
The authors would like to thank both referees for their valuable comments, particularly pertaining to 

the inclusion of an aggregation error assessment. This analysis has added value to the paper, and 

improved the results of the optimal network design. Moreover, the importance of the spatial 

resolution has been further explored. 

  

Response to Referee 1: 

The authors would like to thank the referee for considering the paper, for constructive criticism and 

guidance on improvement of the paper. The points below have been identified from the review, and 

each is addressed. 

 

In general, concerns were raised concerning the structure of the paper, the justification for the 

different sensitivity tests, the manner in which the networks from the different sensitivity tests were 

assessed, and the generalisation in the conclusions. After considering the comments from both 

referees, we have decided to completely restructure the paper. Particularly the methods section has 

been condensed into one section, where unnecessary repetition from part 1 (Ziehn et al., 2014) has 

been removed. Only those equations which pertain to the sensitivity tests have been included, such 

as the Bayesian solution for the posterior flux covariance matrix and the final solution for the 

elements of the sensitivity matrix. We also explain in more detail the parameters that we considered 

for the sensitivity tests, and reordered these tests in a more logical format.  

 

Our justification for the need for these sensitivity tests is that this type of analysis is important 

because, as shown by Rayner (1996), certain changes to the optimisation problem, such as changing 

the quantity to be optimised even if very similar in nature to the original, can result in drastically 

different placement of stations. This would ultimately impact on the final network design used for 

deployment. Particularly for a network design for such a new network, such as that for South Africa, 

having alternative network solutions based on parameterisation changes can help us to assess how 

important certain stations are. We would expect stations which resolve sources with large 

uncertainties to remain constant despite parameter changes. The sensitivity analyses should also 

provide insight into parameter specifications which will be important for the estimation of fluxes 

through inverse methodology from the new network of measurement sites. Those parameter 

changes which significantly alter the network are likely to be important parameters for other 

network designs as well. 

 

“...In addition to providing an optimal network design for South Africa, this paper aims to assess 

the sensitivity of the network design to a number of the parameters and choices which were 

necessary to run an optimal network design as proposed in this study. For the standard case we 

used parametrisations which were most commonly implemented in the literature. We then 

considered alternatives and determined their impact on the network. This type of analysis is 

important because as shown by Rayner et al. (1996), certain changes to the optimisation problem, 



such as changing the quantity to be optimised even if very similar in nature to the original, can 

result in drastically different placement of stations. This would ultimately impact on the 

implemented network design used in deployment of the new stations. By having alternative 

network solutions based on parametrisation changes, we can assess how important certain 

stations are, since these should remain constant despite parameter changes, and it provides 

insight into parameter specifications which will be important for the estimation of fluxes using the 

new network of measurement sites...” 

 

The results section has been improved by focusing more on the results from the sensitivity analysis, 

and in particular, changing the way the results for the different network solutions are compared. We 

have implemented statistical spatial metrics which provide a more objective approach to the 

network comparison. In addition, the results section now includes an assessment of the aggregation 

error, which is an important consideration particularly related to the high resolution case. Examples 

from the manuscript are given below. 

 

The following specific points were extracted from the review: 

 

The layout of the paper is disorganized and confusing to the reader. 

Response: The paper has been re-written with focus towards the sensitivity analysis, which is the 

main emphasis of the paper, and we have tighten up the writing and organisation of the paper so 

that it is clearer to the reader, following a more logical format. The manuscript has been largely re-

written. Please refer to the manuscript below. 

 

Redundancies and inconsistencies in terminology occur. 

Response: The paper has been re-written and we have ensured that all unnecessary repetition has 

been removed from the paper. We have also ensured that the terminology has been consistently 

and correctly used throughout the paper. For example, we have been very explicit in the new 

manuscript when referring to the “prior flux covariance matrix” and when referring to the 

“observation error covariance matrix”. 

 

The structure of the paper needs to better reflect the sensitivity tests conducted and better 

justification is required for the variables which were controlled. The sensitivity tests appear to be 

random. 

Response:  The methodology section has been restructured from two sections into one section, 

where much more emphasis has been placed on the sensitivity analysis, and the reasons for the 

choices of the variables which were controlled have been clearly outlined. The choices of the 



sensitivity tests were determined through the process of setting up the inversion and optimisation 

procedure for Part 1, under the Australian test case. At junctions where choices needed to be made, 

and these choices were not apparent from the literature or ambiguous, these parameters were 

selected for sensitivity tests. The value for the parameter most commonly used in the literature was 

selected for the standard case, and alternatives were considered for the sensitivity analysis. The 

sensitivity tests have been broken up into those which relate to the formulation of the sensitivity 

matrix, those which relate to the specification of the observation error covariance matrix (where we 

have included aggregation error), those that relate to the prior flux covariance matrix, and those 

that relate to the optimisation procedure. Please refer to Section 2 of the attached manuscript. 

 

“...One set of parameters that we considered for the sensitivity analyses related to the specified 

dimensions of the surface grid box in which the particles provided by LPDM are counted. This 

determines the spatial resolution of the problem. The next set of parameters we considered 

relates to the two covariance matrices which are needed for the calculation of the posterior flux 

covariance matrix. We changed how these matrices were parametrised and assessed the 

consequences for the optimal network design. Finally we implemented an alternative optimisation 

procedure to IO and considered the optimisation of a different metric of uncertainty in the fluxes. 

As the alternative optimisation procedure, we used the genetic algorithm (GA), as described by 

Rayner (2004), which uses a very different optimisation philosophy to the IO method...” 

 

The emphasis of Part 2 on detailing the inversion system which has already been described in Part 1 

of the paper needs to be reduced. 

Response: All unnecessary explanation and detailing of the inversion system have been removed, 

with more reference to Part 1 of the paper included in the new manuscript. The authors had 

originally placed some of the inversion system detail into the manuscript so that the reader would 

not need to constantly refer to the Part 1 to follow the methodology of Part 2. Only those equations 

from the inversion system which pertain to the sensitivity analysis have been included in the new 

manuscript. Refer to Sections 2.1 and 2.2 of the new manuscript. 

 

Analysis of the results needs improvement and needs to be more scientifically defensible. 

Response: To compare between solutions, we have determined which spatial statistical measures 

can be used to assess the clustering of stations and similarity between network solutions. This 

includes the test statistic from the Complete Spatial Randomness test and a test statistic for 

dissimilarity, where the statistic increases as the optimal network solutions from two different 

sensitivity test runs become more different. These are described in Section 2.8 of the new 

manuscript. 

“...To compare the utility of the optimal networks from each algorithm run, the uncertainty 

reduction was assessed for each of these networks. The similarity of the networks was assessed 

using a test statistic from the Chi-squared Complete Spatial Randomness test, measuring the 



degree of clustering, where the expected value is based on the null hypothesis that the stations 

are located randomly over the domain. The intention here was not to perform a statistical test 

based on the Chi-squared distribution, since the network did not constitute a sample nor were 

there enough stations, but to calculate an indicator that would assess how similar the positioning 

of the measurements stations were between two networks, referred to as the clustering index.  

Clustering Index =   
         

 

   
    

where i and j are the indicators for the latitude and longitude categories respectively, Oij was the 

observed number of stations in quadrat ij and Eij the expected number of stations assuming the 

stations are scattered randomly. The domain was divided into quadrats; in this case 16 equally 

sized quadrats covering the entire domain.  

 

A dissimilarity index (DI) was calculated as the sum of the distance to the nearest neighbour in the 

compared network, over all the members in the pair of assessed networks. In cases where the two 

networks compared were the same, the index results in a value of zero. The index increases as the 

networks become more dissimilar. The reason for using such an index was to produce a one-

number measure of network similarity that could consistently be used for the network 

comparisons...” 

 

Aggregation errors need to be considered. 

Response: The authors have included an assessment of the aggregation error, and accounted for this 

in the analysis, adopting an approach based on Kaminski et al. (2001) to determine the size of the 

aggregation error. To do this more easily, a second high resolution test case was assessed, which 

divided the domain into 100 by 50 grid blocks. Refer to Sections 2.3 and 3.2. 

 

“...The high resolution test case discussed above allows the opportunity to assess the aggregation 

error as well. This is the error due to the degradation of the spatial resolution from the original 

resolution of the transport model to a lower resolution that the inversion can accommodate. The 

modelled concentrations that result from Tf will differ depending on how the source regions are 

defined (Kaminsiki et al. 2001). The aggregation errors can be added to the observation errors, as 

shown by Kaminsiki et al. (2001) and Tarantola (2005), and need to be adjusted if the resolution of 

the problem is changed. To determine the aggregation error in a feasible manner for each of the 

potential measurement sites, the 0.6° × 0.6° test case was substituted as the high resolution case 

in this calculation, where the grid cells of this case fit exactly into the grid cells of the standard low 

resolution case. Kaminski et al. (2001) determined that the aggregation error C(c,m) can be 

calculated as:     

C(c,m) = TP- Cf0 P-
T TT 

where P- = I – P+  and P+ is the projection matrix which, if multiplied with the prior flux estimates f0 

of the high resolution case, produces the low resolution prior flux estimates in place of the 



corresponding high resolution estimates. The solution of C(c,m) was obtained for each measurement 

site, and the maximum value of the diagonal was assigned as the aggregation error for that 

measurement site for the standard resolution case. For the medium and high resolution cases, 

since aggregation error would certainly exist but presumably get smaller as the resolution 

approached that of the transport model, the aggregation error was reduced according to the 

increase in number of grid cells. Therefore it was reduced by half for the medium resolution test 

case, and by a quarter for the high resolution test case...” 

 

Authors need to avoid interpreting results in view of preconceived ideas of what the network should 

look like, and avoid judging the merit of the network on this notion. 

Response: The discussion of the results has been improved, and the authors have avoided 

interpreting the results based on what was previously expected for the network design. Instead, 

more emphasis has been placed on the reduction of error that a network can achieve, and the 

similarity between networks which is statistically based. Refer to Sections 3 and 4. As an example: 

 

“...The statistics for the different sensitivity tests (Table 3) indicate that the test considering 

correlation between the prior fluxes obtained the highest uncertainty reduction, followed by the 

GA test. The GA was able to achieve marginally greater uncertainty reduction by 0.3% compared 

to the IO standard solution. Most of the test cases were able to achieve between 80% and 85% 

uncertainty reduction. The test case utilising the trace uncertainty metric achieved a smaller 

uncertainty reduction, and the two higher resolution tests achieved the smallest uncertainty 

reduction overall. Most network solutions tended towards the same amount of clustering of 

stations, obtaining a clustering index of 23.8. The GA and test case considering correlation had 

more dispersed networks, and the high resolution test case had the highest amount of clustering, 

with a clustering index of 36.6. We would expect the correlation case to spread stations since a 

given station will reduce uncertainty everywhere within one correlation length. The GA for the 

combined months took the longest to run, at over 32 hours, which is 39 times longer than the 

running time of the standard IO solution. This was followed by the high resolution solution, which 

took 25.2 hours, and the two ocean flux uncertainty test cases which took over five hours each....” 

 

Avoid drawing general conclusions where they are unfounded. 

Response: We have re-written the discussion and conclusions of the paper, and particularly ensured 

that conclusions are only drawn where appropriate, generalisations are only made where logical to 

do so, and that more emphasis is placed on the test case under consideration and made this clear in 

the manuscript. Refer to Sections 3 and 4. As an example: 

 

“...The spatial resolution of an inversion study impacts network design in several ways. It is the 

main determinant of the amount of aggregation error attributed to a measurement site, with 



aggregation error reducing as the resolution increases. As the spatial resolution is degraded, 

aggregation errors can become large, leading to the exclusion of sites in the case of an optimal 

network design, even if they are in view of regions of large flux uncertainty. The resolution also 

determines the size of the sensitivity matrix and prior flux covariance matrix, which impacts on 

the computational resources required to run an inversion or network optimisation. Ideally, the 

highest manageable resolution should be used, as close as possible to the resolution of the 

transport model and original spatial products used for obtaining the prior fluxes and their 

covariances...” 

 

Explain how this network design will be used to facilitate the placement of the five new measurement 

sites. 

Response: The discussion in the new manuscript includes detail on the optimal locations determined 

from the analysis, and practical details on the implementation and the potential for placing 

instruments at or near these locations. 

 

“...Station 11 is located near the uKhahlamba Drakensberg World Heritage Site. Several remote 

holiday destinations occur in this area, near the town of Mooi River, and road infrastructure is 

available. Potentially, facilities at or near these holiday destinations could be utilised in order to 

conduct atmospheric measurements, particularly if there is a communications tower available. 

Station 18 is located near the peak of Ben Macdhui. This is near the site of a 1996 atmospheric 

monitoring campaign, which assessed the ability of transport models to resolve recirculation over 

and exiting South Africa to the Indian Ocean (Piketh et al., 1999). Station 29 is near the 

atmospheric monitoring site of the North West University (South Africa), at Welgegund, about 20 

km from the Potchefstroom campus. This site was established in collaboration with the University 

of Helsinki to measure the impact of aerosols and trace gases on the climate and air quality (Tiitta 

et al., 2014). Therefore, for at least three of the most influential stations, facilities or previous 

measurement campaigns exist, indicating that it should be possible to establish long term 

monitoring of CO2 concentrations at these sites...” 

 

Part 2 should be merged with Part 1 

The authors disagree with this assessment. We believe that the sensitivity tests on their own are an 

interesting enough topic, as stated by both Referee 1 and Referee 2.  If the sensitivity tests were 

merged with the Australian test case, we feel that there would be too many thinking points 

contained within one paper, and a single paper would be unnecessarily large. Having a Part 1, 

emphasizing the inversion setup and the use of the Lagrangian particle dispersion model, and Part 2, 

emphasizing the sensitivity analyses, with each considering a different test case, also allows us to 

present practical results for different, but important regions in the Southern Hemisphere, which we 

know to be under-sampled. To justify Part 2 as its own paper, we have ensured that the sensitivity 

analyses are better motivated, as explained under the general comments, the analyses expanded 

and better assessed, and their discussion improved. The manuscript has been largely rewritten. 



Response to Referee 2: 

 

The authors would like to thank the referee for considering the manuscript and for positive 

comments and criticism. The following points and statements have been extracted from the review, 

together with responses to each point: 

 

Even though some parts of the manuscript are very well written, most of it is difficult to read. 

Response: As stated in response to the first review, the manuscript has been rewritten and 

restructured to place firm emphasis on the sensitivity analyses. The writing has been tightened up so 

that it is clearer, and misuse and inconsistencies of terminology have been rectified. Particularly, the 

uses of “prior flux covariance matrix” and “observation error covariance matrix” have been clarified 

throughout the manuscript to avoid any ambiguity. We have also clearly stated what is implied by 

the term “uncertainty” and how we have used the posterior flux covariance matrix to assess the 

uncertainty in the flux estimates. We have tried to restrict the use of the term “error” specifically to 

cases such as “model error”, “aggregation error” or “observation error”. Refer to the new version of 

the manuscript at the end of the responses. 

 

Organization of the manuscript is unfavourable. 

Response: The paper has been restructured to improve readability and to follow a more logical 

order. Moreover, we have clearly made the sensitivity analyses the focus of the paper, and avoided 

repeating explanations and equations which have been presented in Part 1 of the paper (Ziehn et al., 

2014), ensuring that only the necessary equations applicable to the sensitivity analyses are included 

in Part 2. We have also expanded on the methodology section to present statistical tests which we 

use to better compare between network design solutions from the different sensitivity tests. In 

particular we have focused more on the uncertainty reduction that a network can achieve, and used 

statistical measures of spatial clustering and similarity to compare between solutions, rather than 

trying to assess the network based on some preconceived notion of what the optimal network 

would look like. 

 

To test the influence of the concentration from the boundary Equation (8) is used: "The average value 

for the square root of the sum of all the diagonal elements of Cb for all stations was only 0.073 with a 

standard deviation of 0.026 in January, and 0.070 with a standard deviation of 0.031 in July." This is 

difficult to understand, but I presume Cb is calculated per station, otherwise one could not compute 

an average value and a standard deviation. The average value over the stations are of less interest 

than the maximum value. Also the maximum diagonal element is of interest. The other and probably 

more important point to note is that Equation 1 obviously uses an uncorrelated error of the 

concentration at the boundary. In fact, at the model resolution, one would expect high error 

correlations in space and time, which would magnify Cb. 



Response: Yes, Cb is calculated for each station. These tests have been corrected and better 

descriptive statistics, as suggested by the referee, have been used to assess the results from the 

boundary contribution tests. Moreover, as suggested by the referee, we have considered correlation 

between the boundary terms, to determine how this would impact on the uncertainty contribution 

from the boundary concentrations. Refer to Section 3.1 of the new manuscript. As an example: 

 

“...Using the influence functions now available for each station, the test of the influence from the 

boundaries was conducted. Given the large domain over which LPDM was run, it was not 

surprising that the boundaries had minimal influence. Overall, the square root of the maximum 

diagonal element of Cb for all stations was only 0.012 ppm. The mean of the maximum diagonal 

elements over all measurement sites was 0.006 ppm with a standard deviation of 0.002 ppm. Even 

when correlation between the boundary concentrations was included in the covariance matrix of 

the boundary concentrations, the maximum diagonal element only reached 0.012 ppm, and 

maximum diagonal elements for a particular station were no more than 40% higher than the 

independent case...” 

 

The tests of the influence from the ocean pixels need to be better explained. 

The section on the influence tests has been reconsidered since it does not in its current form 

contribute to the optimal network design, and since we are already assessing the contribution from 

the ocean pixels in the sensitivity analysis and dealing with the non-South African terrestrial flux 

uncertainties in the study. Instead, the analysis of the contribution from the boundaries has been 

further developed as discussed in the previous point, and an additional ocean flux uncertainty case 

was considered. 

 

The solution of the network design problem must be independent of the optimisation algorithm that 

is used. Otherwise the term “robust” that the authors use is not justified. Here the IO and the GA 

yield different networks. This is a serious problem of the study. 

Response: Although both the IO and GA optimisation algorithms are seeking to find the network 

solution which best reduces the posterior error of the fluxes, they operate off very different 

philosophies, which is why we can expect to obtain different results. IO, although by far a more 

efficient algorithm than the GA, can potentially never find the best solution for a multimember 

network, due to the incremental approach, which always considers only one additional station at a 

time.  But due to the nature of the optimal network design problem, where regions of large flux 

uncertainty tend to be fragmented, surrounded by large regions of low uncertainty, incremental 

optimisation has successfully been implemented.  This method has also been favourably compared 

to other optimisation techniques, such as simulated annealing, which simultaneously optimises 

parameters and is capable of finding a global minimum in a multi-parameter problem (Patra & 

Maksyutov, 2002). We are assured though, for a specific configuration of parameters, that the IO will 

result in only one network solution. The GA on the other hand attempts to optimise the network 

placements simultaneously, therefore it does have the potential of finding the global optimum for 



multi-parameter problem. It relies on pseudo-random numbers at every iteration to determine what 

new population members will be. Therefore, for every run of the GA, different combinations of 

population members may be considered each time. It may therefore by chance not include the 

global optimal solution to compare to other solutions. It is up to the user to ensure that the settings 

of the GA are such that the probability of finding the best solution is high, although it can never be 

guaranteed.  

 

What we have emphasised in the new manuscript is the comparison between networks. Although 

the IO may find a solution which is slightly inferior to the best solution found by the GA, we have 

assessed just how different the solutions really are. Similar conclusions are drawn from both 

optimisation procedures where the gross features of the network are maintained, as for the study of 

Patra and Maksyutov (2002), and therefore the IO algorithm still has merit. Additionally, the way the 

solution is formed has added advantages for practical implementation of the network. It presents a 

list of the all of the potential stations at each increment, providing each station’s potential reduction 

of the posterior error at that stage. Therefore, it provides not only a network solution for the total 

number of stations required, but also an order of prioritisation, as well as a list of best alternatives if 

a selected location is found to be unfeasible.  

 

After considering the issues related to using a method like the GA for network optimisation, an 

additional short paper recently submitted has considered what occurs if the GA is run several times, 

and under different GA settings. We determined that in this particular example, when the prior flux 

covariance matrix elements were large, the chances of converging on the global minimum were 

much lower, even when the population size and number of iterations were doubled. But comparing 

the features of the network solutions with the spatial similarity index revealed that they were still 

similar in nature, and that the IO solution was very close to the best solution found by the GA for 

both the Winter month and the Summer month. 

 

“...As discussed in the previous section (Section 3.3) the three best stations to add to the network 

according to the IO solution, are stations 18, 29 and 11, with station 18 attaining the greatest 

uncertainty reduction. All of the network solutions for the combined months of January and July 

have included station 18, and the three most important stations are all in the solution of the GA...” 

 

Phrases like "The standard design assumed that there was zero variance from the ocean sources as 

we wished to emphasize the importance of the terrestrial uncertainties in the network design.", "The 

resolution of the spatial grids should be in line with the number of stations added to the network and 

the size in subregion for which fluxes could be estimated over the domain of interest given the 

available number 5 of stations.", or "if the objective of the network is to reduce the overall 

uncertainty for a large area, like South Africa, having a high spatial resolution for the network may 

result in an over-concentration of sites in high activity areas, leaving large parts of the country 

undersampled." indicate a misconception: The setup of the flux inversion must include the main 



sources of uncertainty in the system (including aggregation error) instead of being driven by the 

desired outcome. 

Response: As alluded to by the first referee, the second referee is requesting that we do not allow 

our preconceptions of the optimal network interfere with the interpretation of the results. We have 

ensured that the interpretation of the network solutions from the different sensitivity analyses are 

based on statistical comparisons, and the discussion now pertains to these results. As also 

mentioned by the first referee, we have included an assessment of aggregation error (Kaminski et 

al., 2001), and rerun analyses where applicable. Given the experiences we have had with the 

aggregation error assessment, our conclusions regarding spatial resolution have changed. We have 

also included an addition ocean flux uncertainty sensitivity test. Refer to Section 4 of the new 

manuscript. As a few examples: 

 

“...The test cases considering higher spatial resolution tended to result in network solutions 

different from the standard case. The spatial resolution of an inversion study impacts network 

design in several ways. It is the main determinant of the amount of aggregation error attributed to 

a measurement site, with aggregation error reducing as the resolution increases. As the spatial 

resolution is degraded, aggregation errors can become large, leading to the exclusion of sites in 

the case of an optimal network design, even if they are in view of regions of large flux uncertainty. 

The resolution also determines the size of the sensitivity matrix and prior flux covariance matrix, 

which impacts on the computational resources required to run an inversion or network 

optimisation. Ideally, the highest manageable resolution should be used, as close as possible to 

the resolution of the transport model and original spatial products used for obtaining the prior 

fluxes and their covariances...” 

 

“...Since it is best to run the inversion at as high a resolution as possible, favouring optimisation 

techniques like IO, which can more easily accommodate high spatial resolution, over those which 

could force a reduction in resolution due to high computational demands, such as the GA, may be 

unavoidable. Techniques like the GA and simulated annealing do not guarantee the global 

optimum, as demonstrated by Patra and Maksyutov (2002) and in this study, during the lead up to 

the use of the GA. Patra and Maksyutov (2002) also showed that as the number of stations in the 

network increased, the performance of simulated annealing relative to the IO decreased, with IO 

eventually achieving significantly better uncertainty reductions...” 

 

There are many strange expressions. I only list a few examples: 

 “The magnitude of the boundary condition to each potential observation site...”(abstract) 

Response: The referee stated “condition”, but what was written in the manuscript is “contribution”. 

What was meant here is that we determined the size of the boundary contributions to the posterior 

flux covariance matrix, where each potential observation site was considered. This sentence as been 

removed and the abstract largely altered. 



 “Since the transport model is not assigned a covariance matrix, the uncertainty is transferred to 
the observations”. 

Response:  What was meant here is that, due to the known problem of modelling night time 
atmospheric transport, the covariance matrix of the observations was adjusted in the sensitivity 
analysis to consider larger night time observation errors. This follows from the development in 
Tarantola (2005) (eq. 1.101) showing that model errors can be added to observational uncertainties 
in the case of Gaussian errors. This has been re-explained in the manuscript: 

 

“...As part of the sensitivity analysis we assessed the impact of increasing the night time 
observation error uncertainty to 4 ppm to account for the possible errors in modelling night time 
atmospheric transport. In atmospheric inversions night time observations are sometimes not 
considered at all, achieved by drastically increasing the night time observation error uncertainties 
(Lauvaux et al. 2012)...” 

 

 “The actual measurement uncertainty at the sites has a much smaller uncertainty..” 

Response: What was meant here is that a conservative estimate of the observation uncertainty was 
used. This has been removed and re-explained. 

 

“...We assumed a similar standard deviation for the observations as Baker (2000), but let the 
elements of the observation error covariance matrix be set at a standard deviation of 2 ppm for all 
existing and potential stations, to account for errors in the atmospheric transport modelling...” 

 

General response: In the re-writing of the manuscript we have endeavoured to avoid any ambiguity, 
and ensured that all terminology is used correctly and consistently. 
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Abstract. This is the second part of a two-part paper considering network design based on a La-

grangian stochastic particle dispersion model (LPDM), aimed at performing a sensitivity analysis for

different specifications in a network design applied to a South African test case. The LPDM, which

can be used to derive the sensitivity matrix used in an atmospheric inversion, was run for each candi-

date station for the months of July (representative of the Southern Hemisphere Winter) and January5

(Summer). The network optimisation procedure was carried out for South Africa under a standard

set of conditions, similar to those applied to the Australian test case in part 1, for both months and for

the combined two months, using the Incremental Optimisation (IO) routine. The optimal network

design setup was subtly changed, one parameter at a time, and the optimisation routine re-run under

each set of modified conditions, and compared to the original optimal network design. The assess-10

ment of the similarity between network solutions showed that changing the height of the surface grid

cells, including an uncertainty estimate for the ocean fluxes, or increasing the night time observation

error uncertainty did not result in any significant changes in the positioning of the stations relative

to the standard design. However, changing the covariance matrix or increasing the spatial resolution

did.15

Large aggregation errors were calculated for a number of candidate measurement sites using the

resolution of the standard network design. Spatial resolution of the prior fluxes should be kept as

close to the resolution of the transport model as the computing system can manage, to mitigate

the exclusion of sites which could potentially be beneficial to the network. Including a generic

correlation structure in the prior flux covariance matrix lead to pronounced changes in the network20

1



solution. The genetic algorithm (GA) was able to find a marginally better solution than the IO

procedure, increasing uncertainty reduction by 0.3%, but still included the most influential stations

from the standard network design. In addition, the computational cost of the GA compared to IO was

much higher. Overall the results suggest that a good improvement in knowledge of South African

fluxes is available from a feasible atmospheric network and that the general features of this network25

are invariable under several reasonable choices in a network design study.

1 Introduction

It has become essential to accurately estimate the emission and uptake of CO2 around the globe.

Greenhouse gases affect the absorption, scattering and emission of radiation within the atmosphere

and at the Earth’s surface (Enting, 2002; Denman et al., 2007). Of these gases, CO2 contributes30

the greatest forcing on the climate (Canadell et al., 2007). Monitoring CO2 sources and sinks is

necessary for validating important components of climate models and for determining the best course

of action to mitigate Climate Change. The method of inverse modelling can be used to estimate

the magnitude of sources and sinks of CO2 at different temporal and spatial scales (Enting and

Mansbridge, 1989; Rayner et al., 1999; Rödenbeck et al., 2003; Chevallier et al., 2010). This method35

relies on precision measurements of atmospheric CO2 concentrations to refine the prior estimates

of the CO2 fluxes. Using the machinery of atmospheric inversion, an optimal network of new sites

to add to the existing infrastructure for measurement of atmospheric CO2 concentrations can be

derived from a list of potential sites.

Previous optimal network studies run at the global scale have highlighted southern Africa as a re-40

gion of large uncertainty in its terrestrial CO2 fluxes, requiring further constraint by measurements

(Patra and Maksyutov, 2002). Measurements over Africa are much sparser compared to other con-

tinents. Only the Cape Point Global Atmospheric Watch (GAW) station has a long term CO2 con-

centration record, measuring since 1992. This tower was located at Cape Point (34.35
◦

S, 18.49
◦

E)

predominantly to record baseline measurements of well-mixed, clean air originating over the South-45

ern Ocean. A study by Whittlestone et al. (2009) demonstrated that it would be difficult to improve

estimates of terrestrial CO2 fluxes for southern Africa using the Cape Point station alone. In 2012,

an atmospheric observatory was installed near the Gobabeb Training and Research Centre, on the

west coast of Namibia (22.55
◦

S, 15.03
◦

E), which continuously measures trace gases, including

CO2 (Morgan et al., 2012). To build on this rudimentary network, and to improve estimates of CO250

fluxes at least for South Africa, high precision instruments for measuring atmospheric CO2 con-

centrations have been purchased, and are to be installed at sites, yet to be determined, across South

Africa. To maximise the impact of these stations on the estimation of CO2 fluxes across South

Africa, an optimal network design can be used to indicate the best placement of new stations with

the aim of reducing the uncertainty of the terrestrial CO2 source and sink estimates. The uncertainty55
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in the fluxes is only one of many considerations when determining the location of new measurement

sites, but an optimal network design based on uncertainty reduction will provide a guide which can

be included in the assessment of these new locations. Part 1 of this paper conducted a similar study

for Australia on how to augment its current observation network, and introduced the methodology

employed in this study (Ziehn et al., 2014).60

An optimal network design has two basic requirements: an inversion algorithm, which is used to

calculate the quantity which is to be optimised and which will be dependent on the subset of mea-

surement sites considered, and an optimisation procedure, for selecting between possible elements

in the network (Rayner et al., 1996; Patra and Maksyutov, 2002; Rayner, 2004). Part 1 of this paper

sought to reduce the uncertainty of Australian terrestrial fluxes by 50 %, and began by considering65

the addition of new stations to the existing base network (Ziehn et al., 2014). Similarly, the Cape

Point and Gobabeb stations make up a base network of CO2 monitoring stations for southern Africa,

and this optimal network design will provide a theoretical study on the optimal locations of new sta-

tions within South Africa. The optimal network will add five measurement stations to best reduce

the uncertainty in flux estimates across the country, and under the assumption of continuous, hourly70

measurements of CO2 concentrations.

The uncertainty metric used in the optimisation procedure is based on the posterior covariance

matrix of the fluxes, estimated through the inversion procedure, which we use to represent the uncer-

tainty in the estimated fluxes. The calculation of the posterior flux covariance matrix does not require

any knowledge of the measured concentrations or of the prior fluxes, only of the prior covariance75

matrix of the fluxes, the covariance matrix of the observations, and the sensitivity matrix, which are

all determined separately. By basing the metric to be optimised during the optimisation procedure

on the result of the posterior covariance matrix of the fluxes under a given network, this score can be

optimised so that the uncertainty in the estimated fluxes is reduced. As for the Australian test case

(Ziehn et al., 2014), the incremental optimisation (IO) procedure was used for the standard optimal80

network design in this study. We used a regular grid of potential stations for the South African case

study. The reason for doing is that, unlike Australia, South Africa does not have the relatively dense

network of meteorological stations suitable for atmospheric monitoring. Therefore, if we were to

base the network on the existing sparse network of stations, we could exclude important sites which

may provide better constraint. Therefore we have chosen the regular grid, and the sites selected in85

the optimal network can then be further investigated to determine if there is infrastructure available,

such as meteorological stations, communication towers or other research facilities, which could be

amenable to atmospheric measurements.

In addition to providing an optimal network design for South Africa, this paper aims to assess the

sensitivity of the network design to a number of the parameters and choices which were necessary to90

run an optimal network design as proposed in this study. For the standard case we used parametri-

sations which were most commonly implemented in the literature. We then considered alternatives
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and determined their impact on the network. This type of analysis is important because as shown by

Rayner et al. (1996), certain changes to the optimisation problem, such as changing the quantity to be

optimised even if very similar in nature to the original, can result in drastically different placement95

of stations. This would ultimately impact on the implemented network design used in deployment

of the new stations. By having alternative network solutions based on parametrisation changes, we

can assess how important certain stations are, since these should remain constant despite parame-

ter changes, and it provides insight into parameter specifications which will be important for the

estimation of fluxes using the new network of measurement sites.100

The inversion procedure requires a sensitivity matrix which calculates the contribution of the dif-

ferent sources to the CO2 concentration at a particular measurement site. We used the Lagrangian

Particle Dispersion Model (LPDM) to determine this matrix. One set of parameters that we con-

sidered for the sensitivity analyses related to the specified dimensions of the surface grid box in

which the particles provided by LPDM are counted. This determines the spatial resolution of the105

problem. The next set of parameters we considered relates to the two covariance matrices which are

needed for the calculation of the posterior flux covariance matrix. We changed how these matrices

were parametrised and assessed the consequences for the optimal network design. Finally we im-

plemented an alternative optimisation procedure to IO and considered the optimisation of a different

metric of uncertainty in the fluxes. As the alternative optimisation procedure, we used the genetic110

algorithm (GA), as described by Rayner (2004), which uses a very different optimisation philosophy

to the IO method.

This paper proceeds by introducing the inversion methodology, followed by an explanation of

the different sensitivity tests. The results are then presented for the South African optimal network

design under the standard conditions, followed by a comparison of the sensitivity tests. The conclu-115

sions provide insight into the most influential locations identified, and discuss courses of action to

address the optimal network design parameters highlighted in the study.

2 Methods and the South African Test Case

2.1 Surface Flux Inversion

The Bayesian synthesis inversion method, first proposed by Tarantola (1987) and used for the net-120

work design in this paper, is the most common method used for solving atmospheric inverse prob-

lems in the literature (Rayner et al., 1996; Bousquet et al., 1999; Kaminski et al., 1999; Rayner et al.,

1999; Gurney et al., 2002; Peylin et al., 2002; Gurney et al., 2003; Law et al., 2003; Baker et al.,

2006; Ciais et al., 2010; Enting, 2002). The inversion method is explained in detail in part 1 (Ziehn

et al., 2014). The observed concentration (c) at a measurement station at a given time can be ex-125

pressed as the sum of different contributions from the surface fluxes, from the boundaries and from

the initial concentration at the site. For the purposes of the network design, the initial concentrations
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are ignored since it is assumed that these concentrations are well constrained by the observations

and therefore contribute very little to the flux uncertainty.

A simple linear relationship can be used to describe the relationship between the modelled con-130

centrations and the contribution from the sources (surface fluxes and boundary inflow):

cmod = Tf (1)

The vector of the modelled concentrations cmod is a result of the contribution from the sources f ,

described by the transport or sensitivity matrix T. The contribution from the boundaries was first135

assessed to determine if the influence on the flux uncertainties was negligible, in which case the

boundary conditions could be excluded from the network design process.

As described in part 1, for the network design approach we are only interested in the posterior

covariance matrix of the fluxes, since our aim is to obtain a network that reduces the CO2 flux

uncertainties (Ziehn et al., 2014). The posterior flux covariance matrix, Cf , can be calculated as140

follows (Tarantola, 1987):

Cf =
(
TTC−1

c T+C−1
f0

)−1

(2)

= Cf0 −Cf0T
T
(
TCf0T

T +Cc

)−1
TCf0 (3)

where Cc is the covariance matrix of the observation errors, and Cf0 is the prior covariance matrix145

of the surface fluxes. The use of the posterior flux covariance matrix to assess uncertainty is possible

because it is obtained without the vector of observed concentrations c or the vector of prior fluxes

f0, which means that it is possible to assess the contribution that a hypothetical station can have on

the reduction of the flux uncertainty without the need to generate synthetic data or make unnecessary

assumptions about the measurements.150

2.2 Lagrangian Particle Dispersion Model (LPDM)

To determine which sources and how much of each of these sources a measurement site sees at a

given moment, the sensitivity matrix T containing the influence functions is required. This matrix

can be directly obtained by running an LPDM in backward mode. An LPDM simulates the release of

a large number of particles from arbitrary emissions sources by tracking the motion of the particles155

(Uliasz, 1993, 1994). The model can be run backward in time, in receptor-orientated mode, to

calculate the influence functions for a given receptor, as described in Ziehn et al. (2014). In this

mode, the particles are released from the measurement locations and travel to the surface and the

boundaries (Lauvaux et al., 2008; Seibert and Frank, 2004).

LPDM is driven by the three-dimensional fields of mean horizontal winds (u, v), potential tem-160

perature and turbulent kinetic energy (TKE). In the case of the South African network design, these
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variables are produced by the CSIRO Conformal-Cubic Atmospheric Model (CCAM), a variable-

resolution global circulation model. CCAM uses a two time-level semi-implicit semi-Lagrangian

method to solve the hydrostatic primitive equations (McGregor and Dix, 2008; McGregor, 2005;

McGregor and Dix, 2001). Total-variation-diminishing vertical advection is applied to solve for the165

advective process in the vertical. CCAM employs a comprehensive set of physical parametrisations,

including the Geophysical Fluid Dynamics Laboratory (GFDL) parametrisation for long-wave and

shortwave radiation (Schwarzkopf and Fels, 1991) and the liquid and ice-water scheme of Rotstayn

(1997) for interactive cloud distributions. A canopy scheme is included, as described by Kowalczyk

et al. (1994), having six layers for soil temperatures, six layers for soil moisture (solving Richard’s170

equation), and three layers for snow. The cumulus convection scheme uses mass flux closure and

includes both downdrafts and detrainment (McGregor, 2003).

In the simulations performed here CCAM is applied in stretched-grid mode by utilising the

Schmidt (1997) transformation. A multiple-nudging strategy was followed. First, a modestly-

stretched grid providing 60 km resolution over southern and tropical Africa was applied following175

Engelbrecht et al. (2009), with subsequent downscaling to a strongly-stretched grid providing 15 km

resolution over southern Africa. Away from the high-resolution region over southern and tropical

Africa, CCAM was provided with synoptic-scale forcing of atmospheric circulation, from the 2.5
◦

(about 250 km) resolution National Centers for Environmental Prediction (NCEP) reanalysis data

set. This forcing was provided at 6-hourly intervals for the period 1979-2010 using a scale-selective180

Gaussian filter (Thatcher and McGregor, 2009, 2010). In the South African case, CCAM was set up

so that it produced output at an hourly time step and at a 0.15
◦

spatial resolution over South Africa.

The domain extended far beyond the South African border, from 10
◦

South to 40
◦

South and from 0
◦

West to 60
◦

East. Meteorological inputs for LPDM were extracted for two months in 2010; January

for Summer and July for Winter. For a four week period during each of these months, LPDM was185

run for each of the hypothetical measurement sites.

We use the LPDM originally proposed by Uliasz (1994), which we run in reverse mode for each

hypothetical measurement station we would like to include in the network design process. In our

setup for the model, particles were released every 20 seconds for a total of four weeks for the two

selected months and each particle’s position was recorded at 15 minute intervals. Particles that were190

near the surface were allocated to a surface grid cell and the total count within each of these was

obtained to determine the surface influence or sensitivity. These counts depended on the dimensions

and position of these surface grid boxes. The particle counts were used to calculate the source–

receptor (s–r) relationship, or influence functions, which form the sensitivity matrix T. Here, we

followed Seibert and Frank (2004) to derive the elements of that matrix. As described in Ziehn et195

al. (2014), we modified the approach of Seibert and Frank (2004) to account for the particle counts

which were produced by our LPDM as opposed to the mass concentrations which were outputted by

the LPDM in their study. The resulting s–r relationship between the measurement site and source i
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at time interval n, which provide the elements of the matrix T, is:

∂χ̄

∂q̇in
=

∆Tg

∆P

(
Nin

Ntot

)
29

12
× 106, (4)200

where χ̄ is a volume mixing ratio (receptor) expressed in ppm and q̇in is a mass flux density (source),

Nin the number of particles in the receptor surface grid from source grid i released at time interval

n, ∆T is the length of the time interval, ∆P is the pressure difference in the surface layer, g is the

gravity of Earth, and Ntot the total number of particles released during a given time interval.205

For the network design we are interested in weekly fluxes of carbon separated into day and night

time contributions, which means that we have to provide the particle count Nin as the sum over

one week (∆T=1 week (day/night)). Therefore, the mass flux density q̇in in Eqn. (4) has units of

gC/m2/week for the day and similarly for the night.

For the standard network design, the surface layer height is set to 50 m which corresponds to210

approximately 595 Pa (∆P ). If we assume well mixed conditions, then the s–r relationship should

be independent of the thickness of the surface layer, as long as the layer is not too deep, as the

particle count will be adjusted proportional to the volume of the grid box. Under stable conditions,

this may not be the case (Seibert and Frank, 2004). To test if changing the surface grid box height

affects the optimal network design, we have included two cases in the sensitivity analysis where the215

height has been adjusted to 60 m and 75 m. The optimisation routine was run under each of these

specifications, holding all other choices the same as for the standard network design.

As for most inversion studies, a compromise needs to be reached between the dimensions imposed

on the source regions and the computational resources available (Kaminski et al., 2001; Lauvaux

et al., 2012). To ensure that the computational time of each of the optimisation runs was feasible, the220

spatial resolution of the surface flux grid boxes was set so that the domain was divided into 50 by

25 grid boxes (a resolution of approximately 1.2
◦ × 1.2

◦
) for the standard optimal network design.

As a sensitivity test, the resolution of the surface grid boxes was adjusted so that there were 72 by

36 grid boxes (a resolution of 0.8
◦ × 0.8

◦
) in one case, and to 100 by 50 grid boxes (a resolution of

approximately 0.6
◦×0.6

◦
) in a second, much closer to the original resolution of the transport model.225

This change in resolution of the surface grid boxes impacts on the sensitivity matrix, increasing the

number of elements in the matrix by a factor of two in the medium resolution case and by a factor

of four in the high resolution case. It has further consequences for the prior flux covariance matrix,

which needs to accommodate this change in source dimensions, increasing its element count by a

factor of four for the medium resolution case, and a factor of sixteen in the high resolution case,230

requiring far more computational resources than the standard case.

2.3 Observation error covariance matrix

Baker (2000) estimated the observation error covariance matrix by comparing the monthly obser-
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vation means at Mauna Loa to a smoothed line and determining the monthly standard deviations.

These values ranged between 0.34 and 0.16 ppm, and so in their case a value of 1 ppm was ap-235

plied for the standard deviation to each region, with the assumption that most places would have a

higher standard deviation than Mauna Loa. It was also assumed that the measurement sites would

be independent of one another and no temporal correlation from month to month, so the matrix was

assumed to be diagonal. Wu et al. (2013) fitted the standard deviation terms of the observation error

covariance matrix to available data for a mesoscale inversion study, and estimated values between240

2.9 and and 3.6 ppm.

We assumed a similar standard deviation for the observations as Baker (2000), but let the elements

of the observation error covariance matrix be set at a standard deviation of 2 ppm for all existing and

potential stations, to account for errors in the atmospheric transport modelling. In the Australian test

case, a sensitivity analysis was conducted by adjusting the error estimate of the observations based245

on the location of the station. Since there are far fewer existing stations in South Africa from which

we can extract data to assess the potential transportation error, we used the same error for all stations.

As part of the sensitivity analysis we assessed the impact of increasing the night time observation

error uncertainty to 4 ppm to account for the possible errors in modelling night time atmospheric

transport. In atmospheric inversions night time observations are sometimes not considered at all,250

achieved by drastically increasing the night time observation error uncertainties (Lauvaux et al.,

2012).

The high resolution test case discussed above allows the opportunity to assess the aggregation

error as well. This is the error due to the degradation of the spatial resolution from the original

resolution of the transport model to a lower resolution that the inversion can accommodate. The255

modelled concentrations that result from Tf will differ depending on how the source regions are

defined (Kaminski et al., 2001). The aggregation errors can be added to the observation errors, as

shown by Kaminski et al. (2001) and Tarantola (2005), and need to be adjusted if the resolution of

the problem is changed. To determine the aggregation error in a feasible manner for each of the

potential measurement sites, the 0.6
◦ × 0.6

◦
test case was substituted as the high resolution case in260

this calculation, where the grid cells of this case fit exactly into the grid cells of the standard low

resolution case. Kaminski et al. (2001) determined that the aggregation error Cc,m can be calculated

as:

Cc,m = TP−Cf0P
T
−T

T , (5)265

where P− = I−P+ and P+ is the projection matrix which, if multiplied with the prior flux es-

timates f0 of the high resolution case, produces the low resolution prior flux estimates in place of

the corresponding high resolution estimates. The solution of Cc,m was obtained for each measure-

ment site, and the maximum value of the diagonal was assigned as the aggregation error for that270

measurement site for the standard resolution case. For the medium and high resolution cases, since
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aggregation error would certainly exist but presumably get smaller as the resolution approached that

of the transport model, the aggregation error was reduced according to the increase in number of

grid cells. Therefore it was reduced by half for the medium resolution test case, and by a quarter for

the high resolution test case.275

2.4 Prior flux covariance matrix

The elements of the prior flux covariance matrix need to be constructed from the best available

knowledge of sources and sinks on the surface and at the boundaries. Lauvaux et al. (2008) carried

out a mesoscale inversion on synthetic data and their approach for obtaining the boundary elements

of the prior flux covariance matrix was to use modelled values of CO2 and adjust them for biases280

based on observed aircraft and tower data that was available for the four day period under assess-

ment. For the prior covariance matrix of the fluxes, the error was set at 2 gC m-2 day-1 for the surface

and 4 ppm for the boundaries, and they assumed uncorrelated flux errors on the domain (no spatial

correlation). This was further developed by Wu et al. (2013) who used available data to fit hyper-

parameters, which were the variance and correlation lengths of the prior flux and observation error285

covariance matrices.

The approach of Chevallier et al. (2010) to obtain the elements of the prior flux covariance matrix

was to set the standard deviations of the fluxes proportional to the hetrotrophic respiration flux of

land-surface model ORCHIDEE. This is the approach adopted in the case of the South African

optimal network design, where we used a recent carbon assessment study by Scholes et al. (2013)290

which produced monthly maps of gross primary productivity (GPP), net primary productivity (NPP),

hetrotrophic respiration (Rh), autotrophic respiration (Ra) and net ecosystem productivity (NEP) for

South Africa. Of these products, most confidence lay in the NPP product. Since NEP = NPP−Rh

and in a balanced system NEP should be a small flux (Lambers et al., 2008), NPP was used rather

than Rh. Following Chevallier et al. (2010), the biosphere flux uncertainties for a particular month295

were estimated using the following simple relationship:

σNEP =

min(28gC/m2/week, NPP) if South Africa

min(28gC/m2/week,nearest(NPP)) if not South Africa
(6)

where nearest(NPP) represents the NPP estimated for the nearest South African grid cell. As a300

realistic estimate, areas outside of South Africa which had no estimates available for NPP from

the carbon assessment product, were assigned the NPP estimate from the closest South Africa grid

cell for a particular month. This type of interpolation was carried out to avoid adding unnecessary

aggregation errors which would occur if a blanket estimate for NPP outside of South Africa was

used. The carbon assessment product produced monthly outputs for all the products. These products305

were converted into daily values. Since Ra and GPP were also available, and NPP = GPP−Ra,
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day time NPP and night time Ra were obtained by assuming that all the GPP took place during the

day, and half of the Ra took place during the day and half at night. This meant that the day time

NPP values tended to be larger in magnitude than the night time Ra values, which is what we would

expect for the South African systems. The daily values were accumulated to one week to give the310

final uncertainty values used to construct the prior flux covariance matrix. The day time NPP and

night time Ra values used to obtain the NEP uncertainties are plotted for July and January (Fig.

1). In South African systems it is expected that much more biological activity occurs during the

Summer months compared to the Winter months, with the consequence that the uncertainty during

the Summer months is considerably larger.315

Since the domain of the network design includes the fossil fuel sources of South Africa, fossil

fuel uncertainties needed to be derived as well. As for the Australian test case (Ziehn et al., 2014),

these uncertainties were derived from the Fossil Fuel Data Assimilation System (FFDAS) (Rayner

et al., 2010; Asefi-Najafabady et al., 2014). Ten realisations for the year 2010 were obtained from

the FFDAS product at the original resolution of 0.1
◦ × 0.1

◦
. The fluxes were aggregated to our320

network design resolution of 1.2
◦ × 1.2

◦
and then the variance calculated for each grid cell. Since

the emissions from fossil fuels are usually localised, such as those at power plant locations, the

variability in the fossil fuel emissions between grid cells is quite large. But, as shown by Ziehn

et al. (2014), the effect of aggregating the data smooths the fossil fuel emissions over the network

design domain, and this leads to a reduction in the variability between the different realisations of the325

FFDAS. It also leads to the aggregation errors discussed in 2.2. Figure 2 shows that the uncertainties

for the ten realisations based on the original 0.1
◦ × 0.1

◦
resolution have much larger maximums for

individual grid cells than the uncertainties calculated for the aggregated fluxes (Fig. 2). The effect of

using a higher spatial resolution for the surface grids, closer to the resolution of the transport model,

is considered in the sensitivity analyses as discussed above in section 2.2. The fossil fuel uncertainty330

and NPP surfaces for these higher resolution cases are provided in Fig. 8.

For the standard network design, the prior flux covariance matrix is estimated as a diagonal matrix,

where the diagonal elements are the sum of the variances of the biospheric fluxes and the fossil fuel

emissions for that grid cell, multiplied by the fraction of the grid cell covered by land, separately for

day and night. By multiplying with the land fractions we guarantee that the prior uncertainties for335

coastal grid cells are scaled accordingly and ocean only grid cells are set to zero, since the NEP and

fossil fuel products only apply to the land surface. We assumed no correlation in the prior covariance

matrix of the fluxes. This is a necessary assumption since we have no data from which to determine

the best correlation lengths. In reality, grid cells with similar biota and under similar climate will

have correlated fluxes. Similarly, fluxes from the same source which occur close in time will also be340

correlated (Chevallier et al., 2010; Wu et al., 2013). Correlation lengths in space and time are difficult

to assess, but have a large impact on the estimated fluxes (Lauvaux et al., 2012). Independence is

assumed and it is hoped that the data from the implemented network will then help to resolve the
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flux correlation estimates during the inversion procedure. To determine what impact the assumed

correlation lengths in the prior flux covariance matrix could have on the optimal network design, we345

used the results from Chevallier et al. (2012), and put together a simple correlation structure where

it was assumed that temporal correlations for the same grid cell one week apart had a correlation

of 0.5 (independent for day and night), decaying to 0.3 at two weeks apart and 0.1 at three weeks

apart. Grid cells adjacent to each other had a correlation of 0.3. The interactions between time and

space correlations were determined by the Kronecker product of the spatial and temporal correlation350

matrices (e.g. two grid cells adjacent to each other but one week apart would have a correlation of

0.3× 0.5).

In the network design under the standard case, we kept the uncertainties of the ocean-only grid

cells set to zero, since our focus is on reducing the flux uncertainty over land. We want the terrestrial

atmospheric measurements to focus on resolving the terrestrial fluxes, and to keep the estimation355

of the ocean fluxes, which are needed to determine the land fluxes during the inversion procedure,

as a separate problem. A sensitivity test was conducted whereby 10% of the maximum land NEP

standard deviation was allocated to the ocean grid cells. This uncertainty represents the uncertainty

in the ocean productivity models which would be used to obtain prior estimates of ocean fluxes

during an inversion, which are similar to the values allocated by Chevallier et al. (2010). A second360

case was considered where 10% of the nearest land NEP uncertainty was allocated to each ocean

grid cell, so that the uncertainties of the ocean grid cells would increase as the uncertainties of nearby

land fluxes increased.

2.5 Optimisation

Three optimisation routines have been used for optimal network design in the literature, namely IO365

(Patra and Maksyutov, 2002), GA (Rayner, 2004), and simulated annealing (Rayner et al., 1996).

The IO routine, as used for the Australian network design (Ziehn et al., 2014), was used for the stan-

dard network design. This method was compared to simulated annealing by Patra and Maksyutov

(2002) and found to perform as well or better, with significantly less computational cost.

In the IO scheme we first obtained the s–r relationship for each of the hypothetical stations. We370

added one station at a time from the candidate list to our base network of two stations and calculated

Cf . We chose the station that resulted in the smallest uncertainty metric and added it to the network,

simultaneously removing it from the candidate list. We then repeated the process until we reached

the number of instruments we have available (five). The IO procedure provides us with a stepwise

progression of the optimal network.375

The overall uncertainty in fluxes can be expressed by two different metrics (Rayner et al., 1996).

11



Either through obtaining the trace of Cf (JCt) or by summing over all the elements of Cf (JCe):

JCt =

√√√√ n∑
i=1

Cfii (7)

JCe =

√√√√ n∑
i=1

n∑
j=1

Cfij (8)

380

where n is the number of elements in the diagonal of Cf . In the first case we consider only the un-

certainty of the fluxes estimated at the source regions, ignoring any correlation between the regions,

which results in minimising the average uncertainty across source regions. In the second case, the

uncertainty of the total flux estimate of the target region is considered, since the variance of the sum

of a number of variables is equal to the sum of all the elements in the covariance matrix of those385

variables. There is no clear answer as to which of these is the best metric for the determination

of overall uncertainty reduction, so as for part 1 (Ziehn et al., 2014) and as used by Rayner et al.

(1996), we use JCe as the uncertainty metric for the standard design. In the South African test case,

because the domain of the transport model contains terrestrial regions outside of South Africa, we

only include the elements of Cf which are within South Africa in the calculation of the uncertainty390

metric.

As a sensitivity test, the JCt uncertainty metric replaced JCe. Minimising either during the optimi-

sation should result in an optimal network with reduced overall uncertainty in flux estimates across

South Africa, but the results could potentially be quite different, particularly if the off-diagonal pos-

terior flux covariance terms are large.395

We evaluated the different networks in terms of their uncertainty reduction:

UR = 1− ĴCe

JCe base
(9)

where ĴCe is the optimised uncertainty metric value and JCe base the value of the uncertainty metric

based on the posterior uncertainties if only the base stations are included.400

Although IO is expected to be more computationally efficient, optimisation through a GA would

also be well suited for this kind of problem, considering that this network design for South Africa

is starting essentially from scratch. The GA operates by optimising the five member network si-

multaneously, and therefore may be more suited to the case where there are multiple deployments,

because it could be conceived that the best solution for a five member network in terms of reducing405

the overall uncertainty for South Africa, may not include the one station which on its own reduces

the uncertainty more than any other station. The GA is highly parallel and we can therefore take ad-

vantage of high performance computing, but the running time of a GA is still higher in comparison

to IO.

The approach used to run the GA during the sensitivity analyses is adopted from Rayner (2004).410

GA procedures are a class of stochastic optimisation procedures for any numerical algorithm which
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calculates a score based on a function of inputs. In this case the algorithm calculates a score based

on the posterior flux covariance matrix, given a set of stations. A GA does not optimise based on

a single solution, but rather by improving a population of solutions, from which a final solution is

selected. New members are added to the population through a process of loss of members which are415

not sufficiently fit (culling), pairwise combination of previous members (cross-over), and random

changes to members (mutation). This represents “survival of the fittest” and pairwise reproduction

and mutation in biological populations.

In this implementation of the GA, elitism is maintained by keeping the best solution from the pre-

vious population, without making any changes through cross-over or mutation on this member. The420

algorithm converges once a given number of iterations is reached, or once a convergence criterion

is met. The solution with the best fitness criterion is then selected from this population, where the

fitness F is calculated as:

F = 1− r− 0.5

N
(10)

425

where r is the ordinal ranking of the member andN is the population size, which in the South African

test case was taken to be 100 members. A pseudorandom number x is generated and members are

then deleted, or culled, if the value of F is less than x. The culling process will remove about

50 % of the population members. These need to be regenerated to get the population back to the

required size. Members are selected at random from the remaining population, and based on new430

pseudorandom number, members are duplicated if their fitness score is above this random number.

Sampling is with replacement, so the members with the highest fitness have a good chance of being

duplicated more than once. This continues until all the culled members have been replaced and the

population size is back to N .

The GA requires a trade-off between the diversity in the solutions, ensuring that the algorithm435

does not get stuck in local extrema, and strong enough selection to ensure that the population moves

towards the optimum solution. This is achieved by adjusting the mutation rate – high enough to

produce diversity in the solutions, but low enough to ensure that members with high fitness persist

and so ensure a tendency towards the optimum solution. From previous work (Rayner, 2004) a good

mutation rate for network design was found to be 0.01.440

The population size and number of iterations affects the computation time of the algorithm. A

large population size is favourable because this ensures diversity in the solutions. The more iterations

that take place, the more solutions the algorithm can assess and the better the chance of finding the

global minimum. High values for both of these parameters results in long computation times. In

this study the number of iterations was set at 100 for a single month optimisation, and to 150 for a445

combined month optimisation. These values were determined from GA trials carried out on the data

prior to deriving the results for this study.
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2.6 Measurement sites

The aim of the network design is to find the set of stations that minimizes the flux uncertainty over

South Africa. Hypothetical stations were selected from a regular grid over South Africa, resulting in450

36 equally spaced locations (Fig. 3). Five new instruments are potentially available for deployment.

Ultimately, the exact location of the stations will be determined by practical considerations, such

as making use of existing infrastructure and manpower, the relative safety of the instruments, and

the accessibility of the sites. The optimal network will be used as a guide towards ideal locations,

around which stations will be chosen. For the practical implementation, existing infrastructure will455

be used as much as possible, such as communication towers or meteorological stations.

2.7 Influence from outside the modelled domain

Since the surface sources are expressed as fluxes in carbon, the contribution to the concentration

at the measurement site is expressed in the amount of carbon seen at the measurement site from a

particular source. In the case of the boundary sources (or contributions from outside of the domain)460

which are given as concentrations, their contributions to the concentration at the measurement site

are expressed as a proportion of their concentration, dependent on their influence at the receptor site.

Part 1 (Ziehn et al., 2014) showed that the boundary contribution can then be written as:

cb = MBcB (11)465

where MB is the submatrix of T for the boundary concentrations, cb. If the elements of MB are

large enough it may be necessary to include the boundary conditions in the network design.

For the network design, four boundaries (north, south, east and west) were used and we calculated

the sensitivity of hourly observed concentrations to weekly boundary concentrations. To determine

if the boundary influence should be included in the network design, we needed to know whether the470

uncertainty contributed by the boundary concentrations were significant compared to other contri-

butions. To see this we calculated MB for each station. Assuming concentration uncertainties of

1 ppm at the boundary (reasonable for the Southern Hemisphere) this yielded:

Cb = MBCIM
T
B (12)475

where CI is the prior covariance matrix of boundary concentrations. The diagonal elements of the

posterior covariance matrix of the boundary concentrations, Cb, provided us with the uncertainty

contribution of the boundary concentrations. If they are much smaller than the observation error un-

certainty we can neglect boundary influences in the network design. As the boundary concentrations

should be highly correlated, we also considered CI to have correlation between boundary concen-480

trations, where correlations of 0.5 were allocated between boundary concentrations during the same

week, and values of 0.25 between boundary concentrations separated by a week or more.
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2.8 Comparison of network solutions

To compare the utility of the optimal networks from each algorithm run, the uncertainty reduction

was assessed for each of these networks. The similarity of the networks was assessed using a test485

statistic from the Chi-squared Complete Spatial Randomness test, measuring the degree of cluster-

ing, where the expected value is based on the null hypothesis that the stations are located randomly

over the domain. The intention here was not to perform a statistical test based on the Chi-squared

distribution, since the network did not constitute a sample nor were there enough stations, but to

calculate an indicator that would assess how similar the positioning of the measurements stations490

were between two networks, referred to as the clustering index.

Clustering Index =
∑
i

∑
j

(Oij −Eij)
2

Eij
(13)

where i and j are the indicators for the latitude and longitude categories respectively, Oij was the

observed number of stations in quadrat ij and Eij the expected number of stations assuming the495

stations are scattered randomly. The domain was divided into quadrats; in this case 16 equally sized

quadrats covering the entire domain.

A dissimilarity index (DI) was calculated as the sum of the distance to the nearest neighbour in

the compared network, over all the members in the pair of assessed networks. In cases where the two

networks compared were the same, the index results in a value of zero. The index increases as the500

networks become more dissimilar. The reason for using such an index was to produce a one-number

measure of network similarity that could consistently be used for the network comparisons.

3 Results and Discussion

3.1 Influence from the boundaries

As for part 1 (Ziehn et al., 2014), the LPDM was run for each station, including the two stations in505

the existing network. The influence functions for each station for the months of January and July

were calculated. The particle counts used to calculate the influence functions were summed over the

month in order to obtain a footprint of each station. To illustrate this, plots of the influence footprint

in January (Fig. 4) are provided for Cape Point and three other candidate stations numbered 28 (near

Potchefstroom), 18 (near Mthatha), and 4 (near Port Elizabeth) as examples. For both January and510

July, the influence footprints show that the three candidate stations have more contributions from

terrestrial South African sources than Cape Point has.

Using the influence functions now available for each station, the test of the influence from the

boundaries was conducted. Given the large domain over which LPDM was run, it was not surprising

that the boundaries had minimal influence. Overall, the square root of the maximum diagonal ele-515

ment of Cb for all stations was only 0.012 ppm. The mean of the maximum diagonal elements over
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all measurement sites was 0.006 ppm with a standard deviation of 0.002 ppm. Even when corre-

lation between the boundary concentrations was included in the covariance matrix of the boundary

concentrations, the maximum diagonal element only reached 0.012 ppm, and maximum diagonal

elements for a particular station were no more than 40 % higher than the independent case.520

3.2 Aggregation error

Aggregation errors were found to be a significant contributor to the overall observation covariance

matrix. Aggregation errors of as high as 17.1 ppm were found for measurement sites in the north

eastern interior, and as low as 0.0 ppm for stations in the south western interior (Fig. 5). The average

aggregation error across sites was 4.7 ppm with a standard deviation of 5.1 ppm. The sites with the525

largest aggregation errors were generally those closest to large fossil fuel sources. These large values

are due to the significant amount of smoothing of the relatively localised fossil fuel fluxes during the

lower resolution case. This results in large heterogeneity between the high resolution fossil fuel

fluxes which contribute to the average fossil fuel flux estimate of the low resolution case, which is

exactly the circumstances that lead to the generation of aggregation error. Sites near the terrestrial or530

coastal borders were also inclined to have large aggregation errors. Site specific aggregation errors

were determined, and these errors were added to the observation error uncertainty for each site.

In the specific case of using a backward LPDM to generate the sensitivity matrix, it is imperative

to specify a sufficient number of particles per release, as well as to allow for enough spin up of the

model in order to avoid exaggerating the aggregations errors. Therefore, the aggregation errors were535

calculated using the last week of the four week sensitivity matrix.

The next sections present the results of the optimal network design; first under the basic parametri-

sations as used in Ziehn et al. (2014), and then under the sensitivity analyses.

3.3 Basic network design

The results under the standard conditions used in the basic network design for the month of July540

reveal that the best set of stations to add to the current network would include two stations near the

western coast of the country, including one just north of the City of Cape Town (Fig. 6). These

stations are located near the areas of highest NEP uncertainties during the Winter months. These

areas in the Western Cape fall into the fynbos biome, which is under a Winter rainfall regime.

Therefore productivity during the Winter months is expected to be higher in this area (Fig.1 a).545

In contrast, activity over much of South Africa during the Winter months, when water availability

is reduced, is expected to be low to almost entirely dormant. Due to the increased uncertainty in

NEP in the fynbos regions during this time, as well as the proximity to the City of Cape Town,

the optimal network would need a station in this area to reduce the overall uncertainty of South

Africa. Two stations are located in the eastern interior of the country, including one on the border550

of Lesotho, and a station in the central interior of the country, not far from the Zimbabwean border.
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These stations are located near to areas of high fossil fuel flux uncertainties. The base network on its

own reduced the posterior flux uncertainty by 17.0%. During the month of July, the best station to

add to this network would be station 24, located in the eastern interior of South Africa, just north of

Lesotho, which reduced the uncertainty relative to the base network by 12.8% (Table. 1). The second555

best station to add is station 0, near the south east coast of South Africa. This station reduced the

uncertainty by an additional 10.5%. Since the optimal network included a station near Cape Point

during July, it supports the conclusions by Whittlestone et al. (2009) that measurements at Cape

Point are not sufficient to estimate fluxes for the Western Cape region. The reduction in uncertainty

by the addition of the three remaining stations to the network was an additional 19.3%. During the560

Winter months, the biospheric fluxes are small, with small uncertainties whereas the fossil fuel flux

uncertainties remain high. Due to the penalty imposed by the aggregation error for measurement

sites located near fossil fuel sources, the return on uncertainty reduction during the Winter months

is low, at only 42.9%.

In January the picture changed, with the stations all located towards the eastern interior of the565

country, and no stations positioned on the western side of South Africa (Fig. 6). The stations were

located near regions of high Summer time NEP uncertainty and in the region where most of the fossil

fuel activities in the country are concentrated. In contrast to the Winter months, the NEP uncertainty

during Summer is much higher on the eastern side of the country compared to the mid interior or

the west of the country (Fig.1 c), resulting in a need to concentrate the new measurement sites in570

this area. The uncertainty reduction attributable to the base network in January is similar to July, at

16.8%. The best performing station in the network for January is station 12, located on the eastern

coast of South Africa, which further reduces the uncertainty by 40.0% relative to the base network.

The next best performing station was station 29, which reduced the uncertainty by an additional

18.0%. An additional 10.3% increase in uncertainty reduction was attained from adding the last575

three stations to the network. The total uncertainty reduction achieved in January is much higher

compared to July, at 78.3%. This is due to the ability of the network to view the larger Summer

biospheric fluxes in areas where the aggregation error penalty is low, or even despite the aggregation

error penalty.

The network for the combined months of January and July result in a similar positioning of stations580

compared to January (Fig. 6), locating most of the stations in the eastern interior, as well as a very

similar reduction in uncertainty at 84.6%. The most important station, as ranked by the IO solution,

is station 18, which reduces the uncertainty by 53.3% relative to the base network. This station is

located in a region of both high NEP and fossil fuel flux uncertainty (Fig. 1 and Fig. 2). The second

best station to add to the network is station 29, increasing the uncertainty reduction by 24.4%. This585

station is located near the area of highest fossil fuel flux uncertainty (Fig. 2). The remaining three

stations (stations 11, 22 and 27) add only 6.8% to the uncertainty reduction. The network solution is

different to January’s, in that the stations are more concentrated around the areas of larger fossil fuel
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flux uncertainty. This is due to the much lower NEP uncertainty estimates for the Winter months

across South Africa compared to the Summer months, but the fossil fuel flux uncertainties remaining590

consistent during the year. The optimal network for the combined seasons is therefore dominated by

the need to reduce these consistently large uncertainties.

3.4 Sensitivity analysis

The results for the sensitivity analyses run for both months, and the combined months of January

and July appear in Fig. 7. During the Winter months, there was consistency between the network595

solutions from the different sensitivity tests. All of the tests were in agreement that stations 0 and

18 should be included; station 0 near the Winter NEP uncertainties, and station 18 near an area of

large fossil fuel flux uncertainty. The tests assessing surface grid box height, the doubling of night

time observation error uncertainty, and the addition of ocean flux uncertainty, were identical to the

standard network design solution. Both the medium resolution and the GA network solutions were600

very near the standard solution, each obtaining the second smallest DI relative to the standard design

of 879. These tests both favoured two stations which were each one step away from a standard

network design station. The solution using the uncertainty metric based on the trace of the posterior

flux covariance matrix was similar to these two, but favoured a station near the south coast of South

Africa, far from the general concentration of stations, near a localised fossil fuel source. The two605

test cases most different from the standard solution were the high resolution network solution, and

the solution from the case considering correlation between the prior fluxes, obtaining a DI of 1747

and 1343 respectively. They also favoured networks near the south coast, but also located stations in

the north eastern interior, near areas of large fossil fuel uncertainty.

The results from the sensitivity tests for January show a great deal more variability between net-610

work solutions compared to July, with DI values of greater than zero for almost all network solution

comparisons. Under January’s conditions, only the ocean variance test case resulted in an identical

solution to the standard case. There is no single station which all network solutions contained. Sta-

tions 29 (north eastern interior) and station 12 (eastern coast) were agreed on by ten out of eleven

tests, and stations 27 (northern interior) and 11 (south eastern interior) were agreed on by nine out615

of eleven tests. These four stations are influenced by areas of large fossil fuel flux uncertainty, and

stations 29 and 12 near regions or large Summer NEP uncertainty. Sensitivity tests with DI val-

ues below 1000 when compared to the standard case include the tests considering surface grid box

height, doubling of night time observation error uncertainty, the test considering variable ocean flux

uncertainty, the trace uncertainty metric test, and the GA test case. These five test cases show strong620

agreement. The trace uncertainty metric case favoured a station near the central interior. This station

was also included in the solutions of the correlation and medium resolution cases, where these tests

obtained DI values of 1225 and 1305 respectively when compared to the standard solution. These

tests, as well as the GA and high resolution test cases, included stations near the south coast, near
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areas of localised fossil fuel uncertainties.625

The sensitivity tests from the combined months showed less variability between solutions com-

pared to January (Fig.7 c). Station 11 was included in all of the network solutions. Station 18 was

agreed upon by ten out of eleven network solutions, and stations 27 and 29 (both in the north eastern

interior) were favoured by nine out of eleven solutions. The tests considering 60 m surface height,

the trace uncertainty metric, doubling of the night time observation error uncertainty, and inclusion630

of ocean flux uncertainty have identical solutions to the standard network design. The 75 m surface

height and medium resolution tests cases obtained relative low DI values of 468 and 449 respectively

when compared to the standard solution (Table 2). The high resolution test and test case considering

correlation between prior fluxes obtained DI values of 1121 and 1162 respectively. The solutions

from these tests focused stations around areas of large fossil fuel flux uncertainty in the north west-635

ern and eastern interior. The solution from the GA resulted in the largest DI value of 1213 when

compared to the standard network, and equal to this or larger when compared to all other network

solutions. The station in the GA solution responsible for the disagreement with other solutions is

station 7, located in the south western interior, far from the concentration of stations from most net-

work solutions. The remaining four stations from the GA test are located in this region, towards the640

north western and eastern interior parts of the country. As discussed in the previous section (3.3) the

three best stations to add to the network according to the IO solution, are stations 18, 29 and 11, with

station 18 attaining the greatest uncertainty reduction. All of the network solutions for the combined

months of January and July have included station 18, and the three most important stations are all in

the solution of the GA.645

The statistics for the different sensitivity tests (Table 3) indicate that the test considering correla-

tion between the prior fluxes obtained the highest uncertainty reduction, followed by the GA test.

The GA was able to achieve marginally greater uncertainty reduction by 0.3% compared to the IO

standard solution. Most of the test cases were able to achieve between 80% and 85% uncertainty

reduction. The test case utilising the trace uncertainty metric achieved a smaller uncertainty reduc-650

tion, and the two higher resolution tests achieved the smallest uncertainty reduction overall. Most

network solutions tended towards the same amount of clustering of stations, obtaining a clustering

index of 23.8. The GA and test case considering correlation had more dispersed networks, and the

high resolution test case had the highest amount of clustering, with a clustering index of 36.6. We

would expect the correlation case to spread stations since a given station will reduce uncertainty ev-655

erywhere within one correlation length. The GA for the combined months took the longest to run, at

over 32 hours, which is 39 times longer than the running time of the standard IO solution. This was

followed by the high resolution solution, which took 25.2 hours, and the two ocean flux uncertainty

test cases which took over five hours each.
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4 Summary and Conclusions660

Under a reference set of conditions, an optimal network design was obtained for South Africa for

two representative months of the year. The resulting designs reduced the uncertainty of carbon

fluxes from South Africa compared to the base network by 43% in July and 78% in January. These

relatively large reductions in uncertainty are due to the lack of coverage by the current network,

which only reduces the uncertainty of fluxes from South Africa by 16% for both July and January.665

The concentration of stations by all networks tended towards the central interior, near the North West

Province of South Africa and in the eastern parts of the country. These represent the areas with the

largest uncertainty in biospheric fluxes, as well as fossil fuel emissions, in the country.

Station 11 is located near the uKhahlamba Drakensberg World Heritage Site. Several remote hol-

iday destinations occur in this area, near the town of Mooi River, and road infrastructure is available.670

Potentially, facilities at or near these holiday destinations could be utilised in order to conduct at-

mospheric measurements, particularly if there is a communications tower available. Station 18 is

located near the peak of Ben Macdhui. This is near the site of a 1996 atmospheric monitoring cam-

paign, which assessed the ability of transport models to resolve recirculation over and exiting South

Africa to the Indian Ocean (Piketh et al., 1999). Station 29 is near the atmospheric monitoring site675

of the North West University (South Africa), at Welgegund, about 20 km from the Potchefstroom

campus. This site was established in collaboration with the University of Helsinki to measure the

impact of aerosols and trace gases on the climate and air quality (Tiitta et al., 2014). Therefore, for

at least three of the most influential stations, facilities or previous measurement campaigns exist,

indicating that it should be possible to establish long term monitoring of CO2 concentrations near680

these sites.

The sensitivity analysis demonstrated that for most of the network design parameters considered

in this study, the stations found to be most important by the standard network design were always

identified in the network design solution. Many of the choices required for the optimal network

design, such as the height of the surface grid cells, whether to inflate night time observation error685

uncertainties relative to the day time, and the inclusion of ocean flux uncertainty, have a negligible

impact on the final network design. Substituting the trace for the sum of the covariance elements

also resulted in similar solutions.

The test cases considering higher spatial resolution tended to result in network solutions different

from the standard case. The spatial resolution of an inversion study impacts network design in several690

ways. It is the main determinant of the amount of aggregation error attributed to a measurement site,

with aggregation error reducing as the resolution increases. As the spatial resolution is degraded,

aggregation errors can become large, leading to the exclusion of sites in the case of an optimal

network design, even if they are in view of regions of large flux uncertainty. The resolution also

determines the size of the sensitivity matrix and prior flux covariance matrix, which impacts on the695

computational resources required to run an inversion or network optimisation. Ideally, the highest
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manageable resolution should be used, as close as possible to the resolution of the transport model

and original spatial products used for obtaining the prior fluxes and their covariances.

The GA was able to find marginally better solutions than the IO method, if run with sufficient

population size and number of iterations, but in general did include the most influential stations700

from the IO solution. The increase in uncertainty reduction was found to be marginal, but cost a

great deal more in running time before this solution was found. If the resolution of the standard

case had been higher, the GA would have taken longer to run, and the current computing system

may have had insufficient memory. Moreover, to find a better solution than the IO, the iterations and

population size would have had to be set even higher, due to the greater heterogeneity in the prior flux705

uncertainties in a higher resolution setup, further increasing the computational costs. An additional

advantage of the IO method over the GA method is that an evolution of results is generated, which is

useful for practical purposes. By identifying the station which on its own best reduces the uncertainty

in the posterior fluxes, it gives the decision makers the location of the site which should be prioritised

over others in the network.710

Since it is best to run the inversion at as high a resolution as possible, favouring optimisation

techniques like IO, which can more easily accommodate high spatial resolution, over those which

could force a reduction in resolution due to high computational demands, such as the GA, may be

unavoidable. Techniques like the GA and simulated annealing do not guarantee the global optimum,

as demonstrated by Patra and Maksyutov (2002) and in this study, during the lead up to the use715

of the GA. Patra and Maksyutov (2002) also showed that as the number of stations in the network

increased, the performance of simulated annealing relative to the IO decreased, with IO eventually

achieving significantly better uncertainty reductions.

Of the sensitivity tests, including correlation had one of the largest impacts on the final network

result, often differing significantly from the standard solution. The correlation structure used in this720

study was generic, simply assuming that fluxes from nearby grid cells and fluxes at the same location

near in time would be correlated, included for the purpose of assessing the impact of correlation in

the prior fluxes. For a network to be based on a prior covariance matrix including correlation, there

would need to be confidence that this correlation structure and size of correlations between fluxes

were accurate. This is generally not the case, and easier to assess when concentration measurements725

are available, which is why many network designs have assumed independence between prior fluxes

(Rayner, 2004; Patra and Maksyutov, 2002). Including correlations which are too large can lead

to an over constrained system (Lauvaux et al., 2012), which is evidenced in this study where the

uncertainty reductions were the largest under the correlation test case.

Overall the results suggest that a good improvement in knowledge of South African fluxes is730

achievable from a feasible atmospheric network and that the general features of this network are

invariable under many reasonable choices in a network design study.
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Table 1: Ranking of the new stations added to the base network for two seasons (Winter and Summer)

represented by July and January, as well as the integrated two months. The cumulative reduction of

uncertainty relative to the base uncertainty is provided in brackets.

Rank July January July + January

1 24 (12.8 %) 12 (40.0 %) 18 (53.3 %)

2 0 (23.3 %) 29 (58.0 %) 29 (77.7 %)

3 21 (33.0 %) 11 (68.0 %) 11 (80.9 %)

4 18 (38.1 %) 21 (74.5 %) 22 (82.6 %)

5 6 (42.9 %) 24 (78.3 %) 27 (84.6 %)

Table 2: Ranking of the new stations added to the base network under eight different sensitivity

tests for the combined months of July and January. The tests are presented in the following order:

surface grid height set at 60 m; surface grid height set at 75 m; trace of the posterior covariance used

in the uncertainty metric; uncertainty of the night time observation errors is doubled; correlation

structure is included in the prior covariance of the fluxes; spatial resolution is increased to 0.8
◦
;

spatial resolution is increased to 0.6
◦
; ocean sources are assigned 10 % of max NPP variance; ocean

sources are assigned 10 % of nearest terrestrial NPP variance; and GA is used for optimisation. The

percentage cumulative reduction of uncertainty of the posterior fluxes relative to the base network is

provided in brackets.

Rank Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

1 18 (52.3) 18 (50.9) 18 (46.8) 18 (50.9) 24 (65.4) 18 (42.9) 18 (36.3) 18 (53.1) 18 (52.3) 27

2 29 (76.0) 29 (74.0) 29 (69.4) 29 (75.1) 11 (77.8) 29 (65.1) 28 (57.1) 29 (77.3) 29 (75.9) 7

3 11 (79.8) 11 (78.3) 11 (73.3) 11 (78.5) 28 (83.6) 11 (70.7) 11 (62.0) 11 (80.8) 11 (80.4) 29

4 22 (81.5) 24 (80.1) 22 (75.1) 22 (80.6) 31 (85.3) 30 (73.6) 30 (66.4) 22 (82.5) 22 (82.1) 18

5 27 (83.5) 27 (82.5) 27 (77.2) 27 (83.1) 27 (86.5) 27 (76.8) 24 (69.5) 27 (84.4) 27 (84.4) 11 (84.9)
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Table 3: Table of network comparison statistics for the combined months of January and July. The

sensitivity tests are presented in the same order as for Table 2.

Sensitivity Uncertainty Running Clustering

Test Reduction Time (hh:mm) Index

Standard 84.6 % 0:49 23.8

Ht 60 m 83.5 % 0:49 23.8

Ht 75 m 82.5 % 0:48 23.8

Trace 77.2 % 0:48 23.8

Night 83.1 % 0:48 23.8

Correl 86.5 % 1:13 17.4

Med Res 76.8 % 4:23 23.8

High Res 69.5 % 25:11 36.6

Ocean1 84.4 % 5:27 23.8

Ocean2 84.4 % 5:12 23.8

GA 84.9 % 32:01 17.4

Table 4: Table of dissimilarity indices for the optimal network solutions for the combined months of

January and July. The sensitivity tests are presented in the same order as for Table 2.

Sensitivity Standard Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

Test

Standard 0 0 469 0 0 1162 449 1121 0 0 1213

Ht 60 m 0 0 469 0 0 1162 449 1122 0 0 1213

Ht 75 m 469 469 0 469 469 761 380 720 469 469 1285

Trace 0 0 469 0 0 1162 449 1121 0 0 1213

Night 0 0 469 0 0 1162 449 1121 0 0 1213

Correl 1162 1162 761 1162 1162 0 1162 851 1162 1162 2046

Med Res 449 449 380 449 449 1162 0 741 449 449 1265

High Res 1121 1121 720 1121 1121 851 741 0 1121 1121 1693

Ocean1 0 0 469 0 0 1162 449 1121 0 0 1213

Ocean2 0 0 469 0 0 1162 449 1121 0 0 1213

GA 1213 1213 1285 1213 1213 2046 1265 1693 1213 1213 0
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Fig. 1: The day time net primary productivity (NPP) and night time autotrophic respiration (Ra) data

used as standard deviations of net ecosystem productivity (NEP) at the resolution of 1.2
◦

expressed

in gC/m2/week for July (left) and January (right). Values for the standard deviation are capped at

28 gC/m2/week. The maximum value (separately for day and night) is assigned to the non-South

African land surface, or set at 28 gC/m2/day if the maximum exceeds this value.
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Fig. 2: The standard deviations of ten realisations (top) of the Fossil Fuel Data Assimilations System

(FFADS) at the original 0.1
◦

resolution in gC/m2/week. The standard deviations of the aggregated

fluxes (bottom) (1.2
◦

resolution) showing significant smoothing of the fossil fuel fluxes over the

lower resolution.
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Fig. 3: The 36 potential locations of the new stations in the optimal network design. The locations

were spaced on a regular grid over the surface of South Africa. The existing Cape Point and the

Gobabeb GAW stations are marked by the triangles.

Fig. 4: The footprint of Cape Point, station 28 (top right), station 18 (bottom left), and station 4

(bottom right) relative to the surface grid cells at a resolution of 1.2
◦

expressed as the count of

particles over the month of January for each surface grid cell.
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Fig. 5: Map of the aggregation error values (ppm) associated with each measurement station for the

month of January.
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Fig. 6: Map of the optimal stations to add to the existing network to reduce the overall uncertainty

of fluxes in South Africa for July, January, and the combined months of July and January. The

standard network design conditions are: 50 m surface grid height, diagonal prior covariance, 2 ppm

uncertainty in concentration observations, a 1.2
◦

surface grid resolution, and the sum of the pos-

terior covariance matrix elements used to calculate the uncertainty metric for the IO optimisation

procedure.
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Fig. 7: Map of the optimal stations to add to the existing network to reduce the overall uncertainty

of fluxes in South Africa under the eleven different sensitivity cases for July (top), January (middle),

and the combined months of July and January (bottom). The cases include the standard case (Stan-

dard), surface grid height set at 60 m (Ht 60 m), surface grid height set at 75 m (Ht 75 m), use of

the trace in the uncertainty metric (Trace), doubling of the night time observation error uncertainty

(Night), addition of correlation between elements in the prior covariance matrix (Correl), spatial

resolution set at 0.8
◦

(Med Res), spatial resolution set at 0.6
◦

(High Res), uncertainty in the ocean

sources set at 10 % of the maximum land NPP (Ocean1), uncertainty in the ocean sources set at 10 %

of the nearest land NPP (Ocean2), and use of the GA.34



Fig. 8: The day time net primary productivity (NPP) data used as standard deviations of net ecosys-

tem productivity (NEP) at the resolution of 0.8
◦

expressed in gC/m2/week for January (a), and at

the resolution of 0.6
◦

(b). The Fossil Fuel Data Assimilation System standard deviations aggregated

over a resolution of 0.8
◦
, also expressed in gC/m2/week (c) and over a resolution of 0.8

◦
(d).
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