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Abstract

Emission inventories of Elemental Carbon (EC) and Organic Carbon (OC) contain large
uncertainties both in their spatial and temporal distributions for different source types. An
inverse model was used to evaluate EC and OC emissions based on one year of hourly
measurements from the St. Louis-Midwest Supersite. The input to the model consisted of5

continuous measurements of EC and OC obtained for 2002 using two semicontinuous ana-
lyzers. High resolution meteorological simulations were performed for the entire time period
using the Weather Research and Forecasting model (WRF). These were used to simulate
hourly back-trajectories at the measurement site using a Lagrangian model (FLEXPART-
WRF). In combination, an Eulerian model (CAMx) was used to simulate the impacts at10

the measurement site using known emissions inventories for point and area sources from
the Lake Michigan Directors Consortium (LADCO) as well as for open burning from the
Fire Inventory from NCAR (FINN). By considering only passive transport of pollutants the
Bayesian inversion simplifies to a single least squares inversion. The inverse model com-
bines forward Eulerian simulations with backward Lagrangian simulations to yield estimates15

of emissions from sources in current inventories as well as from emissions that might
be missing in the inventories. The CAMx impacts were disaggregated into separate time
chunks in order to determine improved diurnal, weekday and monthly temporal patterns of
emissions. Because EC is a primary species, the inverse model estimates can be inter-
preted directly as emissions. In contrast, OC is both a primary and a secondary species.20

As the inverse model does not differentiate between direct emissions and formation in the
plume of those direct emissions, the estimates need to be interpreted as contributions to
measured concentrations. Emissions of EC and OC in the St. Louis region from On-Road,
Non-Road, Marine/Aircraft/Railroad (MAR), “Other” and Point Sources were revised slightly
downwards on average. In particular, both MAR and Point Sources had a more pronounced25

diurnal variation than in the inventory. The winter peak in Other emissions was not corrobo-
rated by the inverse model. On-Road emissions have a larger difference between weekday
and weekends in the inverse estimates than in the inventory, and appear to be poorly sim-
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ulated or characterized in the winter months. The model suggests that open burning emis-
sions are significantly underestimated in the inventory. Finally, contributions of unknown
sources seems to be from areas to the south of St. Louis and from afternoon and nighttime
emissions.

1 Introduction5

Within fine particulate matter (PM2.5), Elemental Carbon (EC) and Organic Carbon (OC)
are thought to be some of the components most strongly associated with adverse health
effects (Janssen et al., 2011; Bell et al., 2009; Rohr and Wyzga, 2012). In addition, Black
Carbon (BC) has been identified as an important contributor to climate change (Bond et al.,
2013; Ramanathan and Carmichael, 2008).10

EC and OC are prevalent in the USA, with OC making up 20 to 40 % of PM2.5 in the
upper Midwest and EC making up 5 to 15 % in urban areas and 3 to 5 % in rural areas
(Hand et al., 2012). Levels of OC are more regionally homogeneous whereas levels of EC
vary more between urban areas, while overall trends of total carbon have been decreasing
nationwide (Hand et al., 2013). These observations are consistent with observations of the15

dynamic formation of organic aerosols leading to regional OC levels (Jimenez et al., 2009;
Robinson et al., 2007).

In the Midwest, Lewandowski et al. (2008) found a strong seasonal signal in secondary
OC that was associated with biogenic emissions. This production of secondary organic
aerosol is insufficiently captured by current models leading to large underestimations of OC20

(Spak and Holloway, 2009). Napelenok et al. (2014) used source-specific tracers to identify
the origin of particulate carbon as well as weaknesses in models and emissions inventories.
This highlighted improvements required for secondary organic aerosol formation as well as
uncertainties in mobile sources and forest fires.

Snyder et al. (2010) analyzed semicontinuous and daily averaged EC and OC measure-25

ments in the Midwest, finding that sites with similar concentrations of EC and OC could
nonetheless be impacted by very different source types. This leads to the risk of misattribut-
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ing impacts from distinct sources due to compensating errors in models, as also described
in Napelenok et al. (2014). In Milwaukee, de Foy et al. (2012a) found that EC levels were
predominantly due to mobile sources, although simulations suggested that 10 % could be
due to shipping emissions from the Port of Milwaukee. While EC levels are clearly associ-
ated with mobile sources, the ratios of EC to other pollutants can vary between cities and5

there is therefore a clear need to improve monitoring of EC and OC in order to improve
emissions inventories (Reche et al., 2011). This is illustrated by Gentner et al. (2012) who
evaluate the different contributions of gasoline and diesel vehicles to secondary organic
aerosol concentrations.

The present study is based on continuous, hourly measurements of EC and OC made10

during 2002 at the St. Louis-Midwest Supersite (Bae et al., 2004b). Bae et al. (2004a) an-
alyzed the temporal profiles of EC, OC and the EC to OC ratio. Both EC and OC have
minimum concentrations from February to May. OC has maximum concentrations during
the summer whereas EC has maximum concentrations during the fall. EC was found to
vary by day of week with a mid-week maximum and a minimum on Sundays. Furthermore,15

EC had peak concentrations in the morning and early evening. In contrast, OC does not
vary by day of week and has a different diurnal pattern than EC, with lower concentra-
tions during the early afternoon. Analysis of the EC to OC ratio suggest that the morning
peak in EC is related to traffic emissions, but that the evening peak may be due to me-
teorological factors. Measurements of water-soluble OC (Sullivan et al., 2004) suggested20

that a significant fraction of the OC is from secondary organic aerosol formation, in agree-
ment with the different temporal profiles of OC and EC at the measurement site. Sheesley
et al. (2007) further analyzed the EC and OC data along with organic tracers. In addition
to detecting impacts from point sources, they found differences in the temporal profiles in
St. Louis with those of southern California. Bae et al. (2006) used 24 h averaged data for25

source attribution of OC. This identified a significant component of OC due to wood smoke
and to high-emitting smoker vehicles. Jaeckels et al. (2007) used Positive Matrix Factoriza-
tion to identify contributions to OC concentrations. They likewise found a strong component
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of wood combustion and secondary organic aerosol. In addition, they identified a mobile
factor which has a strong monthly variation.

Cluster analysis of PM2.5 composition has shown that St. Louis has similar aerosol
composition as other industrial midwest cities such as Chicago, Detroit and Cleveland
(Austin et al., 2013). The St. Louis-Midwest Supersite is impacted by metal processing point5

sources to the southwest, as shown using wind roses and conditional probability functions
by Amato and Hopke (2012); Wang et al. (2011); Lee et al. (2006); Lee and Hopke (2006).
These studies also confirmed the regional nature of OC, with source regions broadly from
the southeast and southwest quadrant. EC has a similar signature although it is less homo-
geneous and points to more source directions. Lee and Hopke (2006) used the Potential10

Source Contribution Function method based on back-trajectories to show that sulfate levels
at the site were impacted by the Ohio River Valley, while nitrate levels were associated with
transport from the west and northwest.

In this paper, we study the same year-long hourly time series of EC and OC measured at
the St. Louis Midwest Supersite. We seek to obtain improved estimates of the diurnal and15

monthly emission profiles of specific types of sources by combining forward simulations of
EC and OC concentrations from emissions inventories with the measurements using an in-
verse model. This is carried out for five different source categories as well as for emissions
from open burning. In addition, the inverse model uses gridded back-trajectories to identify
regions that may be missing sources in the inventory. As discussed above, EC is not formed20

in the atmosphere but rather emissions are transported until they are removed by deposi-
tion such that they can be simulated as passive tracers. In contrast, OC is both emitted
and produced in the atmosphere. Our model is focused on transport and consequently the
results for EC can be straightforwardly compared to emission inventories. For OC however,
the model does not distinguish between primary OC that is emitted by a source and sec-25

ondary OC that is created in the plume of that same source. The results are therefore best
interpreted in terms of impacts at the measurement site rather than emissions at the source
location.
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2 Methods

2.1 Measurements

The measurement site is the St. Louis-Midwest Supersite which was funded by the United
States Environmental Protection Agency (EPA). It is located in East St. Louis, approximately
3 km east of the Central Business District of St. Louis, on the other side of the Mississippi5

river in a low-density, mixed-use neighborhood impacted by industrial point sources nearby.
Elemental Carbon (EC) and Organic Carbon (OC) concentrations were measured using
two Sunset Laboratory semicontinuous ECOC field analyzers. By having two instruments
operating in tandem it was possible to obtain continuous hourly measurements with one
instrument in the collection phase while the other instrument was in the analysis phase.10

The measurements were validated against 24 h samples and are described in detail in Bae
et al. (2004b). This study is based on 7091 valid data points measured for the duration of
2002. Fig. 1 shows the location of the measurement site.

Hourly meteorological observations were obtained from Lambert – St. Louis International
Airport (KSTL) and St. Louis Downtown Airport (KCPS) in Cahokia, IL from the Integrated15

Surface Hourly Data available from the National Climatic Data Center. KSTL is across the
Mississippi river 24 km northwest of the measurement site, and KCPS is 5 km south of the
measurement site on the same side of the river. Meteorological data was also available at
the supersite. This data was in agreement with the KCPS data, but the latter was more
complete and was therefore selected for the analysis.20

2.2 Emissions inventory

The Lake Michigan Air Directors Consortium (LADCO) emissions inventory for 2007 for
the Midwest was used as a prior for the inverse model (LADCO, 2011). It is calculated
on a 12 km grid with diurnal and monthly profiles and emissions separated by source cate-
gory for: On-Road, Non-Road, Marine/Aircraft/Railroad (MAR), “Other”, Biogenics and Point25

Sources. Point source emissions were specified using 2007 CEM data with updated tem-
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poral profiles to include adjustments for weekend/weekday emissions while still providing
a solid platform for future projections (Edick and Janssen, 2006). Mobile emissions were
estimated using the MOVES2010a model (EPA, 2012). Non-Road emissions were updated
to reflect higher agricultural equipment emissions during the spring and fall season rather
than the default of a single summer maximum based on midwest crop calendars and till-5

ing, planting, pesticide application and harvesting cycles (Thesing et al., 2004). For EC and
OC, Other sources consist mainly of residential wood and waste combustion with smaller
contributions from unpaved roads, food preparation and construction.

Figure 2 shows the emissions for EC in metric tonnes per year (tpy). OC emissions have
similar patterns with the following average OC to EC ratios: 0.62 for On-Road, 0.64 for Non-10

Road, 0.49 for MAR, 6.7 for Other and 2.5 for Point Sources. Table 1 presents the emission
totals for the Regional domain shown in Fig. 1.

Biogenic emissions in LADCO (2011) were calculated using the Model of Emissions of
Gases and Aerosols from Nature (MEGAN) version 2.03a (Guenther et al., 2006). As an
example, Fig. 2 shows the spatial map of the biogenic emissions of condensable gases,15

category “CG5” in non-dimensional units. These will be used as a tracer of biogenic emis-
sions in the Eulerian simulations, and the concentrations will be normalized before being
included in the inversion algorithm. As will be discussed in Sect. 3.2, the inverse results
therefore do not represent an estimate of actual biogenic emissions, but rather an estimate
of the fraction of OC that could be ascribed to aerosol formation due to these emissions.20

In order to have an additional comparison to the LADCO prior emissions and the in-
verse model results, the 2008 National Emissions Inventory (NEI) version 3 was obtained
from the US Environmental Protection Agency. EC and OC emissions were available in
speciated files for PM2.5. The On-Road emissions in the NEI were calculated using the
MOVES2010b model (EPA, 2012). The data was provided as annual totals by Federal In-25

formation Processing Standards (FIPS) codes. These were mapped to the Regional model
grid in order to compare NEI emissions with the emissions in the LADCO prior and with the
inverse model posterior.

7
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EC and OC have experienced a downward trend in the US, with around 1 % to 2 % de-
creases per year (Hand et al., 2013). This means that emissions calculated based on 2002
measurements could be expected to be 5 % to 10 % higher than an emissions inventory
for 2007. Although emission inventories existed for 2002, it was felt that the considerable
improvements and developments that went into the LADCO 2007 inventory meant that this5

would be a better choice for the prior, and that consequently the 2008 NEI was the most
appropriate comparison point to the prior. Nonetheless, the temporal discrepancy should
be borne in mind when interpreting the results.

EC and OC emissions from open burning were calculated using the Fire Inventory from
NCAR (FINN) version 1 (Wiedinmyer et al., 2011). FINN calculates daily emissions from10

fires identified by fire counts from the Terra Moderate Resolution Imaging Spectroradiome-
ter (MODIS) fire and thermal anomalies data provided from the official NASA MCD14ML
product, Collection 5, version 1 (Giglio et al., 2003). Land cover and vegetation density
needed to calculate the emissions were determined with the MODIS Land Cover Type prod-
uct (Friedl et al., 2010) and the MODIS Vegetation Continuous Fields product (Collection 315

for 2001) (Hansen et al., 2003, 2005; Carroll et al., 2011), and fuel loadings from Hoelze-
mann et al. (2004) and Akagi et al. (2011). Ecosystem-specific emission factors for EC and
OC emissions were compiled from existing literature (Table 1, Wiedinmyer et al., 2011).
Ratios of OC to EC emission factors range from 4.8 for fires in croplands, to 39 for fires in
boreal forests. Daily emission totals were distributed evenly throughout the day as input to20

CAMx simulations.
In FINN, open burning includes the fires which are detected by Terra MODIS. These are

a combination of forest fires, prescribed burns and larger agricultural fires, with a minimum
burn area of 1 km2. Hawbaker et al. (2008) analyzed the detection rate of MODIS compared
to a set of reference fires. The rates were high when both Terra and Aqua were used, but25

dropped to 60 % in the Great Plains and 39 % in the eastern US when only Terra was used.
Because we only have Terra data for 2002, this is an added source of uncertainty in the
emission estimates.

8
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Figure 3 shows the total gridded open burning emissions for 2002 on the Large model
domain, and Table 2 shows the total emissions by sector. The inverse model calculated
posterior emissions independently for the following 6 geographical sectors: local emissions
within 100 km of the measurement site followed by the northeast, southeast, southwest,
west and northwest as shown in Fig. 3. The largest emissions are in the southeast and5

southwest sector.

2.3 Numerical simulations

The meteorological simulations were performed with the Weather Research and Forecast-
ing (WRF) model version 3.5.1 (Skamarock et al., 2005). The North American Regional
Reanalysis (NARR) (Mesinger et al., 2006) was used for the initial and boundary condi-10

tions. The simulations used 3 domains with 27, 9 and 3 km horizontal resolution and 40
vertical levels. Figure 1 shows a map of the 3 domains, which will be referred to as the
Large, the Regional and the Local domains.

The model was run with two-way nesting, with the Yonsei University (YSU) boundary layer
scheme, the Kain–Fritsch convective parameterization, the NOAH land surface scheme,15

the WSM 3-class simple ice microphysics scheme, the Dudhia shortwave scheme and the
Rapid Radiation Transfer Model longwave scheme. Individual simulations were performed
lasting 162 h, of which the first 42 h were considered spin-up time and the remaining 5
days were used for analysis. The simulations are similar to those described in de Foy et al.
(2014), where it was shown that the model accurately represents the statistical distribution20

of temperature, humidity, wind speed and wind direction at the surface (see Fig. 3 in de Foy
et al., 2014).

Particle back-trajectories were calculated from the supersite with FLEXPART (Stohl et al.,
2005), using FLEXPART-WRF (Brioude et al., 2013b) for a duration of 4 days starting every
hour of the year using the WRF simulated wind fields. 1000 particles were released per hour25

between 0 and 100 m above the ground and were allowed to disperse in three dimensions
using the WRF mixing heights and surface friction velocity. The particles were treated as
passive tracers with neither wet nor dry deposition. Sensitivity tests presented in de Foy

9
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et al. (2012b) found that 1000 particles were sufficient to ensure that the results did not
depend on the number of particles for inversions on a regional scale. The particle positions
were converted to polar grids to provide a Residence Time Analysis (RTA, Ashbaugh et al.,
1985). This represents the amount of time that an air mass has spent in different grid cells
before arriving at the measurement location and can be rescaled to yield the impact that5

a source in each grid cell would have at the receptor site (Seibert and Frank, 2004; Lin
et al., 2003).

Concentration Field Analysis (CFA, Seibert et al., 1994; de Foy et al., 2009, 2007) was
used as a preliminary method to evaluate possible source regions suggested by the Resi-
dence Time Analysis and the hourly concentrations. Concentration Field Analysis is based10

on scaling the Residence Time Analysis at each time step with the concentration at the
measurement site. The sum over the entire measurement period is then normalized with
the Residence Time Analysis. This highlights air flow patterns that are associated with high
receptor concentrations. As described in Sect. 3.1 below, standard CFA is sensitive to peak
concentrations, and so we apply the method to an estimate of the column amount of pollu-15

tant. This “Column CFA” is shown below to give a more reliable estimate of potential source
regions than using CFA based on surface concentrations alone.

The Comprehensive Air-quality Model with eXtensions (CAMx v6.00, ENVIRON, 2013),
an Eulerian 3-D grid model, was used to obtain hourly concentrations of EC and OC at the
measurement site based on the prior emissions inventory. Dry deposition was calculated20

using the Zhang et al. (2003) scheme, and wet deposition using the standard scheme in
CAMx. For the LADCO inventory, CAMx was run with 2 nested domains: the Regional and
the Local domains from the WRF simulations (shown in Fig. 1), whereas for open burning,
CAMx was run with the Large and the Regional domains.

This study is focused on estimating source contributions from specific source groups25

based on atmospheric transport and therefore does not use the aerosol module in CAMx.
Both EC and OC are simulated as passive tracers with wet and dry deposition. This is
adequate for EC, and so the inverse model results can be straightforwardly compared to
the emissions inventories. In contrast to EC, there is extensive formation of OC in the atmo-

10
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sphere which is not simulated in our model. This means that the inversion will not distinguish
between primary and secondary OC, and that results are therefore best interpreted as im-
pacts at the measurement site rather than as emissions at the source location. It also means
that we are not able to evaluate the non-linear interactions of different plumes together.

2.4 Least squares inverse model5

The least squares inverse model used in the present study was developed in de Foy et al.
(2012b) and de Foy et al. (2014), where it was used to evaluate emissions inventories of
elemental and reactive mercury. The inverse model estimates emissions that contribute to
measured concentrations at a receptor site. This is done by using both the passive transport
from prior sources and the contribution of unknown sources using gridded back-trajectories.10

Inverse models based on back-trajectories alone include Stohl et al. (2009); Brioude
et al. (2011, 2013a). This work combines back-trajectories with Eulerian simulations, and
in this respect is similar to the methods presented in Rigby et al. (2011); Rödenbeck et al.
(2009). The purpose of combining the Lagrangian and Eulerian simulations for Rigby et al.
(2011); Rödenbeck et al. (2009) was to combine global transport of inert species with higher15

definition impacts from specific locations. In our case, the background levels of EC and
OC are very low (see Fig. 4), and we expect minimal impacts from sources outside the
study area. The purpose of combining Eulerian with Lagrangian simulations is therefore to
estimate adjustments to known emission inventories with the Eulerian simulations, and to
estimate impacts from unknown area sources in an overlapping domain with the Lagrangian20

simulations.
Hourly Eulerian simulations with CAMx were performed for the five different source

groups in the LADCO inventory: On-Road, Non-Road, MAR, Other and Point Sources. Be-
cause we are interested in evaluating the temporal profiles of the sources, we carry out
separate simulations for emissions during different times of the day and different days of the25

week. The time slots were selected based on the diurnal profile used in the emissions inven-
tory: 11:00 p.m. to 05:00 a.m., 05:00 a.m. to 08:00 a.m., 08:00 a.m. to 02:00 p.m., 02:00 p.m.
to 06:00 p.m., and 06:00 p.m. to 11:00 p.m. Days of the week were split into a weekday group

11
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and a group containing Saturdays, Sundays and Holidays. As an example, an hourly time
series of concentrations was obtained from a CAMx simulation with On-Road emissions
only between 05:00 a.m. to 08:00 a.m. on weekdays. With 5 source groups, 5 time slots and
2 day types, this means that there were 50 CAMx simulations. We are also interested in the
annual profile of the emissions, and so we divide the 50 resulting concentration time series5

into 12 months for a total of 600 input time series into the inverse model. With this method
of resolving temporal profiles, individual time series are used for each temporal interval of
interest. This is in contrast with Brunner et al. (2012) who use a Kalman filter to identify
seasonal changes in emissions.

The open burning emissions are included in the inversion as 6 time series simulated10

by CAMx for the entire year for the 6 geographic sectors shown in Fig. 3. We also in-
clude a CAMx time series representing impacts from biogenic emissions, as discussed in
Sect. 3.2.

In addition to the forward Eulerian simulations, we perform backward Lagrangian simula-
tions of particle back-trajectories for each hour of the measurement campaign. These are15

mapped onto a polar grid surrounding the measurement site. The time series from each grid
cell gives an estimate of the concentration at the measurement site that would be caused
by a constant area emission in that cell. We divided these gridded time series into impacts
due to weekdays and weekends, and also into 4 time slots during the day: 03:00 a.m. to
09:00 a.m., 09:00 a.m. to 03:00 p.m., 03:00 p.m. to 09 00,p.m., and 09:00 p.m. to 03:00 a.m.20

These were selected to capture the morning and afternoon rush hours in the middle of 2 of
the slots, and to differentiate the daytime and nighttime emissions between those. The polar
grid was chosen to have eighteen 20◦ segments, in 20 radial bands extending to 1000 km
from the measurement site. There were therefore 360 time series from 8 time slots, for
a total of 2880 time series to be used as input into the inverse model.25

The inverse model derives a posterior estimate of emissions based on the Eulerian sim-
ulations that used the emissions inventory as a prior. In addition, the inverse model uses
the Lagrangian simulations to derive an estimate of sources that may be missing from the
inventory. This is done by using the polar grids of Residence Time Analysis that represent

12
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the impact that an emission in a given grid cell would have at the measurement site. As
all the known sources were already included in the CAMx simulations with the emissions
inventory, we use a field of zero prior emissions for the polar grids from the Lagrangian
simulations.

By limiting the input of the model to passive tracers and individual time series, we can use5

a least squares simplification developed in de Foy et al. (2012b) to the Bayesian formulation
used in Stohl et al. (2009). This hybrid least squares method derives an estimate of the
emissions vector x that minimizes the cost function J given by the sum of the observation
cost function and the emissions cost function:

J =
∥∥(Hx′−y′)

∥∥
2
+α2

∥∥x′
∥∥

2
(1)10

Where x′ = x−xo is the vector of emission corrections given prior emissions estimates xo.
The individual entries in x can take different forms: they can be actual emissions in units of
mass per time, or they can be non-dimensional scaling factors. H is the sensitivity matrix
that converts emissions parameters x into simulated concentrations. Vector y′ = y−Hxo15

is the residual between the vector of concentration measurements y and the time series
produced by the prior emissions estimates Hxo. α is the regularization parameter that
balances the two parts of the cost function. In practice, α can be replaced by a vector
of parameters s that scales each term in x within the L2 norm. In this way, the method was
shown to be equivalent to a Bayesian derivation when diagonal error covariance matrices20

are used (de Foy et al., 2012b; Wunsch, 2006; Aster et al., 2012). In these cases, the
regularization parameter is equal to the ratio of the uncertainty of the measurements to the
uncertainty of the emissions parameter, as described in de Foy et al. (2012b).

The columns of H contain the 606 input time series from the forward Eulerian simula-
tions (in the same units as the measurements) as well as the 2880 time series from the25

back-trajectory grids (in units relating area emissions to measurement concentrations, see
de Foy et al., 2012b), all of which are hourly time series for the whole of 2002. The rows of
H correspond to the impact of the different sources for each of the 7091 h with valid data,
which are contained in vector y. The vector x contains (606 + 2880) entries which yield

13
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the posterior emissions estimate for the source groups and for the gridded area sources
represented by the back-trajectories. For the CAMx time series, the entries in x are scaling
factors on the LADCO emissions that went into the CAMx simulations. For the FLEXPART
polar grids, the entries in x represent emissions.

The system of equations can be solved with a single step of least squares using:5

J =
∥∥s · (H′′x′−y′′)

∥∥
2

(2)

Where H′′ = (H, I) and y′′ = (y′, xzero)
T are the augmented versions of H and y′. I is

the identity matrix the size of x, and xzero is a vector of zero values. Hence, the first part
of H′′ and of y′′ correspond to the observation cost function and the second part to the10

emissions vector cost function. H′′ has dimensions of (7091 + 3486) by (3486), and y′′ has
dimensions of (7091 + 3486). The vector s contains scaling factors on the parts of the cost
function: these are taken to be unit values for the observation cost function and contain
the regularization parameter α for the emissions cost function. A strength of the method is
that boundaries can be straightforwardly applied to the vector x′ during the least squares15

solution to prevent nonphysical negative emissions.
An Iteratively Reweighted Least Squares (IRLS) scheme is used to reduce the sensitivity

of the method to outliers in the data: after solving for x, observation times that have a resid-
ual larger than 3 times the standard deviation of the residual values are removed from the
analysis. This is performed iteratively to converge on a stable set of times to include in the20

inversion. EC and OC simulations were evaluated separately using the inverse model.
In a Bayesian framework, uncertainty estimates are required to obtain the error covari-

ance matrices on the two parts of the cost function. In the absence of detailed prior informa-
tion, Efron (2013) recommends using empirical Bayes methods where the prior information
is obtained from the dataset itself. If this is insufficient, then using frequentist methods is25

recommended as a check on the Bayesian simulations. In this context, the current method
can be understood as a frequentist method where the inversion is performed multiple times
using bootstrapping, and where the regularization parameter is obtained from the data itself.
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The inverse model therefore does not need prior error estimates, but rather relies on an
optimization routine to determine the values of the regularization parameters in the vector
s that minimize the total error following Henze et al. (2009). While in principle we can as-
cribe different values for each entry in the sensitivity matrix, we decided to use common
values by source groups. The values of s were therefore determined separately for the5

emissions inventory sources, for the open burning sources and for the emissions based on
back-trajectories. The regularization parameter for the gridded emissions is scaled by the
cell area to account for the increase in uncertainty with increasing distance from the mea-
surement site. This yields values for the EC inversion of: 0.025 for gridded emissions, 1 for
emissions inventory sources and 0.03 for open burning. The corresponding parameters for10

OC are: 0.015, 1, 0.25 and an additional parameter of 0.5 for the biogenic contribution. Tak-
ing the uncertainty of the measurements to be 1 µg m−3, this corresponds to an uncertainty
of 100 % for the emissions inventory sources, and to an uncertainty factor for open burning
of 33 for EC and 4 for OC.

Miller et al. (2014) review different methods to enforce positive emissions in the inversion,15

and show that some of these may bias the results. In the inverse model, the inversion
is performed by the function lsqlin in Matlab. This uses a trust-region reflective Newton
method to solve the least squares problem and enforce positive constraints on the results.
This does not prevent the model from estimating uncertainties, as we derive a regularization
parameter from the data and obtain the uncertainty estimates using bootstrapping.20

We estimate uncertainties in the inverse model by two different methods. The first is to
use expert judgment to determine an uncertainty on the measurements (y) and on the
model sensitivities (H) and to use Monte Carlo error propagation. We perform 100 realiza-
tions of the inversion with randomized scaling of the entries in y and H in order to estimate
the uncertainties in x. In practice, we assume that entries in y vary by plus or minus 20 %25

and those in H by plus or minus 50 %.
An alternative method is to assume that by randomly sampling the data included in the

inversion we are randomly sampling both the measurement errors and the simulation errors
at the same time. This can be done with the bootstrap algorithm. Although measurement
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errors are assumed to be uncorrelated in time, meteorological events vary on the order of
hours to days. In order to obtain samples that have different meteorological conditions, we
perform block-bootstrapping with a block length of 24 h. We therefore perform 100 inver-
sions with random selection with replacement of the days included in the analysis. In this
way, the bootstrapping yields an estimate of the combined uncertainty due to measurement5

errors and due to transport modeling errors.
In outline, we first perform the optimization of the regularization parameters without boot-

strapping for each set of sources in turn: for the RTA grids, for the LADCO emissions, for
the open burning emissions and for the biogenic tracer. This is repeated to make sure the
values are stable. We then use the set of regularization parameters to obtain inverse results10

with the full data set, and for 100 realizations with block-bootstrapping.

3 Results and discussion

3.1 Data analysis

Before presenting the results of the inverse model, this section presents the results of an-
alyzing wind roses and back-trajectories from the measurement site. Winds come from all15

directions at the Lambert – St. Louis international airport with a predominance for westerly
flow, as shown in the wind roses in Fig. 5. Nearer the supersite at the Downtown St. Louis
airport, however, there is a clear peak of southeasterly flow and a much larger proportion
of calm hours (17 % compared with 7 % at KSTL). As a first cut analysis, Fig. 5 shows the
wind rose for the hours in the top 10 percentile of EC concentrations. 54 % of these have20

calm winds that occur between midnight and 09:00 a.m. As for the non-calm hours, they are
most frequently from the southeast. This suggests that high EC concentrations are asso-
ciated with calm conditions and hence with local sources. It also suggests that significant
sources could be found southeast of the site, which is at odds with known inventories.

Fig. 6 shows the probability density function for both the measurements and the simula-25

tions at KCPS. The distributions are very similar, and all variables passed the Kolmogorov-
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Smirnov test to much lower than the 1% significance level, showing that the model does
not suffer from significant systematic biases. The auto-correlation times of the meteorolog-
ical variables also shows that by using block-bootstrapping with 24 h intervals we will be
sampling independent events.

We use Residence Time Analysis to display the spatial pattern of wind transport to the5

measurement site over the course of 2002, see Fig. 7. On the Regional domain, this shows
that air masses from all directions impact the site but that there is a predominant signature
from the southwest, in agreement with the wind rose at KSTL. On the Local domain, we
see again impacts from all directions, but in addition there is a very clear river valley ef-
fect. Simulated particles from the south follow the Mississippi river going north towards the10

measurement site.
Concentration Field Analysis of EC and OC (Fig. 7) shows that peak concentrations are

associated with transport from the southeast. This is in agreement with the pollution rose
shown in Fig. 5 but is puzzling given that southern Illinois does not stand out as a large
source region in Fig. 2. To resolve this conundrum, we consider the influence of mixing15

heights and stable atmospheric conditions at the supersite: the last rose in Fig. 5 shows
the wind direction for hours with the lowest 10 percentile of mixing heights in the WRF
simulations. This shows a picture similar to the EC pollution rose with nearly half of the
hours experiencing calm winds, and the remaining having winds predominantly from the
southeast. Snyder et al. (2009) found an episode where high levels of Cadmium, Antimony,20

Barium and Selenium were associated with a very clear southeast signature. This could
be due to a power station 53 km away in that direction, although simulations with CAMx
did not support such high impacts from this source. Further analysis found that peak EC
concentrations are associated with these hours with very stable vertical mixing conditions
which themselves are associated with weak southeasterly transport. They appear to be25

linked to occurrences of the low-level jet. This suggests that micrometeorology needs to be
taken into account when analyzing high pollution events in St. Louis.

Wind rose analysis and CFA are sensitive to peak concentrations occurring during sit-
uations with very shallow boundary layers and so we need to expand the methods to be
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more sensitive to the amount of pollutant rather than to the peak concentration. This can
be done by calculating a “Column CFA”: CFA is carried out with an estimate of the total col-
umn of EC rather than with the surface concentration of EC. To do this, we assume that EC
and OC are mainly in the planetary boundary layer and that concentrations are well mixed
throughout. The column amount is obtained by multiplying the surface concentration by the5

height of the boundary layer. Since we do not have measurements of the mixing height,
we use simulated values from the WRF model. The two graphs on the right in Fig. 7 show
the results of the Column CFA for EC and OC. For EC, we can now see a clear signature
from the St. Louis metropolitan area as well as a smaller signature from the Illinois side of
the urban zone. For OC, the St. Louis metropolitan area shows up but there is a stronger10

signal of general impacts from both the southeast and the southwest, which is consistent
with regional atmospheric formation of OC compared with local transport of EC.

3.2 Inverse model results: time series and impacts

Figure 4 shows the EC and OC time series of the measurements and of the inverse model
results. The time series from the inverse model are much improved compared with those15

simulated using the emissions prior, as shown by the statistical measures in Table 3. For
the full time series, Pearson’s correlation coefficient squared (r2) increases from around
0.1 to above 0.4. As described above, the inverse model uses Iteratively Reweighted Least
Squares to reduce the impact of outliers on the results. The r2 statistics are also shown for
this subset points, with an agreement of 0.53 for the EC inverse time series and of 0.56 for20

the OC time series.
The inverse model decomposes the measurement time series as the sum of the contri-

butions from different source groups. If these are sufficiently well separated spatially and
temporally it is possible to estimate the contribution of individual source groups to the aver-
age concentration at the site. In our current case, there is a certain level of overlap between25

the different source categories, as can be seen in Fig. 2. The closest time series are the
impacts of On-Road and those of Other sources, with a correlation coefficient (r) of 0.82,
and with Non-Road sources with r of 0.65. By impacts, we mean the surface concentration

18



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

of EC or OC at the measurement site that are due to transport of particular emissions to the
site. The most distinct time series are the point sources, which have an r of 0.5 with MAR
emissions but small or negative r with the other categories. In practice, block-bootstrapping
was used to determine uncertainties in the inverse model results, and these were found to
be robust as will be discussed below.5

Figure 8 shows the contributions of different source groups to average EC and OC con-
centrations at the measurement site for both the prior and the posterior emissions inventory.
The prior inventory overestimates the average EC concentration at the measurement site
by 13 % and suggests that On-Road emissions account for 36 % of the pollutant load, Non-
Road for 20 %, MAR for 13.9 %, Other for 23 %, Point Sources for 6 % and open burning10

for 1 %. The posterior emissions underestimate average impacts by 10 % (“Missing” on the
graph), and attribute 33 % to area emissions from the polar RTA grids. This leaves On-Road
emissions with 13 %, Non-Road with 16 %, MAR with 10 %, Other with 11 %, Point Sources
with 5 % and open burning with 4 %.

Whereas EC behaves as a tracer species from source to receptor, OC is due to the15

combination of transport from source to receptor and formation in the atmosphere during
transport. Because this paper only considers transport, we expect the model results to un-
derestimate average concentrations: the prior time series represents 60 % of the average
OC concentration. As discussed in Sec. 4, this suggests that 40 % of OC at the measure-
ment site is from secondary formation, in line with the estimate provided in Bae et al. (2006).20

The largest contributor in the prior is the Other category with 68 % of simulated impacts, fol-
lowed by Point Sources with 12 %, On-Road with 9 %, Non-Road with 6 %, and MAR and
open burning with 3 % each. The posterior accounts for 88 % of the average OC levels,
mainly by reducing the impacts of the source groups and using the RTA grids to represent
46 % of the simulated impacts. Simulated impacts from open burning are increased in the25

posterior so that they make up 5 % of the total OC.
Normalized time series of biogenic precursor concentrations were included in the anal-

ysis. Because the units are non-dimensional, the results from the inverse model give an
indication of the fraction of EC or OC that correlates with these emissions, without giving an
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estimate of the emissions themselves. As expected, none of the biogenic precursors con-
tributed to the EC time series in the inversion, and these were therefore left out of the EC
inversions. For OC, we tested different biogenic components and found that condensable
gases category 5 “CG5” yielded the best inverse time series of OC compared to the mea-
sured time series. The model was therefore run just with this species as an input. The model5

estimated that 4 % of simulated OC at the measurement site is associated with emissions
of CG5.

The biogenic tracer serves to highlight that the posterior estimate does not differentiate
between direct emissions at the source and chemical formation inside a plume associated
with those direct emissions. The biogenic emissions are in the gas phase, and the model10

obtains an estimate of OC concentrations that results from them. The same applies for the
individual source categories. For example the 19 % of simulated impacts from the Other
category are the sum of both direct emissions and chemical formation resulting from those
emissions. A finer grained study using an aerosol module would be required to deconvolve
these two processes.15

We used both Monte Carlo error propagation and bootstrapping to estimate the uncer-
tainties in the emissions estimates. Fig. 9 shows the histogram of total emissions for each
of the main categories in the inversion, along with correlation scattergrams of the results for
the bootstrapped simulations for EC. The standard deviation of the contributions is between
3 % and 5 % of the mean contribution for all emission categories except for open burning20

where it is 20 %. There is little correlation in the emissions estimates from the different
source groups. The highest r2 is 0.22 for realizations of the On-Road and Other emissions.
Overall this suggests that our results are not excessively impacted by cross-correlation
terms.

The results of the Monte Carlo error propagation are included in the supplementary ma-25

terial. The uncertainties vary between 1.5 % and 3 % except for open burning where they
are 6 %. These are noticeably lower than the bootstrapping estimates as well as what we
expect from knowing about emission inventories and from the values of the regularization
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parameters that were determined from the inversion themselves. These suggest that using
block-bootstrapping provides a better estimate of the uncertainties.

The results for OC are included in the supplementary material. The bootstrapped stan-
dard deviations are between 5 % and 10 % of the mean contributions for all emission cat-
egories except for open burning where they are 18 %. This suggests that the emissions5

estimates are robust with respect to uncertainties in the model inputs.

3.3 Inverse model results: temporal profiles

As described in Sect. 2.3, we performed the inversion using separate time series for 5
different time periods during the day, for weekdays and weekends, and for each month of
the year. This led to 5× 2× 12 entries in the inverse algorithm for each of 5 source types.10

We now present the monthly variation and the diurnal variation for emissions of EC and
OC for each of the source types for weekdays and for weekends (which include Saturdays,
Sundays and Holidays, SSH).

3.3.1 On-Road emissions

Figure 10 shows the monthly and diurnal temporal patterns for the On-Road emissions.15

90 % confidence intervals on the inverse model results are shown on the graphs. These
were obtained from the bootstrapping which provides an estimate of the uncertainty due
to episode selection and transport errors, as discussed in Sect. 2.4. On-Road emissions
are the category with the largest difference between inverse model results and the prior
inventory.20

In the prior for both EC and OC, weekday and weekend emissions are very similar, and
there is only a slight annual variation from a maximum in the winter to a minimum in the
summer months. The posterior levels for EC are similar to the emissions prior during the
summer months for weekdays, but weekends are significantly lower. During Fall and Winter,
the posterior emissions are very low, which is why the total emission levels shown in Table 125

went from 4300 tpy in the prior to 2100 tpy in the posterior. The monthly variation of the
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OC posterior is similar to the EC posterior although total OC emissions are left relatively
unchanged at around 2500 tpy. The large reduction in emissions during fall and winter
is unlikely to be realistic, even accounting for the fact that the measurements are from
2002 and the inventory for 2007, and so it suggests that there is an issue with the current
representation of the emissions in the inventory and/or with the simulated wind transport5

from the sources to the receptor site.
The diurnal emissions profile of On-Road EC shows a sharp increase starting at

06:00 a.m., and a peak at 03:00–04:00 p.m. followed by a gradual decline until midnight.
There is a large contrast with the posterior. For weekdays EC follows the diurnal trend but
has significantly lower emission levels, and has a strong reduction during the afternoon rush10

hour. For weekends, there is very little diurnal variation of emissions. The OC posteriors fol-
low the diurnal profile of the priors much more closely, with slightly higher emissions during
the day and lower emissions on weekends than in the prior. It would therefore seem that
OC On-Road emissions are better represented in the models than EC On-Road emissions.

Taken together, these results suggest that future research should seek to clarify the15

monthly profiles and the possibility of higher emissions during the summer rather than the
winter. Furthermore, the posterior suggests that the diurnal profile could be improved as
well as the difference between weekdays and weekends. It is possible that accuracy of the
wind transport in the models is a function of the time of day, which could be a factor in the
greater discrepancy between the prior and the posterior in the late afternoon. Finally, the20

large difference between the prior and the posterior could be the result of uncertainties in
the current spatial distribution of the emissions.

3.3.2 Non-Road emissions

In contrast to the On-Road emissions, the Non-Road posterior emissions follow the prior
much more closely as can be seen in Fig. 11. There is a double peak, one in the early25

summer and a second one in the late fall. This confirms that simulations can be improved
by taking into account the spring and fall maximum of agricultural equipment as was done
in the LADCO inventory, rather than using the default summer maximum in MOVES.
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For EC, the model suggests that there is a greater decrease in emissions on weekends
than is currently represented in the inventory. The diurnal profile of the posterior follows that
of the prior more closely than for the On-Road emissions, although there is again a sharp
reduction of emissions in the posterior during the afternoon. The weekend emissions follow
the diurnal profile, but are closer to 50 % lower than weekdays compared with 30 % lower5

in the priors.
For OC, the summer peak in the posterior is double that in the prior. We also see an

enhancement of around 50 % during daylight hours. An estimate of 40 % of OC at the site
being due to secondary formation (Bae et al., 2006) would account for most of the excess
in OC, as discussed further in Sec. 4.10

3.3.3 MAR emissions

The temporal profile of the MAR emissions (Marine/Aircraft/Railroad) are shown in Fig. 12.
In the prior, these are the same for weekdays and weekends and vary by 30 % throughout
the year from a minimum in winter to a maximum in the summer. The posterior for EC is
similar in this respect, but has a more pronounced annual variations with lower emissions in15

the winter months. There are differences between weekdays and weekends, but these are
not systematic and could be the result of model uncertainty. The same is true for OC, al-
though the levels of OC are higher in the summer which could be due to chemical formation,
as discussed for Non-Road emissions above.

The diurnal profile is flat in the prior, but the posterior suggests that there is a definite20

diurnal profile with emissions of EC at night lower than daytime levels by up to 50 %. There
is less difference in the OC profile, but it still suggests that the diurnal activity profile should
be reconsidered.

3.3.4 Other emissions

Other emissions are shown in Fig. 13. In the prior the winter time emissions are three times25

those during the summer for both EC and OC. This is in stark contrast to the posterior
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emissions. The inverse model finds that the EC concentrations at the receptor site are in
good agreement with the emission patterns of spring through fall. No agreement is found
however for the winter where the posterior estimate of both EC and OC emissions is nearly
zero. For OC, the emissions are scaled up during the summer by a factor of 3 to 4, some of
which is most likely due to chemical formation.5

The diurnal profile of the Other category follows those of the On-Road emissions. For
EC, the profile is similar although the emissions are much lower, and there is a reduction
on weekends of morning emissions. For OC we see low posterior emissions at night and
increased emissions during the day, as was the case for Non-Road emissions.

3.3.5 Point Sources10

Finally, we see the temporal profiles for Point Sources in Fig. 14. The monthly emissions
in the prior vary from a low in the spring to a high in the fall with about 30 % changes
in EC but only 15 % in OC. This is roughly reproduced in the posterior for EC albeit with
a larger change from trough to peak. For OC, there are large swings in the emissions of
the posterior. This suggests that there are large uncertainties in these estimates. From the15

perspective of the inverse model, it is a sign that there is poor agreement between the
simulated and observed concentrations, but also that the estimates could be stabilized with
more data, or with stronger constraints on the prior, or an improved model that considered
in-plume chemistry.

The diurnal profile of the Point Sources is rather flat throughout the day in the prior. As for20

the MAR sources, the model suggests that there is a reduction in EC emissions between
midnight and sunrise. There does also seem to be a slight reduction in EC emissions in
the posterior on weekends compared with weekdays. The large swings in the estimates of
monthly OC emissions mean that the diurnal profile should also be considered with caution.
These swings are mostly contained within the 90 % confidence range displayed in the figure25

which suggests that they are not statistically significant. At a minimum, we can say that EC
emissions from Point Sources seem to be reliably characterized in the inventory and the
model, but that more research is needed for the OC impacts.
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3.3.6 Uncertainty due to mixing heights

As discussed in Sect. 3.1, the WRF simulations do not have systematic errors for tempera-
ture, humidity, wind speed and direction at the surface. However, we do not have measure-
ments of the mixing heights which could be used to evaluate errors in the vertical mixing in
the model. In particular, these could contain systematic errors as a function of the time of5

day which would impact the diurnal profiles estimated by the inverse model. de Foy et al.
(2007) found that the choice of the vertical mixing scheme in CAMx could have a significant
impact on the estimation of emissions in Mexico City. This remains a source of uncertainty
in the present analysis which could be constrained in future studies if more detailed mea-
surements of the vertical structure of wind transport in the atmosphere became available.10

Alternatively, the uncertainty could be estimated by running the inverse model with differ-
ent sets of WRF simulations that used different options, for example by generating input
meteorological fields with different boundary layer schemes.

3.4 Inverse model results: open burning

Section 3.2 showed that using emissions from FINN as the prior for CAMx simulations15

of open burning led to impacts of 1 % of EC and 3 % of OC. The posterior impacts were
increased to 4 % for EC and 5 % for OC. Table 2 shows the emission totals by geographic
sector in metric tonnes per year for the prior and for the posterior. For the Local sector
(within 100 km of the receptor), the northeast sector and the southeast sector, the inverse
model increases the emissions by a factor of around 30 for EC and around 20 for OC.20

Emissions from the southwest sector are increased by a factor of 3 for EC and by a factor
of 2 for OC. The open burning emissions from the west were kept at a similar level in the
posterior as in the prior. The emissions from the northwest did not match the data and were
set to 0 in the posterior by the inversion.

Table 2 also shows the posterior impact fractions by sector. The largest contributions are25

1.4 % of EC and 2.5 % of OC from the southeast sector, followed by the southwest and the
west sector. Local fires account for 0.7 % of EC and 0.5 % of OC in the posterior.
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As discussed in Sect. 2.2, the emissions in FINN are based only on the Terra MODIS
sensor, as the Aqua satellite was not yet in orbit in 2002. This means that the uncertainties in
these emissions are greater than those following the launch of Aqua where there is twice as
much satellite data available for fire detection (Hawbaker et al., 2008). In addition to missing
fires, there are uncertainties in the estimates of area burned and of the type and amount5

of vegetation burned. As shown in Fig. 9, uncertainty estimates based on bootstrapping
are largest for open burning, with 20 %. However, adjustment factors of 20 to 30 suggest
either that the uncertainties are underestimated, or that the inversion of these emissions
are underconstrained. Overall, these results suggest that future work with more surface
measurements and emissions estimates from more recent satellite sensors are needed to10

improve the inverse estimates, but that nonetheless emission factors in FINN should be
revised upwards.

3.5 Inverse model results: Residence Time Analysis impacts

The inverse model combines emission estimates using Eulerian (CAMx) and Lagrangian
(FLEXPART-WRF) simulations. Polar grids of Residence Time Analysis calculated using15

back-trajectories are used to estimate emission sources that could be missing in the LADCO
emissions inventory. The polar gridded emissions have zero prior and represent a way of
decomposing the residual between the CAMx posterior and the measurements into a spatial
emission signal. The inverse model includes separate grids for 03:00 a.m. to 09:00 a.m.,
09:00 a.m. to 03:00 p.m., 03:00 to 09:00 p.m. and 09:00 p.m. to 03:00 a.m., as well as for20

weekdays and weekends, for a total of 8 grids.
Note that the FLEXPART-WRF simulations do not include deposition, and that secondary

OC formation is not included either. Both of these limitations would impact the estimation of
actual emission amounts from the inverse model. In this section, we therefore report only
impacts of different source regions on concentrations at the measurement site, which are25

not affected by deposition and include estimated impacts of both primary emissions and
in-plume secondary formation. As will be discussed in Sec. 4, deposition is estimated to
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account for a 4 % loss of EC, and secondary formation is estimated to account for around
40 % of OC.

Figure 15 shows the sum of impacts from the 8 grids for both EC and OC. As shown in
Fig. 8, these account for 33 % of the EC posterior time series and 46 % of the OC posterior
time series. The main signal is from the south, and especially the southwest for both EC and5

OC, indicating that these could be areas to be explored for updating the spatial distribution
of emissions.

Figure 16 shows the total contribution to the average concentration for EC and OC for
each of the RTA grids. For EC, the contribution varies from a minimum of 0.05 ng m−3 to
just above 0.25 ng m−3. The contribution from the early morning to afternoon (03:00 a.m.10

to 03:00 p.m.) are lower than those for the late afternoon and nighttime (03:00 p.m. to
03:00 a.m.). The weekdays and weekends have a similar trends, but the diurnal variation
is more pronounced on weekends. For OC, there is a similar pattern with lower contribu-
tions from 03:00 a.m. to 03:00 p.m., of around 0.8 ng m−3 rising to around 1.5 ng m−3 in the
nighttime. Weekdays and weekends RTA impacts are more similar for OC than they are for15

EC.

3.6 Inverse model results: emission totals

In this section we compare the emissions in metric tonnes per year of the different source
types from the inverse model with the NEI 2008 and the LADCO inventory. Table 1 and
Fig. 17 show the annual total emissions for the St. Louis Regional domain for the 2008 Na-20

tional Emission Inventory, the 2007 LADCO inventory used as a prior, and for the posterior.
Overall, the LADCO inventory is slightly larger than the NEI for both EC and OC. For EC,

the On-Road emissions are 50 % larger, and the MAR emissions are 25 % larger while the
remaining categories are similar. For OC, the largest category by far in both inventories are
the Other sources which are 17 % higher in the LADCO inventory. These include residential25

wood and waste combustion, non-vehicle road emissions and food cooking (estimates of
agricultural burning are high in the NEI but low in the LADCO inventory). OC emissions
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from On-Road, Non-Road, MAR and point sources are all increased by up to a factor of 2
in the LADCO inventory compared with the NEI.

The posterior emissions are calculated from the model as departures from the LADCO
prior. As discussed in Sect. 3.2, the simulated EC concentrations were too high at the site,
and so the inverse model has lower emissions for all categories. The EC emission estimates5

from both On-Road sources and Other sources are reduced by 50 % in the prior, whereas
the remaining categories are only slightly reduced. For OC, there is only a slight reduction
in the total emissions with a small shift in emissions from the Other category into Non-
Road emissions. This suggests that the inverse results are in agreement with the inventory,
bearing in mind that the model does not distinguish between primary and secondary OC.10

As around 40 % of OC is estimated to be secondary (see Sec. 4), this is a significant source
of uncertainty. Nevertheless, comparison with Fig. 8 would suggest that the secondary OC
is represented in the model more by the polar grid emissions or as missing carbon rather
than as adjustments to the known sources.

Also shown in Fig. 17 are emissions for three time periods during the year that corre-15

spond to a natural grouping in the data: January to April, May to August and September to
December. The emissions rates are annualized by multiplying the emissions in tonnes per 4
months by 3 in order to have emissions in tonnes per year. This yields the annual emission
rate that would be obtained if the emissions of the 4 months continue for an entire year.
Compared with the LADCO inventory, the emissions estimates are low for January–April,20

high for May–August and similar for September–December. This shows that there is uncer-
tainty in the model results that depends on the time of year and that in particular simulations
are in greater disagreement with the inventories for January to April. Although the variation
exists for both EC and OC, it is stronger for OC because May–August is when there is the
most secondary OC formation (see Sec. 4). At this stage it is not possible to say what part25

of this is due to limitations in the inventories, what part to measurements and especially
what part due to modeling errors. Further research with more sites and longer time series
would be able to better constrain the estimates.
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4 Conclusions

A least squares inverse model was used to estimate emissions of Elemental Carbon and
Organic Carbon using hourly data for 2002 from the St. Louis-Midwest Supersite, and
uncertainty estimates were obtained by running the model multiple times using block-
bootstrapping. The model provided information on the diurnal pattern of the emissions, the5

difference between weekdays and weekends and the annual variation on a month by month
basis. The inversion was based on the 2007 LADCO inventory for the following source
types: On-Road, Non-Road, Marine/Aircraft/Railroad (MAR), Other and Point Sources.

There are two important limitations in our modeling. The first is that we do not include
deposition in the FLEXPART back-trajectories. This means that we cannot obtain emissions10

directly from the Residence Time Analysis grids but instead we obtain results for the con-
tributions of sources towards EC or OC concentrations at the measurement site. For EC,
which is a passive tracer, we performed a sensitivity test on the impact of deposition using
forward simulations with CAMx. The emissions based on the FLEXPART inversion were
used as input into CAMx and two sets of simulations were performed: one set without de-15

position, and a second set with both wet and dry deposition. Wet and dry deposition in the
model reduced the EC concentration at the site by 4 % on average over the whole year. The
main reason this number is low is that most of the impacts are due to fairly local emissions
(within 100 to 200 km). Overall, this shows that neglecting deposition in FLEXPART has a
minor impact on the results.20

The second limitation in our modeling is that we do not include secondary formation
of OC. There is considerable formation of OC in the atmosphere (Jimenez et al., 2009;
Robinson et al., 2007) and also significant uncertainties in simulations of secondary or-
ganic aerosols (Napelenok et al., 2014). These uncertainties include the complex behavior
of semi-volatile and intermediate volatility organic precursors involving the evaporation of25

primary OC and recondensation after oxidation (Hodzic et al., 2010). In our inverse model,
the OC emission results need to be interpreted as the combination of emissions and in-
plume formation. To estimate the contribution of secondary formation to OC in our time

29



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

series, we consider three lines of evidence. First, using the same data as our paper, Bae
et al. (2006) estimate that 20 to 40 % of OC at ESTL was secondary organic aerosol on an
annual average (see their Fig. 2). Second, Fig. 8 shows that the primary OC simulated using
the LADCO inventory (2 µg m−3) is 40 % lower than the average OC at the measurement
site (3.5 µg m−3). It would be reasonable to expect that a significant fraction of this 40 %5

is due to secondary formation: whereas the average concentration of OC is significantly
higher than the primary OC contribution from the LADCO inventory, the reverse is true for
EC where the average concentration of EC is lower than the primary EC contribution. Third,
Fig. 13 shows large excess peaks of OC in the summer and during the daytime which can
be interpreted as consisting mainly of secondary organic aerosol. We further note that the10

seasonality in Fig. 13 (minimal secondary OC in the winter increasing to a majority of OC
in the summer), is similar to the seasonality shown in Fig. 2 in Bae et al. (2006). Overall,
these three items suggest that 40 % would be a reasonable estimate of the OC that could
be due to secondary formation in the atmosphere. Consequently, the OC emissions esti-
mates such as in Table 1 should be interpreted as being the sum of somewhat over half of15

primary emissions (~60 %) and a little under half of secondary formation (~40 %).
The inverse emission estimates were in agreement with the LADCO inventory for most

of the source types, with a slight downward revision of the emission totals. The main dis-
crepancies suggested by the model are as follows: 1. On-Road emissions were poorly
represented during the winter and on weekends. Although the results for winter remain as20

an outstanding question, there is a clear need to update the diurnal profile for weekends. 2.
Non-Road emissions need to account for actual use of agricultural equipment, which was
done by LADCO but is not carried out by default in MOVES. 3. MAR and Point sources
do not at present have much diurnal variation in the emissions. Although their diurnal pro-
files are smoother than On-Road and Non-Road emissions, the model suggests that there25

is a discernible drop in nighttime emissions. 4. Other emissions from the inverse model
matched the inventory during the summer but not during the winter. As with On-Road emis-
sions, more research is required to constrain the sources of the discrepancy and to improve
the simulations of these impacts.
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In addition to these findings, the inverse model identified impacts from open burning at
the measurement site, and suggests that emissions of EC and OC should be increased in
the FINN model.

Finally, gridded back-trajectories suggest that most of the impacts missing from the emis-
sion inventories are due to transport from the quadrants southeast and southwest of the5

measurement site. The contributions to the average EC and OC concentrations at the mea-
surement site from these sources are approximately twice as large during the late afternoon
and early nighttime (03:00 p.m. to 03:00 a.m.) as they are earlier in the day (03:00 a.m. to
03:00 p.m.).
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Table 1. Emission totals for EC and OC for the Regional domain around St. Louis by source category
for the National Emission Inventory (NEI), the LADCO inventory and the least squares inverse model.
Note that OC Inverse totals combine primary emissions and secondary formation. (MAR = Marine,
Aircraft and Railroad.)

Elemental Carbon (tpy) Organic Carbon (tpy)
Source Type NEI LADCO Inverse NEI LADCO Inverse

On-Road 2910 4268 2060 1663 2648 2495
Non-Road 5896 5818 4729 2237 3740 5037
MAR 1803 2278 1652 411 1126 1069
Other 3217 4312 2248 24 799 28 907 26 399
Point Sources 1724 1572 1331 2061 3892 2751
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Table 2. Emission totals for open burning by geographical sector relative to the measurement site
for the FINN model and the least squares inverse model. Also shown are the ratios of the Inverse
emission estimates to the FINN prior estimates and the fraction of EC or OC at the measurement site
that is estimated to be due to open burning. Note that OC Inverse totals combine primary emissions
and secondary formation.

Elemental Carbon Organic Carbon
Sector FINN Inverse Ratio Impact FINN Inverse Ratio Impact

tpy tpy % tpy tpy %

Local – 100 km 173 4708 27.27 0.69 1508 21 696 14.39 0.47
Northeast 553 14 031 25.37 0.18 6430 130 196 20.25 0.22
Southeast 5088 180 228 35.42 1.36 66 187 1 541 067 23.28 2.53
Southwest 3714 11 749 3.16 0.86 48 028 103 156 2.15 1.63
West 558 592 1.06 0.82 4149 3611 0.87 1.00
Northwest 459 0 0.00 0.00 2899 0 0.00 0.00

Total 10 577 211 309 20.0 3.5 129 409 1 799 725 13.9 5.1
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Table 3. Pearson’s correlation coefficient squared for simulated time series of EC and OC for the
complete time series as well as for the subset of points included in the inversion after the Iteratively
Reweighted Least Squares (IRLS) procedure. The full inverse time series is the sum of the CAMx
posterior and the impacts due to the gridded back-trajectories.

Elemental Carbon Organic Carbon
r2 All Points IRLS Points All Points IRLS Points

CAMx Prior 0.11 0.19 0.07 0.10
CAMx Posterior 0.28 0.37 0.26 0.29
Full Inverse 0.42 0.53 0.47 0.56
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Figure 1. Domains used for the WRF simulations: large (D1, 27 km resolution), Regional (D2, 9 km
resolution) and Local (D3, 3 km resolution). CAMx simulations are performed on the Regional and
Local domains, except for open burning which are performed on the Large and the Regional do-
mains. The diamond shows the location of the St. Louis-Midwest Supersite.
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Figure 2. Elemental Carbon emissions by source type from the LADCO inventory for the Regional
domain in metric tonnes per year, and biogenic tracer emissions in non-dimensional units.
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Figure 3. Open burning emissions of EC and OC for the Large domain for 2002 using the FINN
model, which include forest, prescribed and agricultural fires detected by Terra MODIS. Pink lines
show the 6 sectors used in the inverse model, pink dot is the supersite.
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Figure 4. Time series of Elemental and Organic Carbon at the St. Louis-Midwest supersite for
2002. Measurements are shown in blue, circles show the data points excluded from the analysis by
the Iteratively Reweighted Least Squares scheme. Green line shows the posterior time series, as
produced by the least squares inverse model.
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Figure 5. Top: wind roses for Lambert – St. Louis international airport (KSTL) and Downtown St.
Louis airport (KCPS). Bottom: wind roses for hours in the top 10 % of EC concentrations at the
supersite using KCPS data, and bottom 10 % of WRF mixing layer height. Color indicates time of
day.
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Figure 6. Top: Probability density function of temperature, water vapor, wind speed and wind direc-
tion observations and simulations at KCPS. Bottom: Autocorrelation coefficient of observations and
simulations as well as of the residual between the two.
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Figure 7. Left: Residence Time Analysis of FLEXPART-WRF back-trajectories using hourly releases
during 2002 showing the origin of airmasses arriving at the supersite (diamond). Center: Concentra-
tion Field Analysis of EC and OC showing air mass transport associated with peak concentrations.
Right: Column Concentration Field Analysis of EC and OC showing air mass transport associated
with higher column amounts of EC and OC.
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Figure 8. Contributions of different types of sources to the average concentration of EC and OC at
the St. Louis-Midwest Supersite using the LADCO inventory (prior) and the least squares inverse
model (posterior).
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Figure 9. Bootstrapped estimates of uncertainties in inverse EC emissions by source group: His-
tograms show the distribution of emission estimates, scatter plots show the cross-correlation of the
estimates. CV = σ/µ is the Coefficient of Variation.
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Figure 10. Monthly and diurnal temporal pattern of emissions of EC and OC for On-Road emissions
by weekday (green, WD) and weekend (blue, SSH) for St. Louis and the surrounding area. LADCO
inventory results shown with solid symbols, Inverse model results shown with thin line. Shading
shows the 90 % confidence interval in the inverse model results based on 100 bootstrapped inver-
sions. Note that OC posterior totals combine primary emissions and secondary formation.
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Figure 11. Monthly and diurnal temporal pattern of emissions of EC and OC for Non-Road emissions
by weekday and weekend for the St. Louis region, see Fig. 10.
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Figure 12. Monthly and diurnal temporal pattern of emissions of EC and OC for Ma-
rine/Aircraft/Railroad (MAR) emissions by weekday and weekend for the St. Louis region, see
Fig. 10.
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Figure 13. Monthly and diurnal temporal pattern of emissions of EC and OC for “Other” emissions
by weekday and weekend for the St. Louis region, see Fig. 10.
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Figure 14. Monthly and diurnal temporal pattern of emissions of EC and OC for Point Source emis-
sions by weekday and weekend for the St. Louis region, see Fig. 10.
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Figure 15. Contributions to the average 2002 concentration of EC and OC in the inverse time series
from the Residence Time Analysis grids.
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Figure 16. Total contribution to the average concentration of EC and OC in the inverse time series
from the Residence Time Analysis grids by time of day for weekdays (WD) and weekends (SSH).
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Figure 17. Emissions of EC and OC in the Regional domain by source type for the 2008 NEI, the
2007 LADCO inventory and the posterior estimate based on using LADCO as a prior. Inverse results
are shown for the entire year (2002), along with annualized emissions for January–April (JFMA),
May–August (MJJA) and September–December (SOND).

58


