Point-by-Point Response to Referee Comments, Including Relevant Changes Made in the Manuscript, and Marked-Up Manuscript

J. S. Wang et al.

Our responses below are in **boldface**. In the responses, we note the relevant changes made in the manuscript.

Anonymous Referee #1

1 General comments

Overall a good paper, well structured and written, which proposes a useful analysis of the constrains brought by future remote-sensing CO2 measurements with high spatiotemporal resolution on regional-scale CO2 fluxes. It also presents an interesting discussion about the target and threshold requirements to answer key carbon cycle questions (Section 4). One concern is that while the authors point out the limitations of the method used, and in particular the impact of assuming perfect boundary conditions or incorrect prior error statistics, they do not try to assess (at least partially) the sensitivity of their results to those assumptions. This would be especially interesting here since the high spatiotemporal density of the ASCENDS observations could actually result in the inversion being only weakly sensitive to the prior information. In addition, the explanations for the difference in posterior errors obtained with the global inversion and the regional one are not always well explained. This question of inversion technique, while interesting, is somewhat tangential to the main question of instrument design, and seems to raise more questions than answers, so the authors might consider removing section 3.2 and saving the topic for more complete treatment at a later date

We thank the referee for the detailed and constructive comments. We now report results of sensitivity tests addressing the issues of boundary conditions and prior uncertainty assumptions (Section 4.2). A simple test inversion in which b.c. are added as solved-for parameters suggests that flux uncertainty reductions decrease slightly when b.c. uncertainties are accounted for; however, we acknowledge that the exact magnitude of the effect could very much depend on the experimental setup. Another new sensitivity test demonstrates that the posterior uncertainty in many locations is not very sensitive to the prior uncertainty and is strongly influenced by the observations. (Note that we have moved the material on the a priori error correlation sensitivity test from the original Sections 3.1 and 3.3 to the new Section 4.2.)

Also, in light of this reviewer's opinion together with that of the second reviewer, we have decided to greatly abbreviate the material comparing the regional OSSE results with the global OSSE's (Section 3.2) and combine it with the material in the original Section 3.3. We now show the global inversion results only aggregated to the biome level (as well as the results of Gourdji et al. [2012]), mainly to provide context for our regional inversion results rather than to quantitatively analyze effects of various methodological differences.

Note that we have revised the global inversion results to correct an error in the calculation of observation uncertainties and also an error in the boundary layer vertical mixing in the transport model (both of these errors were specific to the global inversion and not to the regional inversion). The corrected results, shown in the new Figure 10, are not drastically different from the original results, and the difference does not affect our conclusions.

2 Detailed comments

p. 12823, I. 6-8: I don't follow this explanation. In both the Eulerian and the Lagrangian simulations interpolated meteorological fields are used. The ability of the Lagrangian model to better simulate filamentation processes compared to the Eulerian one stems from the strong diffusion/dilution effects when using Eulerian simulations with coarse resolution.

Our original explanation was indeed inaccurate. The comparison should be between particle dispersion models and gridded transport models rather than between Lagrangian and Eulerian models.

We have modified the explanation, as well as mentioning the diffusion effects of gridded models that the reviewer points out.

•

p. 12822, l. 18: Also, Deng et al., ACP, 2014. Done.

p. 12823, I. 12-16: Articles from Brioude et al. (2011, 2012) (maybe some others from the same author) should be cited here. We now cite those two papers as well as Brioude et al. [2013].

p. 12824, I. 14:"...uncertainty levels in constraining the fluxes that ASCENDS observations..."

Done (with a slight modification to the reviewer's suggested wording).

P. 12826, I. 10-11: It is not very clear what "...the measurements errors at each location are scaled to two possible performance levels: 0.5 ppm and 1.0 ppm error..." means. Do you use only those constant error values in this study (with differences only due to the number of observations within each pixel)? It seems like from the reading of the next sections, but it should be better clarified here. No, the error for each observation is not constant, but a function of OD and surface backscatter data, as described in the preceding sentences. Those values are scaled to reference 10-s average error levels for a particular set of conditions: OD = 0 and surface reflectivity equal to that at Railroad Valley, Nevada. We have now improved the text to clarify that.

p. 12830, I. 16: Not clear over what the average is done here.

We now provide additional explanation: the footprints are averaged for all the 5-km receptor locations that fall within a 10-s averaging period along the satellite track. In an earlier section (2.2), we've also added the distance corresponding to that interval: 67 km.

Section 3.1: I think this section should be simplified a bit. The posterior error reduction always results from the combined effects of the observation sensitivities (Jacobian), observational errors, and prior errors. Here the authors focus on describing the relative contribution of each of them to explain the uncertainty patterns observed. I would rather put more emphasis on the implication of the error reduction spatial distributions in term of constraints on specific CO2 sources/sinks sectors for instance.

We have now simplified this section, and de-emphasized statements identifying the contributors to uncertainty reduction, given that that knowledge is already well established. Regarding specific sources and sinks, in the following section (3.2), we do discuss the implications of the error reductions for constraining fluxes from particular biomes, such as tundra or Eastern temperate forest. Also, we compare flux constraints for different seasons in both this section and the next.

p. 12831, I.6: The recent satellite-based regional CH4 inversion by Wecht et al. (JGR, 2014) discusses and treats the issue of boundary conditions explicitly. This aspect is a critical factor in the derivation of regional constraints for CH4, and thus one must assume that it is an even greater factor for CO2. That the issue is only raised here as part of the discussion of uncertainty in 4.2, but not factored into the actual results, is of considerable concern. At the very least, this potentially large limitation should be mentioned in the abstract to qualify the estimated inversion performance.

We have now added a sensitivity test for b.c. (See response to general comments above.) We now also mention the sensitivity of our results to b.c. and other assumptions in the abstract.

p. 12833, I. 27-28: I don't agree with this statement: " The reason for this is that longer a priori error correlation lengths result in fewer "unknowns" to be constrained by the observations". Longer error correlations essentially better transfer

feel that it is appropriate to include too much text describing the global OSSE methodology. We do, however, include in the new section, "Results Aggregated to Biomes and Continent, and Compared with Other Inversion Systems" (3.2), a reference to the paper by Baker et al. [2010] that provides the

p. 12835, I.10: It would be good to explain what is the basic principle of this

p. 12835, I.12: "in results"<->"in error reductions" We have deleted most of the section containing this sentence.

p. 12835, I. 11-28: The explanations given for the higher error reductions obtained with the global inversion compared to the regional one are not clear. Are the models/meteorological fields used in both simulations the same (could have a great impact)? How much might the different means of calculating (Lagrangian) versus estimating (variational) the uncertainties play a role? Assuming the same model is used, and that only the resolution is different from the two inversions, the only scale-dependent errors I can see are the aggregation errors (the authors should cite and refer to Bocquet et al. (2011) here for the definition of this concept). Assuming the observation information is the same (i.e. same errors), an increase in uncertainty reduction could happen if the aggregated prior errors are higher than those at fine resolution for instance. I think the authors need to substantially expand upon their explanations here, or consider removing this section.

As described above in our response to the general comments, we have now deleted much of this section, and we now show the global inversion results only aggregated to the biome level, mainly to provide context for our regional inversion results rather than to quantitatively analyze effects of various methodological differences.

As the referee suggested, we have added a citation of Bocquet et al. [2011] in discussing aggregation error (in the Introduction section rather than in the text on the global inversion that no longer exists).

p. 12836, l. 15 -17: Not necessary. We have deleted that sentence.

p. 12837, I.23: "... the comparison is not totally consistent..." We've made that change.

p. 12838, I.23-end: That's a good point. However, it would be useful to quantify explicitly the relative contribution of the observational information to the meeting of the target requirement (i.e. where is the prior error already very close to the target level?). A map showing this relative contribution might be useful here.

the reviewer's preferred explanation.

(estimate-truth) statistics methodology

methodological details.

cause for the larger uncertainty reduction is confusing I think.

p. 12834, I.18: Please specify what model is used here.

the observational information throughout the control vector elements (the fluxes here), which results in stronger constraints for each flux in average. Although it mechanically results in fewer "unknowns" to be solved for, saying the latter is the

We've now specified the model, PCTM [Kawa et al., 2004], in Section 3.2, 2nd paragraph.

p. 12834, I.26-28: Are you using the method described in Chevallier et al. (2012)

(Appendix B)? If yes, please explicitly refer to this paper.

Now that we have de-emphasized the comparison of the regional OSSE with the global one, we do not

No, our method for aggregating variances is based on general statistical methods, not specifically a

We have removed that sentence. We keep the sentence that followed that one, which is consistent with

method described in a particular paper.

We've added a plot in the current Figure 10 (panel e) that shows the fractional uncertainty reduction necessary for each biome to meet the target requirement. This is one way to quantify the contribution of the observations to meeting the target, ranging from 0 for desert (where the prior uncertainty is already at the target) to 85% for eastern temperate, with most of the amounts being greater than 50%. We do not feel that a map is necessary, given that this is a biome-scale target rather than a grid-scale target.

Section 4.2: Given the high spatiotemporal density of the ASCENDS data, it would be interesting to assess how much the uncertainty reduction depend on the prior errors , which are often incorrectly specified. I think it is a key question in general for such inversions to understand how much we depend on our prior information

We have now added a sensitivity test for prior uncertainties. (See response to general comments above.)

p. 12842, I. 7: for all wavelengths?

Yes, this quantity is an average over the two wavelengths. We've added text that explains this explicitly.

p. 12842, I.11-12: "... it has fever unknowns to be solved for...". Again, this argument is not clear.

Most of the text on the comparison of the regional and global inversions, including this paragraph, has been deleted.

p. 12842, I.24-28: Although this could be left for future investigations, I think testing at least 2 different sets of boundary conditions as well as two different prior error scenarios would strengthen this study.
 We've added sensitivity tests on b.c. and prior uncertainties, as described above.

Figure 3: What is F here? One could think F is the flux and therefore σ_{E}/F unitless. Please clarify.

We've now added the definition, $F \equiv flux$, in the caption.

Anonymous Referee #2

This study used Observation System Simulation Experiments to assess impacts from the ASCENDS observations on top-down regional flux estimates. In particular, it highlighted the potential for inferring flux estimates at high temporal and spatial resolutions from dense space-borne XCO2 observations. It is well written, and I recommend it for publication after some modifications.

We thank the referee for the constructive comments.

Major comments:

1. Instead of the complete flux inversions, only the error reductions have been calculated in this study. So, it did not fully assess the ability for their flux inversion system to recover the 'true' regional fluxes by assimilating ASCENDS observations. For example, the possible adverse effects from errors in boundary conditions and errors in model transport have not been quantitatively investigated, although they have provided some interesting discussions in Section 4.

We do acknowledge in the manuscript that we did not conduct complete inversions and chose to focus on uncertainty reduction brought about by the measurements, assumed to be free of systematic errors. This type of analysis can be accomplished without the use of a complete inversion, and can be considered separately from the effect of transport errors, which are a type of systematic error. (We qualitatively discuss systematic errors in Section 4.3.) Furthermore, related studies have demonstrated the ability to recover "true" fluxes from observations. For example, Gourdji et al. [2010] conducted a full inversion over North America at the same spatial resolution for fluxes as our study and using the same transport model, WRF-STILT, although they used a different data set (tower network). As another example, a global OSSE that is a companion to our regional OSSE involved a full inversion using synthetic ASCENDS observations. Regarding boundary condition errors, we have now added a sensitivity test on b.c. in Section 4.2.

2. I am not sure whether the comparisons with the error reductions in global flux inversion experiments have significantly enhanced the main discussions. Instead I'd like to see, to which extent the global flux inversions based on ASCENDS measurements could reduce boundary condition errors as discussed in Section 4.2.

We have de-emphasized the comparison of the regional and global OSSE results, as described in our response to the general comment of Referee #1 above. As for the suggestion to demonstrate the ability of a global ASCENDS inversion to reduce boundary condition errors for a regional inversion, we agree that that would be an informative analysis. However, we see it as lying outside the focus area of our regional OSSE, and worthy of presentation in a separate paper. What is more directly relevant for our paper is how b.c. errors translate to regional flux errors. We have addressed this issue to a certain extent through a new sensitivity test in Section 4.2. Assessing the impact of systematic errors in b.c. would require additional analysis.

Minor Comments:

1. Page 12824, Line 21: 'Kx=c, where x is the vector of fluxes, and c denotes concentrations'.

This statement is not accurate as the definition of the Jacobian, as the concentrations

also have contributions from background or in-flows etc.

Good point. We have changed the definition so that it no longer contains that misleading equation and instead refers to the sensitivity of concentrations to changes in the state vector elements.

2. Page 12826, line 13: 'The errors for 5km (0.74s) individual CALIPSO ...', What is the footprint size for the aggregated 10s observations ? We've added that piece of information: 67 km.

3. Page 12834, line 23:', and the assumption of zero a priori correlation ...', Are the temporal error correlations of apriori flux estimates set to be zero as well ? Yes, temporal error correlations are zero. We have now removed the parenthetical about the coarser spatial scale that led to the reviewer's question.

4. Page 12835, line 16: 'Thus in our inversion, less information is available ...'.
The phrase of 'less information' can be misleading.
We have actually deleted most of the material in this section (comparison of regional and global OSSEs at grid scale), including that sentence.

Page 12852, Caption: (10-6 ppmv-1 hPa-1)
 Is this unit (ppmv-1) right?
 Yes, it's right. We've added the phrase "per ppmv of CO₂" after the term "Vertical weighting functions".

1	A Regional CO ₂ Observing System Simulation Experiment for the ASCENDS Satellite	
2	Mission	
3		
4	James S. Wang, ^{1,2} S. Randolph Kawa, ² Janusz Eluszkiewicz, ^{3,*} David F. Baker, ⁴ Marikate	
5	Mountain, ³ John Henderson, ³ Thomas Nehrkorn, ³ and T. Scott Zaccheo ³	
6		
7		
8	¹ Universities Space Research Association, Columbia, MD, USA, james.s.wang@nasa.gov	
9	² NASA Goddard Space Flight Center, Greenbelt, MD, USA	
10	³ Atmospheric and Environmental Research, Lexington, MA, USA	
11	⁴ Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins,	
12	CO, USA	
12 13	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15 16	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15 16 17	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15 16 17 18	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15 16 17 18 19	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15 16 17 18 19 20	CO, USA <u>*Deceased as of 27 May 2014</u>	Formatted: Superscript
12 13 14 15 16 17 18 19 20 21	CO, USA <u>*Deceased as of 27 May 2014</u> <u>Accepted for publicationUnder review</u> in <i>Atmospheric Chemistry and Physics-Discussions</i>	Formatted: Superscript
12 13 14 15 16 17 18 19 20 21 22	CO, USA <u>*Deceased as of 27 May 2014</u> <u>Accepted for publicationUnder review</u> in <i>Atmospheric Chemistry and Physics-Discussions</i>	Formatted: Superscript

23 Abstract

24 Top-down estimates of the spatiotemporal variations in emissions and uptake of CO₂ will benefit from the increasing measurement density brought by recent and future additions to the suite of in 25 situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of 26 CO2 Emissions over Nights, Days, and Seasons (ASCENDS) satellite mission will provide 27 28 greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite 29 30 column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions) generated by the WRF-STILT Lagrangian transport model in a regional 31 Bayesian synthesis inversion. The regional Lagrangian particle dispersion model framework is 32 well suited to make use of ASCENDS observations to constrain fluxes at high resolution, in this 33 case at 1° latitude x 1° longitude and weekly for North America. We consider random 34 measurement errors only, modeled as a function of mission and instrument design specifications 35 along with realistic atmospheric and surface conditions. We find that the ASCENDS 36 observations could potentially reduce flux uncertainties substantially at biome and finer scales. 37 At the $\frac{1^{\circ} \times 1^{\circ}}{2}$, grid scale and weekly resolution-scale, the largest uncertainty reductions, on the 38 order of 50%, occur where and when there is good coverage by observations with low 39 measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller 40 for a 1.57 μ m candidate wavelength than for a 2.05 μ m wavelength, and are smaller for the 41 higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error 42 at Railroad Valley, Nevada). Uncertainty reductions at the annual, biome scale range from $\sim 40\%$ 43 to \sim 75% across our four instrument design cases, and from \sim 65% to \sim 85% for the continent as a 44 whole. Tests suggest that the quantitative results are moderately sensitive to assumptions 45

46	regarding a priori uncertainties and boundary conditions. Our uncertainty reductions at various
47	scales are substantially smaller than those from a global ASCENDS inversion on a coarser grid,
48	demonstrating how quantitative results can depend on inversion methodology. The a posteriori
49	flux uncertainties we obtain, ranging from 0.01 to 0.06 Pg C yr ⁻¹ across the biomes, would meet
50	requirements for improved understanding of long-term carbon sinks suggested by a previous
51	study.
52	

54 1. Introduction

55 Quantification of surface fluxes of CO₂ and other greenhouse gases (GHG) over a range of spatial and temporal scales is of critical importance for understanding the processes that drive 56 source/sink variability and climate-biogeochemistry feedbacks. The need to monitor GHG 57 fluxes also follows from climate policy initiatives such as the Kyoto Protocol and possible 58 59 follow-on agreements, along with their implementation (e.g., emissions trading and treaty verification). While direct "bottom-up" (inventory) approaches are considered accurate to within 60 61 10% in the annual mean for fossil fuel CO₂ emissions in North America [Gurney et al., 2009], "top-down" (inverse) methods are the tool of choice to infer CO₂ sources and sinks from the 62 terrestrial biosphere and oceans on a range of scales [Peters et al., 2007]. In the top-down 63 approach, fluxes are inferred from atmospheric CO₂ measurements by means of an atmospheric 64 transport model linking the measurements to fluxes upwind. The availability of abundant and 65 accurate measurements and realistic transport models is key to the success of this approach [e.g. 66 67 Enting et al., 1995]. Consequently, large investments have been made in establishing reliable measurement networks, including in situ measurements of CO₂ concentrations from the surface, 68 towers, and aircraft (e.g. the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling 69 Network [Dlugokencky et al., 2013], and the Earth Networks Greenhouse Gas Network, 70 http://ghg.earthnetworks.com/), and satellite missions dedicated to measurement of CO2 column 71 amounts. The last include the Greenhouse gases Observing SATellite (GOSAT) launched in 72 January, 2009 [Yokota et al., 2009], the Orbiting Carbon Observatory 2 (OCO-2) to be launched 73 in 2014 [Crisp et al., 2008; Eldering et al., 2012], and the planned Active Sensing of CO2 74 Emissions over Nights, Days, and Seasons (ASCENDS) mission recommended by the U.S. 75 National Academy of Sciences Decadal Survey [NRC, 2007]. 76

77	The objective of our study is to quantify the ability of ASCENDS column measurements
78	to constrain CO_2 fluxes top-down at relatively high resolution. The ASCENDS active
79	measurement concept offers unique capabilities compared with passive satellite systems that rely
80	on thermal emission or reflected sunlight [Kawa et al., 2010]. These capabilities will enhance
81	spatial and temporal coverage while providing high precision and accuracy. ASCENDS will
82	extend coverage through its ability to sample in small cloud gaps and through thin clouds
83	without interference. In addition, since a lidar-based system does not require the presence of the
84	sun, it allows for observations of high-latitude regions during winter. Measurements can be
85	made both night and day, thereby reducing sampling bias due to (and potentially providing
86	constraints on) diurnal variations in CO_2 fluxes driven by ecosystem respiration and primary
87	production.
88	Global studies of the impact of satellite measurements on top-down estimates of CO_2
89	fluxes, beginning with the study of Rayner and O'Brien [2001], have established the benefit of
90	using satellite measurements for constraining CO_2 fluxes at a precision level similar to or better
91	than that provided by existing in situ networks. At present, these approaches estimate the
92	reduction of flux uncertainties stemming from the availability of satellite data using an inverse
93	solution for relatively coarse grid boxes or regions at weekly to monthly resolution [e.g.
94	Houweling et al., 2004; Chevallier et al., 2007; Feng et al., 2009; Baker et al., 2010; Kaminski et
95	al., 2010; Hungershoefer et al., 2010; Basu et al., 2013: Deng et al., 2014]. The present study
96	extends these global studies to the regional scale using simulated ASCENDS data. Regional
97	trace gas inversions are well-suited for making use of high-density satellite observations to
98	constrain fluxes at fine scales. Regional transport models are less computationally expensive to
99	run than global transport models for a given resolution, so it is more tractable to run a regional

100	model at high resolution. The more precise determination of source-receptor relationships
101	allows one to solve for fluxes at a finer resolution. This reduces potential "aggregation error"
102	resulting from assuming fixed fine-scale flux patterns when optimizing scaling factors on a
103	coarser scale [Kaminski et al., 2001; Engelen et al., 2002; Gerbig et al., 2003; Bocquet et al.,
104	<u>2011]</u> .
105	We use a novel approach for our inversions that facilitates high-resolution evaluation of
106	satellite column measurements. The approach relies on a Lagrangian, (or airmass-following,)
107	transport model (as opposed to an Eulerian, or fixed-frame-of-reference, model), run backward
108	in time from the observation points (receptors) using ensembles of particles, to generate
109	footprints describing the sensitivity of satellite CO2 measurements to surface fluxes in upwind
110	regions. Lagrangian particle dispersion models This approach enables more precise simulation of
111	transport in the near field than gridded transport modelsrunning source pulses through an
112	Eulerian (with fixed frame of reference) transport model, since, in the former, particle locations
113	are not restricted to a grid and meteorological fields are interpolated to the subgrid-scale
114	locations-of particles. Thus, filamentation processes, for example, can be resolved [Lin et al.,
115	2003], artificial diffusion over grid cells is avoided, and representation errors [Pillai et al., 2010]
116	are minimized. The Lagrangian approach, implemented in the backward (receptor-oriented)
117	mode, offers a natural way of calculating the adjoint of the atmospheric transport model. The
118	utility of Lagrangian particle dispersion models is well established for regional trace gas flux
119	inversions involving in situ observations [e.g. Gerbig et al., 2003; Lin et al., 2004; Kort et al.,
120	2008, 2010; Zhao et al., 2009; Schuh et al., 2010; Göckede et al., 2010a; Brioude et al., 2011,
121	2012, 2013; Gourdji et al., 2012; Miller et al., 2012, 2013; McKain et al., 2012; Lauvaux et al.,
122	2012]. A convenient feature of Lagrangian footprints is their portability-they can be shared

123	with other groups and readily applied to different flux models, inversion approaches, and
124	molecular species, thus enabling comparisons based on a common modeling component. In
125	addition, footprints for different measurement platforms can be merged easily in an inversion.
126	In this observing system simulation experiment (OSSE), we utilize the Stochastic Time-
127	Inverted Lagrangian Transport (STILT) particle dispersion model [Lin et al., 2003] driven by
128	meteorological fields from the Weather Research and Forecasting (WRF) model [Skamarock and
129	Klemp, 2008] in a domain encompassing North America, in a Bayesian inversion. The WRF-
130	STILT [Nehrkorn et al., 2010] footprints are used to compute weekly flux uncertainties over a 1°
131	latitude x 1° longitude grid. This study focuses on land-based biospheric fluxes. We report
132	results based on realistic sampling and observation errors for <u>a set of ASCENDS instrument</u>
133	designs and other input data fields for year 2007. Section 2 provides details on our inputs and
134	inversion methods, and presents examples of observation uncertainties, a priori flux
135	uncertainties, and WRF-STILT footprint maps. Section 3 presents posterior flux uncertainty
136	results at various spatial and temporal scales, as well as comparisons with other studies,
137	including preliminary results from a companion global ASCENDS OSSE. Section 4 discusses
138	target and threshold requirements for instrument design parameters with respect to addressing
139	key scientific questions. It also discusses sensitivity to additional sources of uncertainty and
140	limitations of our analysis, as well as other considerations regarding ASCENDS. Section 5
141	contains concluding remarks.
142	٠
143	

Formatted: Indent: First line: 0.5"

- 144 **2. Methods**
- 145 2.1. Inversion Approach

146	We use a Bayesian synthesis inversion method, which optimizes the agreement between
147	model and observed CO ₂ concentrations and a priori and a posteriori flux estimates in a least-
148	squares manner [e.g. Enting et al., 1995]. Since we focus on random uncertainty error levels in
149	estimating constraining the constraint on fluxes that using ASCENDS observations will provide,
150	we did not perform a full inversion and computed only the a posteriori flux error covariance
151	associated with the inversion solution. The a posteriori flux error covariance matrix is given by
152	$\hat{\mathbf{S}} = (\mathbf{K}^T \mathbf{S}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{S}_a^{-1})^{-1}, \qquad (1)$
153	where K is the Jacobian matrix describing the sensitivity of concentrations to changes in the state vector elements (in this case, fluxes) \mathbf{S}_{ε} is the observation error covariance matrix \mathbf{S}_{a} is the a priori flux error covariance matrix.
154	We directly solve for $\hat{\mathbf{S}}_{,}$ the square roots of the diagonal elements of which provide the estimates
155	of the a posteriori flux uncertainties.
156	We solve for flux uncertainties in each land cell on a 1° x 1° grid across North America
157	(from 10°N to 70°N and from 170°W to 50°W). The time span is 5 weeks in each of the 4
158	seasons in 2007 (the first 4 weeks of January, April, July, and October plus the week preceding
159	each of those months). We focus on weekly flux resolution in this study, rather than daily or
160	higher resolution, for computational efficiency. In addition, the Decadal Survey called for a
161	satellite mission that can constrain carbon cycle fluxes at weekly resolution on 1° grids [NRC,
162	2007]. The ASCENDS observations would likely also provide significant constraints on fluxes
163	at higher resolutions such as daily, as suggested by test inversions not reported here.
164	We solve Eq. (1) using the standard matrix inversion function in the Interactive Data
165	Language (IDL) software package. We verified the solution using the alternative singular value

166	decomposition approach [Rayner et al., 1999], again in IDL. Given the large dimensions of the
167	matrices more than 15,000 10-s average observations each month and 13,205 weekly flux
168	elements over each 5-week period, the procedure requires large amounts of computer memory
169	but a modest amount of processing timeseveral hours per monthly inversion on the NASA
170	Center for Climate Simulation high-performance computing system.
171	
172	2.2. Observational Sampling and Simulated Measurement Uncertainties
173	We consider candidate lidar wavelengths near 1.57 μ m and 2.05 μ m [Caron and Durand,
174	2009]. These have peak sensitivities in the mid- and lower troposphere, respectively (Figure 1).
175	Other candidate wavelengths with different vertical sensitivities and error characteristics are
176	possible and could be assessed with the same inversion methodology. We derive the
177	temporal/spatial sampling and random error characteristics for ASCENDS pseudo-data based on
178	real cloud/aerosol and surface backscatter conditions for year 2007 in a method similar to that of
179	Kawa et al. [2010]. Observation locations are taken from Cloud-Aerosol Lidar and Infrared
180	Pathfinder Satellite Observation (CALIPSO) satellite orbit tracks. We use only locations that fall
181	within the domain used in the WRF runs (Section 2.4), excluding those within 400 km of the
182	boundaries to provide adequate WRF coverage to simulate back trajectory calculations inside the
183	domain (Figure 2). The errors are calculatedions use as a function of CALIPSO optical depth
184	(OD) measured by CALIPSOdata, together withand surface backscatter calculated from
185	Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance over land or glint
186	backscatter, calculated using 10-m analyzed wind speeds [Hu et al., 2008] interpolated to the
187	sample locations, over ocean. Samples with total column cloud plus aerosol $OD > 0.7$ are
188	rejected. For each wavelength case, the measurement errors at each location are scaled to two

189 possible performance levels: 0.5 ppm and 1.0 ppm error (10 s average) under clear-sky 190 conditions (cloud/aerosol OD = 0) with for a reflectivity equal to that found at a reference site, Railroad Valley (RRV), Nevada. The errors for each 5 km (0.74 s) individual CALIPSO 191 observation point are aggregated over 10-s (67 km) intervals to increase signal-to-noise for the 192 pseudo-data, using the formula $\sigma(10s) = \sqrt{\frac{\sum_{i=1}^{N} \sigma(5km)_i^2}{N^2}}$, where N is the number of valid 5 km 193 194 observations across the 10-s span. Such a 10-s, conditionally-sampled measurement is expected 195 to represent the basic ASCENDS CO2 data granule. The uncertainties in the series of 10-s 196 pseudo-data are assumed to be uncorrelated, i.e. the observation error covariance matrix $S_{\rm e}$ is 197 diagonal. 198 Examples of the coverage of ASCENDS observations available for analysis and their associated uncertainties (for a reference uncertainty at RRV of 0.5 ppm) are shown in Figure 2 199 over seven-day periods in January and July for the two candidate wavelengths. ASCENDS 200 provides dense coverage over the domain with few large gaps, especially in July. A large 201 majority of the 10 second-average observations have uncertainties of < 2 ppm in all four cases 202 except for 2.05 µm in January. The uncertainties are especially small over land areas, which is 203 204 helpful for constraining terrestrial fluxes. The uncertainties are generally larger for 2.05 µm than 205 for 1.57 µm (by a factor of 1-1.6 over snow-free land and a factor of 1.6-1.8 over snow-/icecovered areas) except in ice-free oceanic areas, where the uncertainties are similar (Figure 2e and 206 207 2f). 208

208

209 2.3. A Priori Flux Uncertainties

We derived a priori flux uncertainties at 1° x 1° resolution from the variability of net
ecosystem exchange (NEE) in the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical

212	model coupled to version 3 of the Global Fire Emissions Database (GFED3) [Randerson et al.,
213	1996; van der Werf et al., 2006; 2010]. CASA-GFED is driven with meteorological data from
214	the Modern-Era Retrospective Analysis for Research and Applications (MERRA) [Rienecker et
215	al., 2011]. In the version of CASA used here, a sink of \sim 100 Tg C yr ⁻¹ is induced by crop
216	harvest in the U.S. Midwest that is prescribed based on National Agriculture Statistics Service
217	data on crop area and harvest. We neglected uncertainties in fossil fuel emissions, assuming like
218	most previous inversion studies that those emissions are relatively well known. We ignored
219	oceanic fluxes as well for this study, since their uncertainties are also relatively small [e.g. Baker
220	et al., 2010].
221	The a priori flux uncertainties were specifically derived from the standard deviations of
222	daily mean CASA-GFED NEE over each month in 2007, divided by $\sqrt{7}$ to scale approximately
223	to weekly uncertainties. This approach assumes that the more variable the model fluxes are in a
224	particular grid cell and month, the larger the errors tend to be; the same reasoning has been
225	applied in previous inversion studies to the estimation of model-data mismatch errors [e.g. Wang
226	et al., 2008]. We enlarged the resulting uncertainties uniformly by a factor of 4 to approximate
227	the magnitude of those used in the global ASCENDS OSSE described in <u>Section 3.2 of</u> this
228	paper; these are, in turn, essentially the same as the standard ones of Baker et al. [2010], based
229	on differences between two sets of bottom-up flux estimates. In addition to allowing for better
230	comparison of the two OSSEs, the enlargement by a factor of 4 is consistent with suggestions by
231	biospheric model intercomparisons that the true flux uncertainty is greater than that based on a
232	single model's variability [Huntzinger et al., 2012].
233	Off-diagonal elements of the a priori flux error covariance matrix are filled using spatial

and temporal error correlations derived from an isotropic exponential decay model with month-

235	specific correlation lengths (Table 1) estimated from ground-based and aircraft CO_2 data in a
236	North America regional inversion by Gourdji et al. [2012]. Although these correlation lengths
237	are not strictly applicable to our study, which has a different setup from that in the geostatistical
238	inverse modeling system of Gourdji et al., they are nonetheless reasonable estimates in general
239	for the purposes of this study. Note that Gourdji et al. used a 3-hourly flux resolution, so the
240	temporal correlation lengths may be too short for the coarser weekly resolution of our study.
241	Chevallier et al. [2012] show that aggregation of fluxes to coarser scales increases the error
242	correlation length. The analysis by Chevallier et al. [2012] using global flux tower data found a
243	weekly-scale temporal error correlation length of 36 days, longer than the values we use. They
244	found a spatial correlation length of less than 100 km at the site scale (\sim 1 km), increasing to 500
245	km at a 300 km-grid scale; our correlation lengths (100 km-grid) mostly fall within that range.
246	In a test, we used alternative values for the spatiotemporal correlation lengths derived from the
247	Chevallier et al. study, and found that the inversion results are moderately sensitive (Section
248	<u>43.2</u> 1).
249	Our CASA-GFED-based a priori flux uncertainties, scaled to approximate the values

used by Baker *et al.* [2010], are shown in Figure 3. The largest uncertainties occur generally
where the absolute value of NEE is highest, e.g., in the "Corn Belt" of the U.S. in summer. The
spatial and seasonal variations exhibit similarities to those of Baker et al.

253

254 2.4. WRF-STILT Model, Footprints, and Jacobians

The STILT Lagrangian model, driven by WRF meteorological fields, has features, including a realistic treatment of convective fluxes and mass conservation properties, that are important for accurate top-down estimates of GHG fluxes that rely on small gradients in the 258 measured concentrations [Nehrkorn et al., 2010]. In the present application of STILT 259 (www.stilt-model.org, revision 640), hourly output from WRF version 2.2 is used to provide the transport fields at a horizontal resolution of 40 km with 31 eta levels in the vertical, over a North 260 American domain (Figure 2a). Meteorological fields from the North American Regional 261 Reanalysis (NARR) at 32-km resolution are used to provide initial and boundary conditions for 262 263 the WRF runs. To prevent drift of the WRF simulations from the analyses, the meteorological 264 fields (horizontal winds, temperature, and water vapor at all levels) are nudged to the NARR 265 analysis every 3 hours with a 1-hour relaxation time and are reinitialized every 24 hours (at 00 UTC). Simulations are run out for 30 hours, but only hours 7-30 from each simulation are used 266 267 to avoid spin-up effects during the first 6 hours. The WRF physics options used here are the same as those described by Nehrkorn et al. [2010]. 268

269 A footprint quantitatively describes how much surface fluxes originating in upwind regions contribute to the total mixing ratio at a particular measurement location; it has units of 270 271 mixing ratio per unit flux. This is to be distinguished from a satellite footprint, the area of earth reflecting the lidar signal. In the current application, footprints are computed for each 5-km 272 simulated observation that passes the cloud/aerosol filter in January, April, July, and October 273 2007 at 3-hour intervals back to 10 days prior to the observation time. Separate footprint maps 274 275 have been computed for 15 receptor positions above ground level for the purpose of vertically convolving with the lidar weighting functions and producing one weighted-average footprint per 276 277 measurement. (The receptors are spaced 1 km apart in the vertical from 0.5 to 14.5 km AGL.) This procedure results in ~90,000 footprint calculations per day, placing stringent demands on 278 our computational approach. In this study, STILT simulates the release of an ensemble of 500 279 particles at each receptor in the column. 280

281 It is important to note that although a footprint is defined for each of the 15 vertical 282 levels, the footprint expresses the sensitivity of the mixing ratio measured at the receptor point located at that vertical level to the surface fluxes upwind, not the fluxes upwind at the same 283 level. So intuitively, the footprints defined for receptor points located at high altitudes (e.g. 12.5, 284 285 13.5, 14.5 km) are often zero, indicating that a receptor at that upper level is not influenced by 286 surface fluxes inside the domain (within the 10 day span examined here). Conversely, receptor 287 points located at the lowest levels (e.g. 0.5, 1.5, 2.5 km) tend to have large footprints (with values of the order of 10^{-3} ppm/(µmol/m²/s) or higher), being most influenced by nearby surface 288 289 fluxes. 290 Figure 4 shows the vertically-weighted footprints of a selected column measurement

location (in southern Canada) over 10 days for the 1.57 and 2.05 µm wavelengths. Non-zero 291 292 footprints occur wherever air observed at the receptor site has been in contact with the surface 293 within the past 10 days. Patterns of vertical and horizontal atmospheric motion explain the 294 somewhat unexpected spatial patterns of the footprints in this particular example, with very high values occurring at a significant distance upwind of the receptor (in the vicinity of Texas and 295 Oklahoma) as well as immediately upwind. Vertical mixing lifts the signature of surface fluxes 296 to higher levels, so that it can be detected by receptors at multiple levels, resulting in a higher 297 value for the vertically-convolved footprint, while slower winds in a particular area, such as 298 Texas and Oklahoma, can result in a larger time-integrated impact of fluxes on the observation. 299 The footprint values are larger for 2.05 µm due to the higher sensitivity of that measurement near 300 the surface, as previously discussed. 301

To construct the Jacobians, **K**, that enter Eq. (1), we averaged the footprints of all the 5km receptor locations within a given 10-s intervalaveraging period along the satellite track,

304	including only the land cells. We arranged the averaged footprints in a two-dimensional
305	Jacobian, running across flux time intervals and grid cells in one direction and across
306	observations in the other. (The 3-hour flux intervals associated with each transport run are
307	defined relative to fixed UTC times and not relative to the observation times.) We then
308	aggregated the Jacobian elements to the final flux resolution, e.g., weekly. For any particular
309	month, we solved only for fluxes occurring in the week prior to the beginning of the month and
310	in the first 4 weeks of that month.

311 Figure 5 shows the overall influence of the surface fluxes on the observations during each month (i.e. the average weekly Jacobian values for the 1.57 µm weighting function). Values 312 313 tend to decrease from west to east, reflecting the general westerly wind direction, which 314 transports CO₂ influences out of the domain more quickly for fluxes occurring closer to the 315 eastern edge than for those farther west. Values also tend to decrease towards the north and 316 northwest and in the southernmost part of the continent: these areas lie close to the edges of the 317 domain shown in Figure 2a. Areas with smaller average footprint values are generally not as well constrained by the observations, as will be discussed later in this paper; thus, our domain 318 boundaries artificially limit flux constraints in certain parts of the continent. Previous regional 319 inversion studies may not have highlighted this issue because they used ground-based 320 321 observations, whose sensitivities are more confined to near-field fluxes than those of satellite 322 column measurements. We will quantify the impact of the boundaries on average footprint 323 gradients in future work, providing guidance for future studies on optimal sizes and shapes of domains (e.g. shifted eastward) for avoiding large gradients while controlling computational 324

325 cost.

326	Footprint values are largest in summer, again due to horizontal and vertical motions-
327	winds during this season are relatively light and allow the fluxes to stay inside the domain for a
328	long time, maximizing their integrated influence on observations in the domain, and vertical
329	mixing across the deep boundary layer brings particles over a large portion of the column into
330	contact with the surface.
331	Although WRF-STILT provides the capability to generate and optimize boundary
332	condition influences on observed concentrations, this was not available at the time of this study
333	and, consequently, we neglect uncertainties in the influence of boundary conditions in this our
334	standard inversion analysis (discussed further in Section 4.21). Similarly, we neglect
335	uncertainties due to the influence of North American fluxes occurring more than 10 days before
336	a particular observation. Note that fluxes are often transported out of the domain within 10 days,
337	so that these fluxes can only influence the observations via the boundary conditions.
338	
339	
340	3. Results
341	In the following, we present results for four cases involving different combinations of
342	measurement wavelength and baseline error level: 1.57 μm and 0.5 ppm RRV error (Case 1),
343	$1.57~\mu m$ and $1.0~ppm$ (Case 2), $2.05~\mu m$ and $0.5~ppm$ (Case 3), and $2.05~\mu m$ and $1.0~ppm$ (Case
344	4).
345	
346	3.1. A Posteriori Flux Uncertainties at the Grid Level

- 347 A posteriori uncertainties (Figure 6) are smaller than the a priori values (Figure 3), an
- 348 expected result of the incorporation of observational information. The reduction in uncertainty is

349	often larger in areas that have higher a priori uncertainties, as can be seen more clearly in the
350	maps of percentage reduction in uncertainty in Figure 7. Uncertainty reductions are relatively
351	large year-round in places such as southern Mexico, adjacent parts of Central America, and the
352	Pacific Northwest of the U.S.; in April and October in the southeastern U.S.; and in July in the
353	U.S. Midwest, southern Quebee, areas with forest fire emissions in central Canada (appearing as
354	hot spots of uncertainty reduction), and Alaska and western Canada. A priori uncertainties are
355	relatively high in these areas, so that there is more room for observations to tighten the
356	constraint. In contrast, The dependence of uncertainty reductions on the assumed priors can be
357	understood thus: where a priori uncertainties are already small, observations are not able to
358	provide a much tighter constraint, while in areas where a priori uncertainties are large, there is
359	more room for observations to tighten the constraint.
360	Of course, t The uncertainty reductions are not dependent simply on the prior
361	uncertainties-though. For example, the highest uncertainty reductions, up to 50%, occur in
362	southern Mexico in October, where a priori uncertainties are not especially large. The high
363	uncertainty reductions here can be explained by the large Jacobian values (Figure 5) combined
364	with the low uncertainties of nearby observations (not shown). (Although a priori uncertainties
365	and Jacobian values in July in this area are similar to those in October, observation uncertainties
366	are higher, resulting in lower uncertainty reductions.) In general, The tendency of uncertainty
367	reductions tend to be higher where average Jacobian values are larger; can also be seen in
368	observe the similarity of the spatial patterns in the January maps in Figures 5a and 7a, for
369	example. As described in Section 2.4, fluxes in western and central areas of the continent are
370	captured by more observations in the domain than fluxes in the east and close to the other edges;
371	thus, the former can be better constrained in this inversion.

372	Another feature is that in July, the largest uncertainty reductions occur in northern
373	Alaska and northwestern Canada, which have much smaller a priori uncertainties than places
374	such as the Midwest. This is an effect of the smaller grid cells at higher latitudes: the a priori
375	errors are correlated over larger numbers of cells at these latitudes given the spatially uniform
376	correlation lengths we specify, so that the average flux over each cell is more tightly constrained
377	than that for an otherwise comparable cell at lower latitudes. This is a less important issue when
378	results are aggregated to the larger scales dealt with in later sections of this paper.
379	Uncertainty reductions are smallest in January, for several reasons: 1) a priori flux
380	uncertainties are smallest during the dormant season, 2) observation errors are largest in winter
381	due to the low reflectance of snow and ice cover at the measurement wavelengths, and 3) there is
382	fast dispersion of fluxes in winter by strong winds, transporting fluxes out of the domain and out
383	of detection by observations in the domain and thus reducing the average Jacobian values in
384	January relative to the other months (Figure 5). The ratio of the average of the Jacobian
385	elements over the domain for January to that for July is 0.51 for the 1.57 μ m wavelength.
386	Inversions for the 2.05 μm wavelength, with its higher sensitivity near the surface, result
387	in greater uncertainty reduction, despite the larger observation errors over land (Figure 8c vs. 8a,
388	and 8d vs. 8b). Inversions assuming 1.0 ppm instead of 0.5 ppm error at RRV result in less
389	uncertainty reduction (Figure 8b vs. 8a, and 8d vs. 8c) as expected, with maximum uncertainty
390	reduction of ~30% vs. ~40%, for 1.57 μm . These cases are compared further in the section
391	below on biome-aggregated results.
392	The inversion results are sensitive to the assumed a priori error correlation lengths, with

- 393 longer correlation lengths leading to more smooth uncertainty reduction patterns and larger
- 394 uncertainty reductions. The reason for this is that longer a priori error correlation lengths result

395	in fewer "unknowns" to be constrained by the observations. Rodgers [2000] shows that the
396	inclusion of a priori correlations can result in more "degrees of freedom for signal," i.e. more
397	information provided by the measurements on the unknowns. We carried out a test with
398	alternative values for the correlation lengths derived from the study by Chevallier et al. [2012]
399	a shorter spatial correlation length of 200 km and a longer temporal correlation length of 35
400	days, for all months. (We estimated these values from Figure 5a and b of Chevallier et al. for the
401	~100 km and 7-day aggregation of our inversion.) The resulting uncertainty reductions are
402	smaller everywhere than those in our standard inversion at the grid seale, with values of up to
403	40% in July and up to 15% in January for Case 1 (compared to 45% and 25%, respectively, in
404	the standard inversion). Apparently, the decrease in the spatial correlation length relative to the
405	standard inversion has a larger effect than the increase in the temporal correlation length. We
406	conclude that our inversion results vary moderately given two reasonable sets of estimates for the
407	a priori spatiotemporal error correlation lengths.
407 408	a priori spatiotemporal error correlation lengths.
407 408 409	a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion
407 408 409 410	a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to
407 408 409 410 411	 a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset
407 408 409 410 411 412	a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset sampling and underlying observation error model as the regional OSSE. Among the primary
407 408 409 410 411 412 413	 a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset sampling and underlying observation error model as the regional OSSE. Among the primary differences are the global domain of the analysis and the coarser spatial resolution of the
407 408 409 410 411 412 413 414	 a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset sampling and underlying observation error model as the regional OSSE. Among the primary differences are the global domain of the analysis and the coarser spatial resolution of the transport and flux solution, 4.5° latitude x 6° longitude. Other differences include the
407 408 409 410 411 412 413 414 415	 a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset sampling and underlying observation error model as the regional OSSE. Among the primary differences are the global domain of the analysis and the coarser spatial resolution of the transport and flux solution, 4.5° latitude x 6° longitude. Other differences include the mathematical technique of the inversion (variational data assimilation, as in an earlier study
407 408 409 410 411 412 413 414 415 416	 a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset sampling and underlying observation error model as the regional OSSE. Among the primary differences are the global domain of the analysis and the coarser spatial resolution of the transport and flux solution, 4.5° latitude x 6° longitude. Other differences include the mathematical technique of the inversion (variational data assimilation, as in an earlier study [Baker et al., 2010]), the Eulerian transport model, the spatial patterns of the a priori flux
407 408 409 410 411 412 413 414 415 416 417	 a priori spatiotemporal error correlation lengths. 3.2. Comparison with Global Inversion We compare our regional OSSE results with those from a companion global OSSE to assess effects of methodological differences. The global OSSE uses the same ASCENDS dataset sampling and underlying observation error model as the regional OSSE. Among the primary differences are the global domain of the analysis and the coarser spatial resolution of the transport and flux solution, 4.5° latitude x 6° longitude. Other differences include the mathematical technique of the inversion (variational data assimilation, as in an earlier study [Baker et al., 2010]), the Eulerian transport model, the spatial patterns of the a priori flux uncertainties (the overall magnitudes are not different, as described in Section 2.3), and the

418	assumption of zero a priori correlation among fluxes (which can be justified by the coarser
419	spatial scale). Comparison of our inversion results with results from the global study yields
420	insight into the effect of inversion resolution on estimated flux uncertainties.
421	To aggregate our flux uncertainties to $4.5^{\circ} \times 6^{\circ}$ resolution (in units of μ mol m ⁻² -s ⁻¹) for
422	comparison with the global inversion, we computed the variance of the average of the 1° x 1°
423	land fluxes within each coarse grid cell, accounting for the error correlations between the fine-
424	scale cells and accounting for fractional overlap of some of the 1° x 1° cells with a 4.5° x 6° cell.
425	Aggregating our a priori and a posteriori uncertainties in this manner, we find that our fractional
426	uncertainty reductions over the 4 months are substantially smaller overall than those of the global
427	inversion (Figure 9). The differences in spatial distribution can be attributed in part to the
428	different a priori uncertainty patterns. Reductions greater than 55% cover large areas of North
429	America in the global inversion, reaching values of over 75%, whereas only a few 4.5° x 6° cells
430	exhibit values greater than 55% in the regional inversion. Note that we are not comparing
431	exactly the same quantity, as the variational inversion method does not directly compute a full a
432	posteriori error covariance matrix; rather, it uses (estimate - truth) statistics as a proxy for
433	uncertainty, which is accurate for a sufficiently large sample [Baker et al., 2010]. One possible
434	reason for the difference in results is that information from the observations is used to optimize
435	the fine-scale patterns in addition to the coarse-scale magnitudes in our inversion, in contrast to
436	the global inversion in which a flat spatial distribution of flux is assumed inside each coarse grid
437	box, providing an additional constraint on the fluxes. Thus, in our inversion, less information is
438	available to reduce the uncertainties of the coarse-scale magnitudes, causing our uncertainty
439	reductions to be smaller than those of the global inversion when compared at the same scale.
440	(Note however that our imposing of a priori flux error correlations provides an additional

Formatted: Indent: First line: 0"

441	constraint on fluxes and reduces the difference in effective flux resolution between the two	
442	studies.) On the other hand, the coarser global inversion is affected by larger aggregation errors	
443	[Kaminski et al., 2001; Engelen et al., 2002; Gerbig et al., 2003], which are not accounted for in	
444	the uncertainty reduction values. Another factor that likely contributes to the larger uncertainty	
445	reductions in the global inversion is that it allows fluxes to be constrained by observations both	
446	outside and inside a particular region. This can be especially important for fluxes close to the	
447	regional edges, as was discussed in Section 3.1. We do not attempt to quantify the individual	
448	impacts of the two main methodological differences or the various other differences.	
449		
450	3.23. Results Aggregated to Biomes and Continent, and Compared with Other Inversion	
451	Systems	
452	For assessing large-scale changes in carbon sources and sinks, it is useful to aggregate	
453	high-resolution results to biomes and the entire continent, and to seasons and years. We use the	
454	biome definitions in Figure 9 taken from Olson et al. [2001] with modifications by Gourdji et al.	
455	[2012]. To aggregate the flux uncertainties, we summed up the variances within each biome and	
456	over each month and then the year (in units of (Pg C yr ⁻¹) ²) as well as the error covariances	Formatted: Superscript
457	between grid cells and weeks. We used a similar approach for aggregating our results here to the	Formatted: Superscript
458	one we used to aggregate results to a coarser grid (Section 3.2).	
459	We compare our results with those from two other inversion systems: a global inversion	
460	using ASCENDS observations (companion study to this one), and a North America regional	
461	inversion using the same WRF-STILT Lagrangian model as ours but with a network of ground-	
462	based observation sites [Gourdji et al., 2012]. The global OSSE uses the same ASCENDS	
463	dataset sampling and underlying observation error model as the regional OSSE. Among the	

464	primary differences are the global domain of the analysis (and thus the use of observations
465	outside of the N. American domain as well as inside) and the coarser spatial resolution of the
466	transport and flux solution, 4.5° latitude x 6° longitude. Other differences include the
467	mathematical technique of the inversion (variational data assimilation, as in an earlier study
468	[Baker et al., 2010]), the Eulerian transport model (PCTM; Kawa et al. [2004]), the spatial
469	patterns of the a priori flux uncertainties (the overall magnitudes are not different, as described in
470	Section 2.3), the assumption of zero a priori error correlations, and the use of (estimate - truth)
471	statistics as a proxy for flux uncertainty [Baker et al., 2010], given that the variational method
472	does not directly compute a full a posteriori error covariance matrix. In addition, wWe
473	aggregated the global inversion results to the same biomes for comparison, summing the
474	(estimate - truth) values and accounting for fractional biome coverage in each of the coarse grid
475	cells. Gourdji et al. used a set of ground-based and aircraft measurements and a geostatistical
476	inverse model to solve for biospheric fluxes and their uncertainties at a 1° x 1°, 3-hourly
477	resolution in 2004. We present these comparisons mainly to provide context for our results,
478	rather than to quantitatively analyze effects of various methodological differences. In addition,
479	we aggregated the global inversion results to the same biomes for comparison, summing the
480	(estimate - truth) values and accounting for fractional biome coverage in each of the coarse grid
481	cells.
482	Uncertainty reductions are largest in July and smallest in January, at the continental scale
483	(Table 2). The uncertainty reductions for the 1.57 μm wavelength are on average 8% smaller
484	than those for 2.05 $\mu m.$ The uncertainty reductions for the 1.57 μm wavelength with 0.5 ppm
485	error are larger than those for 2.05 μm with 1.0 ppm error. The uncertainty reductions for 0.5
486	ppm error are on average 16% larger than those for 1.0 ppm error. (Note that there is no reason

487	to expect direct proportionality between measurement uncertainties and a posteriori flux
488	uncertainties (Eq. 1), nor is there reason to expect proportionality between uncertainty reduction
489	and a posteriori uncertainty.) The uncertainty reduction for the inversion with alternative a priori
490	error correlation lengths, aggregated to the continent and month, is less than that for the standard
491	inversion for all months except July, for which the uncertainty reduction is marginally larger.
492	For July, the impact of the much longer temporal correlation length relative to the standard
493	inversion on the aggregated result more than offsets that of the slightly shorter spatial correlation
494	length. The annual uncertainty reduction for the alternative inversion is slightly larger than that
495	for the standard inversion, because of the disproportionate influence of July, with its large a
496	priori uncertainty.
497	At the annual, biome scale, our uncertainty reductions range from 50% for the desert
498	biome (averaged across the cases) to 70% for the temperate grassland/shrubland biome (Figure
499	104c). The reductions scale with increasing a priori uncertainty (Figure 104a) and observation
500	quality and density, as before, and now also with biome area (Figure $104d$). We find a modest
501	correlation between uncertainty reduction and area in the set of biomes here, with a linear
502	correlation coefficient of 0.5. In addition, the uncertainty reduction is higher on the continental
503	scale than on the biome scale. The a posteriori uncertainty increases with increasing area more
504	slowly than does the a priori uncertainty since many of the a posteriori error covariance terms
505	that are summed in the aggregation to biome are negative, whereas all of the a priori error
506	covariance terms are positive or zero. This explains why uncertainty reduction tends to increase
507	with increasing area.
508	Our a posteriori uncertainties range from 0.12 to 0.33 Pg C yr ⁻¹ at the monthly,

509 continental scale across all four cases (Table 2), from 0.04 to 0.08 Pg C yr⁻¹ at the annual,

510	continental scale (Figure 10+a), and from 0.01 to 0.06 Pg C yr ⁻¹ at the annual, biome scale
511	(Figure 104a). To put these numbers into perspective, the estimated current global terrestrial
512	sink is roughly 2.5 Pg C yr ⁻¹ [Le Quéré et al., 2012]. Our uncertainties are generally similar to
513	those from the North American regional inversion of Gourdji et al. [2012] (Figure 104a) and the
514	global inversion (Figure 104b), a notable exception being the overall continental result of
515	Gourdji et al. Gourdji et al. used a set of ground-based and aircraft measurements and a
516	geostatistical inverse model to solve for biospheric fluxes and their uncertainties at a 1° x 1°, 3-
517	hourly resolution in 2004. Our a posteriori uncertainty for N. America is small compared to
518	Gourdji et al., likely because of the greater spatial coverage of ASCENDS as compared to the in
519	situ network; some of the biomes are not well constrained by the in situ network (i.e. the ones for
520	which Gourdji et al. did not report aggregated results). Note that the comparison is not totally
521	consistenta precise one, given the methodological differences. The global inversion's method for
522	estimating uncertainties based on (estimate - truth) statistics cannot provide an annual
523	uncertainty estimate for the one-year inversion and produces somewhat noisy results for
524	individual months. Therefore, to compare the regional and global inversions, we took the RMS
525	of the four monthly uncertainties. Our The uncertainty reduction for our regional inversion is
526	smaller thansimilar on average to that of the global inversion across all-biomes and also for the
527	continent as a whole for Case 1 (Figure 104c), with continent-level values of 78% and 72%,
528	respectively. despite There are larger differences between the regional and global inversions for
529	particular biomes. Although differences in prior uncertainty (Figure 10b) could possibly explain
530	the differences in uncertainty reduction for some of the biomes (subtropical/tropical, eastern
531	temperate, temperate coniferous, desert), they do not for the others (boreal, tundra, temperate
532	grassland/shrubland), suggesting that prior uncertainties are not the only factor producing the

533	spatial pattern in the comparison. the prior uncertainties being of similar magnitude on average
534	(Figure 11b). However, the continent-level uncertainty reductions are similar, at 78% and 83%,
535	respectively, suggesting that there are larger negative correlations in the posterior errors among
536	biomes in our analysis.
537	
538	
539	4. Discussion
540	4.1. Target and Threshold Requirements
541	We now discuss the implications of our analysis for the ASCENDS design.
542	Hungershoefer et al. [2010] suggested levels of posterior flux uncertainty on different
543	spatiotemporal scales that global CO ₂ measurement missions should strive for to allow for
544	answering key carbon cycle science questions. In the following, we evaluate our results relative
545	to those requirements, the only such specific guidelines for CO ₂ satellite missions in the
546	scientific literature.
547	Hungershoefer et al. suggested that to determine where the global terrestrial C sink is
548	occurring and whether C cycle feedbacks are occurring requires annual net carbon flux estimates
549	with a precision better than 0.1 Pg C yr ⁻¹ (threshold) or 0.02 Pg C yr ⁻¹ (target) at a scale of 2000
550	x 2000 km, similar to the biomes we consider. These precision levels are based on the range of
551	estimated fluxes across various biomes. The proposed A-SCOPE active CO2 measurement
552	mission defined a similar target requirement—0.02 Pg C yr ⁻¹ at a scale of 1000 x 1000 km
553	[Ingmann et al., 2008]. According to our results (Figure 104a), all tested ASCENDS cases
554	would meet the minimum threshold requirement across all biomes easily, with a posteriori
555	uncertainties ranging from 0.01 to 0.06 Pg C yr ⁻¹ . In addition, the two cases with 0.5 ppm error

556	would meet the more stringent target requirement for a majority of biomes, while the two cases	
557	with 1.0 ppm error would meet it for 3 out of 7 biomes. The meeting of the target requirement is	
558	a consequence of the information provided by the observations and not merely an effect of the	
559	specified a priori uncertainty, given that the a priori uncertainty is higher than the target level for	
560	all of the biomes with the exception of desert, the prior uncertainty for which is already at the	
561	target level. One measure of the contribution of the observations to meeting the target is shown	
562	in Figure 10e, which is a plot of the fractional uncertainty reduction necessary for different	
563	biomes to meet the target. The amounts are mostly greater than 50%, ranging up to 85% for	
564	eastern temperate.	
565		
566	4.2. <u>Sensitivity Tests:</u> Boundary Conditions, Uncertainties <u>A Priori Uncertainties</u>, and	
567	Correlation Lengths	
568	A simplifying assumption in this analysisour standard inversion is the neglect of	
569	uncertainties in the boundary conditions (b.c.). It is especially important in a regional inversion	
570	(Eulerian or Lagrangian) to accurately account for the influence of lateral boundary inflow on	
571	concentrations within the domain [Göckede et al., 2010b; Lauvaux et al., 2012; Gourdji et al.,	
572	2012]. Because we neglect b.c. uncertainties, we essentially assume that all of the information	
573	in the ASCENDS observations can be applied to reducing regional flux uncertainties rather than	
574	the combination of b.c. and flux uncertainties. Thus, the amount of flux uncertainty reduction	
575	reported here for our standard inversion is likely may be higher than it would be if we accounted	
576	for b.c. uncertainties.	
577	We conducted a test inversion for July (1.57 µm and 0.5 ppm error case) in which b.c. are	
578	added as parameters (specifically, weekly average CO ₂ mixing ratios over each of the four lateral	

Formatted: Subscript

579	walls of the domain) to be estimated in the state, with corresponding elements added to the
580	Jacobian. Given that the actual Jacobian values are not available, we prescribed values that are
581	somewhat realistic: 0.5 ppm ppm ⁻¹ if an observation occurs in the same week as or after a b.c.,
582	and 0 if an observation occurs before a b.c. We assumed a priori uncertainties of 1 ppm for the
583	b.c., with no correlations among b.c. uncertainties or between b.c. and flux uncertainties. As
584	expected, the reductions in flux uncertainty are smaller than the ones reported above, although
585	the differences are only a factor of 0.01 or less. Weekly uncertainties for the b.c. are reduced by
586	7-13%. A different experimental setup (e.g. larger Jacobian values for the b.c. or a larger
587	number of disaggregated b.c. parameters) could potentially result in a much larger effect on the
588	flux uncertainty reductions.
589	The magnitude of b.e. errors can be substantial. In addition to containing random errors,
590	b.c. can also be a source of systematic errors. For example, Gourdji et al. [2012] found that two
591	plausible sets of b.c. around North America generated inferred fluxes that differed by 0.7-0.9 Pg
592	C/yr on the annual, continental scale (which is a very large amount compared to the annual a
593	posteriori uncertainties for North America of 0.04-0.08 Pg C yr ⁻¹ that we estimated in our OSSE
594	(Figure 10-4a)). They concluded that b.c. errors may be the primary control on flux errors \underline{in}
595	regional inversions at this coarse scale, while other factors such as flux resolution, priors, and
596	model transport are more important at sub-domain scales.
597	Sparseness of observations has been a major cause of uncertainty in the boundary
598	influence in previous regional inversions. Lauvaux et al. [2012], who conducted mesoscale
599	inversions for the U.S. Midwest using tower measurements, found b.c. errors to be a significant
600	source of uncertainty in the C budget over 7 months. They estimated that a potential bias of 0.55
601	ppm in their b.c. translates into a flux error of 24 Tg C over 7 months in their 1000 km x 1000

602	km domain. Although they applied corrections to the model-derived b.c. using weekly aircraft
603	profiles at four locations near their domain boundaries, they stated that the b.c. uncertainties
604	were still large given the limited duration (a few hours per week) and spatial extent of the
605	airborne observations, and concluded that additional observations would be necessary to reduce
606	the uncertainties. ASCENDS is promising in this respect, as it (along with other satellites) will
607	provide more frequent and widespread observations of concentrations at regional boundaries,
608	possibly lowering lessening the role of b.c. in the overall C budget uncertainty to a minor one.
609	ASCENDS observations could specifically be used in a global CO ₂ data assimilation system to
610	provide accurate b.c. for the regional flux inversion.
611	Posterior uncertainties are generally sensitive to the assumed prior uncertainties, although
612	one might expect the sensitivity to not be so great in the case of a dense observational data set
613	such as the one examined here. We test this hypothesis with an alternative prior uncertainty
614	estimate, one that is uniformly larger than that for the standard inversion by a factor of 2. Figure
615	11a-d shows the ratio of the posterior uncertainty for the large-priors inversion to that for the
616	standard inversion, normalized by a factor of 2. Large areas of the domain have ratios
617	significantly less than 1, especially in July and October. Where the ratio is close to 1, the
618	posterior uncertainty is sensitive to the prior, indicating that the observations have a relatively
619	weak influence; where the ratio is significantly less than 1, the posterior uncertainty is not so
620	sensitive to the prior. The test demonstrates that the posterior uncertainty in many areas is not
621	highly sensitive to the prior uncertainty and is strongly influenced by the observations.
622	However, the sensitivity is high in the tundra and the desert, due to the tight (small) prior
623	constraints in those regions (Figure 3)

624	Although the posterior uncertainty is not highly sensitive to the prior in all areas, it still
625	increases everywhere in the large-priors inversion relative to the standard inversion, implying
626	that our findings regarding whether or not the observations meet the target requirement (Section
627	4.1) are dependent on the assumed priors. However, our standard priors are already enlarged
628	uniformly by a factor of 4 relative to one set of prior uncertainty estimates, and they would have
629	to be enlarged further over large areas to substantially increase biome-level posterior
630	uncertainties. In addition, the larger the prior uncertainties are, the larger the uncertainty
631	reductions are in general. Wherever the posterior uncertainty increases by a smaller factor than
632	does the prior uncertainty (e.g. where the ratio is less than 1 in Figure 11), the uncertainty
633	reduction increases. Altogether, the results of this sensitivity test suggest that it is important to
634	consider different measures of the impact of observations on flux estimates, such as posterior
635	uncertainty and uncertainty reduction, as we have done in this OSSE, given that different
636	measures can be affected differently by assumptions such as prior uncertainties.
637	The inversion results are potentially sensitive to the assumed a priori flux error
638	correlation lengths, with longer correlation lengths leading to more smooth uncertainty reduction
639	patterns and larger uncertainty reductions. Rodgers [2000] shows that the inclusion of a priori
640	error correlations can result in more "degrees of freedom for signal," i.e. more information
641	provided by the measurements on the unknowns. We carried out a test with alternative values
642	for the correlation lengths derived from the study by Chevallier et al. [2012]—a shorter spatial
643	correlation length of 200 km and a longer temporal correlation length of 35 days, for all months.
644	(We estimated these values from Figure 5a and b of Chevallier et al. for the ~100 km and 7-day
645	aggregation of our inversion.) The resulting uncertainty reductions are smaller everywhere than
646	those in our standard inversion at the grid scale, with values of up to 40% in July and up to 15%

Formatted: Not Highlight Formatted: Not Highlight

647	in January for Case 1 (compared to 45% and 25%, respectively, in the standard inversion).
648	Apparently, the decrease in the spatial correlation length relative to the standard inversion has a
649	larger effect than the increase in the temporal correlation length. Aggregated to the continent
650	and month, the uncertainty reduction is less than that for the standard inversion for all months
651	except July, for which the uncertainty reduction is marginally larger (Table 2). For July, the
652	impact of the much longer temporal correlation length relative to the standard inversion on the
653	aggregated result more than offsets that of the slightly shorter spatial correlation length. The
654	annual uncertainty reduction for the alternative inversion is slightly larger than that for the
655	standard inversion, because of the disproportionate influence of July, with its large a priori
656	uncertainty. We conclude that our inversion results vary moderately given two reasonable sets
657	of estimates for the a priori spatiotemporal error correlation lengths.
658	
659	4.3. Other Sources of Error
660	This analysis did not evaluate the impact of potential systematic errors (biases) in the
661	observations or the transport model, which are not well represented by the Gaussian errors
662	assumed in traditional linear error analysis [Baker et al., 2010]. Chevallier et al. [2007]
663	demonstrated that potential biases in OCO satellite CO_2 measurements related to the presence of
664	aerosols can completely negate the improvements to prior uncertainties provided by the
665	measurements for the most polluted land regions and for ocean regions. In another OCO OSSE,
666	Baker et al. [2010] found that a combination of systematic errors from aerosols, model transport,
667	and incorrectly-assumed statistics could degrade both the magnitude and spatial extent of
668	uncertainty improvements by about a factor of two over land, and even more over the ocean.
669	Thus, it will be important to control systematic errors in ASCENDS observations and the

670	transport model as well as minimizing random errors. Note that systematic observation errors
671	can be expected to decrease over the course of the mission as adjustments are made to the
672	measurement system and to the retrieval algorithms in calibration/validation activities.
673	
674	4.4. Other Considerations in Evaluating ASCENDS
675	The potential combined use of multiple wavelengths in the ASCENDS measurements,
676	e.g., various offsets from 1.57 μ m, could provide additional information on surface fluxes given
677	the sensitivities to concentrations at different levels of the atmosphere. Furthermore, other CO_2
678	datasets will certainly be available alongside the ASCENDS data (e.g. from in situ networks),
679	and the combination of datasets will provide stronger constraints on fluxes than any individual
680	dataset [Hungershoefer et al., 2010].
681	Our comparison of the results for the 1.57 and 2.05 μ m wavelengths over North America
682	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et
682 683	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar
682 683 684	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wavelength results in larger uncertainty
682 683 684 685	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wavelength results in larger uncertainty reductions over South America while performing less well than 2.0 µm over temperate and cold
682 683 684 685 686	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wavelength results in larger uncertainty reductions over South America while performing less well than 2.0 µm over temperate and cold regions. They attribute the better performance of 1.6 µm over South America to the strong
682 683 684 685 686 687	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wavelength results in larger uncertainty reductions over South America while performing less well than 2.0 µm over temperate and cold regions. They attribute the better performance of 1.6 µm over South America to the strong vertical mixing of air there, which lessens the disadvantage of that wavelength's having weaker
682 683 684 685 686 687 688	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wavelength results in larger uncertainty reductions over South America while performing less well than 2.0 µm over temperate and cold regions. They attribute the better performance of 1.6 µm over South America to the strong vertical mixing of air there, which lessens the disadvantage of that wavelength's having weaker sensitivity to the lower troposphere. (However, they used a simpler error formulation.) On the
682 683 684 685 686 687 688	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 μm wavelength results in larger uncertainty reductions over South America while performing less well than 2.0 μm over temperate and cold regions. They attribute the better performance of 1.6 μm over South America to the strong vertical mixing of air there, which lessens the disadvantage of that wavelength's having weaker sensitivity to the lower troposphere. (However, they used a simpler error formulation.) On the other hand, in our global inversion, 2.05 μm results in larger uncertainty reductions than 1.57 μm
682 683 684 685 686 687 688 689 689	may be less applicable to other parts of the world. The global OSSE study by Hungershoefer et al. [2010], which compared various observing systems, including a satellite lidar system similar to ASCENDS, A-SCOPE, found that the 1.6 µm wavelength results in larger uncertainty reductions over South America while performing less well than 2.0 µm over temperate and cold regions. They attribute the better performance of 1.6 µm over South America to the strong vertical mixing of air there, which lessens the disadvantage of that wavelength's having weaker sensitivity to the lower troposphere. (However, they used a simpler error formulation.) On the other hand, in our global inversion, 2.05 µm results in larger uncertainty reductions than 1.57 µm throughout the world, by 8% on average (for RRV error of 0.5-1.0 ppm).

693 5. Conclusions

694	We have conducted an observing system simulation for North America, using projected
695	ASCENDS observation uncertainty estimates and a novel approach utilizing a portable footprint
696	library generated from a high-resolution Lagrangian transport model, to quantify the surface CO_2
697	flux constraints provided by the future observations. We consider four possible configurations
698	for the active optical remote sensing instrument covering two weighting functions and two
699	random error levels. We find that the ASCENDS observations potentially reduce flux
700	uncertainties substantially at fine and biome scales. At the $1^\circx1^\circ$ grid scale, weekly uncertainty
701	reductions up to 30-45% (averaged over the year) are achieved depending on the presumed
702	instrument configuration. Relatively large uncertainty reductions occur year-round in southern
703	Mexico and the U.S. Pacific Northwest and seasonally in the southeastern and mid-western U.S.
704	and parts of Canada and Alaska, when and where there is good coverage by observations with
705	low uncertainties and a priori uncertainties are large. Uncertainty reductions at the annual,
706	biome scale range from ~40% to ~75% across the four experimental cases, and from ~65% to
707	${\sim}85\%$ for the continent as a whole. The uncertainty reductions for the 1.57 μm candidate
708	wavelength are on average 10% smaller than those for 2.05 μ m across the biomes <u>and the two</u>
709	<u>RRV reference error levels</u> , and for 0.5 ppm RRV reference error are on average \sim 25% larger
710	than those for 1.0 ppm error across biomes and the two wavelengths.
711	Our uncertainty reductions are substantially smaller than those of a global ASCENDS
712	inversion at the 4.5° x 6° scale of the latter's model grid and at the biome scale. The global
713	inversion benefits from the use of observations located around the world rather than in a limited
714	region, and it has fewer unknowns to be solved for within North America. On the other hand,
715	inversions at higher resolution enable investigation of biospheric and other processes at the finer

716	scales that are needed to understand the mechanisms for inferred CO ₂ flux variability and trends.
717	In addition, by reducing aggregation error, higher-resolution inversions can produce flux
718	estimates with less systematic error than those of lower-resolution inversions when aggregated to
719	the same scale.
720	Based on the flux precision on an annual, biome scale suggested by Hungershoefer et al.
721	[2010] for understanding the global carbon sink and feedbacks, ASCENDS observations would
722	meet a threshold requirement for all biomes within the range of measurement designs considered
723	here. The observations constrain a posteriori uncertainties to a level of 0.01-0.06 Pg C yr ⁻¹ , and
724	could thus help pin down the location and magnitude of long-term C sinks. With regards to the
725	more stringent target requirement, a subset of the instrument designs would meet the target for a
726	majority of biomes.
727	The results we have presented may be optimistic, as uncertainties in boundary conditions
728	and potential systematic errors in the observations, boundary conditions, and transport model that
729	we have neglected would degrade the flux estimates. Modifications to the size and location of
730	our regional domain, however, e.g. an eastward shift, could improve the constraints by satellite
731	observations on North American fluxes. In addition, our consideration of different measures of
732	the impact of observations on flux estimates, such as posterior uncertainty and uncertainty
733	reduction, strengthens the study, given that different measures can be affected differently by
734	
	assumptions such as prior uncertainties.
735	assumptions such as prior uncertainties. In future work, inversions in various regions (including, for example, South America)
735 736	assumptions such as prior uncertainties. In future work, inversions in various regions (including, for example, South America) with a more comprehensive treatment of error sources could more definitively establish the

answering global carbon cycle science questions.

740

741 Acknowledgments

- 742 Work at NASA and AER has been supported by the NASA Atmospheric CO₂ Observations from
- 743 Space program element and NASA ASCENDS Pre-Phase A activity funding. We are grateful to
- the NASA Ames HEC facility staff for assistance in executing the WRF-STILT runs on the
- 745 Pleiades supercomputer, and to the NASA HEC Program for granting use of the Dali and
- 746 Discover systems at the NASA Center for Climate Simulation. We also thank J. Abshire, E.
- 747 Browell, and R. Menzies for contributions to ASCENDS data characterization, G. J. Collatz for
- making available the CASA-GFED fluxes that we used to construct the a priori uncertainties, R.
- 749 Aschbrenner for help with the footprint calculations, S. Gourdji for providing correlation
- 750 parameters and the biome map, P. Rayner and A. Michalak for advice on inversions, M. Manyin
- and Y. Liu for computing help, L. Ott for help with transferring WRF-STILT files, and G. J.
- 752 Collatz and E. McGrath-Spangler for comments on the manuscript. Finally, we appreciate the

comments provided by two anonymous referees.

Formatted: Font: Not Bold

754

753

755 References

756		
757	Baker, D. F., Boesch, H., Doney, S. C., O'Brien, D., and Schimel, D. S. (2010), Carbon	
758	source/sink information provided by column CO2 measurements from the Orbiting Carbon	
759	Observatory, Atmos. Chem. Phys., 10, 4145-4165, doi:10.5194/acp-10-4145-2010.	
760	Basu, S., S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R.	
761	Langenfelds, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy (2013), Global	
762	CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13,	
763	8695-8717, doi:10.5194/acp-13-8695-2013.	
764	Bocquet, M., Wu, L., Chevallier, F. 2011. Bayesian design of control space for optimal	
765	assimilation of observations. Part I: Consistent multiscale formalism. Q. J. R. Meteorol. Soc.	
766	137: 1340–1356. doi:10.1002/qj.837.	
767	Brioude, J., Kim, SW., Angevine, W. M., Frost, G. J., Lee, S-H, McKeen, S. A., Trainer, M.,	
768	Fehsenfeld, F. C., Holloway, J. S., Ryerson, T. B., Williams, E. J., Petron, G., and Fast, J. D.	
769	(2011), Top-down estimate of anthropogenic emission inventories and interannual variability	
770	in Houston using a mesoscale inverse modeling technique, J. Geophys. Res., 116, D20305,	
771	doi:10.1029/2011JD016215.	
772	Brioude, J., Petron, G., Frost, G. J., Ahmadov, R., Angevine, W. M., Hsie, EY., Kim, SW.,	
773	Lee, SH., McKeen, S. A., Trainer, M., Fehsenfeld, F. C., Holloway, J. S., Peischl, J.,	
774	Ryerson, T. B., and Gurney, K. R. (2012), A new inversion method to calculate emission	
775	inventories without a prior at mesoscale: Application to the anthropogenic CO ₂ emission	Formatted: Subscript
776	from Houston, Texas, J. Geophys. Res., 117, D05312, doi:10.1029/2011JD016918.	
777	Brioude, J., Angevine, W. M., Ahmadov, R., Kim, SW., Evan, S., McKeen, S. A., Hsie, EY.,	
778	Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S.	

779	S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.	
780	(2013), Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale	
781	inverse modeling technique: assessing anthropogenic emissions of CO, NO _x and CO ₂ and	Formatted: Subscript
782	their impacts, Atmos. Chem. Phys., 13, 3661-3677, doi:10.5194/acp-13-3661-2013.	Formatted: Subscript
783	Butler, M. P., Davis, K. J., Denning, A. S., and Kawa, S. R. (2010), Using continental	
784	observations in global atmospheric inversions of CO2: North American carbon sources and	
785	sinks, Tellus, 62B, 550-572, doi:10.1111/j.1600-0889.2010.00501.x.	
786	Caron, J. and Y. Durand (2009), Operating wavelengths optimization for a spaceborne lidar	
787	measuring atmospheric CO ₂ , Appl. Opt. 48, 5413-5422.	
788	Chevallier, F., FM. Bréon, and P. J. Rayner (2007), Contribution of the Orbiting Carbon	
789	Observatory to the estimation of CO ₂ sources and sinks: Theoretical study in a variational	
790	data assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375.	
791	Crisp, D., Miller, C. E., and DeCola, P. L. (2008), NASA Orbiting Carbon Observatory:	
792	measuring the column averaged carbon dioxide mole fraction from space, J. Appl. Remote	
793	Sens., 2, 023508, doi:10.1117/1.2898457.	
794	Deng, F., D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C.	
795	O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M.	
796	Deutscher, D. W. T. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann,	
797	and T. Warneke (2014), Inferring regional sources and sinks of atmospheric CO ₂ from	Formatted: Subscript
798	GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703-3727, doi:10.5194/acp-14-3703-2014.	Formatted: Subscript
799	Dlugokencky, E.J., P.M. Lang, K.A. Masarie, A.M. Crotwell, and M.J. Crotwell (2013),	
800	Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle	

- 801 Cooperative Global Air Sampling Network, 1968-2012, Version: 2013-08-28, Path:
- 802 ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/.
- Eldering, A., Solish, B., Kahn, P., Boland, S., Crisp, D., and Gunson, M. (2012), High Precision

Formatted: Font: Not Italic

- Atmospheric CO_2 Measurements from Space: The Design and Implementation of OCO-2,
- 805 IEEE Aerospace Conference Proceedings, <u>1805-1814</u>.
- 806 Engelen, R. J., Denning, A. S., and Gurney, K. R.: On error estimation in atmospheric CO₂
- 807 inversions, J. Geophys. Res., 107, 4635, doi:10.1029/2002JD002195, 2002.
- 808 Enting, I. G., Trudinger, C. M. and Francey, R. J. (1995), A synthesis inversion of the
- 809 concentration and δ^{13} C of atmospheric CO₂. *Tellus 47B*, 35–52.
- 810 Feng, L., Palmer, P. I., Boesch, H., and Dance, S.: Estimating surface CO₂ fluxes from space-
- 811 borne CO₂ dry air mole fraction observations using an ensemble Kalman Filter, *Atmos*.
- 812 Chem. Phys., 9, 2619–2633, doi:10.5194/acp-9-2619-2009, 2009.
- 813 Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B. Stephens, P. S. Bakwin,
- and C. A. Grainger (2003), Towards constraining regional scale fluxes of CO₂ with
- 815 atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-
- 816 oriented framework, J. Geophys. Res., 108 (D24), 4757, doi:10.1029/2003JD003770.
- 817 Göckede, M., Michalak, A. M., Vickers, D., Turner, D. P., and Law, B. E.: Atmospheric inverse
- 818 modeling to constrain regional scale CO_2 budgets at high spatial and temporal resolution, J.
- 819 Geophys. Res., 115, D15113, doi:10.1029/2009JD012257, 2010a.
- 820 Göckede, M., D. P. Turner, A. M. Michalak, D. Vickers, and B. E. Law (2010b), Sensitivity of a
- subregional scale atmospheric inverse CO_2 modeling framework to boundary conditions, J.
- 822 *Geophys. Res.*, 115, D24112, doi:10.1029/2010JD014443.

823	Gourdji, S. M., K. L. Mueller, V. Yadav, D. N. Huntzinger, A. E. Andrews, M. Trudeau, G.			
824	Petron, T. Nehrkorn, J. Eluszkiewicz, J. Henderson, D. Wen, J. Lin, M. Fischer, C. Sweeney,			
825	and A. M. Michalak (2012), North American CO ₂ exchange: intercomparison of modeled			
826	estimates with results from a fine-scale atmospheric inversion, Biogeosciences, 9, 457-475.			
827	Gurney, K.R., D.L. Mendoza, Y. Zhou, M.L. Fischer, C.C. Miller, S. Geethakumar, and S. de la			
828	Rue du Can (2009), High Resolution Fossil Fuel Combustion CO ₂ Emission Fluxes for the			
829	United States, Environ. Sci. & Technol. 43 (14), 5535-5541, doi:10.1021/es900806c.			
830	Houweling, S., FM. Breon, I. Aben, C. Roedenbeck, M. Gloor, M. Heimann, and P. Ciais			
831	(2004), Inverse modeling of CO ₂ sources and sinks using satellite data: a synthetic inter-			
832	comparison of measurement techniques and their performance as a function of space and			
833	time, Atmos. Chem. Phys., 4, 523-538.			
834	Hungershoefer, K., FM. Breon, P. Peylin, F. Chevallier, P. Rayner, A. Klonecki, S. Houweling,			
835	and J. Marshall (2010), Evaluation of various observing systems for the global monitoring of			
836	CO ₂ surface fluxes, Atmos. Chem. Phys., 10, 10503-10520, doi:10.5194/acp-10-10503-2010.			
837	Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West, T. O., Jacobson, A. R., Baker,			
838	I. T., Chen, J. M., Davis, K. J., Hayes, D. J., Hoffman, F. M., Jain, A. K., Liu, S., McGuire,			
839	A. D., Neilson, R. P., Potter, C., Poulter, B., Price, D., Raczka, B. M., Tian, H. Q., Thornton,			
840	P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and Cook, R.: North			
841	American Carbon Program (NACP) Regional Interim Synthesis: Terrestrial Biospheric			
842	Model Intercomparison, Ecol. Model., 232, 144-157, doi:10.1016/j.ecolmodel.2012.02.004,			
843	2012.			
844	Hu, Y., K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang,			

B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-845

- 846 Maria, Sea surface wind speed estimation from space-based lidar measurements, Atmos.
- 847 Chem. Phys., 8, 3593-3601, 2008.
- 848 Ingmann, P.: A-SCOPE, Advanced space carbon and climate observation of planet earth, Report

for Assessment, SP-1313/1, ESA communication production office, Noordwijk, The

- Netherlands, 2008.
- 851 Kaminski, T., Rayner, P., Heimann, M., and Enting, I.: On aggregation errors in atmospheric
- transport inversions, J. Geophys. Res., 106(D5), 4703–4715, 2001.
- 853 Kaminski, T., Scholze, M. and Houweling, S.: Quantifying the benefit of A-SCOPE data for
- reducing uncertainties in terrestrial carbon fluxes in CCDAS, Tellus, 62B(5), 784–796, 2010.
- 855 Kawa, S. R., D. J. Erickson III, S. Pawson, and Z. Zhu (2004), Global CO₂ transport simulations
- using meteorological data from the NASA data assimilation system, *J. Geophys. Res.*, 109,
 D18312, doi:10.1029/2004JD004554.
- 858 Kawa, S. R., J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver (2010), Simulation
- studies for a space-based CO₂ lidar mission, *Tellus B*, doi:10.1111/j.1600-
- 860 0889.2010.00486.x.
- 861 Kort, E. A. et al. (2008), Emissions of CH₄ and N₂O over the United States and Canada based on
- a receptor-oriented modeling framework and COBRA-NA atmospheric observations,
- 863 Geophys. Res. Lett., 35, L18808, doi:10.1029/2008GL034031.
- 864 Kort E. A. et al. (2010), Atmospheric constraints on 2004 emissions of methane and nitrous
- oxide in North America from atmospheric measurements and receptor-oriented modeling
 framework, J. Integr. Environ. Sci., 7:2, 125-133.
- 867 Lauvaux, T., A. E. Schuh, M. Uliasz, S. Richardson, N. Miles, A. E. Andrews, C. Sweeney, L. I.
- 868 Diaz, D. Martins, P. B. Shepson, and K. J. Davis: Constraining the CO₂ budget of the corn

- 869 belt: exploring uncertainties from the assumptions in a mesoscale inverse system, Atmos.
- 870 Chem. Phys., 12, 337–354, doi:10.5194/acp-12-337-2012, 2012.
- 871 Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G.,
- 872 Peters, G. P., van der Werf, G., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G.,
- 873 Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K.,
- Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M.,
- 875 Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S.,
- and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data Discuss., 5, 1107-
- 877 1157, doi:10.5194/essdd-5-1107-2012, 2012.
- 878 Lin, J. C., C. Gerbig, S. C. Wofsy, B. C. Daube, A. E. Andrews, K. J. Davis, and C. A. Grainger
- 879 (2003), A near-field tool for simulating the upstream influence of atmospheric observations:
- 880 The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res.,
- 881 *108(D16)*, 4493, doi:10.1029/2002JD003161.
- 882 McKain, K., S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, J. R. Ehleringer, and B. B. Stephens
- (2012), Assessment of ground-based atmospheric observations for verification of greenhouse
 gas emissions from an urban region, Proc. Natl. Acad. Sci., 109, 8423-8428.
- 885 Miller, S. M. E. A. Kort, A. I. Hirsch, E. J. Dlugokencky, A. E. Andrews, X. Xu, H. Tian, T.
- 886 Nehrkorn, J. Eluszkiewicz, A. M. Michalak, and S. C. Wofsy (2012) Regional sources of
- 887 nitrous oxide over the United States: Seasonal variation and spatial distribution, J. Geophys.
- 888 Res., 117, D06310, doi:10.1029/2011JD016951.
- 889 Miller, S. M., S. C. Wofsy, A. M. Michalak, E. A. Kort, A. E. Andrews, S. C. Biraud, E. J.
- 890 Dlugokencky, J. Eluszkiewicz, M. L. Fischer, G. Janssens-Maenhout, B. R. Miller, J. B.
- 891 Miller, S. A. Montzka, T. Nehrkorn, and C. Sweeney (2013), Anthropogenic emissions of

- methane in the United States, Proc. Natl. Acad. Sci., 110(50), 20018-20022,
- doi:10.1073/pnas.1314392110.
- 894 National Research Council (2007), Earth Science and Applications from Space: National
- 895 *Imperatives for the Next Decade and Beyond*. Washington, DC: The National Academies896 Press.
- 897 Nehrkorn, T., J. Eluszkiewicz, S. C. Wofsy, J. C. Lin, C. Gerbig, M. Longo, and S. Freitas
- 898 (2010), Coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian
- 899 Transport (WRF-STILT) model, Meteor. Atmos. Phys., 107 (1-2), 51–64,
- 900 doi:10.1007/s00703-010-0068-x.
- 901 Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
- 902 Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J.,
- 903 Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and
- Kassem, K. R.: Terrestrial ecoregions of the world: a new map of life on earth, Bioscience,
 51, 933–938, 2001.
- 906 Peters, W., A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller,
- 907 L. M. P. Bruhwiler, G. Petron, A. I. Hirsch, D. E. J. Worthy, G. R. van der Werf, J. T.
- 908 Randerson, P. O. Wennberg, M. C. Krol, and P. P. Tans (2007), An atmospheric perspective
- 909 on North American carbon dioxide exchange: Carbon Tracker, *Proc. Nat. Acad. Sci.*, 104,
- 910 18,925-18,930.
- 911 Pillai, D., Gerbig, C., Marshall, J., Ahmadov, R., Kretschmer, R., Koch, T., and Karstens, U.:
- 912 High resolution modeling of CO₂ over Europe: implications for representation errors of
- satellite retrievals, Atmos. Chem. Phys., 10, 83–94, doi:10.5194/acp-10-83-2010, 2010.

- 914 Randerson, J. T., M. V. Thompson, and C. M. Malmstrom (1996), Substrate limitations for
- 915 heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO₂,
- 916 Global Biogeochem. Cycles, 10, 585-602.
- 917 Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999. Reconstructing the recent
- 918 carbon cycle from atmospheric CO₂, δ^{13} C and O₂/N₂ observations. *Tellus* **51B**, 213–232.
- 919 Rayner, P. J., and D. M. O'Brien (2001), The utility of remotely sensed CO₂ concentration data
- 920 in surface source inversions, *Geophys. Res. Lett.*, 28, 175–178.
- 921 Rienecker, M. M., et al.: MERRA: NASA's Modern-Era Retrospective Analysis for Research
- 922 and Applications, J. Climate, 24, 3624–3648, 2011.
- P23 Rodgers, C. D. (2000), *Inverse Methods for Atmospheric Sounding: Theory and Practice*. World
 Scientific.
- 925 Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., Andrews, A.
- 926 E., and Worthy, D. E. J. (2010), A regional high-resolution carbon flux inversion of North
- 927 America for 2004, Biogeosciences, 7, 1625–1644, doi:10.5194/bg-7-1625-2010.
- Skamarock, W. C. and J. B. Klemp (2008), A time-split nonhydrostatic atmospheric model for
 weather research and forecasting applications, *J. Comp. Phys.*, 227, 3465-3485.
- 930 van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F.
- 931 Arellano, Jr (2006), Interannual variability in global biomass burning emissions from 1997-
- 932 2004, Atmos. Chem. Phys., 6, 3423-3441.
- 933 van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C.
- 934 Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen (2010), Global fire emissions and the
- 935 contributions of deforestation, savanna, forest, agricultural, and peat fires (1997-2009),
- 936 Atmos. Chem. Phys., 10, 11707-11735, doi:10.5194/acp-10-11707-2010.

- 937 Wang, J. S., M. B. McElroy, J. A. Logan, P. I. Palmer, W. L. Chameides, Y. Wang, and I. A.
- 938 Megretskaia (2008), A quantitative assessment of uncertainties affecting estimates of global
- mean OH derived from methyl chloroform observations, J. Geophys. Res., 113, D12302,
- 940 doi:10.1029/2007JD008496.
- 941 Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and Maksyutov, S.
- 942 (2009), Global Concentrations of CO₂ and CH₄ Retrieved from GOSAT: First Preliminary
- 943 Results, SOLA, 5, 160–163, doi:10.2151/sola.2009-041.
- 944 Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn,
- and M. L. Fischer (2009), Atmospheric inverse estimates of methane emissions from Central
- 946 California, J. Geophys. Res., 114, D16302, doi:10.1029/2008JD011671.
- 947

948 Table 1. Spatiotemporal Correlation Parameters Used.

	Temporal correlation e-		
folding length (km)	folding length (days)		
481	17.2		
419	7.2		
284	6.9		
638	1.6		
	folding length (km) 481 419 284 638		

949

Table 2. Flux Uncertainties Aggregated to Entire Continent and Month or Year (Pg C yr⁻¹).

	January	April	July	October	Annual
Standard inversion					
A priori	0.42	0.78	1.26	0.82	0.24
A posteriori (uncertainty					
reduction)					
Case 1	0.24 (43%)	0.17 (78%)	0.15 (88%)	0.2 (76%)	0.05 (78%)
Case 2	0.33 (21%)	0.28 (65%)	0.26 (80%)	0.31 (61%)	0.08 (66%)
Case 3	0.18 (57%)	0.13 (83%)	0.12 (91%)	0.15 (81%)	0.04 (83%)
Case 4	0.28 (35%)	0.22 (72%)	0.2 (84%)	0.25 (69%)	0.07 (73%)
Inversion with alternative correl. lengths (200 km,			ays)		
A priori	0.23	0.59	1.27	0.59	0.21
A posteriori (uncertainty					
reduction)					
Case 1	0.17 (25%)	0.15 (74%)	0.14 (89%)	0.16 (73%)	0.04 (80%)

953 Figure Captions

Figure 3. A priori weekly flux uncertainty for a) January, b) April, c) July, and d) October.

965 Average fractional flux uncertainties over the domain are given in each panel (F \equiv flux). 1 µmol 966 m⁻² s⁻¹ = 1.037 g C m⁻² d⁻¹ = 4.4 × 10⁻⁸ kg CO₂ m⁻² s⁻¹.

Figure 4. Footprint maps for one simulated ASCENDS measurement location (marked by black star) on January 1, 2007 at 18 UTC, integrated over 10 days and convolved over the 500-14500 m AGL range with two candidate ASCENDS weighting functions: for the CO₂ laser lines at 2.05 μ m (top) and 1.57 μ m (bottom). Units are ppm/(μ mol/m²/s). Note that the native temporal resolution of the footprints is 3 hours; the 10-day integral in this figure is for illustrative purposes only. Only footprints over land are used in the analysis.

- 973 Figure 5. Jacobian values averaged over all observations and weekly flux intervals for a)
- 974 January, b) April, c) July, and d) October, for the 1.57 μm weighting function.

- **Figure 6.** A posteriori weekly flux uncertainty over a) January, b) April, c) July, and d) October,
- 976 for Case 1 (1.57 µm and 0.5 ppm RRV error). Shown here are RMS values from the first 4
- 977 weeks of each month. 1 μ mol m⁻² s⁻¹ = 1.037 g C m⁻² d⁻¹ = 4.4 × 10⁻⁸ kg CO₂ m⁻² s⁻¹.
- **Figure 7.** Weekly fractional flux uncertainty reduction over a) January, b) April, c) July, and d)
- 979 October, for Case 1 (1.57 µm and 0.5 ppm RRV error). Shown here are results from the first 4
 980 weeks of each month.
- 981 Figure 8. Weekly fractional flux uncertainty reduction (RMS over the 4 months) for a) Case 1
- 982 (1.57 µm and 0.5 ppm RRV error), b) Case 2 (1.57 µm and 1.0 ppm), c) Case 3 (2.05 µm and 0.5
- 983 ppm), and d) Case 4 (2.05 μm and 1.0 ppm).
- 984 **Figure 9.** a) Reduction in weekly flux uncertainty (RMS over 4 months) of the regional

985 inversion, aggregated to 4.5° x 6° resolution, and b) the global inversion results, which include
 986 ocean grid cells as well as land. Results in both panels are for the 1.57 μm wavelength and 0.5
 987 ppm error case.

Figure <u>940</u>. Biomes used, taken from Olson et al. [2001] with modifications by Gourdji et al.
[2012].

Figure 104. Results aggregated to biomes and continent, and compared with other studies. a) A priori and a posteriori uncertainties for the year, including results from Gourdji et al. [2012]. b) RMS of the four monthly uncertainties, including results from the global inversion. c) Fractional uncertainty reductions. d) Land area of the biomes. Gourdji et al. reported results for only the three biomes that were well constrained by their in situ observation network, along with results aggregated over the full continent; we show the approximate average of their "Simple" and "NARR" inversions. The figure does not include a priori uncertainties for Gourdji et al. since

uncertainty reduction necessary to
s inversion to that for the standard Formatted: Font: Bold
y, b) April, c) July, and d) October.
1