observational sampling and simulated measurement uncertainties20

We consider candidate lidar wavelengths near 1.57 µm and 2.05 µm (Caron and Du-
rand, 2009). These have peak sensitivities in the mid- and lower troposphere, respec-
tively (Fig. 1). Other candidate wavelengths with different vertical sensitivities and error
characteristics are possible and could be assessed with the same inversion method-
ology. We derive the temporal/spatial sampling and random error characteristics for25

ASCENDS pseudo-data based on real cloud/aerosol and surface backscatter condi-
tions for year 2007 in a method similar to that of Kawa et al. (2010). Observation
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locations are taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation (CALIPSO) satellite orbit tracks. We use only locations that fall within the
domain used in the WRF runs (Sect. 2.4), excluding those within 400 km of the bound-
aries to provide adequate WRF coverage to simulate back trajectory calculations in-
side the domain (Fig. 2). The error calculations use CALIPSO optical depth (OD) data,5

together with surface backscatter calculated from Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite reflectance over land or glint backscatter, calculated
using 10 m analyzed wind speeds (Hu et al., 2008) interpolated to the sample loca-
tions, over ocean. Samples with total column cloud plus aerosol OD> 0.7 are rejected.
For each wavelength case, the measurement errors at each location are scaled to10

two possible performance levels: 0.5 ppm and 1.0 ppm error under clear-sky conditions
(cloud/aerosol OD= 0) with reflectivity equal to that found at Railroad Valley (RRV),
Nevada. The errors for each 5 km (0.74 s) individual CALIPSO observation point are
aggregated over 10 s intervals to increase signal-to-noise for the pseudo-data, using

the formula σ(10s) =

√
N∑
i=1

σ(5km)2
i

N2 , where N is the number of valid 5 km observations15

across the 10 s span. Such a 10 s, conditionally-sampled measurement is expected
to represent the basic ASCENDS CO2 data granule. The uncertainties in the series of
10 s pseudo-data are assumed to be uncorrelated, i.e. the observation error covariance
matrix Sε is diagonal.

Examples of the coverage of ASCENDS observations available for analysis and their20

associated uncertainties (for a reference uncertainty at RRV of 0.5 ppm) are shown in
Fig. 2 over seven-day periods in January and July for the two candidate wavelengths.
ASCENDS provides dense coverage over the domain with few large gaps, especially
in July. A large majority of the 10 s-average observations have uncertainties of < 2 ppm
in all four cases except for 2.05 µm in January. The uncertainties are especially small25

over land areas, which is helpful for constraining terrestrial fluxes. The uncertainties
are generally larger for 2.05 µm than for 1.57 µm (by a factor of 1–1.6 over snow-free
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land and a factor of 1.6–1.8 over snow-/ice-covered areas) except in ice-free oceanic
areas, where the uncertainties are similar (Fig. 2e and f).

2.3 A priori flux uncertainties

We derived a priori flux uncertainties at 1◦ ×1◦ resolution from the variability of net
ecosystem exchange (NEE) in the Carnegie–Ames–Stanford–Approach (CASA) bio-5

geochemical model coupled to version 3 of the Global Fire Emissions Database
(GFED3) (Randerson et al., 1996; van der Werf et al., 2006, 2010). In the version
of CASA used here, a sink of ∼ 100 Tg C yr−1 is induced by crop harvest in the US
Midwest that is prescribed based on National Agriculture Statistics Service data on
crop area and harvest. We neglected uncertainties in fossil fuel emissions, assuming10

like most previous inversion studies that those emissions are relatively well known. We
ignored oceanic fluxes as well for this study, since their uncertainties are also relatively
small (e.g. Baker et al., 2010).

The a priori flux uncertainties were specifically derived from the standard deviations
of daily mean CASA-GFED NEE over each month in 2007, divided by

√
7 to scale15

approximately to weekly uncertainties. This approach assumes that the more variable
the model fluxes are in a particular grid cell and month, the larger the errors tend to be;
the same reasoning has been applied in previous inversion studies to the estimation
of model-data mismatch errors (e.g. Wang et al., 2008). We enlarged the resulting
uncertainties uniformly by a factor of 4 to approximate the magnitude of those used20

in the global ASCENDS OSSE described in this paper; these are, in turn, essentially
the same as the standard ones of Baker et al. (2010), based on differences between
two sets of bottom-up flux estimates. In addition to allowing for better comparison of
the two OSSEs, the enlargement by a factor of 4 is consistent with suggestions by
biospheric model intercomparisons that the true flux uncertainty is greater than that25

based on a single model’s variability (Huntzinger et al., 2012).
Off-diagonal elements of the a priori flux error covariance matrix are filled using spa-

tial and temporal error correlations derived from an isotropic exponential decay model
12827
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with month-specific correlation lengths (Table 1) estimated from ground-based and air-
craft CO2 data in a North America regional inversion by Gourdji et al. (2012). Although
these correlation lengths are not strictly applicable to our study, which has a different
setup from that in the geostatistical inverse modeling system of Gourdji et al., they
are nonetheless reasonable estimates in general for the purposes of this study. Note5

that Gourdji et al. used a 3 hourly flux resolution, so the temporal correlation lengths
may be too short for the coarser weekly resolution of our study. Chevallier et al. (2012)
show that aggregation of fluxes to coarser scales increases the error correlation length.
The analysis by Chevallier et al. (2012) using global flux tower data found a weekly-
scale temporal error correlation length of 36 days, longer than the values we use. They10

found a spatial correlation length of less than 100 km at the site scale (∼ 1 km), increas-
ing to 500 km at a 300 km-grid scale; our correlation lengths (100 km-grid) mostly fall
within that range. In a test, we used alternative values for the spatiotemporal correlation
lengths derived from the Chevallier et al. study, and found that the inversion results are
moderately sensitive (Sect. 3.1).15

Our CASA-GFED-based a priori flux uncertainties, scaled to approximate the values
used by Baker et al. (2010), are shown in Fig. 3. The largest uncertainties occur gen-
erally where the absolute value of NEE is highest, e.g., in the “Corn Belt” of the US
in summer. The spatial and seasonal variations exhibit similarities to those of Baker
et al. (2010).20

2.4 WRF-STILT Model, Footprints, and Jacobians

The STILT Lagrangian model, driven by WRF meteorological fields, has features, in-
cluding a realistic treatment of convective fluxes and mass conservation properties,
that are important for accurate top-down estimates of GHG fluxes that rely on small
gradients in the measured concentrations (Nehrkorn et al., 2010). In the present ap-25

plication of STILT (www.stilt-model.org, revision 640), hourly output from WRF version
2.2 is used to provide the transport fields at a horizontal resolution of 40 km with 31
eta levels in the vertical, over a North American domain (Fig. 2a). Meteorological fields
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from the North American Regional Reanalysis (NARR) at 32 km resolution are used to
provide initial and boundary conditions for the WRF runs. To prevent drift of the WRF
simulations from the analyses, the meteorological fields (horizontal winds, tempera-
ture, and water vapor at all levels) are nudged to the NARR analysis every 3 h with
a 1 h relaxation time and are reinitialized every 24 h (at 00:00 UTC). Simulations are5

run out for 30 h, but only hours 7–30 from each simulation are used to avoid spin-up
effects during the first 6 h. The WRF physics options used here are the same as those
described by Nehrkorn et al. (2010).

A footprint quantitatively describes how much surface fluxes originating in upwind
regions contribute to the total mixing ratio at a particular measurement location; it has10

units of mixing ratio per unit flux. This is to be distinguished from a satellite footprint,
the area of earth reflecting the lidar signal. In the current application, footprints are
computed for each 5 km simulated observation that passes the cloud/aerosol filter in
January, April, July, and October 2007 at 3 h intervals back to 10 days prior to the
observation time. Separate footprint maps have been computed for 15 receptor posi-15

tions a.g.l. for the purpose of vertically convolving with the lidar weighting functions
and producing one weighted-average footprint per measurement. (The receptors are
spaced 1 km apart in the vertical from 0.5 to 14.5 km a.g.l.) This procedure results in
∼ 90000 footprint calculations per day, placing stringent demands on our computational
approach. In this study, STILT simulates the release of an ensemble of 500 particles at20

each receptor in the column.
It is important to note that although a footprint is defined for each of the 15 vertical

levels, the footprint expresses the sensitivity of the mixing ratio measured at the re-
ceptor point located at that vertical level to the surface fluxes upwind, not the fluxes
upwind at the same level. So intuitively, the footprints defined for receptor points lo-25

cated at high altitudes (e.g. 12.5, 13.5, 14.5 km) are often zero, indicating that a re-
ceptor at that upper level is not influenced by surface fluxes inside the domain (within
the 10 day span examined here). Conversely, receptor points located at the lowest
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levels (e.g. 0.5, 1.5, 2.5 km) tend to have large footprints (with values of the order of
10−3 ppm (µmol m−2 s−1)−1 or higher), being most influenced by nearby surface fluxes.

Figure 4 shows the vertically-weighted footprints of a selected column measurement
location (in southern Canada) over 10 days for the 1.57 and 2.05 µm wavelengths. Non-
zero footprints occur wherever air observed at the receptor site has been in contact with5

the surface within the past 10 days. Patterns of vertical and horizontal atmospheric mo-
tion explain the somewhat unexpected spatial patterns of the footprints in this particular
example, with very high values occurring at a significant distance upwind of the recep-
tor (in the vicinity of Texas and Oklahoma) as well as immediately upwind. Vertical
mixing lifts the signature of surface fluxes to higher levels, so that it can be detected by10

receptors at multiple levels, resulting in a higher value for the vertically-convolved foot-
print, while slower winds in a particular area, such as Texas and Oklahoma, can result
in a larger time-integrated impact of fluxes on the observation. The footprint values are
larger for 2.05 µm due to the higher sensitivity of that measurement near the surface,
as previously discussed.15

To construct the Jacobians, K, that enter Eq. (1), we averaged the footprints of all
the 5 km receptor locations within a given 10 s interval, including only the land cells.
We arranged the averaged footprints in a two-dimensional Jacobian, running across
flux time intervals and grid cells in one direction and across observations in the other.
(The 3 h flux intervals associated with each transport run are defined relative to fixed20

UTC times and not relative to the observation times.) We then aggregated the Jacobian
elements to the final flux resolution, e.g., weekly. For any particular month, we solved
only for fluxes occurring in the week prior to the beginning of the month and in the first
4 weeks of that month.

Figure 5 shows the overall influence of the surface fluxes on the observations during25

each month (i.e. the average weekly Jacobian values for the 1.57 µm weighting func-
tion). Values tend to decrease from west to east, reflecting the general westerly wind
direction, which transports CO2 influences out of the domain more quickly for fluxes
occurring closer to the eastern edge than for those farther west. Values also tend to
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decrease towards the north and northwest and in the southernmost part of the con-
tinent: these areas lie close to the edges of the domain shown in Fig. 2a. Areas with
smaller average footprint values are generally not as well constrained by the observa-
tions, as will be discussed later in this paper; thus, our domain boundaries artificially
limit flux constraints in certain parts of the continent. Previous regional inversion stud-5

ies may not have highlighted this issue because they used ground-based observations,
whose sensitivities are more confined to near-field fluxes than those of satellite column
measurements. We will quantify the impact of the boundaries on average footprint gra-
dients in future work, providing guidance for future studies on optimal sizes and shapes
of domains (e.g. shifted eastward) for avoiding large gradients while controlling com-10

putational cost.
Footprint values are largest in summer, again due to horizontal and vertical mo-

tions – winds during this season are relatively light and allow the fluxes to stay inside
the domain for a long time, maximizing their integrated influence on observations in
the domain, and vertical mixing across the deep boundary layer brings particles over15

a large portion of the column into contact with the surface.
Although WRF-STILT provides the capability to generate and optimize boundary con-

dition influences on observed concentrations, this was not available at the time of this
study and, consequently, we neglect uncertainties in the influence of boundary condi-
tions in this analysis (discussed further in Sect. 4.2). Similarly, we neglect uncertainties20

due to the influence of North American fluxes occurring more than 10 days before
a particular observation. Note that fluxes are often transported out of the domain within
10 days, so that these fluxes can only influence the observations via the boundary
conditions.

3 Results25

In the following, we present results for four cases involving different combinations of
measurement wavelength and baseline error level: 1.57 µm and 0.5 ppm RRV error
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(Case 1), 1.57 µm and 1.0 ppm (Case 2), 2.05 µm and 0.5 ppm (Case 3), and 2.05 µm
and 1.0 ppm (Case 4).

3.1 A posteriori flux uncertainties at the grid level

A posteriori uncertainties (Fig. 6) are smaller than the a priori values (Fig. 3), an ex-
pected result of the incorporation of observational information. The reduction in uncer-5

tainty is often larger in areas that have higher a priori uncertainties, as can be seen
more clearly in the maps of percentage reduction in uncertainty in Fig. 7. Uncertainty
reductions are relatively large year-round in southern Mexico, adjacent parts of Central
America, and the Pacific Northwest of the US; in April and October in the southeastern
US; and in July in the US Midwest, southern Quebec, areas with forest fire emissions10

in central Canada (appearing as hot spots of uncertainty reduction), and Alaska and
western Canada. A priori uncertainties are relatively high in these areas. The depen-
dence of uncertainty reductions on the assumed priors can be understood thus: where
a priori uncertainties are already small, observations are not able to provide a much
tighter constraint, while in areas where a priori uncertainties are large, there is more15

room for observations to tighten the constraint.
The uncertainty reductions are not dependent simply on the prior uncertainties

though. For example, the highest uncertainty reductions, up to 50 %, occur in south-
ern Mexico in October, where a priori uncertainties are not especially large. The high
uncertainty reductions here can be explained by the large Jacobian values (Fig. 5)20

combined with the low uncertainties of nearby observations (not shown). (Although
a priori uncertainties and Jacobian values in July in this area are similar to those in Oc-
tober, observation uncertainties are higher, resulting in lower uncertainty reductions.)
In general, uncertainty reductions tend to be higher where average Jacobian values
are larger; observe the similarity of the spatial patterns in the January maps in Figs. 5a25

and 7a, for example. As described in Sect. 2.4, fluxes in western and central areas
of the continent are captured by more observations in the domain than fluxes in the
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east and close to the other edges; thus, the former can be better constrained in this
inversion.

Another feature is that in July, the largest uncertainty reductions occur in northern
Alaska and northwestern Canada, which have much smaller a priori uncertainties than
places such as the Midwest. This is an effect of the smaller grid cells at higher latitudes:5

the a priori errors are correlated over larger numbers of cells at these latitudes given the
spatially uniform correlation lengths we specify, so that the average flux over each cell
is more tightly constrained than that for an otherwise comparable cell at lower latitudes.
This is a less important issue when results are aggregated to the larger scales dealt
with in later sections of this paper.10

Uncertainty reductions are smallest in January, for several reasons: (1) a priori
flux uncertainties are smallest during the dormant season, (2) observation errors are
largest in winter due to the low reflectance of snow and ice cover at the measurement
wavelengths, and (3) there is fast dispersion of fluxes in winter by strong winds, trans-
porting fluxes out of the domain and out of detection by observations in the domain15

and thus reducing the average Jacobian values in January relative to the other months
(Fig. 5). The ratio of the average of the Jacobian elements over the domain for January
to that for July is 0.51 for the 1.57 µm wavelength.

Inversions for the 2.05 µm wavelength, with its higher sensitivity near the surface,
result in greater uncertainty reduction, despite the larger observation errors over land20

(Fig. 8c vs. a, and d vs. b). Inversions assuming 1.0 ppm instead of 0.5 ppm error at
RRV result in less uncertainty reduction (Fig. 8b vs. a, and d vs. c) as expected, with
maximum uncertainty reduction of ∼ 30 % vs. ∼ 40 %, for 1.57 µm. These cases are
compared further in the section below on biome-aggregated results.

The inversion results are sensitive to the assumed a priori error correlation lengths,25

with longer correlation lengths leading to more smooth uncertainty reduction patterns
and larger uncertainty reductions. The reason for this is that longer a priori error correla-
tion lengths result in fewer “unknowns” to be constrained by the observations. Rodgers
(2000) shows that the inclusion of a priori correlations can result in more “degrees of
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freedom for signal”, i.e. more information provided by the measurements on the un-
knowns. We carried out a test with alternative values for the correlation lengths derived
from the study by Chevallier et al. (2012) – a shorter spatial correlation length of 200 km
and a longer temporal correlation length of 35 days, for all months. (We estimated these
values from Fig. 5a and b of Chevallier et al. for the ∼ 100 km and 7 day aggregation of5

our inversion.) The resulting uncertainty reductions are smaller everywhere than those
in our standard inversion at the grid scale, with values of up to 40 % in July and up to
15 % in January for Case 1 (compared to 45 % and 25 %, respectively, in the standard
inversion). Apparently, the decrease in the spatial correlation length relative to the stan-
dard inversion has a larger effect than the increase in the temporal correlation length.10

We conclude that our inversion results vary moderately given two reasonable sets of
estimates for the a priori spatiotemporal error correlation lengths.

3.2 Comparison with global inversion

We compare our regional OSSE results with those from a companion global OSSE
to assess effects of methodological differences. The global OSSE uses the same15

ASCENDS dataset sampling and underlying observation error model as the regional
OSSE. Among the primary differences are the global domain of the analysis and the
coarser spatial resolution of the transport and flux solution, 4.5◦ latitude×6◦ longitude.
Other differences include the mathematical technique of the inversion (variational data
assimilation, as in an earlier study, Baker et al., 2010), the Eulerian transport model,20

the spatial patterns of the a priori flux uncertainties (the overall magnitudes are not dif-
ferent, as described in Sect. 2.3), and the assumption of zero a priori correlation among
fluxes (which can be justified by the coarser spatial scale). Comparison of our inver-
sion results with results from the global study yields insight into the effect of inversion
resolution on estimated flux uncertainties.25

To aggregate our flux uncertainties to 4.5◦ ×6◦ resolution (in units of µmol m−2 s−1)
for comparison with the global inversion, we computed the variance of the average of
the 1◦×1◦ land fluxes within each coarse grid cell, accounting for the error correlations
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between the fine-scale cells and accounting for fractional overlap of some of the 1◦×1◦

cells with a 4.5◦ ×6◦ cell. Aggregating our a priori and a posteriori uncertainties in this
manner, we find that our fractional uncertainty reductions over the 4 months are sub-
stantially smaller overall than those of the global inversion (Fig. 9). The differences in
spatial distribution can be attributed in part to the different a priori uncertainty patterns.5

Reductions greater than 55 % cover large areas of North America in the global inver-
sion, reaching values of over 75 %, whereas only a few 4.5◦ ×6◦ cells exhibit values
greater than 55 % in the regional inversion. Note that we are not comparing exactly
the same quantity, as the variational inversion method does not directly compute a full
a posteriori error covariance matrix; rather, it uses (estimate – truth) statistics as a proxy10

for uncertainty, which is accurate for a sufficiently large sample (Baker et al., 2010). One
possible reason for the difference in results is that information from the observations
is used to optimize the fine-scale patterns in addition to the coarse-scale magnitudes
in our inversion, in contrast to the global inversion in which a flat spatial distribution of
flux is assumed inside each coarse grid box, providing an additional constraint on the15

fluxes. Thus, in our inversion, less information is available to reduce the uncertainties
of the coarse-scale magnitudes, causing our uncertainty reductions to be smaller than
those of the global inversion when compared at the same scale. (Note however that our
imposing of a priori flux error correlations provides an additional constraint on fluxes
and reduces the difference in effective flux resolution between the two studies.) On the20

other hand, the coarser global inversion is affected by larger aggregation errors (Kamin-
ski et al., 2001; Engelen et al., 2002; Gerbig et al., 2003), which are not accounted for
in the uncertainty reduction values. Another factor that likely contributes to the larger
uncertainty reductions in the global inversion is that it allows fluxes to be constrained
by observations both outside and inside a particular region. This can be especially im-25

portant for fluxes close to the regional edges, as was discussed in Sect. 3.1. We do not
attempt to quantify the individual impacts of the two main methodological differences
or the various other differences.
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3.3 Results aggregated to biomes and continent

For assessing large-scale changes in carbon sources and sinks, it is useful to aggre-
gate high-resolution results to biomes and the entire continent, and to seasons and
years. We use the biome definitions in Fig. 10 taken from Olson et al. (2001) with
modifications by Gourdji et al. (2012). We used a similar approach for aggregating our5

results here to the one we used to aggregate results to a coarser grid (Sect. 3.2). In ad-
dition, we aggregated the global inversion results to the same biomes for comparison,
summing the (estimate – truth) values and accounting for fractional biome coverage in
each of the coarse grid cells.

Uncertainty reductions are largest in July and smallest in January, at the continental10

scale (Table 2). The uncertainty reductions for the 1.57 µm wavelength are on average
8 % smaller than those for 2.05 µm. The uncertainty reductions for the 1.57 µm wave-
length with 0.5 ppm error are larger than those for 2.05 µm with 1.0 ppm error. The un-
certainty reductions for 0.5 ppm error are on average 16 % larger than those for 1.0 ppm
error. (Note that there is no reason to expect direct proportionality between measure-15

ment uncertainties and a posteriori flux uncertainties (Eq. 1), nor is there reason to
expect proportionality between uncertainty reduction and a posteriori uncertainty.) The
uncertainty reduction for the inversion with alternative a priori error correlation lengths,
aggregated to the continent and month, is less than that for the standard inversion
for all months except July, for which the uncertainty reduction is marginally larger. For20

July, the impact of the much longer temporal correlation length relative to the stan-
dard inversion on the aggregated result more than offsets that of the slightly shorter
spatial correlation length. The annual uncertainty reduction for the alternative inversion
is slightly larger than that for the standard inversion, because of the disproportionate
influence of July, with its large a priori uncertainty.25

At the annual, biome scale, our uncertainty reductions range from 50 % for the desert
biome (averaged across the cases) to 70 % for the temperate grassland/shrubland
biome (Fig. 11c). The reductions scale with increasing a priori uncertainty (Fig. 11a)
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and observation quality and density, as before, and now also with biome area (Fig. 11d).
We find a modest correlation between uncertainty reduction and area in the set of
biomes here, with a linear correlation coefficient of 0.5. In addition, the uncertainty re-
duction is higher on the continental scale than on the biome scale. The a posteriori
uncertainty increases with increasing area more slowly than does the a priori uncer-5

tainty since many of the a posteriori error covariance terms that are summed in the
aggregation to biome are negative, whereas all of the a priori error covariance terms
are positive or zero. This explains why uncertainty reduction tends to increase with
increasing area.

Our a posteriori uncertainties range from 0.12 to 0.33 Pg C yr−1 at the monthly, con-10

tinental scale across all four cases (Table 2), from 0.04 to 0.08 Pg C yr−1 at the annual,
continental scale (Fig. 11a), and from 0.01 to 0.06 Pg C yr−1 at the annual, biome scale
(Fig. 11a). To put these numbers into perspective, the estimated current global terres-
trial sink is roughly 2.5 Pg C yr−1 (Le Quéré et al., 2012). Our uncertainties are gener-
ally similar to those from the North American regional inversion of Gourdji et al. (2012)15

(Fig. 11a) and the global inversion (Fig. 11b), a notable exception being the overall
continental result of Gourdji et al. Gourdji et al. used a set of ground-based and aircraft
measurements and a geostatistical inverse model to solve for biospheric fluxes and
their uncertainties at a 1◦ ×1◦, 3 hourly resolution in 2004. Our a posteriori uncertainty
for N. America is small compared to Gourdji et al., likely because of the greater spatial20

coverage of ASCENDS as compared to the in situ network; some of the biomes are
not well constrained by the in situ network (i.e. the ones for which Gourdji et al. did not
report aggregated results). Note that the comparison is not a precise one, given the
methodological differences. The global inversion’s method for estimating uncertainties
based on (estimate – truth) statistics cannot provide an annual uncertainty estimate25

for the one-year inversion and produces somewhat noisy results for individual months.
Therefore, to compare the regional and global inversions, we took the RMS of the four
monthly uncertainties. Our uncertainty reduction is smaller than that of the global in-
version across all biomes for Case 1 (Fig. 11c), despite the prior uncertainties being
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of similar magnitude on average (Fig. 11b). However, the continent-level uncertainty
reductions are similar, at 78 % and 83 %, respectively, suggesting that there are larger
negative correlations in the posterior errors among biomes in our analysis.

4 Discussion

4.1 Target and threshold requirements5

We now discuss the implications of our analysis for the ASCENDS design. Hunger-
shoefer et al. (2010) suggested levels of posterior flux uncertainty on different spa-
tiotemporal scales that global CO2 measurement missions should strive for to allow for
answering key carbon cycle science questions. In the following, we evaluate our re-
sults relative to those requirements, the only such specific guidelines for CO2 satellite10

missions in the scientific literature.
Hungershoefer et al. suggested that to determine where the global terrestrial C sink

is occurring and whether C cycle feedbacks are occurring requires annual net carbon
flux estimates with a precision better than 0.1 Pg C yr−1 (threshold) or 0.02 Pg C yr−1

(target) at a scale of 2000km×2000km, similar to the biomes we consider. These pre-15

cision levels are based on the range of estimated fluxes across various biomes. The
proposed A-SCOPE active CO2 measurement mission defined a similar target require-
ment – 0.02 Pg C yr−1 at a scale of 1000km×1000 km (Ingmann et al., 2008). According
to our results (Fig. 11a), all tested ASCENDS cases would meet the minimum threshold
requirement across all biomes easily, with a posteriori uncertainties ranging from 0.0120

to 0.06 Pg C yr−1. In addition, the two cases with 0.5 ppm error would meet the more
stringent target requirement for a majority of biomes, while the two cases with 1.0 ppm
error would meet it for 3 out of 7 biomes. The meeting of the target requirement is
a consequence of the information provided by the observations and not merely an ef-
fect of the specified a priori uncertainty, given that the a priori uncertainty is higher than25

12838

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/12819/2014/acpd-14-12819-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/12819/2014/acpd-14-12819-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 12819–12862, 2014

A regional CO2

observing system
simulation
experiment

J. S. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the target level for all of the biomes with the exception of desert, the prior uncertainty
for which is already at the target level.

4.2 Boundary condition uncertainties

A simplifying assumption in this analysis is the neglect of uncertainties in the bound-
ary conditions (b.c.). It is especially important in a regional inversion (Eulerian or La-5

grangian) to accurately account for the influence of lateral boundary inflow on con-
centrations within the domain (Göckede et al., 2010b; Lauvaux et al., 2012; Gourdji
et al., 2012). Because we neglect b.c. uncertainties, we essentially assume that all
of the information in the ASCENDS observations can be applied to reducing regional
flux uncertainties rather than the combination of b.c. and flux uncertainties. Thus, the10

amount of flux uncertainty reduction reported here is likely higher than it would be if we
accounted for b.c. uncertainties.

The magnitude of b.c. errors can be substantial. In addition to containing random
errors, b.c. can also be a source of systematic errors. For example, Gourdji et al. (2012)
found that two plausible sets of b.c. around North America generated inferred fluxes15

that differed by 0.7–0.9 Pg C yr−1 on the annual, continental scale (which is a very large
amount compared to the annual a posteriori uncertainties for North America of 0.04–
0.08 Pg C yr−1 that we estimated in our OSSE, Fig. 11a). They concluded that b.c.
errors may be the primary control on flux errors at this coarse scale, while other factors
such as flux resolution, priors, and model transport are more important at sub-domain20

scales.
Sparseness of observations has been a major cause of uncertainty in the bound-

ary influence in previous regional inversions. Lauvaux et al. (2012), who conducted
mesoscale inversions for the US Midwest using tower measurements, found b.c. er-
rors to be a significant source of uncertainty in the C budget over 7 months. They25

estimated that a potential bias of 0.55 ppm in their b.c. translates into a flux error of
24 Tg C over 7 months in their 1000km×1000km domain. Although they applied cor-
rections to the model-derived b.c. using weekly aircraft profiles at four locations near
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their domain boundaries, they stated that the b.c. uncertainties were still large given
the limited duration (a few hours per week) and spatial extent of the airborne obser-
vations, and concluded that additional observations would be necessary to reduce the
uncertainties. ASCENDS is promising in this respect, as it (along with other satellites)
will provide more frequent and widespread observations of concentrations at regional5

boundaries, possibly lowering the role of b.c. in the overall C budget uncertainty to
a minor one. ASCENDS observations could specifically be used in a global CO2 data
assimilation system to provide accurate b.c. for the regional flux inversion.

4.3 Other sources of error

This analysis did not evaluate the impact of potential systematic errors (biases) in10

the observations or the transport model, which are not well represented by the Gaus-
sian errors assumed in traditional linear error analysis (Baker et al., 2010). Chevallier
et al. (2007) demonstrated that potential biases in OCO satellite CO2 measurements
related to the presence of aerosols can completely negate the improvements to prior
uncertainties provided by the measurements for the most polluted land regions and for15

ocean regions. In another OCO OSSE, Baker et al. (2010) found that a combination
of systematic errors from aerosols, model transport, and incorrectly-assumed statistics
could degrade both the magnitude and spatial extent of uncertainty improvements by
about a factor of two over land, and even more over the ocean. Thus, it will be impor-
tant to control systematic errors in ASCENDS observations and the transport model20

as well as minimizing random errors. Note that systematic observation errors can be
expected to decrease over the course of the mission as adjustments are made to the
measurement system and to the retrieval algorithms in calibration/validation activities.

4.4 Other considerations in evaluating ASCENDS

The potential combined use of multiple wavelengths in the ASCENDS measurements,25

e.g., various offsets from 1.57 µm, could provide additional information on surface
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fluxes given the sensitivities to concentrations at different levels of the atmosphere.
Furthermore, other CO2 datasets will certainly be available alongside the ASCENDS
data (e.g. from in situ networks), and the combination of datasets will provide stronger
constraints on fluxes than any individual dataset (Hungershoefer et al., 2010).

Our comparison of the results for the 1.57 and 2.05 µm wavelengths over North5

America may be less applicable to other parts of the world. The global OSSE study
by Hungershoefer et al. (2010), which compared various observing systems, including
a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wave-
length results in larger uncertainty reductions over South America while performing
less well than 2.0 µm over temperate and cold regions. They attribute the better perfor-10

mance of 1.6 µm over South America to the strong vertical mixing of air there, which
lessens the disadvantage of that wavelength’s having weaker sensitivity to the lower
troposphere. (However, they used a simpler error formulation.) On the other hand,
in our global inversion, 2.05 µm results in larger uncertainty reductions than 1.57 µm
throughout the world, by 8 % on average (for RRV error of 0.5–1.0 ppm).15

5 Conclusions

We have conducted an observing system simulation for North America, using projected
ASCENDS observation uncertainty estimates and a novel approach utilizing a portable
footprint library generated from a high-resolution Lagrangian transport model, to quan-
tify the surface CO2 flux constraints provided by the future observations. We consider20

four possible configurations for the active optical remote sensing instrument covering
two weighting functions and two random error levels. We find that the ASCENDS ob-
servations potentially reduce flux uncertainties substantially at fine and biome scales.
At the 1◦ ×1◦ grid scale, weekly uncertainty reductions up to 30–45 % (averaged over
the year) are achieved depending on the presumed instrument configuration. Rela-25

tively large uncertainty reductions occur year-round in southern Mexico and the US
Pacific Northwest and seasonally in the southeastern and mid-western US and parts
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of Canada and Alaska, when and where there is good coverage by observations with
low uncertainties and a priori uncertainties are large. Uncertainty reductions at the an-
nual, biome scale range from ∼ 40 % to ∼ 75 % across the four experimental cases,
and from ∼ 65 % to ∼ 85 % for the continent as a whole. The uncertainty reductions for
the 1.57 µm candidate wavelength are on average 10 % smaller than those for 2.05 µm5

across the biomes, and for 0.5 ppm RRV reference error are on average ∼ 25 % larger
than those for 1.0 ppm error.

Our uncertainty reductions are substantially smaller than those of a global AS-
CENDS inversion at the 4.5◦ ×6◦ scale of the latter’s model grid and at the biome
scale. The global inversion benefits from the use of observations located around the10

world rather than in a limited region, and it has fewer unknowns to be solved for within
North America. On the other hand, inversions at higher resolution enable investigation
of biospheric and other processes at the finer scales that are needed to understand the
mechanisms for inferred CO2 flux variability and trends. In addition, by reducing aggre-
gation error, higher-resolution inversions can produce flux estimates with less system-15

atic error than those of lower-resolution inversions when aggregated to the same scale.
Based on the flux precision on an annual, biome scale suggested by Hungershoe-

fer et al. (2010) for understanding the global carbon sink and feedbacks, ASCENDS
observations would meet a threshold requirement for all biomes within the range of
measurement designs considered here. The observations constrain a posteriori uncer-20

tainties to a level of 0.01–0.06 Pg C yr−1, and could thus help pin down the location and
magnitude of long-term C sinks. With regards to the more stringent target requirement,
a subset of the instrument designs would meet the target for a majority of biomes.

The results we have presented may be optimistic, as uncertainties in boundary con-
ditions and potential systematic errors in the observations and transport model that we25

have neglected would degrade the flux estimates. On the other hand, modifications to
the size and location of our regional domain, e.g. an eastward shift, could improve the
constraints by satellite observations on North American fluxes.
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In future work, inversions in various regions (including, for example, South America)
with a more comprehensive treatment of error sources could more definitively estab-
lish the usefulness of ASCENDS observations for constraining fluxes at fine and large
scales and answering global carbon cycle science questions.
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Table 1. Spatiotemporal correlation parameters used.

Month Spatial correlation Temporal correlation
e-folding length (km) e-folding length (days)

Jan 481 17.2
Apr 419 7.2
Jul 284 6.9
Oct 638 1.6
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Table 2. Flux uncertainties aggregated to entire continent and month or year (Pg C yr−1).

Jan Apr Jul Oct Annual

Standard inversion

A priori 0.42 0.78 1.26 0.82 0.24
A posteriori (uncertainty reduction)
Case 1 0.24 (43 %) 0.17 (78 %) 0.15 (88 %) 0.2 (76 %) 0.05 (78 %)
Case 2 0.33 (21 %) 0.28 (65 %) 0.26 (80 %) 0.31 (61 %) 0.08 (66 %)
Case 3 0.18 (57 %) 0.13 (83 %) 0.12 (91 %) 0.15 (81 %) 0.04 (83 %)
Case 4 0.28 (35 %) 0.22 (72 %) 0.2 (84 %) 0.25 (69 %) 0.07 (73 %)

Inversion with alternative correl. lengths (200 km, 35 days)

A priori 0.23 0.59 1.27 0.59 0.21
A posteriori (uncertainty reduction)
Case 1 0.17 (25 %) 0.15 (74 %) 0.14 (89 %) 0.16 (73 %) 0.04 (80 %)
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but a modest amount of processing time--several hours per monthly inversion on the NASA 164 

Center for Climate Simulation high-performance computing system.  165 

 166 

 167 

Figure 1.  Vertical weighting functions (10
-6

 ppmv
-1

 hPa
-1

) for two candidate ASCENDS 168 

wavelengths.  These relate differential optical depth lidar measurements (on-line minus off-line) 169 

to column-average CO2 mixing ratios.  The precise on-line wavelengths used here are 1.571121 170 

µm, which is 10 picometers (pm) offset from line center, and 2.051034 µm. 171 

 172 

2.2.  Observational Sampling and Simulated Measurement Uncertainties 173 

 We consider candidate lidar wavelengths near 1.57 µm and 2.05 µm [Caron and Durand, 174 

2009].  These have peak sensitivities in the mid- and lower troposphere, respectively (Figure 1).  175 

Other candidate wavelengths with different vertical sensitivities and error characteristics are 176 

possible and could be assessed with the same inversion methodology.  We derive the 177 

temporal/spatial sampling and random error characteristics for ASCENDS pseudo-data based on 178 

real cloud/aerosol and surface backscatter conditions for year 2007 in a method similar to that of 179 

Kawa et al. [2010].  Observation locations are taken from Cloud-Aerosol Lidar and Infrared 180 

Figure 1. Vertical weighting functions (10−6 ppmv−1 h Pa−1) for two candidate ASCENDS
wavelengths. These relate differential optical depth lidar measurements (on-line minus off-
line) to column-average CO2 mixing ratios. The precise on-line wavelengths used here are
1.571121 µm, which is 10 picometers (pm) offset from line center, and 2.051034 µm.
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 198 

Figure 2.  Examples of measurement locations (individual 10-s averages) and 10-s uncertainties 199 

(1σ) for the 0.5 ppm RRV random error case, across 7 day spans for a) the 1.57 µm wavelength 200 

in January and b) in July; and for c) the 2.05 µm wavelength in January and d) in July.  201 

Locations with OD > 0.7 are rejected.  e) Ratio of uncertainty for 2.05 µm to 1.57 µm in January 202 

and f) in July.  The WRF domain for the runs utilized in this study is indicated by the bold, black 203 

lines in a). 204 

 205 

 Examples of the coverage of ASCENDS observations available for analysis and their 206 

associated uncertainties (for a reference uncertainty at RRV of 0.5 ppm) are shown in Figure 2 207 

Figure 2. Examples of measurement locations (individual 10 s averages) and 10 s uncertainties
(1σ) for the 0.5 ppm RRV random error case, across 7 day spans for (a) the 1.57 µm wavelength
in January and (b) in July; and for (c) the 2.05 µm wavelength in January and (d) in July.
Locations with OD> 0.7 are rejected. (e) Ratio of uncertainty for 2.05 µm to 1.57 µm in January
and (f) in July. The WRF domain for the runs utilized in this study is indicated by the bold, black
lines in (a).
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 264 

Figure 3.  A priori weekly flux uncertainty for a) January, b) April, c) July, and d) October.  265 

Average fractional flux uncertainties over the domain are given in each panel.  1 µmol m
-2

 s
-1

 = 266 

1.037 g C m
-2

 d
-1

 = 4.4 × 10
-8

 kg CO2 m
-2

 s
-1

. 267 

 268 

2.4.  WRF-STILT Model, Footprints, and Jacobians 269 

 The STILT Lagrangian model, driven by WRF meteorological fields, has features, 270 

including a realistic treatment of convective fluxes and mass conservation properties, that are 271 

important for accurate top-down estimates of GHG fluxes that rely on small gradients in the 272 

measured concentrations [Nehrkorn et al., 2010].  In the present application of STILT 273 

(www.stilt-model.org, revision 640), hourly output from WRF version 2.2 is used to provide the 274 

transport fields at a horizontal resolution of 40 km with 31 eta levels in the vertical, over a North 275 

American domain (Figure 2a). Meteorological fields from the North American Regional 276 

Reanalysis (NARR) at 32-km resolution are used to provide initial and boundary conditions for 277 

Figure 3. A priori weekly flux uncertainty for (a) January, (b) April, (c) July, and (d) October.
Average fractional flux uncertainties over the domain are given in each panel. 1µmol m−2 s−1 =
1.037g C m−2 d−1 = 4.4×10−8 kgCO2 m−2 s−1.
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 318 

Figure 4.  Footprint maps for one simulated ASCENDS measurement location (marked by black 319 

star) on January 1, 2007 at 18 UTC, integrated over 10 days and convolved over the 500-14500 320 

m AGL range with two candidate ASCENDS weighting functions: for the CO2 laser lines at 2.05 321 

µm (top) and 1.57 µm (bottom). Units are ppm/(μmol/m
2
/s). Note that the native temporal 322 

resolution of the footprints is 3 hours; the 10-day integral in this figure is for illustrative purposes 323 

only.  Only footprints over land are used in the analysis.   324 

 325 

 To construct the Jacobians, K, that enter Eq. (1), we averaged the footprints of all the 5-326 

km receptor locations within a given 10-s interval, including only the land cells.  We arranged 327 

Figure 4. Footprint maps for one simulated ASCENDS measurement location (marked by black
star) on 1 January 2007 at 18:00 UTC, integrated over 10 days and convolved over the 500–
14 500 m a.g.l. range with two candidate ASCENDS weighting functions: for the CO2 laser lines
at 2.05 µm (top) and 1.57 µm (bottom). Units are ppm (µmol m−2 s−1)−1. Note that the native
temporal resolution of the footprints is 3 h; the 10 day integral in this figure is for illustrative
purposes only. Only footprints over land are used in the analysis.
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long time, maximizing their integrated influence on observations in the domain, and vertical 351 

mixing across the deep boundary layer brings particles over a large portion of the column into 352 

contact with the surface. 353 

 354 

 355 

Figure 5.  Jacobian values averaged over all observations and weekly flux intervals for a) 356 

January, b) April, c) July, and d) October, for the 1.57 µm weighting function. 357 

 358 

 Although WRF-STILT provides the capability to generate and optimize boundary 359 

condition influences on observed concentrations, this was not available at the time of this study 360 

and, consequently, we neglect uncertainties in the influence of boundary conditions in this 361 

analysis (discussed further in Section 4.1).  Similarly, we neglect uncertainties due to the 362 

influence of North American fluxes occurring more than 10 days before a particular observation.  363 

Figure 5. Jacobian values averaged over all observations and weekly flux intervals for (a)
January, (b) April, (c) July, and (d) October, for the 1.57 µm weighting function.
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January relative to the other months (Figure 5).  The ratio of the average of the Jacobian 410 

elements over the domain for January to that for July is 0.51 for the 1.57 µm wavelength.   411 

 412 

 413 

Figure 6.  A posteriori weekly flux uncertainty over a) January, b) April, c) July, and d) October, 414 

for Case 1 (1.57 µm and 0.5 ppm RRV error).  Shown here are RMS values from the first 4 415 

weeks of each month.  1 µmol m
-2

 s
-1

 = 1.037 g C m
-2

 d
-1

 = 4.4 × 10
-8

 kg CO2 m
-2

 s
-1

. 416 

 417 

Figure 6. A posteriori weekly flux uncertainty over (a) January, (b) April, (c) July, and (d) Octo-
ber, for Case 1 (1.57 µm and 0.5 ppm RRV error). Shown here are RMS values from the first 4
weeks of each month. 1µmol m−2 s−1 = 1.037g C m−2 d−1 = 4.4×10−8 kgCO2 m−2 s−1.
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 418 

Figure 7.  Weekly fractional flux uncertainty reduction over a) January, b) April, c) July, and d) 419 

October, for Case 1 (1.57 µm and 0.5 ppm RRV error).  Shown here are results from the first 4 420 

weeks of each month. 421 

 422 

 Inversions for the 2.05 µm wavelength, with its higher sensitivity near the surface, result 423 

in greater uncertainty reduction, despite the larger observation errors over land (Figure 8c vs. 8a, 424 

and 8d vs. 8b).  Inversions assuming 1.0 ppm instead of 0.5 ppm error at RRV result in less 425 

uncertainty reduction (Figure 8b vs. 8a, and 8d vs. 8c) as expected, with maximum uncertainty 426 

reduction of ~30% vs. ~40%, for 1.57 µm.  These cases are compared further in the section 427 

below on biome-aggregated results.  428 

 429 

Figure 7. Weekly fractional flux uncertainty reduction over (a) January, (b) April, (c) July, and
(d) October, for Case 1 (1.57 µm and 0.5 ppm RRV error). Shown here are results from the first
4 weeks of each month.
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 430 

Figure 8.  Weekly fractional flux uncertainty reduction (RMS over the 4 months) for a) Case 1 431 

(1.57 µm and 0.5 ppm RRV error), b) Case 2 (1.57 µm and 1.0 ppm), c) Case 3 (2.05 µm and 0.5 432 

ppm), and d) Case 4 (2.05 µm and 1.0 ppm).   433 

 434 

The inversion results are sensitive to the assumed a priori error correlation lengths, with 435 

longer correlation lengths leading to more smooth uncertainty reduction patterns and larger 436 

uncertainty reductions.  The reason for this is that longer a priori error correlation lengths result 437 

in fewer “unknowns” to be constrained by the observations.  Rodgers [2000] shows that the 438 

inclusion of a priori correlations can result in more “degrees of freedom for signal,” i.e. more 439 

information provided by the measurements on the unknowns.  We carried out a test with 440 

alternative values for the correlation lengths derived from the study by Chevallier et al. [2012]—441 

a shorter spatial correlation length of 200 km and a longer temporal correlation length of 35 442 

days, for all months.  (We estimated these values from Figure 5a and b of Chevallier et al. for the 443 

Figure 8. Weekly fractional flux uncertainty reduction (RMS over the 4 months) for (a) Case 1
(1.57 µm and 0.5 ppm RRV error), (b) Case 2 (1.57 µm and 1.0 ppm), (c) Case 3 (2.05 µm and
0.5 ppm), and (d) Case 4 (2.05 µm and 1.0 ppm).
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465 

 466 

Figure 9.  a) Reduction in weekly flux uncertainty (RMS over 4 months) of the regional 467 

inversion, aggregated to 4.5° x 6° resolution, and b) the global inversion results, which include 468 

ocean grid cells as well as land.  Results in both panels are for the 1.57 µm wavelength and 0.5 469 

ppm error case. 470 

 471 

To aggregate our flux uncertainties to 4.5° x 6° resolution (in units of µmol m
-2

 s
-1

) for 472 

comparison with the global inversion, we computed the variance of the average of the 1° x 1° 473 

land fluxes within each coarse grid cell, accounting for the error correlations between the fine-474 

scale cells and accounting for fractional overlap of some of the 1° x 1° cells with a 4.5° x 6° cell.  475 

Figure 9. (a) Reduction in weekly flux uncertainty (RMS over 4 months) of the regional inver-
sion, aggregated to 4.5◦×6◦ resolution, and (b) the global inversion results, which include ocean
grid cells as well as land. Results in both panels are for the 1.57 µm wavelength and 0.5 ppm
error case.
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regional edges, as was discussed in Section 3.1.  We do not attempt to quantify the individual 498 

impacts of the two main methodological differences or the various other differences.    499 

 500 

3.3.  Results Aggregated to Biomes and Continent  501 

 For assessing large-scale changes in carbon sources and sinks, it is useful to aggregate 502 

high-resolution results to biomes and the entire continent, and to seasons and years.  We use the 503 

biome definitions in Figure 10 taken from Olson et al. [2001] with modifications by Gourdji et 504 

al. [2012].  We used a similar approach for aggregating our results here to the one we used to 505 

aggregate results to a coarser grid (Section 3.2).  In addition, we aggregated the global inversion 506 

results to the same biomes for comparison, summing the (estimate - truth) values and accounting 507 

for fractional biome coverage in each of the coarse grid cells. 508 

 509 

 510 

Figure 10.  Biomes used, taken from Olson et al. [2001] with modifications by Gourdji et al. 511 

[2012]. 512 

 513 

Figure 10. Biomes used, taken from Olson et al. (2001) with modifications by Gourdji
et al. (2012).
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 544 

Figure 11.  Results aggregated to biomes and continent, and compared with other studies.  a) A 545 

priori and a posteriori uncertainties for the year, including results from Gourdji et al. [2012].  b) 546 

RMS of the four monthly uncertainties, including results from the global inversion.  c) Fractional 547 

uncertainty reductions.  d) Land area of the biomes.  Gourdji et al. reported results for only the 548 

three biomes that were well constrained by their in situ observation network, along with results 549 

aggregated over the full continent; we show the approximate average of their "Simple" and 550 

"NARR" inversions.  The figure does not include a priori uncertainties for Gourdji et al. since 551 

their method does not rely on a priori estimates. 552 

 553 

 Our a posteriori uncertainties range from 0.12 to 0.33 Pg C yr
-1

 at the monthly, 554 

continental scale across all four cases (Table 2), from 0.04 to 0.08 Pg C yr
-1

 at the annual, 555 

continental scale (Figure 11a), and from 0.01 to 0.06 Pg C yr
-1

 at the annual, biome scale (Figure 556 
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Figure 11. Results aggregated to biomes and continent, and compared with other studies.
(a) A priori and a posteriori uncertainties for the year, including results from Gourdji et al. (2012).
(b) RMS of the four monthly uncertainties, including results from the global inversion. (c) Frac-
tional uncertainty reductions. (d) Land area of the biomes. Gourdji et al. reported results for
only the three biomes that were well constrained by their in situ observation network, along with
results aggregated over the full continent; we show the approximate average of their “Simple”
and “NARR” inversions. The figure does not include a priori uncertainties for Gourdji et al. since
their method does not rely on a priori estimates.
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