
The authors would like to thank the reviewers for their extensive comments on the manuscript. We 

have endeavoured to address all concerns. A detailed response to each of the reviewer comments 

follows. 

 

Response to Reviewer 1: 

The authors would like to thank the reviewer for further considering the paper. We would like to 

thank the reviewer for the thorough assessment of the paper and detailed notes. 

 

Reviewer 1 wrote: 

“The authors of "Greenhouse gas network design using backward Lagrangian particle dispersion 

modelling – Part 2: Sensitivity analyses and South African test case" have made some significant 

corrections to account for the reviews of their first manuscript. Regarding this, we can note the 

inclusion of the aggregation errors in the experiments and some critical change of point of view 

when analysing the results, and a better introduction to the sensitivity tests. However, there is still 

some critical improvement needed. 

From my point of view, this text is not suitable for a second submission (see below) even though the 

main comment from my first review pointed out its low quality. Other comments seem to have been 

skipped by the authors as illustrated by their slightly selective way of answering to the reviews (see 

below).  

Acknowledging the efforts made by the authors for revising the study (conducting new 

experiments), my recommendation is thus to conduct a major revision but to be aware that without 

a serious improvement of the text, it should be rejected once again.” 

Response: We thank the reviewer for acknowledging the progression of the paper. In the third 

iteration of the paper we have endeavoured to remove all irritating or incoherent word usage, to 

ensure that the important network design results we observed are clearly communicated. 

 

The following points were identified by Reviewer 1 and have been addressed in the updated 

manuscript: 

Reviewer 1 wrote: 

“1) Regarding the quality of the text, I now list some examples that illustrate my general feeling even 

though, again, it is impossible to give an exhaustive list of the problematic sentences or paragraphs:  

 

- Some sentences which should not have survived serious proofreading: "The carbon assessment 

product produced monthly outputs for all the products. These products..." (l. 305); "By basing the 

metric to be optimised during the optimisation procedure on the result of the posterior covariance 

matrix of the fluxes under a given network, this score can be optimised so that the uncertainty in the 

estimated fluxes is reduced." (l77-79); "without the need to [...] make unnecessary assumptions 



about the measurements" (l149-150) 

Examples of sentences that do not work for a given page (page 3): l56, l61-63, l68-69, l77-79, l89-91” 

Response: The redundancies in these lines have been corrected. The sentences have either been re-

written, or entirely removed if found to be unnecessary. Similar cases were identified in the paper 

and corrected. 

e.g “...A reduction in the uncertainty of the estimated fluxes is only one of many considerations 
when determining the location of new measurement sites, but an optimal network design with 
this goal will provide a guide which can be included in the assessment of these new locations....” 
 

Reviewer 1 wrote: 
 

“- the confusion regarding the terminology for covariance matrices was highlighted by both 

reviewers during the first review and the authors tried to account for this. However, it still does not 

work despite the explicit correction given by the second reviewer. The covariance matrices and 

correlations relate to errors in the fluxes, not to the fluxes themselves. Mathematically, the 

covariance of the estimate of the actual flux knowing the prior/posterior flux is equivalent to the 

covariance of the error in the prior/posterior estimate. However, in order to avoid any ambiguity 

about the meaning of "fluxes" in "flux covariance matrix", one should use the usual notation "error 

covariance matrix". This sounds like surprising to see that this mistake has been amplified in the 

second version of the manuscript while the same mistake for the observation error covariance has 

been corrected adequately.” 

Response: The convention of “flux error covariance matrix” was adopted and replaced instances 

where “flux covariance matrix” was used. 

 

  

Reviewer 1 wrote:  

“Other examples of what sounds like mistakes related to basic principles of inverse modelling (but 

that I interpret as approximative writing and weak proofreading): l357 the justification for assuming 

that the authors know perfectly the ocean fluxes is that the target quantity are land fluxes;” 

Response:  

We can divide the ocean contribution to a given measurement into a “near field” component (within 

our domain) and a “far field” contribution from the rest of the global ocean. The far field 

contribution is covered by the influence of the boundaries. We ignore the near field contribution in 

our standard case, noting that the uncertainty in flux density from the ocean is an order of 

magnitude smaller than that from the land. We assess the significance of this omission later finding 

that it is, indeed, negligible. We have included more justification in the text. 

 
“...We are not seriously assuming that we know the ocean fluxes perfectly, but for the purposes of 
this optimal network design, we would prefer if the terrestrial measurements focused on solving 
for the terrestrial fluxes. Of course, to run a full inversion, knowledge is needed about the ocean 
fluxes and this would be obtained through ocean based measurements. The contributions from 



the ocean can be divided into the 'near-field' and 'far-field'. The far-field contributions are 
contained within the boundary contributions. The near-field contributions are those within our 
domain. A sensitivity test was conducted whereby 10% of the maximum land NEP standard 
deviation was allocated to the ocean grid cells...” 

 

 “the "can be" at line 257;” 

Response: The phrase “can be” was replaced with “needs to be” 

 

 “l127: initial condition in the domain would be ok, but not "at the site” ;” 

Response: This has been corrected. Here we are referring to the initial CO2 concentration condition 

of the domain.  

 

“l128-129: I do not see why the observations would easily constrain the 3D initial condition but this 

relate to the issue at line 127.” 

Response:  

Peylin et al. (2005) showed that the initial condition for their European domain had an impact for 
about the first 5 days of their inversion period. This is roughly what one would expect from a 
nominal wind speed of 5m/s and a domain of order 2000km. The smaller South African domain will 
feel the effect for a shorter time. Real inversions are likely to be run for several months at a time or 
longer. Only the first week of this period would hence feel any effect of the initial condition, so it is 
reasonable to ignore it here. We have added text explaining this. 
 
“...The observed concentration (c) at a measurement station at a given time can be expressed as 
the sum of different contributions from the surface fluxes (cs), from the boundaries (cb) and from 
the initial condition (ci). Peylin et al. (2005) found for their European regional inversion that the 
initial condition had an effect on the flux estimates for only a few days. In a smaller domain, this 
effect will be even shorter, and therefore it is assumed that the initial condition will contribute 
very little to the total flux uncertainty...” 
 
 

Reviewer 1 wrote:  

“- the configurations and estimates discussed in paragraphs l232-l241 and l277-l286 seem to have 

nothing (let say nearly nothing in the case of l230-l241) to do with the configuration used in this 

study. However, the discussion from lines 232 to 245 looks illogical, and at least useless given the 

very simple set up used by the authors for the observation error in South Africa. Note the "we 

assumed a similar standard deviation" at line 242, while actually the authors have doubled this 

value.” 

Response: The reviewer here is referring to the discussion on how we decided upon the observation 

errors. We discussed different values used in the literature, as we wanted the reader to understand 

how the values used in our standard case and in our sensitivity test compared to the literature. In 



our standard case, we used a value which fell between what Chevallier et al. (2010) (2 ppm 

compared to 1 ppm) and Wu et al. (2013) of 2.9 ppm used. 

The real argument here concerns what should be the standard case in the paper. We believe that 

the simple case is the most enlightening while, when suggesting a real network, one would take 

account of phenomena like aggregation error. The use of an observation error covariance matrix 

assuming null correlations is very common in regional inversions, and particularly in network design 

studies, at least as a starting point. Lauvaux et al (2012a) included temporal correlations in the 

observation error covariance matrix as a special case, and found that it had less of an effect on the 

inversions solution than changing the night time observation error values.  The discussion on 

observation error has been modified to increase its clarity. 

“...Observation errors result in the values of cmod differing from the observed values in c. Sources 
of these errors include random and systematic measurement errors, which are usually negligible 
at an accredited measurement station, transport model errors, and aggregation errors, which are 
discussed in more detail at the end of this section (Ciais et al., 2010). Baker (2000) estimated the 
observation error covariance matrix by comparing the monthly observation means at Mauna Loa 
to a smoothed line and determining the monthly standard deviations. These values ranged 
between 0.34 and 0.16 ppm, and so in their case a value of 1 ppm was applied for the standard 
deviation to each region, with the assumption that most places would have a higher standard 
deviation than Mauna Loa. It was also assumed that the measurement sites would be 
independent of one another and no temporal correlation from month to month, so the matrix was 
assumed to be diagonal. Wu et al. (2013) fitted the standard deviation terms of the observation 
error covariance matrix to available data for a mesoscale inversion study, and estimated values 
between 2.9 and and 3.6 ppm. 
 
We adopted the same observation errors as for the standard case in part 1 of 2 ppm. This value 
falls within the range of values reported in the literature. The dominant source of observation 
error represented here is from the transport model. In part 1 (Ziehn et al., 2014), a sensitivity 
analysis was conducted by adjusting the error estimate of the observations based on the location 
of the station. Since there are far fewer existing stations in South Africa from which we can extract 
data to assess the potential transportation error, we used the same error for all stations. As part 
of the sensitivity analysis we assessed the impact of increasing the night time observation error 
uncertainty to 4 ppm to account for known errors in modelling night time atmospheric transport. 
In atmospheric inversions night time observations are sometimes not considered at all, achieved 
by drastically increasing the night time observation error uncertainties (Lauvaux et al., 2012a)...” 
 

Reviewer 1 wrote:   

“Other examples of confusing and often useless discussions: l.402-407 (hardly understandable),” 

Response: This is the discussion on some of the differences between Incremental Optimisation (IO) 

and the Genetic Algorithm (GA), and where we introduce the GA as one of the sensitivity tests. The 

lines referred to above explain an essential difference – that the IO optimises by adding stations 

sequentially to the solution, whereas the GA starts from the first iteration with a five member 

solution. The five members are then modified in subsequent iterations, until a five member solution 

is found which meets the convergence criterion or the number of iterations is met. This explanation 

has been modified to improve its clarity. 

 



“...Although IO is expected to be more computationally efficient, optimisation through a GA would 
also be well suited for this kind of problem, considering that this network design for South Africa is 
starting with so few existing stations. The GA begins with each of the solutions in the population 
containing five stations. Therefore all five stations are optimised simultaneously, rather than 
sequentially. This method therefore may be more suited to the case where there are multiple 
deployments, as we have. It is possible under these circumstances that the best solution for a five 
station network in terms of reducing the overall uncertainty for South Africa, may not include the 
one station which on its own reduces the uncertainty the most...” 
 

 “l300 to 311 (monthly values are converted into daily values before being converted into weekly 

values: why not converting monthly values into weekly values directly) ?” 

Response: This explanation has been modified. The additional step of working with the daily values, 

a more familiar unit, was used so that we could ensure that the prior estimates were reasonable. But 

this step is not necessary.  

“...Using this assumption, the monthly estimates for NPP were converted into weekly values, 
separately for day and night, to give the final uncertainty values used to construct the prior flux 
error covariance matrix...” 
 

 

“- by regularly stating "in the Australian test case" (e.g. l.244), this study sounds like considering 

other cases.” 

Response: We have made it clear in the introduction of this paper that Part 1 is the Australian test 

case, and by referring to “the Australian test case” we are referring to that paper. We also stated in 

the introduction of the paper that we would be dealing with the South African optimal network 

design, and it is outlined in the objectives. We have edited the paper so that we refer to part 1 

instead of “the Australian test case”. 

 

Reviewer 1 wrote:   

“2) I wrote in the first review: "Additionally, the discussions regarding whether one should minimize 

the mean uncertainty in fluxes at pixel scale [...] rather than the uncertainty for the mean fluxes 

which drive to a "sensitivity test" sound absurd. These discussions and the mixing of fossil fuel fluxes 

and natural fluxes in the corresponding "cost functions" highlight the absence of "physical" target for 

the network and for this study. Consequently, the analysis of the results is rather poor."  

 

-> these are still critical weaknesses of the paper. The introduction only states that the target = 

sources and sinks of CO2. However, changing the spatial resolution of the control vector and/or the 

metric for the optimisation procedure (i.e. the mean uncertainty at the control resolution or the 

uncertainty in the total fluxes over 1 month and over South Africa) changes the target of the 

monitoring system. Targeting the sum of anthropogenic emissions and biogenic fluxes without 

attempting at separating these components does not sound sensible.  

On this topic, note that l206 which characterizes the control vector is critical for the paper, but that 

it is lost between technical details about LPDM. Equations 2 and 3 are given without any explicit 



description of the vector f or of vector c (what kind of time averaging is used for the measurements 

?).” 

Response: The reviewer makes two points here which should be treated separately. 

*1 what is the control vector for the inversion and how is it justified? Large-scale inversions have 

traditionally solved for regional departures from specified prior fluxes, usually ocean, terrestrial and 

fossil,  with often some measure of land-use change or biomass burning. As we have moved to pixel-

based inversions the prior flux patterns have given way to prior estimates of fluxes at each gridpoint. 

The control vector is usually the flux from each gridpoint or, equivalently, the departure from the 

prior. Separating the pixel-resolution fluxes into components is normally pointless since the Green's 

Function for each component flux is identical ... unless we have data like isotopes which can 

distinguish flux categories. It is unsurprising then that most inversions at pixel resolution treat the 

total flux (e.g. the long series of global studies from Chevallier and collaborators and the regional 

studies from Lauvaux and collaborators). Attribution of changes in the flux is possible of course but 

should be clearly separated from the information returned from atmospheric measurements. This 

point is moot when the fossil fuel flux can be considered perfectly known but this assumption 

(always questionable) is certainly indefensible at the resolutions we study here (Rayner et al., 2010; 

Asefi-Najafabady et al. 2014). We have added further explanation to the text. To ensure clarity, the 

vectors f and c are explicitly defined in the new manuscript.  

 

*2 What target quantity should one optimize? This question has been discussed since the genesis of 

quantitative network design in this field (Rayner et al., 1996; Kaminski and Rayner, 2008). The 

question cannot be wished away since any real network will have multiple objectives. We believe 

considering more than one of these is a strength rather than a weakness of the paper.  

“...The vector of the modelled concentrations cmod is a result of the contribution from the sources 

f, described by the transport or sensitivity matrix T. The vector f can be composed of surface fluxes 

and boundary concentrations (Lauvaux et al., 2012a). The surface fluxes our inversion setup would 

solve for are the total CO2 fluxes within a pixel, which we take to be the sum of the biospheric and 

fossil fuel fluxes. We aim to solve for the total flux since there is not enough information to 

disentangle these fluxes. In this type of inversion setup, the surface fluxes can be separated into 

biospheric and fossil fuel fluxes after the inversion run, using additional information regarding 

either the fossil fuel or biospheric fluxes (Chevallier et al., 2014)...” 

“...The observed concentration (c) at a measurement station at a given time can be expressed as 

the sum of different contributions from the surface fluxes (cs), from the boundaries (cb) and from 

the initial condition (ci)...” 

 

Reviewer 1 wrote: 

“3) notations in section 2.1 can be confusing (c vs cmod instead of cmeas vs c since the variable is 

the model c, not the vector of measured concentrations) and equation 11 is either wrong or 

confused by such a problem of notation (c_B is not explained, but it likely corresponds to the 



boundary concentrations while the text says that it is c_b). l136: shortcut or simply an error since the 

uncertainty from boundaries will never be projected into the posterior uncertainty in inverted 

fluxes.” 

Response: The notation for the concentration vector has been made explicit in the new manuscript, 

and the vectors cB and cb better explained. The vector cB is the concentration at the boundary, and 

the vector cb and is the boundary’s contribution to the concentration at the measurement site. The 

text has been corrected to reflect this. The text has also been corrected to reflect that we are 

considering the boundary contribution to the observation error. Since both boundary conditions and 

surface fluxes couple to the same observations, increases in boundary condition uncertainty will 

increase posterior uncertainty of fluxes. In that sense boundary condition errors do, in fact, project 

into posterior flux uncertainties. 

“...cb;mod =MBcB  
where MB is the submatrix of T for the boundary concentrations, cB...” 
 

Lauvaux et al (2012a), Lauvaux et al (2012b), and Peylin et al (2005) are all examples of regional 

inversion studies which have solved for the boundary inflow in the inversion setup. Therefore the 

boundary inflow has to be part of the source vector, which would required that it has associated 

terms in the sensitivity matrix (which we explained in section 2.7) and in the prior error covariance 

matrix of the sources.  

 

Reviewer 1 wrote: 

“4) the discussions about the observation errors should be rewritten. The authors seem to assume 

that the reader perfectly knows what observation errors correspond to (except when dealing with 

the aggregation errors), and that the reader is fully aware of issues with observation errors at night; 

however, they still give awkward details such as at line 251. Explanations regarding the aggregation 

errors are confusing: the part l253-275 is hardly readable unless already knowing what the author 

detail. For example: whose “spatial resolution” does line 254 refer to ?”  

 

Response: The contributions to the observation error have been more clearly explained in the new 

manuscript, and the aggregation error further expanded. The spatial resolution refers to that of the 

surface fluxes, i.e. the size of the pixels. An example of the changes to the observation error section 

was shown in response to comment 1. 

 

Reviewer 1 wrote: 

“5) When do the authors explain that they use a regional model which is why they need boundary 

conditions ?” 

Response: We have made this explicit in the introduction of the new manuscript, as well as 

explained how the GCM CCAM is run in stretched grid mode, so that acts as a regional climate 



model. The GCM is zoomed in over the domain, and we use the model outputs from this region to 

drive the LPDM model. The processing procedure we used for the LPDM model is limited to a 

bounded domain (e.g. Lauvaux et al 2012a). We use a regional model, therefore requiring boundary 

information, since we need to resolve the atmospheric transport at a high temporal resolution, 

which in turn requires that the model be run at a high resolution (Sarrat et al., 2009). 

“...In the case of the South African network design, these variables are produced by the CSIRO 
Conformal-Cubic Atmospheric Model (CCAM), a variable resolution global circulation model run in 
regional mode. We use the regional mode so that we can resolve the atmospheric transport at a 
high temporal resolution, which requires that the transport model be run at a high spatial 
resolution as well (Sarrat et al., 2009)...” 
 

Reviewer 1 wrote: 

“6) I still feel that this paper gives too much useless details about the system and its configuration 

even though there is less overlapping with the part I paper. Some examples of useless details: all the 

discussions about CCAM (nearly one page) ? redundancies between the beginning of section 2.2 and 

the end of page 6 ...” 

Response: We feel that providing details on how CCAM was specified is important for this study, as 

the use of CCAM as a regional climate model over South Africa is still fairly novel (Engelbrecht et al, 

2009). CCAM used in this study is not from the ACCESS runs, as in the case of part 1, and therefore 

providing details here is not redundant. The objective of this paper is to demonstrate the use of the 

LPDM model to produce the sensitivity matrix needed for our inversion, and providing details on the 

setup of CCAM gives insight into how our LPDM model is driven. The redundant detail on the setup 

of LPDM from part 1 has been removed. 

 

The first sentence of the last paragraph of section 2.2 has been modified to avoid repeating 

information stated at the beginning of the section. 

“...To determine which sources and how much of each of these sources a measurement site sees 
at a given moment, the sensitivity matrix T containing the influence functions is required. For a 
regional inversion this matrix can be directly obtained by running a Lagrangian particle dispersion 
model in backward mode. The particles are released from the measurement locations and travel 
to the surface and the boundaries (Lauvaux et al., 2008; Seibert and Frank, 2004). We used the 
model developed by Uliasz (1994) which we refer to as LPDM. In this mode the model simulates 
the release of a large number of particles from arbitrary emissions sources by tracking the motion 
of the particles backward in time (Uliasz, 1993, 1994). By running the model in this receptor-
orientated mode the influence functions for a given receptor are calculated, as described in part 1 
(Ziehn et al., 2014)...” 

 

Reviewer 1 wrote: 

“7) I do not understand the point about the aggregation error at line 304. Using values from the 

closest pixel in South Africa does not really sound far more sensible than a "blanket estimate" .” 



 

Response:  

One input into the calculation of aggregation error is the spatial variance of the high-resolution 

pixels within the low-resolution pixel. We only had access to terrestrial biosphere fluxes for South 

Africa. Thus, if a low-resolution pixel included points outside South Africa we needed a reasonable 

flux estimate. Given correlations in biome type, the nearest point in South Africa is a more reliable 

guide than an average. An average will also reduce aggregation error artificially since many pixels 

may be assigned the same value, reducing the variance. 

“...As a realistic estimate, areas outside of South Africa, which had no estimates available for NPP 
from the carbon assessment product, were assigned the NPP estimate from the closest South 
Africa grid cell for a particular month. In this way, pixels to the east of the continent in the 
Mozambican region had similar flux uncertainties prescribed as for the northern savannah pixels 
within South Africa, and those on the west of the continent in Namibia had uncertainties 
prescribed as for the semi-desert pixels in Northern Cape Province of South Africa. This type of 
interpolation was carried out to avoid adding unnecessary aggregation errors at the South African 
terrestrial borders, which would occur if a blanket estimate for NPP outside of South Africa was 
used. A blanket estimate would lead to artificially large changes in the flux uncertainties between 
neighbouring pixels, exaggerating aggregation errors for stations near these borders, and 
conversely null changes in uncertainty between non-South Africa terrestrial pixels....” 
 

Reviewer 1 wrote: 

“8) around l335: rescaling uncertainties as a function of the land cover in a grid cell makes sense for 

the natural fluxes, but I think that it does not make sense for the anthropogenic emissions. “ 

Response: This sentence has been reworded to clarify our procedure. We did not multiply the fossil 

fuel flux errors by the fraction of land cover, only the natural fluxes. 

“...The biospheric flux uncertainties were multiplied by the fraction of the grid cell covered by 
land, separately for day and night...” 
 

Reviewer 1 wrote: 

“9) l357-363: I do not really understand how the NEP from land ecosystems can be used to derive 

uncertainty in the ocean fluxes. Even if considering uncertainties in the ocean productivity only, how 

to relate land NEP to this ? "The nearest land NEP": the map may not look better than if a single 

value was used far from the coast.”  

Response: In the sensitivity study we considered three cases for the ocean pixel flux errors: null 

error; homogenous error; and inhomogeneous error. In the homogenous case, the error was 

assigned as 10% of the highest terrestrial NEP value. For the inhomogeneous case the NEP was also 

used to assign errors, but instead the closest land pixel was used. The assignment of errors for this 

test case was merely demonstrative, and not intended for actual use in an inversion. The purpose 

was to determine if inhomogeneous ocean flux errors would affect the network design differently to 

a homogenous assignment of errors. The question of what to assign the ocean pixels will be further 



investigated in an inversion exercise using concentration measurements from a pilot study 

conducted over a smaller region of South Africa. We have made it clear in the new manuscript that 

we would not use the nearest land based pixels to determine ocean flux error estimates. 

“...A sensitivity test was conducted whereby 10% of the maximum land NEP standard deviation 
was allocated to the ocean grid cells. This uncertainty represents the uncertainty in the ocean 
productivity models which would be used to obtain prior estimates of ocean fluxes during an 
inversion, which are similar to the values allocated by Chevallier et al. (2010). A second case was 
considered where 10% of the nearest land NEP uncertainty was allocated to each ocean grid cell, 
so that the uncertainties of the ocean grid cells would increase as the uncertainties of nearby land 
fluxes increased. The purpose of this test case was only to demonstrate the effect implementing a 
variable ocean uncertainty scheme...” 
 

Reviewer 1 wrote: 

“10) equation 7 does not really correspond to something consistent between the different 

experiments: when changing the resolution of the control vector, it targets a different space scale. 

Therefore, comparing results obtained with such a metric when using different resolutions of the 

control vector may not really make sense. One should rather have selected a metric that 

corresponds to a fixed horizontal resolution of the fluxes that could be addressed by any of the 

control vectors tested in this study.  

Again, the discussion at lines 386-387 sounds absurd. It does not make sense to question whether it 

is better to be interested in improving the mean knowledge on local fluxes or on the total fluxes 

(which is the translation of whether it is better to use metric from eq 7 or 8). See also the major 

comment 2.” 

Response: The reviewer does not explain why the question does not make sense. It is an absolute 

prerequisite of sound experimental design that the target of the experiment is well understood but, 

as discussed above, there is rarely a single use for a trace gas network or, as with the global network, 

its use will evolve over time. As explained for comment 2, the sensitivity tests were setup so that 

they could be compared to the standard case. And in addition, the networks were compared by their 

percentage uncertainty reduction, rather than absolute reduction. The inclusion of equation 7 to be 

used in the cost function of the optimisation procedure was mainly to compare it to the standard 

case of using the sum of the covariance elements. We have included in our discussion that equation 

8 is the preferred metric for assessing the overall uncertainty in fluxes for a domain, and used by 

most network design papers. 

“...The use of equation 7 results in the minimisation of the average variability between surface 
pixels. Equation 8 is the more accepted metric to calculate uncertainty for network designs, and it 
results in the minimisation of the uncertainty of the total flux over South Africa. As for part 1 
(Ziehn et al., 2014) and as used by Rayner et al. (1996), we use JCe as the uncertainty metric for the 
standard design...” 

 

Reviewer 1 wrote: 

“11) Section 2.6 starts with redundancies and ends with 2 sentences saying the same thing.” 



Response: This paragraph on the measurements sites has been rewritten to improve clarity. 

“...Hypothetical stations were selected from a regular grid over South Africa, resulting in 36 
equally spaced locations (Fig. 3), from which five stations need to be selected. Ultimately, the 
exact location of the stations will be determined by practical considerations, such as the presence 
of existing infrastructure, such as communication towers and meteorological stations, available 
manpower, the relative safety of the instruments, and the accessibility of the sites. The optimal 
network will be used as a guide as to which locations are ideal. Once station sites have been 
chosen, it will be possible to again calculate the posterior flux error covariance matrix based on 
the exact tower locations, and determine how close to the idealise uncertainty reduction the 
implemented network can achieve...” 
 

Reviewer 1 wrote: 

“12) End of section 3.1: the authors likely misunderstood the comment from reviewer 2 about the 

correlations due to errors in the boundary conditions. He questioned about correlations in the 

observation error due to errors in the boundary conditions which definitely increase the weight of 

such an error over long time periods. This could be critical when assessing the budget of fluxes in 

South Africa over 1 month.” 

Response: We do not believe we misunderstood the comment. During the first review, Reviewer 2 
stated “The other and probably more important point to note is that Equation 1 obviously uses an 
uncorrelated error of the concentration at the boundary. In fact, at the model resolution, one would 
expect high error correlations in space and time, which would magnify Cb”. Here the reviewer is 
explicitly referring to the uncorrelated error of the concentration at the boundary. The equation 
referred to here is c = cs +cb +ci, where cb is the contributions from the boundary. These 
contributions can be modelled as cb mod = MBcB, where cB represents the concentrations at the 
boundary. The expression Cb =MBCIMB

T gives the posterior covariance matrix of the boundary 
contributions, where CI is the prior error covariance matrix of the boundary concentrations.  
We wish to recover information on s from c for which ci and cb are sources of noise. What is 
important is not the correlations in cb but rather the correlations they induce on c itself. We show 
that the magnitudes of Cb are small so that the perturbation they make to the hitherto uncorrelated 
uncertainty covariance for Cc is also small. This is why we can safely neglect cb in this setup. We 
stress that this may not hold for a smaller domain. 
 
Reviewer 1 wrote: 

“13) I do not really see what the plot of the footprints (Figure 4) is supposed to illustrate. It sounds 
like the beginning of section 3.1 is redundant with the explanation about the derivation of the 
sensitivity matrix earlier.” 
 
Response: The purpose of this section is firstly to justify the exclusion of the boundary concentration 
errors from the observation error covariance. This section was presented here, since we felt it 
belonged more with the results section than under the methods section. It’s a finding of the paper. 

 

The footprints were included, firstly to show why it was necessary to expand the observation 
network, and secondly to show results of the LPDM, which to our knowledge has not been run over 
the domain of South Africa before. These plots also provide insight to the reader on the field of view 
of a selection of potential measurement sites. 



“...The particle counts generated during the LPDM runs for each station were summed over the 
month in order to obtain a footprint of each station. To illustrate this, plots of the influence 
footprint in January (Fig. 4) are provided, using a logarithmic scale, for Cape Point and three other 
candidate stations: 28 (near Potchefstroom), 18 (near Mthatha), and 4 (near Port Elizabeth). For 
both January and July, the influence footprints show that the three candidate stations have more 
contributions from terrestrial South African sources than Cape Point has. The plots show that the 
majority of influence for a site is from the sources in the surrounding pixels...” 
 

Reviewer 1 wrote: 

“14) Section 4 exploits few of the details from section 3. Therefore, much of the details in section 3 
seem useless while this section is relatively short. This highlight a lack of more relevant analysis.” 

 

Response: The purpose of section 3 is to give detailed discussion on the results of the network 
design, and the comparison between the different sensitivity tests. In section 4 we present the 
“take-home” messages from these discussions, and therefore do not discuss explicit results, which 
has already been done in section 3. We have expanded on section 3 to include information on the 
total flux uncertainties estimated under the base network and under the different optimal networks. 

e.g. “...The network solution for July was able to achieve a reduction in uncertainty in the total 
South African flux from 6.42 gC/m2/week under the base network to 3.66 gC/m2/week under the 
optimal network...” 
 

Reviewer 1 wrote: 

“15) Given the small number of sites to be added in the network, I feel that the "DI" diagnostic is a 
bit artificial and useless while section 2.8 is hardly readable. Looking at the maps bring more insights 
about the similarity between the networks than table 4.” 

Response: We disagree with the reviewer on the usefulness of the Dissimilarity Index (DI). This 
diagnostic allows the reader to assess the difference between two network solutions in an objective 
manner, without having to rely on “eye-balling” the differences, which we were criticized for in the 
first review of the paper. We note that this diagnostic was added in response to the comments from 
the reviewer during the first review of the paper. The DI gives a measurement, in metres, of how 
different two network solutions are, which can consistently be used to compare networks, provided 
that all the network solutions contain the same number of members. This measure will be explicitly 
formulated to highlight this property.  

“...A dissimilarity index (DI) was calculated as the sum of the distance to the nearest neighbour in 
the compared network, over all the members in the pair of assessed networks. 

            
      

 

 

   

          
      

 

 

   

 

 
where i and j Ε  [1,2,3,4,5], and Δx2

ij and Δy2
ij are the squared differences between the Cartesian 

coordinates of the ith station in network 1 and the jth station in network 2. In cases where the two 
networks compared were the same, the index results in a value of zero. The index increases as the 
networks become more dissimilar in space. This provides a one-number measure of network 
similarity that can consistently be used for the network comparisons provided each solution 
consists of the same number of stations. The index provides a measure in kilometres of how 



different two network solutions are. This allows for an objective assessment of how different the 
positioning of sites are between two network solutions which may not be obvious to the eye...” 
 

Reviewer 1 wrote: 

“16) The new discussion at lines 690-695 does not make sense to me. If the aggregation error is 
perfectly set-up in the inversion system, the inversion will provide the same results for large areas 
(here for the whole South Africa) when solving for the fluxes at coarse or high resolution. I assume 
that this is not the case here because the estimate of the aggregation errors has been simplified e.g. 
through ignoring temporal correlations in this error. L695 sounds strange.”  

Response: During the first review of this paper, Reviewer 1 stated “In inversion systems, 
computational costs prevent from working at very high resolution over the whole domain, which 
explains why there have been some attempts at optimizing the horizontal grid for the fluxes to be 
controlled as a function of the station locations. But if there was no computational or technical 
limitation, one should use a very high resolution over the whole domain in order to derive results as 
realistic as possible (bearing aggregation errors that are as small as possible).”  
 
In lines 690 to 695 we are discussing the results of our aggregation assessment which showed that 
large aggregation errors are a problem for regional inversion studies. Large errors occur when the 
spatial resolution of the sources is low, but the spatial resolution of the transport model is high. This 
discussion will be modified to make this clearer. Previous regional inversion studies have also added 
aggregation errors to the diagonal elements of the observation error covariance matrix (e.g. Lauvaux 
et al 2012). Kaminski et al (2001) also state that this simple adjustment of the observation errors will 
assist in reducing aggregation errors in the flux estimates. But even if the aggregation errors were 
specified perfectly, the total flux estimate for South Africa will only be similar between the high and 
low resolution cases. Accounting for the aggregation errors do not exactly compensate for the loss 
of information due to aggregation (Wu et al. 2011).  
 
The way we treat the fossil fuel flux uncertainty leads to the higher resolution case resulting in 
higher total flux uncertainty for South Africa. For the low and high resolution cases, we create the 
surface of flux uncertainties using the same procedure. For each of the ten realisations from the 
FFADS product, we regrid the 0.1°×0.1° fossil fuel emissions onto the surface grid we are using. To 
obtain the uncertainty estimates the within pixel variance is calculated for the ten realisations. The 
result of carrying this procedure out at higher spatial resolutions is that the variance values are 
larger compared to lower resolutions, and the between pixel variability is increased (Asefi-
Najafabady et al. 2014). This results in much larger values in the prior flux error covariance matrix, 
which correspond to larger values in the posterior flux error covariance matrix and a larger total flux 
uncertainty for the domain. This in part explains why, despite accounting for aggregation, the 
uncertainties for the total flux for South Africa is different between the different resolutions, with 
the uncertainty increasing as the spatial resolution increases. 
 
 
Line 695 has been modified to: 
“ ... The spatial resolution of the sources also determines the dimensions of the sensitivity matrix 
and prior flux covariance matrix, which impacts on the computational resources required to run an 
inversion or network optimisation....” 
 
 
Reviewer 1 wrote: 



“17) Similarly, the new discussion at lines 723-728 does not make sense to me neither. There is the 
same need for confidence on the knowledge about correlations in the prior error when using null or 
positive correlations (and lines 339-340 favour having positive correlations). If you use null 
correlation but that you actually do not have any idea about whether it is more realistic than 
assuming positive correlations, this yields a budget of uncertainty over South Africa which is not 
reliable and thus the network optimization procedure can be driven by a wrong diagnostic. 
Therefore, I do not understand why using null correlations is presented as a safety measure. In 
principle, the stronger constraint when using correlations has no reason to be problematic. 
Checking the realism of the budgets of prior and posterior uncertainties when aggregating over 
South Africa would have helped raise insights on the set up of the correlation in this study. But such 
numbers are never analysed or discussed in this paper. The last sections focus on scores of 
uncertainty reduction only.” 

Response:  

First we note the relatively weak error correlations found by Chevallier et al (2010) especially when 
considering pixels with different ecosystem types. Thus it is probably less important than one might 
expect to specify the structure of these correlations correctly. Secondly, the choice of independent 
priors is conservative since background covariances tend to spread the influence of observations 
further, thus enhancing the constraint of a given network. The correlation structure is model-
dependent and thus hard to specify without repeating the work of Chevallier et al. (2010) for each 
biosphere model. For these reasons it seems prudent to treat the control case as independent and 
consider a correlated case for a sensitivity study.  

In answer to the reviewer's final point, when considering the relative performance of different 
networks (the purpose of this study) absolute and relative error reductions are equivalent. 

 

“...For a network to be based on a prior covariance matrix including correlation, there would need 
to be confidence that this correlation structure and size of correlations between fluxes were 
accurate. This is generally not the case, and easier to assess when concentration measurements 
are available, which is why many network designs have assumed independence between prior 
fluxes (Rayner, 2004; Patra and Maksyutov, 2002). Including correlations which are too large can 
lead to an over constrained system (Lauvaux et al., 2012), which is evidenced in this study where 
the uncertainty reductions were the largest under the correlation test case..." 

  
 

 

 

 

 

 

 

 



Response to Reviewer 3: 

Reviewer 3 wrote: 

“Review of the paper entitled: Greenhouse gas network design using backward Lagrangian particle 

dispersion modeling – Part 2: Sensitivity analyses and South African test case” by Nickless et al. 

 

The paper presents the results from a network design study for a CO2 flux inversion over South 

Africa. It is clearly written and the scientific results are highly relevant to network design study in 

general. The main weakness is that new ideas are not clearly stated in the abstract. Some aspects of 

this work were never presented before to the best of my knowledge (e.g. compare 3 different 

methods to select the network, sensitivity tests to boundary concentrations, …). This paper should 

be considered for publication after considering the minor revisions listed hereafter.” 

Response: The authors would like to thank the reviewer for the favourable review and for pointing 

out which aspects of our research we have not fully highlighted. 

 

Reviewer 3 wrote: 

“Technical comments:  

 

Boundary influence: The influence from outside the modeled domain is presented similarly to the 

surface flux, i.e. additional unknowns in the state vector. When you consider that the boundary 

concentration uncertainty should be smaller than the observation errors, the problem of potential 

biases in the concentrations, which could affect all the towers at once, is ignored. Actually, the 

inversion system is not really built to optimize the boundary concentrations but instead the surface 

fluxes. The idea is to provide the best information possible for the boundary concentrations. This 

could mean that some sites would be used to constrain the boundary concentrations. In this case, 

the error reduction of the boundary concentrations is secondary, and you would focus on dedicating 

sites able to measure the boundary inflow, i.e. minimize the sensitivity to the surface fluxes and 

maximize the error reduction of the boundary concentrations.” 

Response: For the inversion setup that we use in this paper, similar to that of Lauvaux et al (2012a), 

we consider solving for the boundary contributions (or the boundary inflow) as an explicit source. 

This is made possible through the use of the particle counts from the backward LPDM model which 

we use to determine the sensitivity of each measurement site to the concentrations at the 

boundary. Therefore the sensitivity matrix would then contain extra columns for each of the 

boundaries for each week (if we’re considering contributions from a weekly averaged concentration 

at the boundary). Having measurement stations specifically for measuring boundary inflow would be 

useful, but would then reduce the number of station we have left to resolve the surface fluxes, 

which we are specifically aiming at in this study. We deliberately chose a large domain with South 

Africa situated in the middle so that the boundary contributions would be minimal. See response to 

Reviewer 1 comment 3. 

 



 

Reviewer 3 wrote: 

“L28: The statement is correct but very abrupt for an introduction. Please rephrase the sentence, 

starting from the beginning of the scientific problem, which may be your second sentence actually.” 

Response: The beginning of the introduction has been amended to introduce the issue of climate 

change, and why CO2 sources need to be monitored and better modelled. 

“...Mitigating climate change is one of the great challenges of our time. To further this end, it has 
become essential to accurately estimate the emission and uptake of CO2 around the globe...” 
 

Reviewer 3 wrote: 

“L103: “LPDM” is also a very common acronym for any LPD model. Use the original reference with 

the acronym to clarify.” 

Response: We have clarified this in the text. 

“...For a regional inversion this matrix can be directly obtained by running a Lagrangian particle 
dispersion model in backward mode. The particles are released from the measurement locations 
and travel to the surface and the boundaries (Lauvaux et al., 2008; Seibert and Frank, 2004). We 
used the model developed by Uliasz (1994) which we refer to as LPDM...” 
 

Reviewer 3 wrote: 

“L160: “…driven by three-dimensional fields…” but you indicate only (u,v).” 

Response: This has been corrected to “(u,v,w)”. 

 

Reviewer 3 wrote: 

“Observation error covariance matrix: The errors are defined using reasonable estimates from the 

literature, corrected with your own aggregation error estimates. The only aspect of the problem that 

would be worth considering here is the local atmospheric dynamics that could affect specific 

locations. Considering the spatial resolution used for CCAM, and prior knowledge about site 

locations such as topography, the distance to the coastline, … Would site 12 be correctly simulated 

by CCAM for example?” 

Response: At this stage CCAM has not been sufficiently tested against measured data to determine 

the degree of transport errors at different locations in South Africa. But this analysis will be 

performed for a pilot inverse modelling exercise around a South African city, where three 

measurement stations will be used to assess how well CCAM is able to model atmospheric transport 

over fairly complex terrain.  

 



Reviewer 3 wrote: 

“L351: do you really mean that you multiplied the correlation coefficients? This approach reduces 

the correlation rapidly in space and time. In the example (0.3 x 0.5), the correlation is almost 

negligible (i.e. 0.15).” 

Response: Yes, in the sensitivity test we used a fairly simple correlation structure with a short 

correlation length. Wu et al (2013) found that spatial correlations with long correlation lengths were 

not supported in their mesoscale inversion and Chevallier et al. (2010) found short correlation 

lengths in their analysis of biosphere models. 

 

Reviewer 3 wrote: 

“L386-387: It is unclear why you wouldn’t use the total uncertainty. The theory would suggest that 

you use Jce and consider all the elements of the posterior covariance matrix. Do you mean that, 

because non-diagonal elements are less certain, you may not want to consider them in your 

optimization?” 

Response: We agree with the reviewer that the total uncertainty is the better metric. The trace was 

only included because it is a possible alternative. The emphasis on the preference for the use of the 

total uncertainty metric is stated in the updated manuscript. 

“...The use of equation 7 results in the minimisation of the average variability between surface 
pixels. Equation 8 is the more accepted metric to calculate uncertainty for network designs, and it 
results in the minimisation of the uncertainty of the total flux over South Africa...” 
 

Reviewer 3 wrote: 

“L524: “0.0 ppm” sounds very low (as close as it can be from being negative in fact). Was it that low 

or is it just a typo?”  

Response: The concentrations have been rounded to two significant digits to show that the smallest 

aggregation error was determined to be 0.01 ppm. 

 

Reviewer 3 wrote: 

“L534: “spin up” refers to the time window used to count particles backward in time? How was it 

defined in your simulations? Would an observation on the second day of the month have only two 

days of backward transport?” 

Response: During the assessment of the aggregation error, we realised that the first week’s 

transport was not well represented by the LPDM model. Yes, day one would only have had one day 

of transport. Therefore we based all our calculations on the last two weeks of the month. This is 

emphasized in the updated version of the manuscript. The statement on “spin up” was explaining 

that when using the LPDM model, it is a better to run the model with at least a week, if not perhaps 



an additional month’s worth of forcing data at the beginning of the time domain, so that the 

transport is accurate over the period of interest. 

“...When running LPDM to generate the sensitivity matrix, it is imperative to specify a sufficient 
number of particles per release, as well as to run the model for longer than required, with 
additional time at the beginning of the run. This is to avoid transport errors, and to avoid 
exaggerating the aggregations errors...” 
 
 

Reviewer 3 wrote: 

“L610: Looking at Figure 7, the sensitivity tests for January are converging on four sites, even though 

none of them includes all the cases, and 6-7 other sites. This is fairly similar to the convergence of 

July, slightly weaker maybe, but well defined too.” 

Response: Similar convergence definitely does appear to be taking place in January as well. The most 

convergence appears to take place in the combine January/July run, with four very clear sites. This is 

highlighted in the updated manuscript. 

“...Similarly to July, the network solutions do appear to converge towards three stations, but 
different from those in July...” 
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Abstract. This is the second part of a two-part paper considering
:
a

:::::::::::
measurement

:
network de-

sign based on a Lagrangian stochastic particle dispersion model(LPDM), aimed at performing a

sensitivity analysis
:
,
:::::
which

:::
we

:::::::
referred

::
to
:::

as
:::::::
LPDM,

::
in

:::
this

::::
case

::::
for

:::::
South

::::::
Africa.

:::
A

:::::::::
sensitivity

::::::
analysis

::::
was

:::::::::
performed

:
for different specifications in a network design applied to a

::
of

:::
the

:::::::
network

:::::
design

::::::::::
parameters

:::::
which

:::::
were

::::::
applied

:::
to

:::
this

:
South African test case. The LPDM, which can be5

used to derive the sensitivity matrix used in an atmospheric inversion, was run for each candidate

station for the months of July (representative of the Southern Hemisphere Winter) and January (Sum-

mer). The network optimisation procedure was carried out for South Africa under a standard set of

conditions, similar to those applied to the Australian test case in part 1, for both months and for the

combined two months, using the Incremental Optimisation (IO) routine. The optimal network design10

setup was subtly changed, one parameter at a time, and the optimisation routine re-run under each

set of modified conditions, and compared to the original optimal network design. The assessment of

the similarity between network solutions showed that changing the height of the surface grid cells,

including an uncertainty estimate for the ocean fluxes, or increasing the night time observation error

uncertainty did not result in any significant changes in the positioning of the stations relative to the15

standard design. However, changing the covariance matrix or increasing the spatial resolution did.

Large aggregation errors were calculated for a number of candidate measurement sites using the

resolution of the standard network design. Spatial resolution of the prior fluxes should be kept as

close to the resolution of the transport model as the computing system can manage, to mitigate

the exclusion of sites which could potentially be beneficial to the network. Including a generic20

1



correlation structure in the prior flux covariance matrix lead to pronounced changes in the network

solution. The genetic algorithm (GA) was able to find a marginally better solution than the IO

procedure, increasing uncertainty reduction by 0.3%, but still included the most influential stations

from the standard network design. In addition, the computational cost of the GA compared to IO was

much higher. Overall the results suggest that a good improvement in knowledge of South African25

fluxes is available from a feasible atmospheric network and that the general features of this network

are invariable under several reasonable choices in a network design study.

1 Introduction

It
::::::::
Mitigating

:::::::
climate

:::::::
change

::
is

:::
one

:::
of

:::
the

:::::
great

:::::::::
challenges

:::
of

:::
our

:::::
time.

::::
To

::::::
further

:::
this

:::::
end,

::
it

has become essential to accurately estimate the emission and uptake of CO2 around the globe.30

Greenhouse gases affect the absorption, scattering and emission of radiation within the atmosphere

and at the Earth’s surface (Enting, 2002; Denman et al., 2007). Of these gases, CO2 contributes

the greatest forcing on the climate (Canadell et al., 2007). Monitoring CO2 sources and sinks is

necessary for validating important components of climate models and for determining the best course

of action to mitigate Climate Change. The method of inverse modelling can be used to estimate35

the magnitude of sources and sinks of CO2 at different temporal and spatial scales (Enting and

Mansbridge, 1989; Rayner et al., 1999; Rödenbeck et al., 2003; Chevallier et al., 2010). This method

relies on precision measurements of atmospheric CO2 concentrations to refine the prior estimates

of the CO2 fluxes. Using the machinery of atmospheric inversion, an optimal network of new sites

to add to the existing infrastructure for measurement of atmospheric CO2 concentrations can be40

derived from a list of potential sites.

Previous optimal network studies run at the global scale have highlighted southern Africa as a re-

gion of
::::::::
associated

::::
with

:
large uncertainty in its terrestrial CO2 fluxes, requiring further constraint by

measurements (Patra and Maksyutov, 2002). Measurements over Africa are much sparser compared

to other continents. Only the Cape Point Global Atmospheric Watch (GAW) station has a long term45

CO2 concentration record, measuring since 1992. This tower was located at Cape Point (34.35
◦

S,

18.49
◦

E) predominantly to record baseline measurements of well-mixed, clean air originating over

the Southern Ocean. A study by Whittlestone et al. (2009) demonstrated that it would be difficult to

improve estimates of terrestrial CO2 fluxes for southern Africa using the Cape Point station alone.

In 2012, an atmospheric observatory was installed near the Gobabeb Training and Research Centre,50

on the west coast of Namibia (22.55
◦

S, 15.03
◦

E), which continuously measures trace gases, in-

cluding CO2 (Morgan et al., 2012). To build on this rudimentary network, and to improve estimates

of CO2 fluxes at least for South Africa, high precision instruments for measuring atmospheric CO2

concentrations have been purchased, and
:::::
which

:
are to be installed at sites, yet to be determined,

across South Africa. To maximise the impact of these stations on the estimation of CO2 fluxes55

2



across South Africa, an optimal network design can be used to indicate the best placement of new

stations with the aim of reducing the uncertainty of the terrestrial CO2 source and sink estimates.

The uncertainty in the
:
A

::::::::
reduction

:::
in

:::
the

:::::::::
uncertainty

:::
of

:::
the

::::::::
estimated

:
fluxes is only one of many

considerations when determining the location of new measurement sites, but an optimal network

design based on uncertainty reduction
::::
with

:::
this

::::
goal

:
will provide a guide which can be included in60

the assessment of these new locations. Part 1 of this paper conducted a similar
::
an

:::::::
optimal

:::::::
network

:::::
design

:
study for Australiaon how to augment

:
,
:::::::
hereafter

:::::::
referred

::
to

::
as

::::
part

::
1,

::::::
aimed

::
at

::::::::::
augmenting

its current observation network, and introduced the methodology employed in this study (Ziehn et

al., 2014).

An optimal network design has two basic requirements: an inversion algorithm, which is used65

to calculate the quantity which is to be optimised and which will be dependent on the subset

of measurement sites considered, and an optimisation procedure, for selecting between possible

elements in the network
::::::
requires

:::
the

::::::
theory

::
of

::::::::::
atmospheric

:::::::::
inversions

::
to

:::::::
generate

:::
the

:::::::
posterior

:::::
error

:::::::::
covariance

:::::
matrix

:::
of

:::
the

:
CO2 :::::

fluxes
:::::
which

::::::
would

:::
be

::::::::
estimated

::::
from

::
a
:::::
given

:::::::
network

::
of

::::::::
stations.

::::
From

::::
this

:::
the

::::::::
reduction

:
in
::::::::::
uncertainty

:::
can

::
be

::::::::::
determined.

::::
The

::::::
second

::::::::::
requirement

::
is

::
an

:::::::::::
optimisation70

::::::
routine

:::::
which

::::
will

:::::
select

:::::::
between

:
a
:::
list

::
of

::::::::
potential

::::
sites (Rayner et al., 1996; Patra and Maksyutov,

2002; Rayner, 2004). Part 1 of this paper sought to reduce the uncertainty of Australian terrestrial

fluxes by 50 %, and began by considering the addition of new stations to the existing base network

(Ziehn et al., 2014). Similarly, the Cape Point and Gobabeb stations make up a base network of

CO2 monitoring stations for southern Africa, and this .
:::::
This optimal network design will provide a75

theoretical study on the optimal locations of new stations within South Africa. The optimal network

will add five
::
add

::::
five

::::
new measurement stations to

:::
our

::::
base

:::::::
network

::
to
:
best reduce the uncertainty

in flux estimates across the country, and under the assumption of continuous, hourly measurements

of CO2 concentrations.

The uncertainty metric used in the optimisation procedure is based on the posterior covariance80

matrix of the fluxes, estimated through the inversion procedure, which we use to represent the

uncertainty in the estimated fluxes. The calculation of the posterior flux covariance matrix
:::::::
posterior

:::
flux

:::::
error

:::::::::
covariance

::::::
matrix

::::
used

::
to

::::::
derive

:::
the

:::::::::
uncertainty

::::::
metric

:
does not require any knowledge

of the measured concentrations or of the prior fluxes, only of the prior
::::
error

:
covariance matrix of

the fluxes, the
::::
error covariance matrix of the observations, and the sensitivity matrix, which are all85

determined separately. By basing the metric to be optimised during
:::::
Basing

:::
the

::::
cost

:::::::
function

:::
of the

optimisation procedure on the result of the posterior
::::
error

:
covariance matrix of the fluxes under a

given network , this score can be optimised so that
::::::
ensures

:
the uncertainty in the estimated fluxes

:::::
under

:::
the

::::
final

:::::::
network

:::::::
solution

:
is reduced. As for the Australian test case

:
in

::::
part

::
1 (Ziehn et al.,

2014), the incremental optimisation (IO) procedure was used for the standard optimal network de-90

sign in this study. We used a regular grid of potential stations for the South African case study. The

reason for doing is that, unlike Australia, South Africa does not have the relatively dense network

3



of meteorological stations suitable for atmospheric monitoring. Therefore, if we were to base the

network on the existing sparse network of stations, we could exclude important sites which may

provide better constraint. Therefore we have chosen the regular grid, and the sites selected in the95

optimal network can then be further investigated to determine if there is infrastructure available,

such as meteorological stations, communication towers or other research facilities, which could be

amenable to atmospheric measurements.

In addition to providing an
:::
As

:::
well

::
as
:::::::::
providing

:::
this

::::::::
first-time optimal network design for

:::::::
focusing

::
on

:
CO2 :::

flux
:::::::::
estimation

::::
over

:
South Africa, this paper aims to assess the sensitivity of the network100

design to a number of the parameters and choices which were necessary to run an optimal network

design as proposed in this study
:::
the

::::
paper

:::::::
presents

::
a
::::::::
sensitivity

:::::::
analysis

::
of

::::::
several

::::::::::
parameters

::::::
needed

::
in

:::
the

::::::::::
optimisation

::::::
routine. For the standard case we used parametrisations which were most com-

monly implemented in the literature. We then considered alternatives and determined their impact

on the network. This type of analysis is important because as shown by Rayner et al. (1996), certain105

changes to the optimisation problem, such as changing the quantity to be optimised even if very

similar in nature to the original, can result in drastically different placement of stations. This would

ultimately impact on the implemented network design used in deployment of the new stations. By

having alternative network solutions based on parametrisation changes, we can assess how important

certain stations are, since these should remain constant despite parameter
:::
from

::::
one

:::::::
network

:::::::
solution110

::
to

:::
the

::::
next

::::::
despite

:::::
these changes, and it provides insight into parameter specifications which will

:::::
which

:::::::::
parameters

:::
are

::::::
likely

::
to be important for the estimation of fluxes using the new network of

measurement sites.

The inversion procedure requires a sensitivity matrix which calculates the contribution of the

different sources to the CO2 concentration at a particular measurement site. We used the Lagrangian115

Particle Dispersion Model (LPDM)
:::::::
stochastic

:::::::
particle

::::::::
dispersion

::::::
model

:::::
which

:::
we

::::
refer

::
to

::
as

:::::::
LPDM,

:::::
driven

:::
by

:::
the

::::::
global

:::::::::
circulation

::::::
model

::::::
CCAM

::::
run

::
in

::::::::
stretched

::::
grid

:::::::
regional

::::::
mode, to determine

this matrix. One set of parameters that we considered for the sensitivity analyses related to the

specified dimensions of the surface grid box in which the particles provided by LPDM are counted.

This determines
::
is

:::::::::
determined

:::
by

:
the spatial resolution of the problem. The next set of parameters120

we considered relates to the two
::::
error covariance matrices which are needed for the calculation of

the posterior flux
::::
error

:
covariance matrix. We changed how these matrices were parametrised and

assessed the consequences for the optimal network design. Finally we implemented an alternative

optimisation procedure to IO and considered the optimisation of a different metric of uncertainty

in the fluxes. As the alternative optimisation procedure, we used the genetic algorithm (GA), as125

described by Rayner (2004), which uses a very different optimisation philosophy to the IO method.

This paper proceeds by introducing the inversion methodology, followed by an explanation of

the different sensitivity tests. The results are then presented for the South African optimal network

design under the standard conditions, followed by a comparison of the sensitivity tests. The conclu-
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sions provide insight into the most influential locations identified, and discuss courses of action to130

address the optimal network design parameters highlighted in the study.

2 Methods and the South African Test Case

2.1 Surface Flux Inversion

The Bayesian synthesis inversion method, first proposed by Tarantola (1987) and used for the net-

work design in this paper, is the most common method used for solving atmospheric inverse prob-135

lems in the literature (Rayner et al., 1996; Bousquet et al., 1999; Kaminski et al., 1999; Rayner

et al., 1999; Gurney et al., 2002; Peylin et al., 2002; Gurney et al., 2003; Law et al., 2003; Baker

et al., 2006; Ciais et al., 2010; Enting, 2002). The inversion method
::::::
regional

::::::::
inversion

:::::::
method

:::
we

::::::::::
implemented

:
is explained in detail in part 1 (Ziehn et al., 2014). The observed concentration (c) at a

measurement station at a given time can be expressed as the sum of different contributions from the140

surface fluxes
:::
(cs), from the boundaries

:::
(cb) and from the initial concentration at the site

::::::::
condition

:::
(ci). For the purposes of the network design, the initial concentrations are

:::::::::::
concentration

::
is

:
ignored

since it is assumed that these concentrations are well
:::
this

::::::::
condition

::
is constrained by the observa-

tionsand therefore
:
.
:::::::::::::::::::::
Peylin et al. (2005) found

:::
for

::::
their

:::::::::
European

:::::::
regional

::::::::
inversion

:::
that

:::
the

::::::
initial

::::::::
condition

:::
had

:::
an

:::::
effect

::
on

:::
the

::::
flux

::::::::
estimates

:::
for

::::
only

::
a
:::
few

:::::
days.

:::
In

:
a
:::::::
smaller

:::::::
domain,

::::
this

:::::
effect145

:::
will

::
be

:::::
even

::::::
shorter,

:::
and

::::::::
therefore

::
it

::
is

:::::::
assumed

:::
that

:::
the

:::::
initial

::::::::
condition

::::
will contribute very little to

the
:::
total

:
flux uncertainty.

A simple linear relationship can be used to describe
:::
The

:::::
linear

::::::::::
relationship

:::::
used

::
to

::::::
model the

relationship between the modelled concentrations
:
c and the contribution from the sources (surface

fluxes and boundary inflow)
::
cs :::

and
:::
cb)

::
is

::
as

::::::
follows:150

cmod = Tf (1)

The vector of the modelled concentrations cmod is a result of the contribution from the sources f ,

described by the transport or sensitivity matrix T. The
:::::
vector

:
f
::::

can
::
be

:::::::::
composed

::
of

::::::
surface

::::::
fluxes

:::
and

::::::::
boundary

::::::::::::
concentrations

::::::::::::::::::::
(Lauvaux et al., 2012) .

:::
The

:::::::
surface

:::::
fluxes

:::
our

::::::::
inversion

:::::
setup

::::::
would155

::::
solve

:::
for

:::
are

::::
the

::::
total CO2 :::::

fluxes
::::::
within

:
a
:::::
pixel,

::::::
which

:::
we

::::
take

::
to

:::
be

:::
the

::::
sum

::
of
::::

the
:::::::::
biospheric

:::
and

:::::
fossil

::::
fuel

::::::
fluxes.

::::
We

::::
aim

::
to

:::::
solve

:::
for

:::
the

:::::
total

::::
flux

:::::
since

::::
there

::
is
::::

not
::::::
enough

:::::::::::
information

::
to

:::::::::
disentangle

:::::
these

::::::
fluxes.

::
In

::::
this

::::
type

::
of

::::::::
inversion

:::::
setup,

:::
the

:::::::
surface

:::::
fluxes

:::
can

:::
be

::::::::
separated

::::
into

::::::::
biospheric

::::
and

::::
fossil

::::
fuel

:::::
fluxes

::::
after

:::
the

::::::::
inversion

::::
run,

::::
using

:::::::::
additional

::::::::::
information

::::::::
regarding

:::::
either

::
the

:::::
fossil

::::
fuel

::
or

:::::::::
biospheric

::::::
fluxes

::::::::::::::::::::
(Chevallier et al., 2014) .

::::
The

:
contribution from the boundaries160

was first assessed to determine if the
:
its

:
influence on the flux uncertainties

::::::::::
observation

:::::
errors

:
was

negligible, in which case the boundary conditions could be excluded from the network design pro-

cess.
::
We

:::::::::
developed

:::
an

::::::::
algorithm

:::
for

::::::::
assessing

:::
the

::::::::::
contribution

:::
of

:::
the

::::::::
boundary

::::::::::::
concentrations

:::
on
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::
the

::::::::::
observation

:::::
error

:::::::::
covariance

:::::
matrix

::
in
:::::::
Section

:::
2.7.

:

As described in part 1, for the network design approach we are only interested in the posterior165

covariance matrix of the fluxes, since our aim is to obtain a network that reduces the CO2 flux

uncertainties (Ziehn et al., 2014). The posterior flux
::::
error

:
covariance matrix, Cf , can be calculated

as follows (Tarantola, 1987):

Cf =
(
TTC−1

c T+C−1
f0

)−1

(2)

= Cf0 −Cf0T
T
(
TCf0T

T +Cc

)−1
TCf0 (3)170

where Cc is the covariance matrix of the observation errors, and Cf0 is the prior
::::
error covariance

matrix of the surface fluxes. The use of the posterior flux covariance matrix to assess uncertainty is

possible because it is
:::
Cf ::

is obtained without the vector of observed concentrations c or the vector of

prior fluxes f0, which means that it is possible to assess the contribution that a hypothetical station175

can have on the reduction of the flux uncertainty without the need to generate synthetic dataor make

unnecessary assumptions about the measurements.

2.2 Lagrangian Particle Dispersion Model (LPDM)

To determine which sources and how much of each of these sources a measurement site sees at a

given moment, the sensitivity matrix T containing the influence functions is required. This
:::
For

::
a180

:::::::
regional

:::::::
inversion

::::
this

:
matrix can be directly obtained by running an LPDM

:
a
::::::::::
Lagrangian

:::::::
particle

::::::::
dispersion

::::::
model

:
in backward mode. An LPDM

:::
The

:::::::
particles

:::
are

::::::::
released

::::
from

:::
the

::::::::::::
measurement

:::::::
locations

:::
and

:::::
travel

::
to

:::
the

::::::
surface

::::
and

::
the

:::::::::
boundaries

::::::::::::::::::::::::::::::::::::::::
(Lauvaux et al., 2008; Seibert and Frank, 2004) .

:::
We

::::
used

:::
the

:::::
model

:::::::::
developed

::
by

:::::::::::::::::
Uliasz (1994) which

:::
we

::::
refer

::
to

::
as

:::::::
LPDM.

::
In

:::
this

:::::
mode

:::
the

::::::
model

simulates the release of a large number of particles from arbitrary emissions sources by tracking the185

motion of the particles (Uliasz, 1993, 1994) . The model can be run backward in time, in
::::::::
backward

::
in

::::
time

::::::::::::::::::
(Uliasz, 1993, 1994) .

:::
By

:::::::
running

:::
the

:::::
model

::
in
::::

this
:
receptor-orientated mode , to calculate

the influence functions for a given receptor
::
are

:::::::::
calculated, as described in Ziehn et al. (2014) . In

this mode, the particles are released from the measurement locations and travel to the surface and

the boundaries (Lauvaux et al., 2008; Seibert and Frank, 2004) .
:::
part

:
1
:::::::::::::::::
(Ziehn et al., 2014) .

:
190

LPDM is driven by the three-dimensional fields of mean horizontal winds (u, v,
::
w), potential tem-

perature and turbulent kinetic energy (TKE). In the case of the South African network design, these

variables are produced by the CSIRO Conformal-Cubic Atmospheric Model (CCAM), a variable-

resolution global circulation model .
::
run

:::
in

:::::::
regional

:::::
mode.

::::
We

:::
use

:::
the

::::::::
regional

:::::
mode

::
so

::::
that

:::
we

:::
can

::::::
resolve

:::
the

::::::::::
atmospheric

::::::::
transport

::
at

:
a
::::
high

::::::::
temporal

::::::::
resolution,

::::::
which

:::::::
requires

:::
that

:::
the

::::::::
transport195

:::::
model

::
be

::::
run

::
at

:
a
::::
high

::::::
spatial

::::::::
resolution

:::
as

::::
well

:::::::::::::::::
(Sarrat et al., 2009) . CCAM uses a two time-level

semi-implicit semi-Lagrangian method to solve the hydrostatic primitive equations (McGregor and

Dix, 2008; McGregor, 2005; McGregor and Dix, 2001). Total-variation-diminishing vertical advec-
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tion is applied to solve for the advective process in the vertical. CCAM employs a comprehensive

set of physical parametrisations, including the Geophysical Fluid Dynamics Laboratory (GFDL)200

parametrisation for long-wave and shortwave radiation (Schwarzkopf and Fels, 1991) and the liquid

and ice-water scheme of Rotstayn (1997) for interactive cloud distributions. A canopy scheme is

included, as described by Kowalczyk et al. (1994), having six layers for soil temperatures, six layers

for soil moisture (solving Richard’s equation), and three layers for snow. The cumulus convection

scheme uses mass flux closure and includes both downdrafts and detrainment (McGregor, 2003).205

In the simulations performed here CCAM is applied in stretched-grid mode by utilising the

Schmidt (1997) transformation. A multiple-nudging strategy was followed. First, a modestly-

stretched grid providing 60 km resolution over southern and tropical Africa was applied following

Engelbrecht et al. (2009), with subsequent downscaling to a strongly-stretched grid providing 15 km

resolution over southern Africa. Away from the high-resolution region over southern and tropical210

Africa, CCAM was provided with synoptic-scale forcing of atmospheric circulation, from the 2.5
◦

(about 250 km) resolution National Centers for Environmental Prediction (NCEP) reanalysis data

set. This forcing was provided at 6-hourly intervals for the period 1979-2010 using a scale-selective

Gaussian filter (Thatcher and McGregor, 2009, 2010). In the South African case, CCAM was set up

so that it produced output at an hourly time step and at a 0.15
◦

spatial resolution over South Africa.215

The domain extended far beyond the South African border, from 10
◦

South to 40
◦

South and from 0
◦

West to 60
◦

East. Meteorological inputs for LPDM were extracted for two months in 2010; January

for Summer and July for Winter. For a four week period during each of these months, LPDM was

run for each of the hypothetical measurement sites.

We use the LPDM originally proposed by Uliasz (1994) , which we run in reverse mode for each220

hypothetical measurement station we would like to include in the network design process. In our

setup for the model, particles were released every 20 seconds for a total of four weeks for the two

selected months and each particle’s position was recorded at 15 minute intervals. Particles
::::::
During

:::::::::
processing

::
of

:::
the

::::::
particle

:::::
count

::::
data

::::
from

:::::::
LPDM,

:::::::
particles that were near the surface were allocated

to a surface grid cell and the total count within each of these was obtained to determine the surface225

influence or sensitivity. These counts depended on the dimensions and position of these surface grid

boxes. The particle counts were used to calculate the source–receptor (s–r) relationship, or influence

functions, which form the sensitivity matrix T. Here, we followed Seibert and Frank (2004) to

derive the elements of that matrix. As described in Ziehn et al. (2014)
:::
part

::
1

::::::::::::::::
(Ziehn et al., 2014) ,

we modified the approach of Seibert and Frank (2004) to account for the particle counts which were230

produced by our LPDM as opposed to the mass concentrations which were outputted by the LPDM

:::::::
transport

::::::
model

:
in their study. The resulting s–r relationship between the measurement site and

source i at time interval n, which provide the elements of the matrix T, is:
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∂χ̄

∂q̇in
=

∆Tg

∆P

(
Nin

Ntot

)
29

12
× 106, (4)

235

where χ̄ is a volume mixing ratio (receptor) expressed in ppm and q̇in is a mass flux density (source),

Nin the number of particles in the receptor surface grid from source grid i released at time interval

n, ∆T is the length of the time interval, ∆P is the pressure difference in the surface layer, g is the

gravity of Earth, and Ntot the total number of particles released during a given time interval.

For the network design we are interested in weekly fluxes of carbon separated into day and night240

time contributions, which means that we have to provide the particle count Nin as the sum over

one week (∆T=1 week (day/night)). Therefore, the mass flux density q̇in in Eqn. (4) has units of

gC/m2/week for the day and similarly for the night.

For the standard network design, the surface layer height is set to 50 m which corresponds to

approximately 595 Pa (∆P ). If we assume well mixed conditions, then the s–r relationship should245

be independent of the thickness of the surface layer, as long as the layer is not too deep, as the

particle count will be adjusted proportional to the volume of the grid box. Under stable conditions,

this may not be the case (Seibert and Frank, 2004). To test if changing the surface grid box height

affects the optimal network design, we have included two cases in the sensitivity analysis where the

height has been adjusted to 60 m and 75 m. The optimisation routine was run under each of these250

specifications, holding all other choices the same as for the standard network design.

As for most inversion studies, a compromise needs to be reached between the dimensions imposed

on the source regions and the computational resources available (Kaminski et al., 2001; ?)
::::::::::::::::::::::::::::::::::::
(Kaminski et al., 2001; Lauvaux et al., 2012) .

To ensure that the computational time of each of the optimisation runs was feasible, the spatial reso-

lution of the surface flux grid boxes was set so that the domain was divided into 50 by 25 grid boxes255

(a resolution of approximately 1.2
◦×1.2

◦
) for the standard optimal network design. As a sensitivity

test, the resolution of the surface grid boxes was adjusted so that there were 72 by 36 grid boxes (a

resolution of 0.8
◦ × 0.8

◦
) in one case, and to 100 by 50 grid boxes (a resolution of approximately

0.6
◦ × 0.6

◦
) in a second, much closer to the original resolution of the transport model. This change

in resolution of the surface grid boxes impacts on the sensitivity matrix, increasing the number of260

elements in the matrix by a factor of two in the medium resolution case and by a factor of four in the

high resolution case. It has further consequences for the prior flux covariance matrix, which needs

to accommodate this change in source dimensions, increasing its element count by a factor of four

for the medium resolution case, and a factor of sixteen in the high resolution case, requiring far more

computational resources than the standard case.265

2.3 Observation error covariance matrix

::::::::::
Observation

:::::
errors

:::::
result

:::
in

:::
the

::::::
values

::
of

::::
cmod::::::::

differing
:::::
from

:::
the

::::::::
observed

:::::
values

:::
in

::
c.

::::::::
Sources

::
of

:::::
these

:::::
errors

:::::::
include

::::::
random

::::
and

:::::::::
systematic

::::::::::::
measurement

::::::
errors,

:::::
which

:::
are

:::::::
usually

:::::::::
negligible
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:
at
:::

an
:::::::::
accredited

::::::::::::
measurement

::::::
station,

::::::::
transport

::::::
model

::::::
errors,

::::
and

::::::::::
aggregation

::::::
errors,

:::::
which

::::
are

::::::::
discussed

::
in

::::
more

:::::
detail

:::
at

:::
the

:::
end

::
of

::::
this

::::::
section

::::::::::::::::
(Ciais et al., 2010) .

:
Baker (2000) estimated the270

observation error covariance matrix by comparing the monthly observation means at Mauna Loa to a

smoothed line and determining the monthly standard deviations. These values ranged between 0.34

and 0.16 ppm, and so in their case a value of 1 ppm was applied for the standard deviation to each

region, with the assumption that most places would have a higher standard deviation than Mauna

Loa. It was also assumed that the measurement sites would be independent of one another and no275

temporal correlation from month to month, so the matrix was assumed to be diagonal. Wu et al.

(2013) fitted the standard deviation terms of the observation error covariance matrix to available

data for a mesoscale inversion study, and estimated values between 2.9 and and 3.6 ppm.

We assumed a similar standard deviation for the observations as Baker (2000) , but let the elements

of the observation error covariance matrix be set at a standard deviation
:::::::
adopted

:::
the

::::
same

::::::::::
observation280

:::::
errors

::
as

:::
for

:::
the

:::::::
standard

::::
case

:::
in

:::
part

::
1
:
of 2 ppmfor all existing and potential stations, to account

for errors in the atmospheric transport modelling. In the Australian test case.
::::
This

:::::
value

::::
falls

::::::
within

::
the

:::::
range

:::
of

:::::
values

:::::::
reported

:::
in

:::
the

::::::::
literature.

::::
The

::::::::
dominant

:::::
source

:::
of

:::::::::
observation

:::::
error

::::::::::
represented

:::
here

::
is
:::::
from

:::
the

:::::::
transport

::::::
model.

::
In

::::
part

::
1

::::::::::::::::
(Ziehn et al., 2014) , a sensitivity analysis was conducted

by adjusting the error estimate of the observations based on the location of the station. Since there285

are far fewer existing stations in South Africa from which we can extract data to assess the potential

transportation error, we used the same error for all stations. As part of the sensitivity analysis we as-

sessed the impact of increasing the night time observation error uncertainty to 4 ppm to account for

the possible
:::::
known

:
errors in modelling night time atmospheric transport. In atmospheric inversions

night time observations are sometimes not considered at all, achieved by drastically increasing the290

night time observation error uncertainties (?)
::::::::::::::::::
(Lauvaux et al., 2012) .

The high resolution test case discussed above allows the opportunity to assess the aggregation er-

ror as well. This is the error due to the degradation of the spatial resolution from the original resolu-

tion of the transport model to a lower resolution that the inversion can accommodate. The modelled

concentrations that result from Tf will differ depending on how the source regions are defined295

(Kaminski et al., 2001)
:::::
When

::::
there

::
is

:::::::::::
heterogeneity

::
in

:::
the

::::::
surface

:::::
fluxes

:::
and

:::::::::::::
inhomogeneous

::::::::
transport,

::::::::
averaging

:::
the

::::::
surface

:::::
fluxes

::
to

:
a
::::::
coarser

:::::::::
resolution

::::
leads

::
to

:::::
errors

::::::::
occurring

::
in

:::
the

::::::::
modelled

::::::::::::
concentrations

:::
due

::
to

:::
the

::::::::::::
measurement

:::
not

:::::::::::
representing

:::
the

::::::
larger

:::::
pixels

::::
over

::::::
which

:::
the

::::::::
transport

::
is
:::::::::

modelled

::::::::::::::::::::::::::::::::::
(Kaminski et al., 2001; Ciais et al., 2010) . The aggregation errors can

::::
need

::
to

:
be added to the ob-

servation errors, as shown by Kaminski et al. (2001) and Tarantola (2005), and need to
::::
must

:
be300

adjusted if the resolution of the problem is changed. To determine the aggregation error in a fea-

sible manner for each of the potential measurement sites, the 0.6
◦ × 0.6

◦
test case was substituted

as the high resolution case in this calculation, where the grid cells of this case fit exactly into the

grid cells of the standard low resolution case. Kaminski et al. (2001)
::::
This

::::::
allowed

:::
us

::
to

::::::
follow

:::
the

::::::
method

:::::::
outlined

::
in

::::::::::::::::::::
Kaminski et al. (2001) ,

::::
who determined that the aggregation error Cc,m can be305
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calculated as:

Cc,m = TP−Cf0P
T
−T

T , (5)

where P− = I−P+ and P+ is the projection matrix which, if multiplied with the prior flux es-310

timates f0 of the high resolution case, produces the low resolution prior flux estimates in place of

the corresponding high resolution estimates. The solution of Cc,m was obtained for each measure-

ment site, and
::
as

:
a
:::::::::::
conservative

::::::::
approach,

:
the maximum value of the diagonal was assigned as the

aggregation error for that measurement site for the standard resolution case. For the medium and

high resolution
::
test

:
cases, since aggregation error would certainly exist but presumably get smaller315

as the resolution approached that of the transport model
::::::::::::::
(Wu et al., 2011) , the aggregation error was

reduced according to the increase in number of grid cells. Therefore it was reduced by half for the

medium resolution test case, and by a quarter for the high resolution test case.

2.4 Prior flux
:::::
error covariance matrix

The elements of the prior flux
::::
error

:
covariance matrix need to be constructed from the best available320

knowledge of sources and sinks on
:
at

:
the surface and at the boundaries. Lauvaux et al. (2008) car-

ried out a mesoscale inversion on synthetic dataand their
:
,
:::::
where

:::::
their

:::::::
inversion

:::::
setup

::::::::
included

:::
the

:::::::::::
contributions

::::
from

:::
the

::::::::::
boundaries

::
as

::::
part

::
of

:::
the

:::::::
sources

::::
they

::::::
wished

::
to

:::::
solve

:::
for.

::::::
Their approach

for obtaining the boundary elements of the prior flux
:::
error

:
covariance matrix was to use modelled

values of CO2 and adjust them for biases based on observed aircraft and tower data that was avail-325

able for the four day period under assessment. For the prior
:::
error

:
covariance matrix of the fluxes,

the error was set at 2 gC m-2 day-1 for the surface
:::::
fluxes

:
and 4 ppm for the boundaries

::::::::
boundary

:::::::::::
contributions, and they assumed uncorrelated flux errors on the domain (no spatial correlation). This

was further developed by Wu et al. (2013) who used available data to fit hyperparameters, which

were the variance and correlation lengths of the prior flux and observation error covariance matrices.330

The approach of Chevallier et al. (2010) to obtain the elements of the prior flux
::::
error covariance

matrix was to set the standard deviations of the fluxes proportional to the hetrotrophic respiration flux

of land-surface model ORCHIDEE. This is the approach adopted in the case of the South African

optimal network design, where we used a recent carbon assessment study by Scholes et al. (2013)

which produced monthly maps of gross primary productivity (GPP), net primary productivity (NPP),335

hetrotrophic respiration (Rh), autotrophic respiration (Ra) and net ecosystem productivity (NEP) for

South Africa. Of these products, most confidence lay in the NPP product. Since NEP = NPP−Rh

and in a balanced system NEP should be a small flux (Lambers et al., 2008), NPP was used rather

than Rh. Following Chevallier et al. (2010) , the
:::
The

:
biosphere flux uncertainties for a particular

month were estimated using the following simple relationship:340
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σNEP =

min(28gC/m2/week, NPP) if South Africa

min(28gC/m2/week,nearest(NPP)) if not South Africa
(6)

where nearest(NPP) represents the NPP estimated for the nearest South African grid cell. As a

realistic estimate, areas outside of South Africa,
:
which had no estimates available for NPP from the345

carbon assessment product, were assigned the NPP estimate from the closest South Africa grid cell

for a particular month.
:
In

::::
this

::::
way,

:::::
pixels

::
to

:::
the

::::
east

::
of

:::
the

::::::::
continent

::
in

:::
the

:::::::::::
Mozambican

:::::
region

::::
had

::::::
similar

:::
flux

:::::::::::
uncertainties

:::::::::
prescribed

:::
as

:::
for

:::
the

:::::::
northern

::::::::
savannah

::::::
pixels

:::::
within

::::::
South

::::::
Africa,

::::
and

::::
those

:::
on

:::
the

::::
west

:::
of

:::
the

::::::::
continent

::
in

::::::::
Namibia

:::
had

:::::::::::
uncertainties

:::::::::
prescribed

:::
as

:::
for

:::
the

::::::::::
semi-desert

:::::
pixels

::
in

::::::::
Northern

:::::
Cape

::::::::
Province

::
of

:::::
South

:::::::
Africa.

:
This type of interpolation was carried out to350

avoid adding unnecessary aggregation errors
:
at

:::
the

:::::
South

:::::::
African

::::::::
terrestrial

::::::::
borders, which would

occur if a blanket estimate for NPP outside of South Africa was used. The carbon assessment

product produced monthly outputs for all the products. These products were converted into daily

values.
::
A

::::::
blanket

:::::::
estimate

::::::
would

::::
lead

::
to

:::::::::
artificially

::::
large

:::::::
changes

::
in

:::
the

::::
flux

::::::::::
uncertainties

::::::::
between

:::::::::::
neighbouring

:::::
pixels,

:::::::::::
exaggerating

::::::::::
aggregation

:::::
errors

:::
for

:::::::
stations

::::
near

::::
these

:::::::
borders,

::::
and

:::::::::
conversely355

:::
null

:::::::
changes

::
in
::::::::::

uncertainty
::::::::
between

:::::::::
non-South

:::::
Africa

:::::::::
terrestrial

::::::
pixels.

:
Since Ra and GPP were

also available, and NPP = GPP−Ra, day time NPP and night time Ra were obtained by assuming

that all the GPP took place during the day, and half of the Ra took place during the day and half at

night. This meant that the day time NPP values tended to be larger in magnitude than the night time

Ra values, which is what we would expect for the South African systems. The daily values were360

accumulated to one week to
:::::
Using

:::
this

:::::::::::
assumption,

:::
the

:::::::
monthly

::::::::
estimates

:::
for

::::
NPP

::::
were

:::::::::
converted

:::
into

::::::
weekly

::::::
values,

:::::::::
separately

:::
for

:::
day

:::
and

:::::
night,

::
to

:
give the final uncertainty values used to construct

the prior flux
::::
error covariance matrix. The day time NPP and night time Ra values used to obtain

::
as

::::::
proxies

:::
for the NEP uncertainties are plotted for July and January (Fig. 1). In South African systems

it is expected that much more biological activity occurs during the Summer months compared to the365

Winter months, with the consequence that the uncertainty during the Summer months is considerably

larger.

Since the domain of the network design includes the fossil fuel sources of South Africa, fossil

fuel
:::
flux uncertainties needed to be derived as well. As forthe Australian test case

:::::::
Previous

:::::::
regional

:::::::::
inversions,

:::::
where

:::
the

::::
total

:::
flux

::
of
::
a
:::::
source

:::::
pixel

:::
was

::::::
solved

:::
for,

::::
had

::::::
detailed

::::::::
inventory

::::
data

::::::::
available370

::
for

:::
the

::::::
fossil

:::
fuel

:::::::::
emissions,

::::
and

::::
they

::::::::
assumed

:::::
these

::::
were

::::::::
perfectly

::::::
known

::::::::::::::::::
(Schuk et al., 2013) .

::::
Since

::::
this

::::::::::
information

::::
was

:::
not

::::::::
available

:::
for

:::::
South

:::::::
Africa,

:::
we

:::
had

::
to
::::::::

consider
:::::
errors

:::
in

:::
the

:::::
fossil

:::
fuel

::::::
fluxes.

::::
As

:::
for

::::
part

::
1 (Ziehn et al., 2014), these uncertainties were derived from the Fossil

Fuel Data Assimilation System (FFDAS) (Rayner et al., 2010; Asefi-Najafabady et al., 2014). Ten

realisations for the year 2010 were obtained from the FFDAS product at the original resolution of375

0.1
◦ × 0.1

◦
. The fluxes were aggregated to our network design resolution of 1.2

◦ × 1.2
◦

and then
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the variance calculated for each grid cell. Since the emissions from fossil fuels are usually localised,

such as those at power plant locations, the variability in the fossil fuel emissions between grid cells

is quite large. But, as shown by Ziehn et al. (2014), the effect of aggregating the data smooths the

fossil fuel emissions over the network design domain, and this leads to a reduction in the variability380

between the different realisations of the FFDAS. It also leads to the aggregation errors discussed in

2.2. Figure 2 shows that the uncertainties for the ten realisations based on the original 0.1
◦ × 0.1

◦

resolution have much larger maximums for individual grid cells than the uncertainties calculated for

the aggregated fluxes (Fig. 2). The effect of using a higher spatial resolution for the surface grids,

closer to the resolution of the transport model, is considered in the sensitivity analyses as discussed385

above in section 2.2. The fossil fuel uncertainty and NPP surfaces for these higher resolution cases

are provided in Fig. 8.

For the standard network design, the prior flux
::::
error covariance matrix is estimated as a diagonal

matrix, where the diagonal elements are the sum of the variances of the biospheric fluxes and the

fossil fuel emissions
:::::
fluxes for that grid cell,

:
.
::::
The

:::::::::
biospheric

:::
flux

:::::::::::
uncertainties

::::
were

:
multiplied by390

the fraction of the grid cell covered by land, separately for day and night. By multiplying with the

land fractions we guarantee that the prior uncertainties for coastal grid cells are scaled accordingly

and ocean only grid cells are set to zero, since the NEP and fossil fuel products only apply to the

land surface. We assumed no correlation in the prior
:::
error

:
covariance matrix of the fluxes. This is a

necessary assumption since we have no data from which to determine the best correlation lengths. In395

reality, grid cells with similar biota and under similar climate will have correlated fluxes. Similarly,

fluxes from the same source which occur close in time will also be correlated (Chevallier et al.,

2010; Wu et al., 2013). Correlation lengths in space and time are difficult to assess, but have a large

impact on the estimated fluxes (Lauvaux et al., 2012). Independence is assumedand it is hoped that

the ,
::::::
which

::
is

:
a
:::::
more

::::::::::
conservative

::::::::
approach

:::
for

:::
the

::::::
optimal

::::::::
network

::::::
design.

:::::::
Eventual

:
data from the400

implemented network will then help to resolve the flux correlation estimates during the inversion

procedure. To determine what impact the assumed
:::::::
assuming

:::::::
positive correlation lengths in the prior

flux
::::
error covariance matrix could have on the optimal network design, we used the results from

Chevallier et al. (2012), and put together a simple correlation structure where it was assumed that

temporal correlations for the same grid cell one week apart had a correlation of 0.5 (independent for405

day and night), decaying to 0.3 at two weeks apart and 0.1 at three weeks apart. Grid cells adjacent

to each other had a correlation of 0.3. The interactions between time and space correlations were

determined by the Kronecker product of the spatial and temporal correlation matrices (e.g. two grid

cells adjacent to each other but one week apart would have a correlation of 0.3× 0.5).
::::::::
Therefore

:::::::::
correlation

::::::
lengths

::::
were

::::::::
relatively

:::::
short.

:
410

In the network design under the standard case, we kept the uncertainties of the ocean-only grid

cells set to zero, since our focus is on reducing the flux uncertainty over land. We want the terrestrial

atmospheric measurements to focus on resolving
:::
are

:::
not

:::::::
seriously

:::::::::
assuming

:::
that

:::
we

:::::
know

:::
the

:::::
ocean
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:::::
fluxes

::::::::
perfectly,

:::
but

::
for

:::
the

::::::::
purposes

::
of

:::
this

:::::::
optimal

:::::::
network

::::::
design,

:::
we

:::::
would

:::::
prefer

::
if

:::
the

::::::::
terrestrial

:::::::::::
measurements

:::::::
focused

:::
on

::::::
solving

:::
for

:
the terrestrial fluxes, and to keep the estimation of the ocean415

fluxes, which are needed to determine the land fluxes during the inversion procedure, as a separate

problem. .
::::

Of
::::::
course,

::
to
::::

run
:
a
::::

full
:::::::::
inversion,

:::::::::
knowledge

::
is
:::::::

needed
:::::
about

:::
the

::::::
ocean

:::::
fluxes

::::
and

:::
this

:::::
would

:::
be

:::::::
obtained

:::::::
through

::::::
ocean

:::::
based

::::::::::::
measurements.

::::
The

:::::::::::
contributions

:::::
from

:::
the

:::::
ocean

::::
can

::
be

::::::
divided

::::
into

:::
the

::::::::::
’near-field’

:::
and

:::::::::
’far-field’.

::::
The

:::::::
far-field

:::::::::::
contributions

:::
are

:::::::::
contained

::::::
within

:::
the

::::::::
boundary

:::::::::::
contributions.

::::
The

::::::::
near-field

:::::::::::
contributions

:::
are

:::::
those

:::::
within

::::
our

:::::::
domain. A sensitivity test420

was conducted whereby 10% of the maximum land NEP standard deviation was allocated to the

ocean grid cells. This uncertainty represents the uncertainty in the ocean productivity models which

would be used to obtain prior estimates of ocean fluxes during an inversion, which are similar to the

values allocated by Chevallier et al. (2010). A second case was considered where 10% of the nearest

land NEP uncertainty was allocated to each ocean grid cell, so that the uncertainties of the ocean425

grid cells would increase as the uncertainties of nearby land fluxes increased.
:::
The

:::::::
purpose

::
of

::::
this

:::
test

::::
case

:::
was

::::
only

::
to
:::::::::::
demonstrate

:::
the

:::::
effect

:::::::::::
implementing

::
a

:::::::
variable

:::::
ocean

:::::::::
uncertainty

:::::::
scheme.

:

2.5 Optimisation

Three optimisation routines have been used for optimal network design in the literature, namely IO

(Patra and Maksyutov, 2002), GA (Rayner, 2004), and simulated annealing (Rayner et al., 1996).430

The
::
We

::::
used

:::
the IO routine, as used for the Australian network design (Ziehn et al., 2014) , was used

:::
part

::
1

:::::::::::::::::
(Ziehn et al., 2014) , for the standard network design. This method was

::::::::
previously

:
compared

to simulated annealing by Patra and Maksyutov (2002) and found to perform as well or better, with

significantly less computational cost.

In the IO scheme we first obtained the s–r relationship for each of the hypothetical stations. We435

::::::
During

:::
the

::
IO

::::::::
procedure

:::
we

:
added one station at a time from the candidate list to our base network of

two stations and calculated Cf . We chose the station that resulted in the smallest uncertainty metric

and added it to the network, simultaneously removing it from the candidate list. We then repeated

the process until we reached the number of instruments we have available (five )
:::
our

:::::
target

::
of

::::
five

::::::
stations. The IO procedure provides us with a stepwise progression of the optimal network.440

The overall uncertainty in fluxes can be expressed by two different metrics (Rayner et al., 1996).

Either through obtaining the trace of Cf (JCt) or by summing over all the elements of Cf (JCe):

JCt =
::::

√√√√ n∑
i=1

Cfii

:::::::::

(7)

JCt =
√∑n

i=1Cfii445
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JCe =

√√√√ n∑
i=1

n∑
j=1

Cfij (8)

where n is the number of elements in the diagonal of Cf . In the first case we consider only the

uncertainty of the fluxes estimated at the source regions, ignoring any correlation between
:::
The

::::
use

::
of

:::::::
equation

::
8

:::::
results

::
in

:::
the

:::::::::::
minimisation

::
of

:::
the

:::::::
average

:::::::::
variability

:::::::
between

::::::
surface

::::::
pixels.

::::::::
Equation450

:
8
::
is

:::
the

:::::
more

::::::::
accepted

::::::
metric

::
to

::::::::
calculate

::::::::::
uncertainty

:::
for

:::::::
network

::::::::
designs,

:::
and

::
it
::::::
results

::
in
:

the

regions, which results in minimising the average uncertainty across source regions. In the second

case, the
:::::::::::
minimisation

::
of

:::
the

:
uncertainty of the total flux estimate of the target region is considered,

since the variance of the sum of a number of variables is equal to the sum of all the elements in the

covariance matrix of those variables. There is no clear answer as to which of these is the best metric455

for the determination of overall uncertainty reduction, so as for
:::
over

::::::
South

::::::
Africa.

:::
As

:::
for

:
part 1

(Ziehn et al., 2014) and as used by Rayner et al. (1996), we use JCe as the uncertainty metric for

the standard design. In the South African test
:::
our

:
case, because the domain of the transport model

contains terrestrial regions outside of South Africa, we only include the elements of Cf which are

within South Africa in the calculation of the uncertainty metric.460

As a sensitivity test, the JCt uncertainty metric replaced
:::
was

:::::::
replaced

::::
with JCe. Minimising either

during the optimisation
:
of

:::::
these

:::::::
metrics should result in an optimal network with reduced overall

uncertainty in flux estimates across South Africa, but the results could potentially be quite different,

particularly if the off-diagonal posterior flux covariance terms are large
::::
there

:::
are

:::::
large

::::::::::
correlations

::
in

::
the

::::::::
posterior

::::
flux

::::
error

:::::::::
covariance

::::::
matrix.465

We evaluated the different networks in terms of their uncertainty reduction:

UR = 1− ĴCe

JCe base
(9)

where ĴCe is the optimised uncertainty metric value and JCe base the value of the uncertainty metric

based on the posterior uncertainties
::::::::
calculated

:::::
from

:::
the

::::::::
posterior

:::::
error

:::::::::
covariance

::::::
matrix

::
of

::::
the470

:::::
fluxes if only the base stations are included.

Although IO is expected to be more computationally efficient, optimisation through a GA would

also be well suited for this kind of problem, considering that this network design for South Africa is

starting essentially from scratch
::::
with

::
so

:::
few

:::::::
existing

:::::::
stations. The GA operates by optimising the five

member network simultaneously, and
::::::
begins

::::
with

::::
each

::
of

:::
the

::::::::
solutions

::
in

:::
the

:::::::::
population

:::::::::
containing475

:::
five

:::::::
stations.

:::::::::
Therefore

::
all

::::
five

::::::
stations

:::
are

:::::::::
optimised

:::::::::::::
simultaneously,

:::::
rather

::::
than

::::::::::
sequentially.

:::::
This

::::::
method

:
therefore may be more suited to the case where there are multiple deployments, because it

could be conceived
::
as

:::
we

::::
have.

::
It
::
is
:::::::
possible

:::::
under

:::::
these

::::::::::::
circumstances

:
that the best solution for a

five member
:::::
station network in terms of reducing the overall uncertainty for South Africa, may not

include the one station which on its own reduces the uncertainty more than any other station
:::
the

::::
most.480
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The GA is highly parallel and we can therefore take advantage of high performance computing, but

the running time of a GA is still higher in comparison to IO.

The approach used to run the GA during the sensitivity analyses is adopted from Rayner (2004).

GA procedures are a class of stochastic optimisation procedures for any numerical algorithm which

calculates a score based on a function of inputs. In this case the algorithm calculates a score based485

on the posterior flux
::::
error covariance matrix, given a set of stations. A GA does not optimise based

on a single solution, but rather by improving a population of solutions, from which a final solution is

selected. New members are added to the population through a process of loss of members which are

not sufficiently fit (culling), pairwise combination of previous members (cross-over), and random

changes to members (mutation). This represents ’survival of the fittest’ and pairwise reproduction490

and mutation in biological populations.

In this implementation of the GA, elitism is maintained by keeping the best solution from the pre-

vious population, without making any changes through cross-over or mutation on this member. The

algorithm converges once a given number of iterations is reached, or once a convergence criterion

is met. The solution with the best fitness criterion is then selected from this population, where the495

fitness F is calculated as:

F = 1− r− 0.5

N
(10)

where r is the ordinal ranking of the member andN is the population size, which in the South African

test case
:::
for

:::
our

:::::
South

:::::::
African

::::
case

:::::
study was taken to be 100 members. A pseudorandom number500

x is generated and members are then deleted, or culled, if the value of F is less than x. The culling

process will remove about 50 % of the population members. These need to be regenerated to get the

population back to the required size. Members are selected at random from the remaining population,

and based on new pseudorandom number
:::::::
numbers, members are duplicated if their fitness score is

above this random number. Sampling is with replacement, so the members with the highest fitness505

have a good chance of being duplicated more than once. This continues until all the culled members

have been replaced and the population size is back to N .

The GA requires a trade-off between the diversity in the solutions, ensuring that the algorithm

does not get stuck in local extrema, and strong enough selection to ensure that the population moves

towards the optimum solution. This is achieved by adjusting the mutation rate; high enough to510

produce diversity in the solutions, but low enough to ensure that members with high fitness persist

and so ensure a tendency towards the optimum solution. From previous work (Rayner, 2004) a good

mutation rate for network design was found to be 0.01.

The population size and number of iterations affects the computation time of the algorithm. A

large population size is favourable because this ensures diversity in the solutions. The more iterations515

that take place, the more solutions the algorithm can assess and the better the chance of finding the

global minimum. High values for both of these parameters results in long computation times. In

this study the number of iterations was set at 100 for a single month optimisation, and to 150 for a
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combined month optimisation. These values were determined from GA trials carried out on the data

prior to deriving the results for this study.520

2.6 Measurement sites

The aim of the network design is to find the set of stations that minimizes the flux uncertainty

over South Africa. Hypothetical stations were selected from a regular grid over South Africa, re-

sulting in 36 equally spaced locations (Fig. 3). Five new instruments are potentially available for

deployment.
:
,
::::
from

::::::
which

:::
five

:::::::
stations

:::::
need

::
to

::
be

::::::::
selected.

:
Ultimately, the exact location of the525

stations will be determined by practical considerations, such as making use
::
the

::::::::
presence of existing

infrastructureand
:
,
::::
such

::
as

:::::::::::::
communication

::::::
towers

:::
and

:::::::::::::
meteorological

:::::::
stations,

:::::::
available

:
manpower,

the relative safety of the instruments, and the accessibility of the sites. The optimal network will

be used as a guide towards ideal locations, around which stations will be chosen. For the practical

implementation, existing infrastructure will be used as much as possible , such as communication530

towers or meteorological stations
::
as

::
to

::::::
which

::::::::
locations

:::
are

:::::
ideal.

::::::
Once

::::::
station

:::::
sites

::::
have

:::::
been

::::::
chosen,

::
it

:::
will

:::
be

:::::::
possible

::
to

:::::
again

:::::::
calculate

:::
the

::::::::
posterior

::::
flux

::::
error

:::::::::
covariance

::::::
matrix

:::::
based

:::
on

:::
the

::::
exact

:::::
tower

:::::::::
locations,

::::
and

::::::::
determine

::::
how

:::::
close

:::
to

:::
the

::::::::::
idealisedbut

:::
not

::::
the

::::
same

:::::::
stations

:::
as

::::
July

:::::::::
uncertainty

::::::::
reduction

:::
the

:::::::::::
implemented

:::::::
network

:::
can

:::::::
achieve.

2.7 Influence from outside the modelled domain535

Since the surface sources are expressed as fluxes in carbon, the contribution to the concentration

at the measurement site is expressed in the amount of carbon seen at the measurement site from a

particular source. In the case of the boundary sources (or contributions from outside of the domain)

which are given as concentrations, their contributions to the concentration at the measurement site

are expressed as a proportion of their concentration, dependent on their influence at the receptor site.540

Part 1 (Ziehn et al., 2014) showed that the boundary contribution can then be written as:

cbb,mod
::::

= MBcB (11)

where MB is the submatrix of T for the boundary concentrations, cb:::
cB. If the elements of MB are

large enough it may be necessary to include the boundary conditions
::::::::::::
concentrations

:
in the network545

design.

For the network design, four boundaries (north, south, east and west) were used and we calculated

the sensitivity of hourly observed concentrations to weekly boundary concentrations. To determine if

the boundary influence
:::::::
influence

::
of

:::
the

::::::::
boundary

::::::::::::
concentrations

:::
on

:::
the

:::::::::
observation

::::::
errors should be

included in the network design, we needed to know whether the uncertainty
::::::::::
uncertainties

:
contributed550

by the boundary concentrations were significant compared to other contributions. To see this we

calculated MB for each station. Assuming concentration uncertainties of 1 ppm at the boundary
::
in
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::
the

::::::::
boundary

:::::::::::::
concentrations (reasonable for the Southern Hemisphere) this yielded:

Cb = MBCIM
T
B (12)555

where CI is the prior
::::
error

:
covariance matrix of boundary concentrations. The diagonal elements of

the posterior
::::
error covariance matrix of the boundary concentrations, Cb, provided us with the un-

certainty contribution of the boundary concentrations
::
to

:::
the

:::::::::::
observations. If they are much smaller

than the observation error uncertainty we can neglect boundary influences in the network design. As

the boundary concentrations should be highly correlated, we also considered CI to have correlation560

between boundary concentrations, where correlations of 0.5 were allocated between boundary con-

centrations during the same week, and values of 0.25 between boundary concentrations separated by

a week or more.

2.8 Comparison of network solutions

To compare the utility of the optimal networks from each algorithm run, the uncertainty reduction565

was assessed for each of these networks. The similarity of the networks
::
in

:::::
terms

::
of

::::
the

::::::
station

:::::::
locations

:
was assessed using a test statistic from the Chi-squared Complete Spatial Randomness test,

measuring the degree of clustering, where the expected value is based on the null hypothesis that the

stations are located randomly over the domain. The intention here was not to perform a statistical

test based on the Chi-squared distribution, since the network did not constitute a sample nor were570

there enough stations, but to calculate an indicator that would assess how similar the positioning of

the
:::::
degree

:::
of

::::::::
clustering

:::
of

:::
the

:
measurements stations were between two networks

:::
for

:
a
:::::::::

particular

:::::::
network

:::::::
solution, referred to as the clustering index,

::::::
which

:::
was

::::
also

::::
used

::
to
::::::::

compare
:::::::
between

::::
two

:::::::
networks.

Clustering Index =
∑
i

∑
j

(Oij −Eij)
2

Eij
(13)575

where i and j are the indicators for the latitude and longitude categories respectively, Oij was the

observed number of stations in quadrat ij and Eij the expected number of stations assuming the

stations are scattered randomly. The domain was divided into quadrats; in this case 16 equally sized

quadrats covering the entire domain.580

A dissimilarity index (DI) was calculated as the sum of the distance to the nearest neighbour in

the compared network, over all the members in the pair of assessed networks.

DI =

5∑
i=1

min
√

∆x2
ij + ∆y2

ij +

5∑
j=1

min
√

∆x2
ij + ∆y2

ij

::::::::::::::::::::::::::::::::::::::::::::

(14)

:::::
where

:
i
::::
and

:
j
::
∈

:
[
:::::::
1,2,3,4,5],

::::
and

::::
∆x2

ij::::
and

::::
∆y2

ij::::
are

:::
the

:::::::
squared

:::::::::
differences

:::::::
between

:::
the

:::::::::
Cartesian585

:::::::::
coordinates

::
of

:::
the

:::
ith

::::::
station

::
in

:::::::
network

::
1
:::
and

:::
the

:::
jth

::::::
station

::
in

:::::::
network

::
2.
:

In cases where the two

networks compared were the same, the index results in a value of zero. The index increases as the
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networks become more dissimilar . The reason for using such an index was to produce
:
in

::::::
space.

::::
This

:::::::
provides

:
a one-number measure of network similarity that could

:::
can consistently be used for

the network comparisons .
:::::::
provided

::::
each

:::::::
solution

::::::::
consists

::
of

:::
the

:::::
same

:::::::
number

::
of

:::::::
stations.

:::::
The590

::::
index

::::::::
provides

:
a
:::::::
measure

:::
in

::::::::
kilometres

:::
of

::::
how

:::::::
different

::::
two

:::::::
network

:::::::
solutions

::::
are.

::::
This

::::::
allows

:::
for

::
an

::::::::
objective

:::::::::
assessment

::
of

::::
how

::::::::
different

::
the

::::::::::
positioning

::
of

::::
sites

:::
are

:::::::
between

::::
two

:::::::
network

::::::::
solutions

:::::
which

::::
may

:::
not

::
be

:::::::
obvious

::
to

:::
the

::::
eye.

3 Results and Discussion

3.1 Influence from the boundaries595

As for part 1 (Ziehn et al., 2014) , the LPDM was run for each station, including the two stationsin

the existing network . The influence functions for each station for the months of January and July

were calculated. The particle counts used to calculate the influence functions
::::::::
generated

::::::
during

::
the

:::::::
LPDM

::::
runs

:::
for

:::::
each

::::::
station were summed over the month in order to obtain a footprint of

each station. To illustrate this, plots of the influence footprint in January (Fig. 4) are provided
:
,600

::::
using

::
a
::::::::::
logarithmic

:::::
scale,

:
for Cape Point and three other candidate stationsnumbered

:
:
:
28 (near

Potchefstroom), 18 (near Mthatha), and 4 (near Port Elizabeth)as examples. For both January and

July, the influence footprints show that the three candidate stations have more contributions from

terrestrial South African sources than Cape Point has.
:::
The

::::
plots

:::::
show

:::
that

:::
the

::::::::
majority

::
of

::::::::
influence

::
for

::
a
:::
site

::
is

::::
from

:::
the

:::::::
sources

::
in

:::
the

::::::::::
surrounding

::::::
pixels.605

Using the influence functions now available for each station, the test of the influence from the

boundaries
::
on

::
to
:::
the

::::::::::
observation

:::::
errors

:
was conducted. Given the large domain over which LPDM

was run, it was not surprising that the boundaries had minimal influence. Overall, the square root

of the maximum diagonal element of Cb for all stations was only 0.012 ppm. The mean of the

maximum diagonal elements over all measurement sites was 0.006 ppm with a standard deviation610

of 0.002 ppm. Even when correlation between the boundary concentrations was included in the

covariance matrix of the boundary concentrations, the maximum diagonal element only reached

0.012 ppm, and maximum diagonal elements
::
the

:::::::::
maximum

:::::::
diagonal

:::::::
element for a particular station

were no more than 40 % higher than
:::
for the independent case.

3.2 Aggregation error615

Aggregation errors were found to be a significant contributor to the overall observation
::::
error covari-

ance matrix. Aggregation errors of as high as 17.1
:::::
17.10 ppm were found for measurement sites

in the north eastern interior, and as low as 0.0
:::
0.01 ppm for stations in the south western interior

(Fig. 5). The average aggregation error across sites was 4.7
:::
4.70 ppm with a standard deviation of

5.1
:::

5.10 ppm. The sites with the largest aggregation errors were generally those closest to large fos-620

sil fuel sources. These large values are due to the significant amount of smoothing of the relatively
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localised fossil fuel fluxes during the lower resolution case. This results in large heterogeneity be-

tween the high resolution fossil fuel fluxes which contribute to the average fossil fuel flux estimate

of the low resolution case, which is exactly the circumstances that lead to the generation of aggre-

gation error. Sites near the terrestrial or coastal borders were also inclined
:::
also

::::::
tended to have large625

aggregation errors. Site specific aggregation errors were determined, and these errors were added

to the observation error uncertainty
:::::::
diagonal

:::::::
elements

:::
of

:::
the

::::::::::
observation

::::
error

::::::::::
covariance

::::::
matrix

::::::::
separately

:
for each site.

In the specific case of using a backward
::::
When

:::::::
running

:
LPDM to generate the sensitivity matrix,

it is imperative to specify a sufficient number of particles per release, as well as to allow for enough630

spin up of the model in order to avoid
:::
run

:::
the

::::::
model

::
for

::::::
longer

::::
than

::::::::
required,

::::
with

:::::::::
additional

::::
time

:
at
:::
the

:::::::::
beginning

::
of

:::
the

::::
run.

::::
This

::
is

::
to

:::::
avoid

:::::::
transport

::::::
errors,

:::
and

:::
to

::::
avoid

:
exaggerating the aggrega-

tions errors. Therefore, the aggregation errors were calculated using the last week of the four week

sensitivity matrix.

The next sections present the results of the optimal network design; first under the basic parametri-635

sations as used in Ziehn et al. (2014)
:::
part

::
1
::::::::::::::::
(Ziehn et al., 2014) , and then under the sensitivity analyses

::::
tests.

3.3 Basic network design

The
::::::
network

::::::::
solution

:::
for

::::
July

::::
was

::::
able

::
to

:::::::
achieve

::
a
::::::::
reduction

::
in
::::::::::

uncertainty
:::

in
:::
the

::::
total

::::::
South

::::::
African

::::
flux

::::
from

::::
6.42

:::::::::::
gC/m2/week

:::::
under

:::
the

::::
base

:::::::
network

::
to

::::
3.66

:::::::::::
gC/m2/week

:::::
under

:::
the

:::::::
optimal

:::::::
network.

::::
The

:
results under the standard conditions used in the basic network design for the month640

of July reveal that the best set of stations to add to the current network would include two stations

near the western coast of the country, including one just north of the City of Cape Town (Fig. 6).

These stations are located near the areas of highest NEP uncertainties during the Winter months.

These areas in the Western Cape fall into the fynbos biome, which is under a Winter rainfall regime.

Therefore productivity during the Winter months is expected to be higher in this area (Fig.1 a).645

In contrast, activity over much of South Africa during the Winter months, when water availability

is reduced, is expected to be low to almost entirely dormant. Due to the increased uncertainty in

NEP in the fynbos regions during this time, as well as the proximity to the City of Cape Town,

the optimal network would need a station in this area to reduce the overall uncertainty of South

Africa. Two stations are located in the eastern interior of the country, including one on the border650

of Lesotho, and a station in the central interior of the country, not far from the Zimbabwean border.

These stations are located near to areas of
:::
with

:
high fossil fuel flux uncertainties. The base network

on its own reduced the posterior flux uncertainty by 17.0%. During the month of July, the best

station to add to this network would be station 24, located in the eastern interior of South Africa,

just north of Lesotho, which reduced the uncertainty relative to the base network by 12.8% (Table.655

1). The second best station to add is station 0, near the south east coast of South Africa. This station

reduced the uncertainty by an additional 10.5%. Since the optimal network included a station near
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Cape Point during July, it supports the conclusions by Whittlestone et al. (2009) that measurements

at Cape Point are not sufficient to estimate fluxes for the Western Cape region. The reduction in

uncertainty by the addition of the three remaining stations to the network was an additional 19.3%.660

During the Winter months, the biospheric fluxes are small, with small uncertainties whereas the

fossil fuel flux uncertainties remain high. Due to the penalty imposed by the aggregation error for

measurement sites located near fossil fuel sources, the return on uncertainty reduction during the

Winter months is low, at only 42.9%.

In January the picture changed, with the stations
:::
total

::::
flux

:::::::::
uncertainty

::::
was

:::::
much

:::::
higher

:::::::::
compared665

::
to

::::
July,

::::
with

:
a
:::::
total

:::
flux

::::::::::
uncertainty

::
of

::::
128

:::::::::::
gC/m2/week,

:::::
which

::::
was

:::::::
reduced

::
to

:::::
27.93

:::::::::::
gC/m2/week

:::::
under

::
the

:::::::
optimal

::::::::
network.

:::
The

:::::::::
placement

::
of

:::::::
stations

:::::::
changes

::::
with

::::::
respect

::
to

::::
July,

::::
with

:::
the

:::::::
stations

all located towards the eastern interior of the country, and no stations positioned on the western

side of South Africa (Fig. 6). The stations were located near regions of high Summer time NEP

uncertainty and in the region where most of the fossil fuel activities in the country are concentrated.670

In contrast to the Winter months, the NEP uncertainty during Summer is much higher on the eastern

side of the country compared to the mid interior or the west of the country (Fig.1 c), resulting in a

need to concentrate the new measurement sites in this area. The uncertainty reduction attributable to

the base network in January is similar to July, at 16.8%. The best performing station in the network

for January is station 12, located on the eastern coast of South Africa, which further reduces the675

uncertainty by 40.0% relative to the base network. The next best performing station was station 29,

which reduced the uncertainty by an additional 18.0%. An additional 10.3% increase in uncertainty

reduction was attained from adding the last three stations to the network. The total uncertainty

reduction achieved in January is much higher compared to July, at 78.3%. This is due to the ability

of the network to view the larger Summer biospheric fluxes in areas where the aggregation error680

penalty is low, or even despite the aggregation error penalty.

The
:::
total

::::
flux

::::::::::
uncertainty

:::::
under

:::
the

::::
base

:
network for the combined months of January and July

result in
:::
was

::::::::
calculated

::
to
:::
be

::::::
128.43

:::::::::::
gC/m2/week,

::::::
similar

::
to

::
the

::::::
month

::
of

:::::::
January.

::::
This

::
is

:::::::
reduced

::
to

:::::
19.83

::::::::::
gC/m2/week

:::::
under

:::
the

:::::::
optimal

:::::::
network.

::::
The

:::::::
network

:::
for

:::
the

:::::::::
combined

::::::
months

:::
has

:
a similar

positioning of stations compared to January (Fig. 6), locating most of the stations in the eastern685

interior, as well as a very similar reduction in uncertainty at 84.6%. The most important station, as

ranked by the IO solution, is station 18, which reduces the uncertainty by 53.3% relative to the base

network. This station is located in a region of both high NEP and fossil fuel flux uncertainty (Fig. 1

and Fig. 2). The second best station to add to the network is station 29, increasing the uncertainty

reduction by 24.4%. This station is located near the area of highest fossil fuel flux uncertainty (Fig.690

2). The remaining three stations (stations 11, 22 and 27) add only 6.8% to the uncertainty reduction.

The network solution is different to January’s, in that the stations are more concentrated around the

areas of larger fossil fuel flux uncertainty. This is due to the much lower NEP uncertainty estimates

for the Winter months across South Africa compared to the Summer months, but the fossil fuel flux
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uncertainties remaining consistent during the year. The optimal network for the combined seasons695

is therefore dominated by the need to reduce these consistently large uncertainties.
::::
The

:::::
results

:::::
from

::
the

:::::::::
combined

::::::
months

::::::
shows

:::
that

:
a
:::::::::
substantial

::::::::
reduction

::
in

:::
the

::::::::
posterior

:::::::::
uncertainty

:::
for

:::::
South

::::::
Africa

:
is
:::::::
possible

:::
by

::::::::::
introducing

::::
only

:
a
::::
few

::::::::
additional

:::::::
stations

::
at

:::
key

::::::::
locations.

:

3.4 Sensitivity analysis

The results for the sensitivity analyses run for both months, and the combined months of January700

and July appear in Fig. 7. During the Winter months, there was consistency between the network

solutions from the different sensitivity tests. All of the tests were in agreement that stations 0 and

18 should be included; station 0 near the Winter NEP uncertainties, and station 18 near an area of

large fossil fuel flux uncertainty. The tests assessing surface grid box height, the doubling of night

time observation error uncertainty, and the addition of ocean flux uncertainty, were identical to the705

standard network design solution. Both the medium resolution and the GA network solutions were

very near the standard solution, each obtaining the second smallest DI relative to the standard design

of 879. These tests both favoured two stations which were each one step away from a standard

network design station. The solution using the uncertainty metric based on the trace of the posterior

flux covariance matrix was similar to these two, but favoured a station near the south coast of South710

Africa, far from the general concentration of stations, near a localised fossil fuel source. The two

test cases most different from the standard solution were the high resolution network solution, and

the solution from the case considering correlation between the prior fluxes, obtaining a DI of 1747

and 1343 respectively. They also favoured networks
::::::
stations

:
near the south coast, but also located

stations in the north eastern interior, near areas of large fossil fuel uncertainty.715

The results from the sensitivity tests for January show a great deal more variability between net-

work solutions compared to July, with DI values of greater than zero for almost all network solution

comparisons.
::::::::
Similarly

::
to

::::
July,

:::
the

:::::::
network

::::::::
solutions

::
do

::::::
appear

::
to
::::::::
converge

:::::::
towards

:::::
three

:::::::
stations,

:::
but

:::
not

:::
the

:::::
same

::::::
stations

:::
as

::::
July.

:
Under January’s conditions, only the

:::::::::::
homogeneous

:
ocean vari-

ance test case resulted in an identical solution to the standard case. There is no single station which720

all network solutions contained. Stations 29 (north eastern interior) and station 12 (eastern coast)

were agreed on by ten out of eleven tests, and stations 27 (northern interior) and 11 (south eastern

interior) were agreed on by nine out of eleven tests. These four stations are influenced by areas of

large fossil fuel flux uncertainty, and stations 29 and 12 near regions or large Summer NEP uncer-

tainty. Sensitivity tests with DI values below 1000 when compared to the standard case include the725

tests considering surface grid box height, doubling of night time observation error uncertainty, the

test considering variable ocean flux uncertainty, the trace uncertainty metric test, and the GA test

case. These five test cases show strong agreement. The trace uncertainty metric case favoured a

station near the central interior. This station was also included in the solutions of the correlation and

medium resolution cases, where these tests obtained DI values of 1225 and 1305 respectively when730
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compared to the standard solution. These tests, as well as the GA and high resolution test cases,

included stations near the south coast, near areas of localised fossil fuel uncertainties.

The sensitivity tests from the combined months showed less variability between solutions com-

pared to January (Fig.7 c). Station 11 was included in all of the network solutions. Station 18 was

agreed upon by ten out of eleven network solutions, and stations 27 and 29 (both in the north eastern735

interior) were favoured by nine out of eleven solutions. The tests considering 60 m surface height,

the trace uncertainty metric, doubling of the night time observation error uncertainty, and inclusion

of ocean flux uncertainty have identical solutions to the standard network design. The 75 m surface

height and medium resolution tests cases obtained relative low DI values of 468 and 449 respectively

when compared to the standard solution (Table 2). The high resolution test and test case considering740

correlation between prior fluxes obtained DI values of 1121 and 1162 respectively. The solutions

from these tests focused stations around areas of large fossil fuel flux uncertainty in the north west-

ern and eastern interior. The solution from the GA resulted in the largest DI value of 1213 when

compared to the standard network, and equal to this or larger when compared to all other network

solutions. The station in the GA solution responsible for the disagreement with other solutions is745

station 7, located in the south western interior, far from the concentration of stations from
::
for

:
most

network solutions. The remaining four stations from the GA test are located in this region, towards

the north western and eastern interior parts of the country. As discussed in the previous section (3.3)

the three best stations to add to the network according to the IO solution, are stations 18, 29 and

11, with station 18 attaining the greatest uncertainty reduction. All of the network solutions for the750

combined months of January and July have included station 18, and the three most important stations

are all in the solution of the GA.

The statistics for the different sensitivity tests
:::
for

:::
the

::::::::
combined

:::::::
months

:
(Table 3) indicate that

the test considering correlation between the prior fluxes obtained the highest uncertainty reduction,

followed by the GA test. The GA was able to achieve marginally greater uncertainty reduction by755

0.3% compared to the IO standard solution. Most of the test cases were able to achieve between

80% and 85% uncertainty reduction. The test case utilising the trace uncertainty metric achieved a

smaller uncertainty reduction, and the two higher resolution tests achieved the smallest uncertainty

reduction overall.
::::::::
Estimates

::
of

:::
the

:::::::
posterior

::::::::::
uncertainty

:::
for

:::
the

::::
total

::::
flux

::
of

:::::
South

::::::
Africa

:::::
under

:::
the

::::
base

:::
and

:::::::
optimal

::::::::
networks

::::
were

:::::::
obtained

:::
for

::::
each

:::::::
month.

:::::
Those

::::::
which

:::::::
differed

::::::::::
substantially

:::::
from760

::
the

::::::::
standard

:::::::
network

:::::::
solution

:::::
were

:::
the

::::
high

:::
and

:::::::
medium

:::::::::
resolution

:::
test

::::::
cases,

:::
and

:::
the

::::::::::
correlation

:::
test

::::
case.

::::::
Under

:::
the

::::::::::
assumption

::
of

:::::::
positive

::::::::::
correlations

::::::::
between

:::
the

:::
flux

::::::
errors,

:::
the

:::::
base

:::::::
network

:::::
results

::
in

:
a
::::::
higher

::::
total

:::
flux

::::::::::
uncertainty

::
of

::::::
205.82

::::::::::
gC/m2/week

:::
for

:::
the

::::
base

:::::::
network

:::::
which

::
is

:::::::
reduced

::
to

:::::
27.79

::::::::::
gC/m2/week

:::::
under

:::
the

:::::::
optimal

::::::::
network,

::::
now

::::::
similar

::
to

:::
the

:::::
result

::
of

:::
the

::::::::
standard

:::::::
network

:::::::
solution.

::::::
Under

::
the

::::
base

::::::::
network,

:::
the

::::::::
additional

:::::::::
covariance

:::::
terms

:::::::::
introduced

:::::::
through

:::
the

:::::::::
correlation765

:::::::
structure

:::
are

::::::
poorly

::::::::
resolved,

:::::::
leading

::
to

::::::
higher

::::
total

:::::::::::
uncertainties.

::::::
When

:::::
there

:::
are

:::::
more

:::::::
stations

:::::
added

::
to

:::
the

:::::::
network

:::
this

::
is

:::::::::
improved.

::::
The

::::
high

:::
and

:::::::
medium

::::::
spatial

::::::::
resolution

::::
test

::::
cases

:::::
gave

::::
total
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:::
flux

:::::::::::
uncertainties

::
of

:::::::
271.55

:::
and

::::::
190.14

:::::::::::
gC/m2/week

::::::::::
respectively

::::::
under

:::
the

::::
base

::::::::
network.

::::::
These

::::
were

::::
then

:::::::
reduced

::
to

:::::
82.82

:::
and

::::::
44.19

::::::::::
gC/m2/week

::::::::::
respectively

::::::
under

:::
the

::::::
optimal

::::::::
network.

:::
At

:::
the

:::::
spatial

::::::::::
resolutions

:::
that

:::::
we’ve

::::::::::
considered

::
in

:::
our

:::::
study,

:::
the

:::::::
between

:::::
pixel

::::::::
variability

:::
in

::
the

:::::::::
terrestrial770

:::::
fluxes

::::
will

:::::::
increase

::
as

:::
the

::::::
spatial

:::::::::
resolution

::
is

::::::::
increased,

:::
for

:::::
both

:::
the

:::::::::
biospheric

:::
and

:::::
fossil

::::::
fluxes

:::::::::::::::::
(Turner et al., 2000) .

::::
For

:::
the

::::
fossil

::::
fuel

::::::
fluxes,

:::
we

:::::
create

:::
the

::::::
surface

::
of

::::
flux

:::::::::::
uncertainties

:::::
using

:::
the

::::
same

:::::::::
procedure

:::
for

::::
each

::
of

:::
the

::::::::
different

::::::
spatial

::::::::
resolution

:::::
cases.

::::
As

::::::::
explained

::::::
earlier,

:::
for

::::
each

:::
of

::
the

:::
ten

::::::::::
realisations

::::
from

:::
the

:::::::
FFADS

:::::::
product,

::
we

::::::
regrid

::
the

::::::::::
0.1

◦ × 0.1
◦

:::::
fossil

:::
fuel

:::::::::
emissions

::::
onto

:::
the

::::::
surface

:::
grid

:::
we

:::
are

::::::
using.

::
To

::::::
obtain

:::
the

:::::::::
uncertainty

::::::::
estimates

:::
the

::::::
within

::::
pixel

:::::::
variance

::
is

:::::::::
calculated775

::
for

:::
the

:::
ten

::::::::::
realisations.

::::
The

:::::
result

::
of

::::::::
carrying

:::
this

:::::::::
procedure

:::
out

::
at

:::::
higher

::::::
spatial

:::::::::
resolutions

::
is
::::
that

::
the

::::::::
variance

::::::
values

:::
are

:::::
larger

:::::::::
compared

::
to

:::::
lower

::::::::::
resolutions,

::::
and

:::
the

:::::::
between

:::::
pixel

:::::::::
variability

::
is

::::::::
increased

:::::::::::::::
(Asefi-Najafabady

::
et

::
al.

::::::
2014).

:::::::::
Therefore,

:::
the

::::
total

::::
flux

::::::::::
uncertainty

::::::
derived

:::::
under

::
a

::::
high

::::::::
resolution

::
is

:::::::
expected

::
to
:::
be

:::::
larger

::::
than

:::
for

:::::
lower

::::::::::
resolutions.

Most network solutions tended towards the same amount of clustering of stations, obtaining a780

clustering index of 23.8. The GA and test case considering correlation had more dispersed networks,

and the high resolution test case had the highest amount of clustering, with a clustering index of 36.6.

We would expect the correlation case to spread stations since a given station will reduce uncertainty

everywhere within one correlation length. The GA for the combined months took the longest to

run, at over 32 hours, which is 39 times longer than the running time of the standard IO solution.785

This was followed by the high resolution solution, which took 25.2 hours, and the two ocean flux

uncertainty test cases which took over five hours each.

4 Summary and Conclusions

Under a reference set of conditions, an optimal network design was obtained for South Africa for

two representative months of the year. The resulting designs reduced the uncertainty of carbon790

fluxes from South Africa compared to the base network by 43% in July and 78% in January. These

relatively large reductions in uncertainty are due to the lack of coverage by the current network,

which only reduces the uncertainty of fluxes from South Africa by 16% for both July and January.

The concentration of stations by all networks tended towards the central interior, near the North West

Province of South Africa and in the eastern parts of the country. These represent the areas with the795

largest uncertainty in biospheric fluxes, as well as fossil fuel emissions, in the country.

Station 11 is located near the uKhahlamba Drakensberg World Heritage Site. Several remote hol-

iday destinations occur in this area, near the town of Mooi River, and road infrastructure is available.

Potentially, facilities at or near these holiday destinations could be utilised in order to conduct at-

mospheric measurements, particularly if there is a communications tower available. Station 18 is800

located near the peak of Ben Macdhui. This is near the site of a 1996 atmospheric monitoring cam-

paign, which assessed the ability of transport models to resolve recirculation over and exiting South
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Africa to the Indian Ocean (Piketh et al., 1999). Station 29 is near the atmospheric monitoring site

of the North West University (South Africa), at Welgegund, about 20 km from the Potchefstroom

campus. This site was established in collaboration with the University of Helsinki to measure the805

impact of aerosols and trace gases on the climate and air quality (Tiitta et al., 2014). Therefore, for

at least three of the most influential stations, facilities or previous measurement campaigns exist,

indicating that it should be possible to establish long term monitoring of CO2 concentrations near

these sites.

The sensitivity analysis demonstrated that for most of the network design parameters considered810

in this study, the stations found to be most important by the standard network design were always

identified in the network design solution. Many of the choices required for the optimal network

design, such as the height of the surface grid cells, whether to inflate night time observation error

uncertainties relative to the day time, and the inclusion of ocean flux uncertainty, have a negligible

impact on the final network design. Substituting the trace for the sum of the covariance elements815

also resulted in similar solutions.

The test cases considering higher spatial resolution tended to result in network solutions different

from the standard case,
::::::
largely

::::
due

::
to

:::
the

:::::::
increase

::
in

::::::
spatial

:::::::::::
heterogeneity

::
in

::::
prior

::::
flux

:::::::::::
uncertainties

::::::::
compared

::
to

:::
the

:::::::
coarser

::::::::
resolution. The spatial resolution of an inversion study impacts network

design in several ways. It is the main determinant of the amount of aggregation error attributed820

to a measurement site, with aggregation error reducing as the resolution increases. As the spa-

tial resolution is degraded, aggregation errors can become large, leading to the exclusion of sites

in the case of an optimal network design, even if they are in view of regions of large flux uncer-

tainty. The resolution
::::::
spatial

::::::::
resolution

:::
of

:::
the

::::::
sources

:
also determines the size

:::::::::
dimensions

:
of the

sensitivity matrix and prior flux covariance matrix, which impacts on the computational resources825

required to run an inversion or network optimisation. Ideally, the highest manageable resolution

should be used, as close as possible to the resolution of the transport model and original spatial

products used for obtaining the prior fluxes and their covariances.
:::::::::
Alternative

::::::::::
approaches,

:::::
such

::
as

:::
the

:::
use

:::
of

:::::::::
multi-scale

::::::::::::
representation

:::
of

:::
the

::::::
source

::::::
region

:::
can

:::
be

::::
used

::
to

::::::::
mitigate

::::::::::
aggregation

:::::
errors

::
as

::::
well

:::::::::::::::
(Wu et al., 2011) ,

:::
but

::::
these

:::::
errors

::::::
should

::::::
always

:::
be

:::::::::
considered

:::::
during

:::
an

::::::::
inversion

::
or830

:::::::::::::
inversion-based

::::::
optimal

:::::::
network

::::::
design

:::::::
exercise.

:

The GA was able to find marginally better solutions than the IO method, if run with sufficient

population size and number of iterations, but in general did include the most influential stations

from the IO solution. The increase in uncertainty reduction was found to be marginal, but cost a

great deal more in running time before this solution was found. If the resolution of the standard835

case had been higher, the GA would have taken longer to run, and the current computing system

may have had insufficient memory. Moreover, to find a better solution than the IO, the iterations and

population size would have had to be set even higher, due to the greater heterogeneity in the prior flux

uncertainties in a higher resolution setup, further increasing the computational costs. An additional
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advantage of the IO method over the GA method is that an evolution of results is generated, which is840

useful for practical purposes. By identifying the station which on its own best reduces the uncertainty

in the posterior fluxes, it gives the decision makers the location of the site which should be prioritised

over others in the network.

Since
::::
Even

:::::::
though

:::
we

:::::::::
accounted

:::
for

::::::::::
aggregation

:::::
error,

::::::
which

:::::
would

:::::
have

::::::::
corrected

:::
the

:::::
total

:::
flux

:::::::
estimate

:::
for

:::
the

::::::::
domain,

::::
there

:::::
were

:::
still

:::::
large

:::::::::
differences

::::::::
between

:::
the

::::
total

::::
flux

:::::::::::
uncertainties845

::::
from

:::
the

::::::::
inversion

::::::
results

:::::
under

:::::::
different

::::::
spatial

::::::::::
resolutions.

:::::
This

:::
was

::::
due

::
to

:::
the

::::::::
treatment

:::
of

:::
the

::::
prior

:::::::::::
uncertainties

:::::
under

:::
the

::::::::
different

::::::
spatial

::::::::::
resolutions.

:::::::::
Degrading

:::
the

::::::
spatial

:::::::::
resolution

::::::
results

::
in

:
a
::::
loss

::
of

:::::::::::
information,

:::::::
therefore

:
it is best to run the inversion at as high a resolution as possible,

favouring
:
.
:::::::::
Favouring

:
optimisation techniques like IO, which can more easily accommodate high

spatial resolution, over those which could force a reduction in resolution due to high computational850

demands, such as the GA, may be unavoidable. Techniques like the GA and simulated annealing

::::::::
simulated

::::::::
annealing

::::
and

:::
the

::::
GA do not guarantee the global optimum, as demonstrated by Patra

and Maksyutov (2002) and in this study, during the lead up to the use
::
for

:::::::::
simulated

::::::::
annealing

::::
and

:::::
during

:::
the

:::::
initial

:::::
trials of the GA

:
in
::::
this

:::::
study. Patra and Maksyutov (2002) also showed that as the

number of stations in the network increased, the performance of simulated annealing relative to the855

IO decreased, with IO eventually achieving significantly better uncertainty reductions.

Of the sensitivity tests, including correlation had one of the largest impacts on the final network

result, often differing significantly from the standard solution. The correlation structure used in this

study was generic, simply assuming that fluxes from nearby grid cells and fluxes at the same location

near in time would be correlated, included for the purpose of assessing the impact of correlation in860

the prior fluxes. For a network to be based on a prior covariance matrix including correlation, there

would need to be confidence that this correlation structure and size of correlations between fluxes

were accurate. This is generally not the case, and easier to assess when concentration measurements

are available, which is why many network designs have assumed independence between prior fluxes

(Rayner, 2004; Patra and Maksyutov, 2002). Including correlations which are too large can lead865

to an over constrained system (Lauvaux et al., 2012), which is evidenced in this study where the

uncertainty reductions were the largest under the correlation test case.

Overall the results suggest that a good improvement in knowledge of South African fluxes is

achievable from a feasible atmospheric network and that the general features of this network are

invariable under many reasonable choices in a network design study.870
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Table 1: Ranking of the new stations added to the base network for two seasons (Winter and Summer)

represented by July and January, as well as the integrated two months. The cumulative reduction of

uncertainty relative to the base uncertainty is provided in brackets.

Rank July January July + January

1 24 (12.8 %) 12 (40.0 %) 18 (53.3 %)

2 0 (23.3 %) 29 (58.0 %) 29 (77.7 %)

3 21 (33.0 %) 11 (68.0 %) 11 (80.9 %)

4 18 (38.1 %) 21 (74.5 %) 22 (82.6 %)

5 6 (42.9 %) 24 (78.3 %) 27 (84.6 %)

Table 2: Ranking of the new stations added to the base network under eight
:::
ten different sensitivity

tests for the combined months of July and January. The tests are presented in the following order:

surface grid height set at 60 m; surface grid height set at 75 m; trace of the posterior covariance used

in the uncertainty metric; uncertainty of the night time observation errors is doubled; correlation

structure is included in the prior covariance of the fluxes; spatial resolution is increased to 0.8
◦
;

spatial resolution is increased to 0.6
◦
; ocean sources are assigned 10 % of max NPP variance; ocean

sources are assigned 10 % of nearest terrestrial NPP variance; and GA is used for optimisation. The

percentage cumulative reduction of uncertainty of the posterior fluxes relative to the base network is

provided in brackets.

Rank Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

1 18 (52.3) 18 (50.9) 18 (46.8) 18 (50.9) 24 (65.4) 18 (42.9) 18 (36.3) 18 (53.1) 18 (52.3) 27

2 29 (76.0) 29 (74.0) 29 (69.4) 29 (75.1) 11 (77.8) 29 (65.1) 28 (57.1) 29 (77.3) 29 (75.9) 7

3 11 (79.8) 11 (78.3) 11 (73.3) 11 (78.5) 28 (83.6) 11 (70.7) 11 (62.0) 11 (80.8) 11 (80.4) 29

4 22 (81.5) 24 (80.1) 22 (75.1) 22 (80.6) 31 (85.3) 30 (73.6) 30 (66.4) 22 (82.5) 22 (82.1) 18

5 27 (83.5) 27 (82.5) 27 (77.2) 27 (83.1) 27 (86.5) 27 (76.8) 24 (69.5) 27 (84.4) 27 (84.4) 11 (84.9)
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Table 3: Table of network comparison statistics for the combined months of January and July. The

sensitivity tests are presented in the same order as for Table 2.

Sensitivity Uncertainty Running Clustering

Test Reduction Time (hh:mm) Index

Standard 84.6 % 0:49 23.8

Ht 60 m 83.5 % 0:49 23.8

Ht 75 m 82.5 % 0:48 23.8

Trace 77.2 % 0:48 23.8

Night 83.1 % 0:48 23.8

Correl 86.5 % 1:13 17.4

Med Res 76.8 % 4:23 23.8

High Res 69.5 % 25:11 36.6

Ocean1 84.4 % 5:27 23.8

Ocean2 84.4 % 5:12 23.8

GA 84.9 % 32:01 17.4

Table 4: Table of dissimilarity indices for the optimal network solutions for the combined months of

January and July. The sensitivity tests are presented in the same order as for Table 2.

Sensitivity Standard Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

Test

Standard 0 0 469 0 0 1162 449 1121 0 0 1213

Ht 60 m 0 0 469 0 0 1162 449 1122 0 0 1213

Ht 75 m 469 469 0 469 469 761 380 720 469 469 1285

Trace 0 0 469 0 0 1162 449 1121 0 0 1213

Night 0 0 469 0 0 1162 449 1121 0 0 1213

Correl 1162 1162 761 1162 1162 0 1162 851 1162 1162 2046

Med Res 449 449 380 449 449 1162 0 741 449 449 1265

High Res 1121 1121 720 1121 1121 851 741 0 1121 1121 1693

Ocean1 0 0 469 0 0 1162 449 1121 0 0 1213

Ocean2 0 0 469 0 0 1162 449 1121 0 0 1213

GA 1213 1213 1285 1213 1213 2046 1265 1693 1213 1213 0
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Fig. 1: The day time net primary productivity (NPP) and night time autotrophic respiration (Ra) data

used as standard deviations of net ecosystem productivity (NEP) at the resolution of 1.2
◦

expressed

in gC/m2/week for July (left) and January (right). Values for the standard deviation are capped at

28 gC/m2/week. The maximum value (separately for day and night) is assigned to the non-South

African land surface, or set at 28 gC/m2/day if the maximum exceeds this value.
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Fig. 2: The standard deviations of ten realisations (top) of the Fossil Fuel Data Assimilations System

(FFADS) at the original 0.1
◦

resolution in gC/m2/week. The standard deviations of the aggregated

fluxes (bottom) (1.2
◦

resolution) showing significant smoothing of the fossil fuel fluxes over the

lower resolution.
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Fig. 3: The 36 potential locations of the new stations in the optimal network design. The locations

were spaced on a regular grid over the surface of South Africa. The existing Cape Point and the

Gobabeb GAW stations are marked by the triangles.

Fig. 4: The footprint of Cape Point, station 28 (top right), station 18 (bottom left), and station 4

(bottom right) relative to the surface grid cells at a resolution of 1.2
◦

expressed as the count of

particles over the month of January for each surface grid cell.
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Fig. 5: Map of the aggregation error values (ppm) associated with each measurement station for the

month of January.
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Fig. 6: Map of the optimal stations to add to the existing network to reduce the overall uncertainty

of fluxes in South Africa for July, January, and the combined months of July and January. The

standard network design conditions are: 50 m surface grid height, diagonal prior covariance, 2 ppm

uncertainty in concentration observations, a 1.2
◦

surface grid resolution, and the sum of the pos-

terior covariance matrix elements used to calculate the uncertainty metric for the IO optimisation

procedure.
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Fig. 7: Map of the optimal stations to add to the existing network to reduce the overall uncertainty

of fluxes in South Africa under the eleven different sensitivity cases for July (top), January (middle),

and the combined months of July and January (bottom). The cases include the standard case (Stan-

dard), surface grid height set at 60 m (Ht 60 m), surface grid height set at 75 m (Ht 75 m), use of

the trace in the uncertainty metric (Trace), doubling of the night time observation error uncertainty

(Night), addition of correlation between elements in the prior covariance matrix (Correl), spatial

resolution set at 0.8
◦

(Med Res), spatial resolution set at 0.6
◦

(High Res), uncertainty in the ocean

sources set at 10 % of the maximum land NPP (Ocean1), uncertainty in the ocean sources set at 10 %

of the nearest land NPP (Ocean2), and use of the GA.38



Fig. 8: The day time net primary productivity (NPP) data used as standard deviations of net ecosys-

tem productivity (NEP) at the resolution of 0.8
◦

expressed in gC/m2/week for January (a), and at

the resolution of 0.6
◦

(b). The Fossil Fuel Data Assimilation System standard deviations aggregated

over a resolution of 0.8
◦
, also expressed in gC/m2/week (c) and over a resolution of 0.8

◦
(d).
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