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Abstract

Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes
for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the
upper troposphere and lower stratosphere (UTLS) region. The observations indicate
a considerable flux of moisture from the upper tropical troposphere into the extra-
tropical lowermost stratosphere (LMS), resulting in the occurrence of high altitude op-
tically thin cirrus clouds in the LMS.

The locations of the LMS cloud events observed by CRISTA are consistent with
the tropopause height determined from coinciding radiosonde data. For a hemispheric
analysis in tropopause relative coordinates an improved tropopause determination has
been applied to the ECMWF temperature profiles. We found that a significant fraction
of the cloud occurrences in the tropopause region are located in the LMS, even if
a conservative overestimate of the cloud top height (CTH) determination by CRISTA
of 500 m is assumed. The results show rather high occurrence frequencies (~ 5 %) up
to high northern latitudes (70° N) and altitudes well above the tropopause (> 500 m at
~ 350K and above) in large areas at mid and high latitudes.

Comparisons with model runs of the Chemical Lagragian Model of the Stratosphere
(CLaMS) over the CRISTA period show a reasonable consistency for the retrieved
cloud pattern. For this purpose a limb ray tracing approach was applied through the 3-
D model fields to obtain integrated measurement information through the atmosphere
along the limb path of the instrument. The simplified cirrus scheme implemented in
CLaMS seems to cause a systematic underestimation in the CTH occurrence frequen-
cies in the LMS with respect to the observations. The observations together with the
model results demonstrate the importance of isentropic, quasi-horizontal transport of
water vapour from the sub-tropics and the potential for the occurrence of cirrus clouds
in the lowermost stratosphere and tropopause region.
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1 Introduction

A large proportion of the uncertainties of climate change projections by general circu-
lation models (GCMs) arises from poorly understood and represented interactions and
feedbacks between dynamic, microphysical, and radiative processes affecting cirrus
clouds (IPCC, 2014). Modelled climates are sensitive even to small changes in cirrus
coverage or ice microphysics (Karcher and Spichtinger, 2010). Fusina et al. (2007)
point out that the net radiative impact strongly depends on ice water content and ice
crystal number concentration. Small changes in the effective radius of the size distribu-
tions can substantially modify the surface temperatures.

Recent GCM studies (Sanderson et al., 2008; Mitchell et al., 2008) indicate that the
climate impact of cirrus clouds depends in particular on the fall speed of ice particles,
which in turn depends on ice nucleation rates (i.e. the concentrations of small ice crys-
tals). The overall net warming effect of cirrus clouds can be substantially reduced by
changing the concentrations of small ice crystals (i.e. the degree of bimodality) of the
particle size distribution (PSD). The size distribution strongly affects the representative
PSD ice fall speed. Mitchell and Finnegan (2009) investigated this sensitivity in more
detail and concluded that cirrus clouds are a logical candidate for climate modification
efforts.

The large uncertainties in climate prediction caused by processes involving cirrus
clouds highlight the importance of more quantitative information on cirrus clouds by
observations, especially for optically thin and small particle cirrus clouds like contrails
close to the tropopause, which may have an overall cooling effect in contradiction to
lower cirrus (Zhang et al., 2005). However, uncertainties for the climate feedback of
cirrus clouds are still very large and a substantial reduction is needed (IPCC, 2014).

In particular, the altitude region of the Upper Troposphere and Lower Stratosphere
(UTLS) plays an important role. Changes and variability of UTLS composition are ma-
jor drivers of surface climate change. Even small changes of spatially highly variable
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concentrations of water vapour (H,0) have significant effects on the atmospheric radi-
ation balance (e.g. Solomon et al., 2010; Riese et al., 2012).

Detailed understanding and modelling of the transport pathways of water vapour,
and consequently the realistic representation of total water (gaseous and condensed
form) in the UTLS region are therefore crucial for the correct representation of clouds
and water vapour in climate models. Comprehensive analyses are published on trans-
port processes from the troposphere into the stratosphere and tracer proportions of the
extra-tropical UTLS region (e.g. Hegglin et al., 2009; Hoor et al., 2010; Ploeger et al.,
2013). Rossby wave breaking (Ploeger et al., 2013) and mid-latitude overshoot convec-
tion (Dessler, 2009) result in transport and mixing of air masses into the extra-tropical
UTLS on short time scales (weeks). On seasonal time scales, downwelling by the deep
Brewer—Dobson circulation branch moistens the extra-tropical UTLS at altitudes above
450K (Ploeger et al., 2013). Aged air masses transported into the extra-tropical lower
stratosphere from above are moistened by methane oxidation and represent an impor-
tant source for water vapour in the middle stratosphere (e.g., Jones and Pyle, 1984;
Rohs et al., 2006).

The imprint of various water vapour transport ways into the lowermost stratosphere
on cirrus formation has been investigated in a limited number of studies (Dessler, 2009;
Montaux et al., 2010; Pan and Munchak, 2011; Wang and Dessler, 2012). The forma-
tion of cirrus clouds above the mid-latitude tropopause is discussed so far quite contro-
versially. Dessler (2009) found relatively high occurrence rates of cirrus above the mid
and high latitude tropopause in space borne lidar data of the Cloud and Aerosol Lidar
(CALIOP) instrument on the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observa-
tions (CALIPSO) (Winker et al., 2010). The analysis of Dessler (2009) shows cloud top
height occurrences above the tropopause of up to 30—40 % for mid-high and tropical
latitudes and still 0.1 % at 3 km or 40-50 K potential temperature above the tropopause.
Pan and Munchak (2011) (in the following abbreviated as PM2011) showed that accu-
rate tropopause definition and tropopause relative coordinates are important for this
type of analysis and reach significantly different conclusions based on the same set of
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measurements. They find substantially fewer clouds above the tropopause and in their
analysis the CALIOP data do not provide sufficient evidence of significant presence of
cirrus clouds above the mid-latitude tropopause. The remaining but evidential events in
the tropics show occurrences up to 24 % in the western Pacific and are usually located
between the cold point and the lapse rate tropopause (up to 2.5km above). PM2011
speculated that most of these clouds are triggered by gravity wave induced temper-
ature disturbances, which typically are observed above deep convection areas (e.qg.
Hoffmann and Alexander, 2010).

In contrast, cloud observations by mid-latitude lidar stations show frequent events at
and above the tropopause (e.g. Keckhut et al., 2005; Rolf, 2013). Many of them coincide
with the observations of a secondary tropopause (Noél and Haeffelin, 2007). Isentropic
transport and mixing of subtropical air masses with tropospheric high water values into
the mid-latitude and polar LMS may cause such events and Montaux et al. (2010), in
a case study, were able to reproduce the observation of such a cloud with an isentropic
transport model by implementing a simple microsphysical cloud model. However in
this study, the cloud was observed just at the tropopause and not significantly above.
Eixmann et al. (2010) investigated the dynamical link between poleward Rossby wave
breaking (RWB) events and the occurrence of upper tropospheric cirrus clouds for lidar
measurements above Kihlungsborn (54.1° N, 11.8° E). For three similar cirrus events
they found a strong link between low values of potential vorticity (a proxy for RWB
activity), enhanced up-draft velocities, and cloud ice water content. They concluded
that based on the climatology of poleward RWB events following the method of Gabriel
and Peters (2008) a parameterisation of the formation or occurrence of high and thin
cirrus clouds seems to be possible.

Although there are a couple of ground based lidar observations suggesting the pres-
ence of cirrus clouds in the lowermost stratosphere (LMS), a region strongly influenced
by isentropic (quasi-horizontal) transport of air masses from the tropics (Gettelman
et al., 2011), there are open questions: which microphysical process and specific me-
teorological conditions foster the formation of ice particles in this specific region, how
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frequently do these cirrus clouds occur on global scales, and are clouds tops or even
complete clouds significantly above the tropopause.

The currently most sensitive sensor in space for cirrus cloud observations is the
CALIOP lidar. Nonetheless, Davis et al. (2010) pointed out that the space lidar on
CALIPSO might miss 2/3 of thin cirrus clouds with vertically optical depth 7 < 0.01 in
its current data products. Clouds with such a very low optically thicknesses have been
observed by airborne lidars and in-situ instruments in the validation campaigns for
CALIPSO. Frequently these cloud layers showed IWC values smaller than 107 gm'3
(Davis et al., 2010).

Here we argue that IR limb sounding from space provide an alternative measure-
ment technique of high sensitivity for the detection of optically thin clouds (Mergen-
thaler et al., 1999; Spang et al., 2002; Massie et al., 2007; Griessbach et al., 2013),
subvisible cirrus (SVC) defined by the extinction range 2x 10™*-2x 1072 km™" (Sassen
et al., 1989), or the even thinner ultra-thin tropical cirrus (UTTC) (Peter et al., 2003; Luo
et al., 2003). The detection sensitivity for clouds of IR limb sounders is in the range of
spaceborne lidar measurements (Hopfner et al., 2009; Spang et al., 2012). A 100 km or
even 1km horizontally extended cirrus cloud is detectable by an IR limb sounder with
an ice water content (IWC) of 3 x 107 and 3 x 10‘4gm_3 respectively (Spang et al.,
2012), presupposed that the cloud fills completely the field of view of the instrument.
These values represent even better detection sensitivity than the current CALIOP cloud
products.

In this paper we like to present new analyses of measurements from the Cryo-
genic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument
during its 2nd Space Shuttle mission in August 1997 (CRISTA-2) (Grossmann et al.,
2002). Due to its unique combination of moderate spectral resolution, high horizontal
long track and cross track sampling, and good vertical resolution and sampling, the
CRISTA measurements are a unique dataset for IR limb sounders in spite of informa-
tion available from more modern satellite missions today. A reanalysis of the dataset
can add complementary information especially for optically thin clouds compared to
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nadir passive and active instruments as well as limb sounders in the uv-vis and mi-
crowave wavelength region. The characterisation of frequent observations of Northern
Hemisphere mid- and high-latitude cirrus clouds in respect to the tropopause (above
or below) are in the focus of the present study.

The paper is organised as follows. First we introduce the CRISTA instrument and
the applied data analysis methods followed by a section presenting the cloud top oc-
currence frequencies (COF) in respect to the tropopause. The comparison of CRISTA
water vapour and cloud measurements presented in Sect. 4 is suggesting a strong in-
fluence of horizontal transport processes of high water vapour values from the subtrop-
ics to the latitude of cloud formation. A comparison with a global transport model can
help to understand the origin and evolution with time of the cloud observations around
the tropopause. This is investigated in Sect. 5 with a Lagrangian transport model con-
taining a simple cirrus parameterisation.

2 Observations and analysis methods
2.1 CRISTA satellite instrument

The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA)
instrument measured roughly one week in the UTLS during two space shuttle mis-
sions in November 1994 and August 1997 (Offermann et al., 1999; Grossmann et al.,
2002). The measurements demonstrate the potential of the IR limb viewing technique
to provide information on several trace gas constituents (Riese et al., 1999a, 2002) and
clouds (Spang et al., 2002) with high spatial resolution. The spectral information in the
wavelength (1) region 4—15um is scanned with a resolution of 1/AA =~ 500, which is
equivalentto 1.6 cm™' at 830cm™". The vertical field of view (resolution) is in the order
of 1.5 km and a typical vertical sampling of 2 km was used during CRISTA-2. A horizon-
tal along-track sampling of 200 to 400 km was applied, depending on the measurement
mode. An across-track sampling of ~ 600 km was achieved by using three telescopes
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for three viewing directions simultaneously. A typical measurement net in the North-
ern Hemisphere is illustrated in Fig. 1. Due to the overlapping orbits and the 57° orbit
inclination an even higher horizontal cross-track sampling becomes obvious at high
northern latitudes (~ 200 km for north of 60° latitude). The spectrometers and optics
were cryogenically cooled by helium to allow for measurements in the middle and far
infra-red (4—70 pm).

The instrument was hosted by the free-flyer system ASTRO-SPAS (Wattenbach and
Moritz, 1997). The accuracy of the attitude system of the platform which was also
used for two astronomic missions is excellent. The final pointing accuracy in the limb
direction for the three viewing directions is in the order of 300 m (Riese et al., 1999a;
Grossmann et al., 2002). The effect of refraction through the atmosphere in the limb
direction is considered in the tangent height determination and can reduce the actual
tangent height by up to ~ 300 m at 12 km altitude. This correction is crucial for the cloud
top height determination in the next section.

Here, we focus on the CRISTA-2 mission which took place from 8 to 15 August
in 1997. Details on the instrument, the mission, and the specific water vapour re-
trieval are given in Grossmann et al. (2002); Offermann et al. (2002); and Schaeler
et al. (2005) respectively. For the water vapour retrieval the continuous spectral scans
of the spectrometers allow the selection of a spectral water vapour feature most suit-
able at tropopause altitudes (at a wavelength of 12.7 um). An onion peeling retrieval is
applied to the CRISTA measurements (Riese et al., 1999; Schaeler and Riese, 2001)
and has the advantage of no upward propagation of errors to altitudes levels above
optically thick clouds, even if the spectrum is not removed from the retrieval. The con-
tamination by the strong cloud emissions and scattering processes in the correspond-
ing IR spectra are too complex to model accurately in the retrieval process, and these
measurements are not taken into account in the water vapour distributions presented
later. The absolute accuracy of the water vapour retrieval is estimated to be 22 % (Of-
fermann et al., 2002), though it is better at specific altitudes (10 % at 215hPa). The
precision is estimated to be 8-15 % (Schaeler et al., 2005).
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2.2 CRISTA cloud detection

In the following special emphasis is put on cloud top height (CTH) observations at NH
mid-latitudes in respect to the tropopause, where isentropic horizontal transport of wa-
ter vapour from the subtropics to high latitudes may trigger cirrus formation in LMS.
The cloud detection for IR limb sounders has been investigated in detail over the last
decade (Spang et al., 2012, and references therein). For spectrally resolved measure-
ments simple colour ratio based methods are shown to be robust and accurate for the
detection of cloudy spectra (e.g. Spang et al., 2001; Sembhi et al., 2012). For the follow-
ing analyses the cloud index (Cl) is defined by the colour ratio of the mean radiances
from 788 to 796 cm™' divided by the mean radiances from 832 to 834 cm'1, which was
already applied to various airborne and spaceborne limb IR instruments (e.g. Spang
et al., 2002, 2004, 2007). The corresponding CTH is the first tangent height where ClI
falls below the defined threshold value (Cly,.s). The left panel of Fig. 2 illustrates a CI
profile with the transition from clear sky conditions (8 > Cl > 4.5) to cloudy conditions
(~ 4> Cl > 1.1), where optically thick conditions are in line with a Cl-value of ~ 1.2.

Various studies have shown that the detection sensitivity is linked to the detection
threshold and depends to some extent on the seasonal variation in the trace gas con-
centrations in the applied spectral windows (e.g. Spang et al., 2012). The main limiting
effect of the cloud index method are high water vapour continuum emissions (for mixing
ratios > 500 ppmv) in the mid troposphere and below. Under such conditions a definite
discrimination between clouds and high water becomes difficult (Spang et al., 2004,
2007).

Cloud top heights detected with a cloud index threshold value of Cly, s = 3 are pre-
sented in Fig. 1. Inhomogeneities in the measurement net are caused by special mea-
surement modes, where the free-flyer was pointed to specific regions of interest (e.qg.
the warm pool region over Micronesia or validation sites). The dense horizontal cover-
age of the measurement net over 24 h (here presented for 9 to 10 August 1997, noon
to noon) allows to track the horizontal transport patterns of trace gases for example
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streamers (e.g. Riese et al., 1999a, 2002) in conjunction with meteorological parame-
ters like the potential vorticity (PV). Figure 1 shows PV contours for the 350 K isentrope.
All meteorological data used in this study are from the ERA Interim reanalysis dataset
provided by the European centre for medium-range weather forecasts (ECMWF) (Dee
al., 2011). The CTH distribution and PV contours are suggesting a link between the dy-
namical features of horizontal transport processes like Rossby wave breaking events
(e.g. Juckes and Mclntyre, 1987) and the presence of high cirrus clouds. Contours of
low PV (4 and 8 PVU, with 1 PVU = 10"®Km?kg~'s™") are highlighting elongated air
masses from the subtropics to mid and high latitudes where coincidently high altitude
clouds appear in the CRISTA observations.

High CTHs (> 12km) are frequently present at mid (40-60° N) and even at high geo-
graphic latitudes (> 60° N) in regions of low PV. Nearly all of these high CTH locations
show PV values greater 2 PVU, a common threshold for the dynamical tropopause in
the subtropics (Holton et al., 1995), and marked in Fig. 2 by black circles. Whether
these clouds are really formed in the LMS and not just below the tropopause is matter
of particular interest in this study. In addition, for exploring clouds in the vicinity of the
tropopause it is important to quantify the uncertainties in cloud top and tropopause
height as good as possible. The following sections will present more details on the
analysis method and error estimates of both parameters.

2.3 Uncertainties in cloud top height determination

The retrieved CTH from the CRISTA radiance profiles depends not only on the CI
threshold values but also critically on the vertical sampling of the instrument (typically
2km during CRISTA-2, see Fig. 2) and the vertical size of the field of view (FOV) of
the instrument. The FOV of CRISTA is very well described by a Gaussian function with
a full width half maximum (FWHM) of 2.624 arcmin, which is equivalent to ~ 1.5km at
15 km tangent height (Offermann et al., 1999) and corresponds to a standard deviation
of Oy = 625 m.
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Uncertainties in the CTH are dominated by effects of the vertical FOV. If an optically
thick cloud is only filling the lower part of the FOV, the attributed CTH may overesti-
mate the real CTH. This potential error source was investigated in detail by modelled
cloud index profiles for various cloud conditions and background atmospheres (Fig. 3).
We calculated radiance profiles of the analysed wavelength regions to compare the
cloud index for varying cloud altitude (6—20 km) and layer thickness (0.5 and 2 km),
and extinction ¢. Simulations were carried out with the line by line radiative transfer
code RFM (Dudhia et al., 2002). Scattering processes were neglected. For a full set of
simulations a realistic parameter space was chosen, i.e. CTHs between 6 and 16 km,
different reference gas atmospheres, cloud extinctions from 10" to 10™*km™" at a
wavelength of 12 um, and box type cloud layers with vertical extension iof 0.5, 1, and
2km. The calculations were performed on a 100 m vertical gird. The pencil beam ra-
diance profiles were afterwards convolved with the FOV. By comparing the input CTH
and the simulated CTH we estimate the maximum error in CTH for multiple Cl thresh-
olds (grey vertical lines in Fig. 3). Four different threshold values (1.2, 2, 3, 4) have
been investigated for the various cloud layer extinctions and cloud vertical thickness.
A detection threshold of 4 and 4.5 was applied for the Michelson Michelson Interfer-
ometer for Passive Atmospheric Sounding (MIPAS) instrument (Fischer et al., 2008) in
various studies for the detection of the usually optically thin PSCs (e.g. Spang et al.,
2003; Hopfner et al., 2005). Sembhi et al. (2012) showed that Cly,.s values up to 6 are
acceptable for the MIPAS measurements depending on the latitude and altitude region
of interest.

Figure 3 shows the CI profiles of the pencil beam simulations and the CI pro-
file with the FOV convolution for a homogeneous cloud layer for an optically thin
(e=3x 1073 km'1) cloud between 10 to 12km (CTH =12km) and an optically thick
(e = 107" km‘1) cloud between 11-13km (CTH = 13km). The conservative threshold
Clyes = 1.2 detects only optically thick clouds and consequently the CTH is under-
estimated due to the FOV effect. Optically thinner clouds are only detectable with
a less stringent threshold (Cl > 1.8, Spang et al., 2005a). The analysis for Cly,es = 2
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shows a maximum possible CTH error (A, ,) of 0.6km for all simulations. Higher
thresholds result in higher detection sensitivity but cause higher uncertainties in CTH
(Amaxz = 0.9km for Cly, e = 3 and A44 = 1.4 km for Cly, s = 4) for optical thick clouds
with € > 10~ km™". Optically thinner clouds usually cause smaller maximum CTH er-
rors.

However, the optically thin and thick example in Fig. 3 show that higher detection sen-
sitivity will cause an overestimation of the CTH, in the examples for 0.8 and 1.25km
for Cly,es = 4. In addition it should be noted that the actual CTH error of a measure-
ment depends not only on Cly,s, but also on the relative distance of the measured
tangent heights to the actual “real” cloud top (sampling). For CRISTA measurements
the distances of the tangent point to the “real” CTH in the atmosphere are statistically
almost equally distributed with a maximum distance of +£1 km due to the 2 km vertical
sampling. The A« values above are errors of a worst case scenario and represent the
upper extreme of the FOV effect. Half of all detections of optically thick clouds will have
a Agty smaller than A, /2, due to the fact that the FOV error for optical thick clouds
declines linearly with declining difference between the sampled observation height and
the “real” CTH (see Fig. 3).

In conclusion, the mean CTH error due to the FOV (for optical thick clouds) Agqy
is consistent with A,,,/2. For optically thinner clouds A,,, becomes systematically
smaller (e.g. compare Fig. 3a for thin and Fig. 3b for thick conditions) and for the more
stringent Cly, s = 2 these clouds are only detectable at an observations height below
the actually “true” CTH (negative CTH errors in Fig. 3a). In the following analyses
we used two thresholds, Cly,s = 2 and Cly,s = 3, for optimisation and best trade-off
between quantified FOV effects and best detection sensitivity for optically thin clouds.
The chosen Cl values are equivalent to extinction coefficients of € >~ 5x 1 0~ km~" and
e>~2x10km™ respectively, and correspond to Agqy, = 250 m and Aggys = 450 m.

It is certainly a strong overstatement to postulate optical thick conditions for all po-
tential cirrus cloud detections around the tropopause. How frequently cirrus clouds in
the limb appear as optical thick or thin, equivalent to large and small positive biases,
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is unknown and therefore difficult to quantify. The slanted ice water path (IWP), the
IWC integrated along the line of sight (Spang et al., 2012, and also Sect. 5.4), deter-
mines the actual optically thickness of the measured spectrum in the limb direction.
Radiative transport model calculations for a characteristic diversity of cirrus size dis-
tribution parameter (Griessbach et al., 2014) under the assumption of vertically and
horizontally homogeneous cloud layers show that the largest FOV induced CTH er-
rors Apax (for e > 107" km‘1) can be generated from a cloud layer with IWC >~3 ppmv
(>0.5mg m‘s) (Spang et al., 2007; Fig. 5). This is a common value in INC in-situ mea-
surements in the upper troposphere, typically close and or slightly greater than the
typical median values (Kramer et al., 2009) in the corresponding temperature range of
the CRISTA measurements. Consequently, it is very likely that the CRISTA statistics
also include a certain amount of underestimated CTHs by optically very thin clouds
(IWC <« 3ppmv).

Uncertainties in CTH determination from broken cloud segments along the line of
sight in combination with the horizontal integration of the limb information and from
the cross track extension of the FOV (30 arcmin, ~ 15km) are not considered in the
present analysis. However, both effects cause a reduction in detection sensitivity and
results in an underestimation of the CTH in respect to the true CTH. Consequently
falsified detections above the local tropopause can be excluded by these two effects.

2.4 Radiosonde data

In this study we used the radiosonde station composite data from the University of
Wyoming, Department of Atmospheric Science. For August 1997, a time period embed-
ding the complete CRISTA-2 mission, around 5000 radiosonde launches were available
for coincident comparison of tropopause location with respect to CTHs from CRISTA
and for the global validation of an improved tropopause determination with the ERA
Interim dataset (Sect. 2.5) at mid and high northern latitudes. Figure 2 illustrates a co-
incident radiosonde temperature, relative humidity (RH) and ice saturation temperature
profile in comparison to the CRISTA cloud index profile. The cold point tropopause is
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clearly visible in the blue temperature profile. The horizontal lines are indicating the re-
trieved CTH from Cl and lapse rate tropopause based on coincident ERA Interim tem-
peratures (details see Sect. 2.5). Usually radiosonde RH measurements around the
tropopause have a low accuracy and act more like a qualitative measure of humidity.
Nevertheless, RH and the ice saturation temperature profile indicate atmospheric con-
ditions around the tropopause that allow for the existence of ice. This is in coincidence
with the slightly higher cloud layer detected by CRISTA, where CTH and tropopause
height (TPH) are suggesting a cloud above the local tropopause.

2.5 Improved determination of the lapse rate tropopause for ERA Interim

Accurate tropopause height determination is crucial for the location of cloud events with
respect to the tropopause as PM2011 already showed for the CALIPSO cloud detec-
tion. For our analyses we used the ERA Interim reanalysis data on hybrid coordinates
(Dee et al., 2011) with original model resolution (60 levels and 600—1000 m resolution
around the tropopause) for the computation of the tropopause height. A three step
approach is applied to the data. (1) For each CRISTA tangent height the surrounding
four ERA temperature and geopotential height profiles are determined. Then the lapse
rate tropopause was defined for each profile as the lowest pressure (altitude) level at
which the lapse rate is 2 Kkm™" or less. The lapse rate should not exceed this thresh-
old for the next higher levels within 2km (WMO, 1957). The vertical resolution of the
retrieved TPH cannot be better than the vertical grid resolution of the temperature data
and hence, can produce a significant positive bias for analyses with tropopause related
altitude coordinates (PM2011). In step (2) we applied a vertical spline interpolation with
30 m vertical resolution to the temperature profile around the actual TPH of step 1 and
repeated the TPH computation with the artificially higher vertical resolution. Finally, in
step (3) the weighted mean with distance of the four surrounding grid points of the ob-
servation point represents now the so-called high resolution tropopause height (TPH,).
By this approach of tropopause determination a more realistic lapse rate tropopause
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was found, because the single TPH values are not attached to the altitude grid points
of the analysis data anymore.

Comparisons with radiosonde data set for August 1997 show a good correspon-
dence between the TPH,,, and the lapse rate tropopause of the radiosonde for the
coincidences with CRISTA profiles (see also Fig. 2). A statistical analysis of the differ-
ence in TPH between 5304 sonde profiles in the latitude range 30° N and 80° N and the
ERA Interim based TPH,, for August 1997 showed a mean difference of 0.015km and
a standard deviation of 650 m. The latter value is exactly the same value as found in
the analysis of PM2011 for a comparison between radiosonde and National Center of
Environmental Prediction Global Forecast System (GFS) data for a June-July-August
season in 2007. The good correspondence gives us confidence that the described
TPH,, is the best possible and reliable approach for a tropopause determination for
each CRISTA profile. In addition, the standard deviation of the differences appears to
be a realistic estimate for the uncertainty of TPH,,.

3 CRISTA cloud top height occurrence with respect to the tropopause
3.1 Tropopause derived from radiosonde data

A comparison of tropopause heights determined from radiosonde measurements with
the detected CTHs in the tropopause region allows a first quantitative assessment of
the indication for frequent observation of optically thin clouds by CRISTA in the LMS
like illustrated in Fig. 1. A miss time of 2h and miss distance of 200 km coincidence
criteria were chosen to minimise uncertainties in the comparison. For 158 CTH detec-
tions close to the tropopause and north of 40° N (with Cly,es = 3, CTH-TPH > -500 m,
and TPH defined from co-located ERA Interim temperatures) we found 188 coincident
radiosonde profiles. The tropopause of 62 radiosonde profiles (~ 33 %) is pinpointed
more than 500 m below the coincident CTH of CRISTA. This indicates a remarkable
fraction of clouds well above the tropopause and emphasizes the question if these high
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altitude clouds in the LMS are a common feature or a rare incidence. However, the only
limited number of good coincidences between CRISTA and radiosonde measurements
with respect to adequate miss time and distance criteria allows no profound conclu-
sions on this question. A statistical analysis of all cloud observed in the tropopause
region together with the collocated tropopause heights based on ERA Interim may
solve this problem.

3.2 Statistical analysis with tropopause derived from ERA Interim

For the statistical analysis of cloud occurrences around the tropopause we choose
a vertical coordinate independent of the temporal and spatial location of the
tropopause. Therefore thermal tropopause relative coordinates are applied in the fol-
lowing similar to PM2011. These coordinates are used extensively in chemical tracer
analyses (e.g. Tuck et al., 1997; Pan et al., 2007; Kunz et al., 2013) and temperature
profile analyses (e.g. Birner et al., 2006). The actual distance of a detected CTH to the
tropopause is defined by Agry = CTH,; — TPH; where the index / is attributed to an indi-
vidual measurement profile. For displaying results it is often more helpful to adjust the
reference altitude to the mean tropopause height (TPH,c,,)- The tropopause related
altitude Z, is then defined by:

Z, =Etrop"'(z_ztrop)1 (1)

with Z the observations altitude or the CTH, Z,,, the individual tropopause, and Zrop

for example a daily or monthly zonal mean tropopause. Here we use for Zy,,, the zonal
mean tropopause during the CRISTA-2 measurement period.

Figure 4 presents the results of CTH height occurrence frequencies (COF) in re-
spect to the single profile tropopause location defined by the approach above and
a vertical grid size of 0.5 km. Latitude bands covering the whole Northern Hemisphere
observations by CRISTA have been defined for the tropical (0—20° N), subtropical (20—
40° N), mid (40-60° N) and high latitudes (60—-75° N). The vertical distributions are very
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different for the various latitude bands. A joint feature is the location of the maximum
in COF in a layer 0.75 to 1.25km below the tropopause for almost all latitude bands.
In parts this is caused by the limb geometry. The probability to detect a cloud along
the line of sight located above the actual tangent height is enhanced with penetrating
deeper into the troposphere. This effect causes artificially overestimated COFs below
the real maximum in the COF distribution and is especially a large bias in the tropics,
where horizontally small extended and patchy distributed cloud systems (< 50 km), e.qg.
by deep convection events, are generating unrealistic high COFs in limb observations
(Kent et al., 1997; Spang et al., 2012). Note that CTHs assigned to such observations
are actually low biased.

Only the subtropics show the COF maximum at slightly lower altitudes. But more re-
markable, generally very low COF values are found around the tropopause compared
to the three other latitude bands. This local minimum at 20—40° latitude in cloud prob-
ability has been already observed in various limb sounder observations around the
tropopause (e.g. Wang et al., 1996; Spang et al., 2002, 2012).

Figure 4 presents the COF values for both Cl threshold values. The frequencies for
Clires = 3 are systematically higher than for the less sensitive threshold Cly, s = 2, and
more clouds are detected well above the predefined tropopause and also above the
maximum in the COF distribution. For the more sensitive detection method Clyj,,es = 3
a COF of 3 and 4% (217 events in total) is found in the altitude grid box 500—1000 m
for mid- and high-latitudes respectively. Even in the 1000-1500 m grid box above the
tropopause COFs of ~ 1% are observed in both latitude bands (59 events). These
COF values above the tropopause indicate significantly larger occurrence rates than
found in ground based lidar observations (e.g. Noel and Haeffelin, 2007; Rolf, 2013).
The typically observed frequencies of 4—10 % of cross tropopause cirrus were referred
to the total number of lidar profiles with cirrus clouds and not to the total number of ob-
servations (cloudy and non-cloudy) such for the satellite data. An equivalent approach
would result in significantly smaller COF values for the lidar measurements.
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In addition, the tropics show a pronounced local maximum well above the
tropopause. The 100 m running mean statistic of 500 m grid boxes (red symbols) indi-
cates that the feature is not a sampling artefact caused by an interplay of the measure-
ment altitudes with the vertical gridding of the COF analysis. This interesting feature
will be studied in more detail in a future study.

3.3 Significance tests of cloud top occurrence distribution

We have investigated in detail how the measurement uncertainties of the tangent point
altitude, tropopause height, and cloud top height (Sect. 2) might influence or even
falsify the COF statistics. Where TPH and tangent altitude errors are well described by
Gaussian distribution (with corresponding standard deviations), the CTH error (Agth)
caused by the vertical FOV effect for optically thick clouds acts like a positive bias in
the cloud top height determination.

Monte Carlo (MC) simulations with the CRISTA measurement ensemble of cloudy
and non-cloudy profiles have been performed taking into account (a) statistical and (b)
systematic error sources. For both types of simulations all CTHs above the tropopause
were excluded from the dataset and the remaining CTH observations have been mod-
ified by a randomly distributed statistical uncertainty or a systematic positive offset
value with a Gaussian amplitude. The results show that a statistical (noise) errors like
the TPH uncertainty with o1py = 650 m or even an overestimated value of 1000 m can-
not reproduce the measured vertical COF distribution and cannot create the relative
large COFs observed above the tropopause.

For testing the systematic errors we applied to all CTH observations below the
tropopause a FOV-like, Gaussian-shaped, and only positive offset distribution. This
approach is equivalent to the assumption that all clouds below the tropopause are
optically thick (upper limit), are creating a positive offset, and are detected with the
randomly distributed observation heights of CRISTA. The results for |ogqy| = 750 m,
a larger value than the real CRISTA orgy = 625m, show comparable COF distribu-
tions for mid and high latitudes and can create similar COF values above tropopause
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to the original statistic. Larger |0rqy| produces overestimated COF values well above
the tropopause (> 1.5 km), significant underestimates below the tropopause, and can
be excluded. Surprisingly, the MC simulations were not able to reproduce the tropical
COF distribution with the positive bias approach. These two negative tests, large |orqy|
and irreproducible tropical COF distribution, are additional constraints for a systematic
and large FOV effect above the tropopause. In addition it is very unlikely that all clouds
around the tropopause are optically thick (only < 50 %, see Sect. 2.3). Consequently
it is very unlikely that this type of clouds is responsible for an artificial enhancement in
COF above the tropopause like observed by CRISTA in Fig. 4.

An additional and substantial argument against a large systematic FOV effect is the
different behaviour between tropical and mid/high latitudes in the measurements com-
pared to the simulations. A positive bias for optical thick clouds should modify the pro-
nounced maximum peak 1km below tropical tropopause in the following way and is
confirmed in the MC simulations: the observations would show a broader distribution
and a significant extent of enhanced COF values in direction to higher altitudes similar
to the mid and high latitudes. But this behaviour is not observed in the tropical measure-
ments (Fig. 4a). A shift to higher altitudes can be reproduced in the error simulations
with |orgy| = 750 m, but contrariwise it is creating strong enhanced COFs just below
tropopause and reduced values below. The overall effect in the simulations, a positive
shift of the whole distribution, is not observed in the original data.

In conclusion, taken all uncertainties into account the CRISTA COF distribution indi-
cates a significant amount of cirrus cloud observations in the lowermost stratosphere.
To our knowledge this is the first time such findings are reported for space-borne limb
measurements.

3.4 Comparison with CALIPSO

For a brief comparison with the CALIOP lidar on CALIPSO results from PM2011 are

superimposed in Fig. 4 for tropical and mid-latitude observations. For mid-latitudes

CRISTA and CALIOP show very similar results at the tropopause and although time
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period and observations geometry are very different (7 day mean vs. multi annual sea-
sonal mean and limb vs. nadir). In this region even the absolute COF values are in
close agreement. However, in the grid boxes 500—-1000 m and 1000-1500 m above the
tropopause CRISTA detected ~ 2 times more clouds than the CALIPSO climatology.
Below the tropopause the limb sounder statistic shows a substantial larger maximum
in COF. This is primarily due to the long limb path integration and the artificially en-
hanced number of cloud detections well below the tropopause by higher altitude cloud
fragments along the line of sight, and only secondary due to the better detection sen-
sitivity for horizontally extended clouds in the limb compared to the short nadir viewing
direction.

The tropical distribution looks more different, especially below the tropopause, where
again the overestimation due the limb geometry plays a role. At the tropopause
(£500m), where this effect is negligible, both instruments show similar COFs. Well
above the tropopause (500 to 1500m) CRISTA COFs are again significantly larger
than CALIPSO and indicate the presence of optically very thin clouds, which are cur-
rently not detected in the CALIPSO data products (see also Sect. 1). It should be noted
that the CALIOP instrument may have observed these clouds, but the current detec-
tion threshold of the operational data products is not capable to detect ultra thin cirrus
clouds. This was already shown by Davis et al. (2011) in a validation study with airborne
lidar and in situ particle measurements. Modified detection schemes with larger hori-
zontal averaging of the high resolution Level 1 profile data of CALIOP (e.g. 30 or 50 km
instead of currently 5km) will substantially improve the detection sensitivity for ultra
thin cirrus clouds (M. Vaughan, personal communication, 2014). The current detection
limit for cirrus clouds averaged horizontally to 5km for the 532 nm extinction channel
is in the range of 0.005 and 0.02 km~', which represents an equivalent IWC of 0.1 to
4mg m™3 (Avery et al., 2012). However, the IR limb sounder detection limit for IWC is
depending on the horizontal extent of the cloud considerably better. For a 100 km or
1 km horizontal extended cloud along the line of sight an IWC detection threshold of
0.003 and 0.3mg m~2 is achievable (Spang et al., 2012).
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4 Horizontal distribution of water vapour and clouds in the UTLS
4.1 Cloud top height distributions

Four days during CRISTA-2 have a measurement net dense enough for hemispheric
analyses of horizontal structures in cloud and trace gas distributions. Figure 5 presents
the daily cloud top height distribution detected with the algorithms described in
Sect. 2.2 for 10 to 13 August at midnight £12h. Potential temperature (©) has been
used as vertical coordinate and CTHs in km are converted to © by coincident ERA
Interim temperature and geopotential height information. Only clouds detected in the
altitude range 330 to 370K are presented, an atmospheric layer usually located in the
lower half of the lowermost stratosphere (LMS) at mid and high latitudes, and clearly in
the upper troposphere and tropopause region for the tropics and subtropics.

The observations show frequent high cloud top © (Oq7y) events in regions where
elongated PV contours as well as horizontal winds (green contours) are suggesting
strong horizontal transport and mixing processes extending from mid latitudes (~ 40° N)
to high northern latitudes. Main regions are over the eastern pacific with extension in di-
rection to Alaska, the north-eastern US directed to Greenland, from North-Atlantic and
Central-Europe towards northern Scandinavia and the Baltic region, and from China
towards Siberia. High altitude clouds are observed up to the northern edge of the
CRISTA measurements at 74° N (e.g. over northern Scandinavia and the Baltic Sea on
10 August). During the four days of observations the frequency for high ¢ty (> 350 K)
events north of the subtropical jet region seems to decline.

The highest detected Ogry (350-360K) are in most cases above the local
tropopause indicating an origin of the detected cloudy air masses in the LMS. CTHs
below 350K in regions dominated by high CTHs (e.g. in the Scandinavia-Baltic-Sea
streamer) may be caused by a “real” lower altitude tropospheric cloud, but can also
indicate underestimated CTHs caused by the vertical sampling of the CRISTA mea-
surements. The constant 2 km vertical step size during CRISTA-2 in combination with
a slightly drifting top altitude from one profile to the next with time and latitude result in
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significant differences in the absolute tangent height between even subsequent orbits
(up to 1km) with close geographical co-location. Consequently a large cloud struc-
ture with nearly constant CTH may be detected at different altitudes in two subsequent
orbits at higher latitudes or in the tropics on up and down leg of a single orbit.

4.2 Water vapour measurements during CRISTA-2

The horizontal distribution of the CRISTA water vapour at the 350K isentrope is illus-
trated in Fig. 6 for the same days like in Fig. 5. For better visualisation the data of
individual CRISTA H,O profiles have been first interpolated to a constant theta level
(here 350K). Vertical interpolation around the tropopause and below take always the
risk that it create some numerical diffusion and artificially enhanced water vapour mix-
ing ratios at the grid level due to the strong exponential gradient in the mixing ratio
profile below the tropopause. This effect was minimized by logarithmic interpolation.
In a second step a horizontal interpolation on a regular grid (1° x 1°) was performed
by means of distance-weighted averaging. Data gaps in the tropics are mostly due to
clouds.

The CRISTA water vapour measurements were validated with the Microwave Limb
Sounder (MLS) and airborne in situ instruments (Offermann et al., 2002). The compar-
isons showed good agreement in the coincidence statistics and a retrieval accuracy of
10 % was estimated for the data. The precision of the data is 8 % for values > 10 ppmv,
and 8-15% for smaller values (Schaeler et al., 2005). Consequently, the horizontal
structures in Fig. 6 are reliable.

Transport of water vapour from the tropical troposphere into the LMS on the 350K
isentropic surface seems evidential in Fig. 6. Shown are water vapour values as ob-
served by CRISTA-2 on 10 to 13 August at midnight £12h. Rossby wave breaking
events result in an erosion of the tropopause that can by identified by the cut-off of PV
and water vapour contour lines over the Atlantic to Scandinavia and the Baltic sea, over
the east northern pacific in direction to Alaska or from the eastern US in direction to
Greenland. The intense wave processes are accompanied by fast isentropic transport
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of water vapour deep into the LMS. These horizontal structures of high water vapour
are nearly coinciding with the “unusual” high CTH observation shown in Fig. 5.

The water vapour values do not include the locations of optically thicker cloud obser-
vations, because a corresponding filter (Cl < 2) was applied before the retrieval. How-
ever, it is evident that cloudy areas are embedded in regions of relatively high water
vapour values. More quantitative analyses exclusively from the satellite observations
are difficult, because for most cloudy CRISTA observations no adequate water retrieval
is available.

5 Comparison with the CLaMS model
5.1 The CLaMS model

The Chemical Lagrangian Model of the Stratosphere (McKenna et al., 2002a, b;
Konopka et al., 2007) is a chemistry transport model based on three-dimensional for-
ward trajectories, describing the motion of air parcels. Additional to advection by winds,
irreversible small-scale mixing between air parcels induced by deformation of the large
scale flow is considered in the model (McKenna et al., 2002a; Konopka et al., 2004).
The mixing intensity is controlled by the local Lyapunov coefficient of the flow, thus lead-
ing to stronger mixing in regions of large flow deformations. The sensitivity of simulated
UTLS water vapour on the intensity of this quantity is discussed by Riese et al. (2012).
The model uses a hybrid of pressure and potential temperature as vertical coordinate
system first proposed by Mahowald et al. (2002).

5.2 Model setup

The CLaMS simulation was started in mid May 1997, three months in advance of the

CRISTA observations, to give the model enough time for spin-up. The model was driven

by six hourly ERA Interim re-analyses with a mixing time step of 24 h. The calculation

of water vapour in CLaMS includes a simplified dehydration scheme, similar to that
12345
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applied in von Hobe et al. (2011). Gas phase water in CLaMS is initialized at the be-
ginning of the simulation utilizing the specific humidity taken from ERA Interim data.
Boundaries are updated every CLaMS step from ERA Interim data as well. The lower
boundary for this run is at 250 K with respect to the hybrid vertical coordinate, corre-
sponding to approximately 500 hPa.

The formation of ice is parameterised either by using a fixed value of 100 % for
saturation over ice (a value commonly used) or by a temperature dependent param-
eterisation for heterogeneous freezing (Kramer et al., 2009). The latter method was
finally used in the model simulations presented below. This parameterisation results in
saturation values between 120 and 140 % for the temperature range from 180 to 230 K.
Water vapour with values above these saturation levels is removed from gas phase and
added to the ice water content. Water vapour and ice water content are transported
and mixed like any other tracer or chemical species. Evaporation at 100 % saturation
and sedimentation of ice by assuming a uniform particle density and size distribution
(Kramer et al., 2009) as well as parameterised processes like re- and de-hydration
are considered, with the only exception of re-hydration by formerly sedimented parti-
cles. For sedimentation the terminal settling velocity is calculated. The corresponding
sedimentation length is compared with a characteristic height defined by the vertical
resolution of the model around the tropopause (~ 650 m for this simulation), and the
related fraction of ice is removed. This mechanism was successfully used for long term
studies with CLaMS (Ploeger et al., 2011, 2013). The horizontal resolution of the sim-
ulations is in the range of 70 km.

5.3 IWC and water vapour distribution in the model

In a first step we investigated CLaMS model results for water vapour and ice water
content on synoptic maps of isentropic surfaces like in Fig. 7. Afterwards model output
is analysed by applying the instrument specific limb geometry to the data, which is
described in the next subsection.
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In the examples of Fig. 7 isentropic surfaces of © = 350K are selected, which rep-
resent a nearly constant geometrical height with changing latitude, where isentropical
transport can cross from the tropical UT into the mid latitude LS. In Fig. 7 both IWC
and water vapour show distinctive streamer structures on two successive days (9 and
10 August). The streamers are elongated and spread out to mid and high northern
latitudes. Especially the water vapour distribution suggests that regions of high wa-
ter vapour are peeled off from the subtropical jet region, as typically observed in PV
fields during Rossby wave breaking events (e.g. Homeyer and Bowman, 2013). These
sub-tropical air masses are transported to and mixed in at high latitudes, where under
favourable conditions the formation of cirrus clouds might be possible. Fine structures
of water vapour and IWC can be observed similar to and more fine structured than
the superimposed PV contours. The IWC structures are less pronounced and indicate
significant less cloud formation at mid and high latitudes in contrast to the CRISTA
observations (Fig. 5).

5.4 How to compare global model data and limb measurements?

For a quantitative comparison between the model data and limb measurements it is
crucial to take into account the observation geometry and to apply averaging kernels
of the instrument to the model data. In an optimised but very expensive process cur-
rent investigations simulate the original measurement quantity of the instrument (e.g.
here IR radiances) by a specific instrument simulator based on 3-D input parameter of
a climate chemistry model (e.g. Bodas-Sacedo et al., 2011). This approach will reduce
the uncertainties usually introduced by the complex retrieval process of the instrument
target parameter (e.g. IWC, specific humidity or other trace gases) and is used for the
validation of climate models. The detailed consideration of the observation geometry is
especially important for comparisons with cloud measurements in the limb (e.g. Spang
et al., 2012). Therefore we applied several processing steps for better representation
of two major instrument-specific effects of the CRISTA measurements.
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In the first step, the temporal offsets between the asynoptic measurement times of
the satellite and the synoptic time steps in the model output (every 24 h) have been
compensated. For this purpose backward trajectories of all CRISTA observations below
25km to the next synoptic model output time, usually every 24 h at 12:00 UTC were
computed. Starting from these synoptic locations the cirrus module of CLaMS was
run forward in time to the asynoptic time of the individual CRISTA observation. By this
approach the formation and evaporation of ice clouds in a time frame of maximum 24 h
between model output (12:00 UTC) and observation is taken into account.

Secondly, we implemented an integration of the signal along the line of sight. A limb
ray tracing from the original position of the CRISTA satellite to the tangent point and
the follow-on to deep space has been applied to sample the model data. In case of
CRISTA the tangent height layer for the 1.5km FOV has an extension of ~ 280km.
Deeper tropospheric observations result in a factor of 2-3 longer (e.g. in the tropics)
effective path lengths through the atmosphere where a cloud can occur. In the tropics
for a tangent height at 10 km the maximum potential cloud occurrence altitude extents
up to a height of ~ 18 km and a corresponding line of sight segment of ~ 640 km should
be considered in the limb ray tracing.

Spang et al. (2012) showed that limb IR measurements of cirrus clouds are most
sensitive to the integrated surface area density along the limb path (area density path,
ADP) and that ADP is a useful quantity for comparisons with global models, where the
limb path can be traced through the model output to generate the ADP quantity. The
ADP and Cl show an excellent correlation and ADP can be retrieved from the measured
Cl values (Spang et al., 2012). For a homogeneous limb path segment ADP and limb
ice water path (IWP) are related by the simple equation:

ADP = 3-IWP/(Ryt - Pice) )

with o, the mass density of ice, and Ry the effective radius of the particle size dis-
tribution. More generally the limb IWP can be computed by the following relations,
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depending which parameters are known from the model or measurements:

[ee]

[ee) [ee)
IWP = /IWCdx = /V-picedx = %/A-Reﬁ-picedx, (3)
0 0 0

where R and IWC are defined by the model, V and A represent volume and surface
area density respectively (Spang et al., 2012).

Finally we have used the simulated IWC to compute the IWP for a CRISTA-like cloud
detection in the CLaMS model fields. A 30 km step width along the line of sight over
a distance of £1000 km with respect to the tangent point has been chosen, which is in
line with the horizontal resolution of the model. Then IWC¢ aus has been interpolated
on the line of sight grid locations. A CTH detection is defined when the first (top) line
of sight beam of a CRISTA profile shows an IWP¢ s > 0. The latter fact is neglecting
any detection sensitivity threshold of the instrument and represents therefore an upper
limit of what a CRISTA-like instrument would detect in the cloudy atmosphere modelled
by CLaMS.

An example of the CRISTA-like limb IWP is given in Fig. 8. All tangent heights be-
tween the 330 and 370K isentrope with IWP > 0 are presented for 1997 10 August
00:00 UTC £ 12 h. The results can be compared with Figs. 1 and 5a, even though these
figures show the CTH of a measured profile. For a perfect agreement between model
and measurement the CLaMS cloud detections should be exactly at the location where
CRISTA observed a cloud. Obviously the model field of IWP shows a good agreement
with the cloud occurrence observed by CRISTA. Similar regions show the occurrence of
clouds at mid and high latitudes. Some regions are extended larger in the observations
than in the model (e.g. the east end of the North Atlantic to Baltic Sea streamer, the ex-
tension over Alaska or over Kamchatka). However there are also a few regions where
the model shows clouds but the observation is cloud free. But care should be taken in
the comparison of model grid and instrument grid data. For example, when the interpo-
lation onto the line of sight is performed numerical errors can generate unrealistically
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enhanced IWC at altitudes and segments of the line of sight just above the highest grid
points with modelled IWC > 0. Due to the strong vertical gradients this is especially
a problem for IWC and water vapour. Although the comparison look promising, a more
quantitative comparison shows that the generated CTHs from the modelled IWP are
significantly lower than the observations (not shown) and usually do not reach the LMS
(usually between 330 and 350K and only a few events above, see also Sect. 5.5).

In addition, the model is not creating optically very thin cloud layers (low IWP).
The probability density function of the modelled IWP extends not significantly below
209m‘2, an indication that the model is not capable to produce optically and/or ver-
tically very thin cirrus cloud layers, which are detectable by IR limb sounder. Spang
et al. (2012) already quantified the detection threshold for IWP to ~ 0.39m‘2. Such
small values are rarely observed in the model output, where even values rarely un-
dercut the upper edge of sensitivity in the IWP retrievals of ~ ZOgm’2 (larger IWP
values are causing optically thick spectra). This “high” bias in the modelled IWP is at-
tributed to the freezing parameterisation in the cirrus module of CLaMS. After reaching
the over-saturation threshold for ice formation the whole water vapour fraction above
100 % saturation over ice is converted into IWC. This approach is an upper limit for ice
formation and can overestimate the “real” ice water content. As a result the size of the
particles can be over- or underestimated, which consequentially has a strong effect on
the dehydration process.

5.5 Zonal mean cloud occurrence frequencies

For a more quantitative comparison of the cloud occurrence in the model and in the
observations we computed the zonal mean cloud top height occurrence frequency in
tropopause related coordinates Z, (see also Sect. 3). For the cloud detection in the
model data any line of sight with IWP > 0 is flagged as cloudy and consequently by this
approach the highest possible number of clouds will be detected. The zonal means over
the whole mission are presented in Fig. 9. Overall the distributions from the simulation
and observation look very similar. They show a maximum in the tropics well below
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the tropopause in the observations and slightly higher in altitude and percentages in
the model. In addition, a reduced activity in the subtropics for both datasets and very
similar COFs around the mid- and high-latitude tropopause are found. However, the
CRISTA measurements show substantially increased cloud occurrence frequencies at
altitudes well above the tropopause for all latitude bands.

The differences in COF between observation and model are illustrated in Fig. 9c.
Obviously the model overestimates the COF in the tropical upper troposphere and up
to slightly above the tropopause, a region defined with the term tropical transition layer
(Fueglistaler et al., 2009). Between the isentropic surfaces 350 and 360K the region
of overestimation is extended up to latitudes of 40°N. At these altitudes horizontal
transport is possible from tropical and sub-tropical air masses with high water vapour
mixing ratios into the LMS to mid and higher latitudes. Since the subtropical jet acts
as a transport barrier to meridional transport, this indicates a weakening of the sub-
tropical jet, a condition typically coincident with RWB events in the jet region (Postel
and Hitchmann, 1999). RWB events have been observed during the CRISTA-2 mis-
sion, like illustrated in Figs. 5 and 6 by the development of the PV contours during the
mission. Such events are very typical in summer at this altitude and latitude location
(e.g. Gabriel and Peters, 2008; Homeyer and Bowman, 2013).

Above 360K in the subtropics and north of 40° N in the tropopause and LMS region
CRISTA observations indicate higher COFs than the model and — as already presented
in Fig. 4 — a large amount of high altitude cloud occurrence in the LMS, which is only
weakly present in the model calculations. This is caused by the cirrus module in CLaMS
which is including only a simplified approach for ice formation (mainly driven by tem-
perature, the super saturation threshold in respect to ice, specific humidity, and IWC)
and is not considering detailed microphysical background or constraint boundary con-
ditions.

Sensitivity tests with the current setup of CLaMS with changing saturation thresholds
for ice formation (100—150 %) and varied radius parameterisations for the sedimenta-
tion process did not improve the comparison in the LMS. Overall these variations in the
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setup had little impact on the horizontal and vertical distribution of clouds in the LMS.
The effect of sedimentation of ice particles in the model is so far not accurately consid-
ered. For large particles and therefore high sedimentation velocities IWC is not settling
into a lower altitude CLaMS box and this settling part of available water is dehumidified
from the model.

First tests with a more sophisticated model, a bulk model including microphysical
formation mechanisms and more detailed cloud formation processes (Spichtinger and
Gierens, 2009a, b) running on forward trajectories to single cloud locations of the
CRISTA observations, were not capable to reproduce the formation of cirrus in the
LMS. Only slight biases in temperature or the water vapour entrance value into the
LMS may have a significant effect on the cloud formation process in the models. These
parameters are mainly guided by the meteorological analysis data used for the model
run. Hence they are hardly to improve and it is difficult to quantify if there are any bi-
ases in these datasets. In addition, temperature fluctuations by gravity waves causing
high updraft velocities may play a key role in the nucleation process of ice particles
(Spichtinger and Kramer, 2013). These temperature variations need to be considered
accurately along the trajectory of an air parcel, but are currently not available for global
modelling of cirrus clouds.

5.6 Limb ice water path comparison

This section presents the limb IWP estimated from CRISTA in comparison to CLaMS.
As already outlined in Sect. 5.3 the parameters best suited to compare model results
with a limb measurement of microphysical information of cirrus cloud are the limb in-
tegrated area density and ice water path. IWPg| ,us is computed from the model data
following Eq. (3) by using the CLaMS air parcel information of IWC and the limb ray
tracing described in Sect. 5.4. The zonal mean IWPcgsta and IWPg ,us distribu-
tions presented in Fig. 10 show similar structures like the CTH occurrence frequen-
cies (Fig. 9), but include all tangent heights with cloudy signals in the measurements
(IWP > 0) and in the observations (Cl < 4 equivalent to IWP >~ 10'39m'2) and not
12352
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only the CTH locations. For the zonal mean calculation for CLaMS we shortcut all IWP
values greater than the upper retrieval limit to IWP = 209m'2, because clouds with
larger IWP are not discriminable in the CRISTA IWP retrieval. By this approach zonal
mean values of model and observation become comparable. A good correspondence
is found in the zonal mean of IWPggista @nd IWP ous for altitudes at and below the
tropopause, although the CLaMS values tend to be larger than CRISTA when pene-
trating to lower levels of the troposphere. Only above the tropopause the significant
cloud occurrence rates of CRISTA and the vanishing probability to create a cloud in
the model become noticeable with means of IWPggg1a > IWPc ams- The overall good
correspondence below the tropopause is indicating the dominance of optically thicker
clouds below the tropopause, whereby the probability for both, model and observation,
is much higher to match a similar size of the retrieved IWP values than for the much
more variable optical thicknesses of cirrus clouds at and above the tropopause.

6 Summary and conclusions

A re-analysis of cloud and water vapour measurements during the CRISTA-2 mission
in August 1997 in conjunction with model calculations with the Lagrangian chemical
transport model CLaMS were presented. Special emphasis was taken to quantify the
cloud top altitude with respect to the local tropopause to demonstrate the potential
importance of cirrus cloud formation in the lowermost stratosphere above the local
tropopause. Little is known about the occurrence frequency and spatial distribution of
this particular cloud phenomenon, for example how and why these clouds may form.
The occurrence of LMS clouds was previously reported by some lidar stations in the
Northern Hemisphere and occurrence frequencies above the tropopause of a few per-
cent of the total number of cirrus profiles were reported. CRISTA observations extend
these local observations to global coverage in the Northern Hemisphere and show
strong indications for frequent cirrus occurrences in the LMS at mid and high latitudes.
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A reliable hemispheric picture of cloud occurrence in the LMS above the tropopause
based on CRISTA-2 observations hinges on an accurate determination of the local
tropopause. Here we applied a sophisticated new algorithm to the ERA Interim reanal-
ysis dataset. This so-called high resolution tropopause was compared with TPHs from
radiosonde data and showed a good agreement (£650 m) for more than 5000 selected
station profiles in the time frame of the CRISTA-2 mission. This demonstrates the good
quality of the ERA Interim temperature profiles around the tropopause.

Uncertainties in the determination of the TPH location, instrument specific effects like
the potential overestimation of the CTH for optically thick clouds due to the vertical ex-
tent of the field of view or uncertainties in the tangent height location were addressed in
the present analysis. By quantifying all potential error sources as accurately as possible
and modelling the effect of these uncertainties on cloud occurrence frequency statistics
in tropopause related coordinates the CRISTA observations show significant numbers
of cirrus detections clearly above the local tropopause (500—1500 m) and consequently
in the lowermost stratosphere.

In general, the cloud top height occurrence frequencies (COF) at the mid-latitude
tropopause are in good agreement with the analysis of Pan and Mynchak (2011) based
on the spaceborne lidar CALIOP, although these COFs are based on a multi-annual
seasonal mean. The CRISTA-2 results show larger COFs than CALIOP above the mid-
latitude tropopause (> 500 m) and also above the tropical tropopause. Overall, rather
high occurrence frequencies (~ 5-10% of all profiles) up to high northern latitudes
(70° N) and altitudes well above the tropopause (> 350 K) were found in astonishingly
large areas of the LMS. These numbers indicate a significantly larger occurrence fre-
quency than in the ground based observations.

Further, the Northern Hemisphere CRISTA water vapour observations indicate
a considerable isentropic flux of moisture (at ~ 350 K) from the upper tropical tropo-
sphere into the extra-tropical lowermost stratosphere (LMS). This process is triggered
by Rossby wave breaking events in the subtropical jet region accompanied by long
range transport of high water vapour abundance in streamer and filament structures
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from the subtropics to mid and high latitudes. The process operates on time scales of
few days, is observed at multiple geographical locations starting along the subtropical
jet, and is in line with the temporal evolution of PV contours on the respective isen-
tropic layers. Almost all LMS cirrus cloud observations are linked to areas of elongated
contour lines of PV and water vapour and indicate an enhanced probability to observe
LMS cirrus in the outflow and mixing regions associated with Rossby wave breaking
events.

Comparisons of the CRISTA-2 measurements with results of CLaMS model sim-
ulations, where the model includes modules with parameterised cirrus processes,
show a reasonable consistence for the horizontal distribution of cloud patterns in the
tropopause region, but differ in the vertical extent of the cloud fields and in the zonal
mean occurrence frequency above the tropopause. Significantly less clouds are pro-
duced by the model well above the mid and high latitude tropopause than observed.

A limb ray tracing approach was applied through the 3-D model fields to obtain in-
tegrated measurement information through the atmosphere along the limb path of the
instrument for a realistic and quantitative comparison of the model results and the
measurements. The results confirm a connection between isentropic, quasi-horizontal
transport of water vapour from the sub-tropics to the LMS in mid and high latitudes and
the occurrence of cirrus clouds in the lowermost stratosphere and tropopause region.
However, the simplified cirrus scheme implemented in CLaMS seems to systemati-
cally underestimate the cloud occurrence frequencies in the LMS with respect to the
observations.

Lidar observations of LMS cirrus above Jilich, Germany (Rolf, 2012) and sin-
gle cloud events in the CRISTA data set have been modelled along CLaMS trajec-
tories (not shown) with a more sophisticated microphysical bulk model for ice for-
mation (Spichtinger and Gierens, 2009a), and for the lidar observations also with
a detailed aerosol microphysical model (MAID, Gensch et al., 2008). These prelim-
inary tests could not reproduce the observed cloud structures, although additional
temperature fluctuations were taken into account (C. Rolf and M. Kramer, personal
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communication, 2014). Temperature fluctuations may play a key role for a realistic mod-
elling of the formation process of cirrus (Spichtinger and Kramer, 2013), but are difficult
to constrain, especially on global scales. Usually temperatures are not low enough and
temperature variations are not fast enough to initiate ice formation under the model
background conditions. Amongst others, these first attempts of modelling the obser-
vations of LMS cirrus indicate that already the meteorological analyses used for the
initialisation of water vapour, IWC, and the temperatures along the trajectories, may
not include the processes and variability (e.g. gravity waves or small scale and high
frequency fluctuations) necessary to generate cirrus clouds in the LMS region. In ad-
dition, the formation processes of this specific cirrus cloud type may differ from the
current knowledge and implementation in the current microphysical models.

Improvements and new developments in the cirrus modules in models as well as
multi-instrumental analysis approaches are necessary to achieve progress concerning
the questions and unknowns about the formation of cirrus clouds in the LMS. More
accurate frequency distribution, seasonal cloud coverage of the northern and Southern
Hemisphere, and microphysical information of LMS cirrus are necessary to quantify the
potential radiation and climate impact of LMS cirrus. The unprecedented frequent and
statistically significant observation of LMS cirrus by CRISTA may initiate more specific
measurement campaigns or model studies with respect to LMS cirrus to quantify the
importance of this still intriguing cloud type.
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Fig. 1. CRISTA cloud top height distribution for 10 August 1997 00:00 UTC + 12h (coloured
circles). Profiles with no cloud indications are marked by black crosses. Overlaid in black are
contours of potential vorticity at 2, 4, and 8 PVU at the 350K isentrope. Cloud tops with PV
values greater than the proxy threshold 2 PVU for the dynamical tropopause are highlighted by
black borders of the coloured circles for CTH.
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Fig. 2. Cloud index (CI) profile during CRISTA-2 (left) and coincident radiosonde measure-
ments (right) at mid latitudes. The profiles on the right side show temperature (blue) and rel-
ative humidity (red). The ice saturation temperature curve is superimposed by the black-dash-
dotted curve. Horizontal lines indicate cloud top height (CTH) from the CRISTA measurements
(dashed) and the so-called “high resolution” tropopause height (TPHg) from ERA Interim tem-
perature data (dash-dotted), for details see Sect. 2.5.
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Fig. 3. Examples of cloud index profile computed from modelled radiance profiles with high
vertical resolution (0.1 km, in blue) for a 2 km thick cloud layer with cloud top at 12 and 13 km
for optically thin (left) and thick (right) conditions respectively. The Gaussian shaped field of view
was applied to the pencil beam simulations (blue) to simulate CRISTA profiles (red) (examples
of the FOV function are centred at the cloud top at 12 and 13 km). The superimposed numbers
indicate the maximum errors in CTH, dCTH =[no detection, —0.30, 0.36, 0.81]km (left) and
dCTH =[-0.56, 0.53, 0.94, 1.28] km (right) for the corresponding CI threshold values [1.2, 2, 3,
4] applied in the cloud detection.
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Fig. 4. Cloud occurrence frequencies of CTHs relative to the tropopause for four latitude bands
and the two detection thresholds Cly,. = 2 (grey circles) and Cly, . = 3 (black dots). The num-
bers at the right y-axis are highlighting the number of observations (top number) and the num-
ber of CTH counts (c:) in the corresponding altitude grid box (500 m) for Cly, . = 3. Blue dashed
line in the top two figures represents the JUA mean COF values for CALIPSO in the time frame
June 2006 to May 2010 (taken from Fig. 10 in PM2011). Uncertainty limits of £0.5 and 1km
are presented by the horizontal lines. Red symbols represent a 100 m running mean statistic of
500 m vertical boxes.
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Fig. 5. CRISTA-2 daily detection of cloud top heights on vertical @-coordinates between 330
and 370K (colour coded) from 10 to 13 August at 00:00 UTC £ 12 h. Black circles around the
coloured symbols mark CTH observation above the local tropopause. Potential vorticity con-
tours for 2, 3, and 6 PVU are overlaid in black at midnight conditions. In addition horizontal
wind contours for 30 and 40ms™" (in green) are highlighting the subtropical jet as well as re-
gions with fast horizontal transport at higher latitudes. Crosses are marking non-cloudy profiles

in the ©-range 330 to 370 K.
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Fig. 6. CRISTA 2 measurements of water vapour for 10 to 13 August 00:00 UTC +12h. The
asynoptic measurements are interpolated spatially to a regular grid (for details see text). In
addition, PV contour lines of 2, 4, and 8 PVU are overlaid in black. White patches in the water
distribution indicate data gaps due to clouds.
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Fig. 7. CLaMS model results of IWC (left) and water vapour (right) for meteorological input
data based on ERA Interim, top row for the 9 August 12:00 UTC and bottom row for the 10
August 1997. CLaMS irregular data are interpolated to a 1° x 1° grid for the 350K isentrope.
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Fig. 8. Limb ice water path based on derived from CLaMS IWC integrated along CRISTA line
of sights for 10 August 1997 00:00 UTC + 12 h between the 330 and 370 K isentrope (for details

see text). PV contours for 2, 3, and 6 PVU are superimposed.
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Fig. 9. Cloud top height occurrence frequencies in tropopause related vertical coordinates
for the complete measurement period (7 days) of CRISTA-2 (top) based on Cly,.s =3, the
corresponding CLaMS model is sampled with line of sights of CRISTA, and cloud top detection
is based on IWP > 0 (middle). Differences in cloud top height occurrence frequency between
CRISTA and CLaMS sampled with CRISTA are presented in the bottom diagram. Contours for
zonal mean isentropes (black) and for the zonal mean tropopause altitude (dashed grey) are
superimposed.
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Fig. 10. Zonal mean CRISTA limb IWP retrieved from CI (top) and from the CLaMS model
(bottom) with a shortcut of IWP ang > 209m‘2 at the upper detection sensitivity of CRISTA
(right). For the computation of IWPqy it is necessary to assume a constant effective radius for
the ice particles (R, = 10 um is applied, see also Eq. 3).
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