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Abstract. This is the second part of a two-part paper considering a measurement network design

based on a Lagrangian stochastic particle dispersion model, which we referred to as LPDM, in this

case for South Africa. A sensitivity analysis was performed for different specifications of the net-

work design parameters which were applied to this South African test case. LPDM, which can

be used to derive the sensitivity matrix used in an atmospheric inversion, was run for each candi-5

date station for the months of July (representative of the Southern Hemisphere Winter) and January

(Summer). The network optimisation procedure was carried out under a standard set of conditions,

similar to those applied to the Australian test case in part 1, for both months and for the combined

two months, using the Incremental Optimisation (IO) routine. The optimal network design setup

was subtly changed, one parameter at a time, and the optimisation routine re-run under each set of10

modified conditions, and compared to the original optimal network design. The assessment of the

similarity between network solutions showed that changing the height of the surface grid cells, in-

cluding an uncertainty estimate for the ocean fluxes, or increasing the night time observation error

uncertainty did not result in any significant changes in the positioning of the stations relative to the

standard design. However, changing the covariance matrix or increasing the spatial resolution did.15

Large aggregation errors were calculated for a number of candidate measurement sites using the

resolution of the standard network design. Spatial resolution of the prior fluxes should be kept as

close to the resolution of the transport model as the computing system can manage, to mitigate

the exclusion of sites which could potentially be beneficial to the network. Including a generic

correlation structure in the prior flux covariance matrix lead to pronounced changes in the network20
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solution. The genetic algorithm (GA) was able to find a marginally better solution than the IO

procedure, increasing uncertainty reduction by 0.3%, but still included the most influential stations

from the standard network design. In addition, the computational cost of the GA compared to IO was

much higher. Overall the results suggest that a good improvement in knowledge of South African

fluxes is available from a feasible atmospheric network and that the general features of this network25

are invariable under several reasonable choices in a network design study.

1 Introduction

Mitigating climate change is one of the great challenges of our time. To further this end, it has

become essential to accurately estimate the emission and uptake of CO2 around the globe. Green-

house gases affect the absorption, scattering and emission of radiation within the atmosphere and at30

the Earth’s surface (Enting, 2002; Denman et al., 2007). Of these gases, CO2 contributes the greatest

forcing on the climate (Canadell et al., 2007). Monitoring CO2 sources and sinks is necessary for

validating important components of climate models and for determining the best course of action to

mitigate Climate Change. The method of inverse modelling can be used to estimate the magnitude

of sources and sinks of CO2 at different temporal and spatial scales (Enting and Mansbridge, 1989;35

Rayner et al., 1999; Rödenbeck et al., 2003; Chevallier et al., 2010). This method relies on precision

measurements of atmospheric CO2 concentrations to refine the prior estimates of the CO2 fluxes.

Using the machinery of atmospheric inversion, an optimal network of new sites to add to the exist-

ing infrastructure for measurement of atmospheric CO2 concentrations can be derived from a list of

potential sites.40

Previous optimal network studies run at the global scale have highlighted southern Africa as a

region associated with large uncertainty in its terrestrial CO2 fluxes, requiring further constraint by

measurements (Patra and Maksyutov, 2002). Measurements over Africa are much sparser compared

to other continents. Only the Cape Point Global Atmospheric Watch (GAW) station has a long term

CO2 concentration record, measuring since 1992. This tower was located at Cape Point (34.35
◦

S,45

18.49
◦

E) predominantly to record baseline measurements of well-mixed, clean air originating over

the Southern Ocean. A study by Whittlestone et al. (2009) demonstrated that it would be difficult to

improve estimates of terrestrial CO2 fluxes for southern Africa using the Cape Point station alone. In

2012, an atmospheric observatory was installed near the Gobabeb Training and Research Centre, on

the west coast of Namibia (22.55
◦

S, 15.03
◦

E), which continuously measures trace gases, including50

CO2 (Morgan et al., 2012). To build on this rudimentary network, and to improve estimates of

CO2 fluxes at least for South Africa, high precision instruments for measuring atmospheric CO2

concentrations have been purchased, which are to be installed at sites, yet to be determined, across

South Africa. To maximise the impact of these stations on the estimation of CO2 fluxes across South

Africa, an optimal network design can be used to indicate the best placement of new stations with55
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the aim of reducing the uncertainty of the terrestrial CO2 source and sink estimates. A reduction

in the uncertainty of the estimated fluxes is only one of many considerations when determining the

location of new measurement sites, but an optimal network design with this goal will provide a guide

which can be included in the assessment of these new locations. Part 1 of this paper conducted an

optimal network design study for Australia, hereafter referred to as part 1, aimed at augmenting its60

current observation network, and introduced the methodology employed in this study (Ziehn et al.,

2014).

An optimal network design requires the theory of atmospheric inversions to generate the poste-

rior error covariance matrix of the CO2 fluxes which would be estimated from a given network of

stations. From this the reduction in uncertainty can be determined. The second requirement is an65

optimisation routine which will select between a list of potential sites (Rayner et al., 1996; Patra and

Maksyutov, 2002; Rayner, 2004). Part 1 of this paper sought to reduce the uncertainty of Australian

terrestrial fluxes by 50 %, and began by considering the addition of new stations to the existing base

network (Ziehn et al., 2014). Similarly, the Cape Point and Gobabeb stations make up a base net-

work of CO2 monitoring stations for southern Africa. This optimal network design will add five new70

measurement stations to our base network to best reduce the uncertainty in flux estimates across the

country, and under the assumption of continuous, hourly measurements of CO2 concentrations.

The posterior flux error covariance matrix used to derive the uncertainty metric does not require

any knowledge of the measured concentrations or of the prior fluxes, only of the prior error covari-

ance matrix of the fluxes, the error covariance matrix of the observations, and the sensitivity matrix,75

which are all determined separately. Basing the cost function of the optimisation procedure on the

result of the posterior error covariance matrix of the fluxes under a given network ensures the un-

certainty in the estimated fluxes under the final network solution is reduced. As in part 1 (Ziehn

et al., 2014), the incremental optimisation (IO) procedure was used for the standard optimal net-

work design in this study. We used a regular grid of potential stations for the South African case80

study. The reason for doing is that, unlike Australia, South Africa does not have the relatively dense

network of meteorological stations suitable for atmospheric monitoring. Therefore, if we were to

base the network on the existing sparse network of stations, we could exclude important sites which

may provide better constraint. Therefore we have chosen the regular grid, and the sites selected in

the optimal network can then be further investigated to determine if there is infrastructure available,85

such as meteorological stations, communication towers or other research facilities, which could be

amenable to atmospheric measurements.

As well as providing this first-time optimal network design focusing on CO2 flux estimation

over South Africa, the paper presents a sensitivity analysis of several parameters needed in the

optimisation routine. For the standard case we used parametrisations which were most commonly90

implemented in the literature. We then considered alternatives and determined their impact on the

network. This analysis is important because as shown by Rayner et al. (1996), certain changes to the
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optimisation problem, such as changing the quantity to be optimised even if very similar in nature to

the original, can result in drastically different placement of stations. This would ultimately impact

on the implemented network design used in deployment of the new stations. By having alternative95

network solutions based on parametrisation changes, we can assess how important certain stations

are, since these should remain constant from one network solution to the next despite these changes,

and it provides insight into which parameters are likely to be important for the estimation of fluxes

using the new network of measurement sites.

The inversion procedure requires a sensitivity matrix which calculates the contribution of the dif-100

ferent sources to the CO2 concentration at a particular measurement site. We used the Lagrangian

stochastic particle dispersion model which we refer to as LPDM, driven by the global circulation

model CCAM run in stretched grid regional mode, to determine this matrix. One set of parame-

ters that we considered for the sensitivity analyses related to the specified dimensions of the surface

grid box in which the particles provided by LPDM are counted. This is determined by the spatial105

resolution of the problem. The next set of parameters we considered relates to the two error co-

variance matrices which are needed for the calculation of the posterior flux error covariance matrix.

We changed how these matrices were parametrised and assessed the consequences for the optimal

network design. Finally we implemented an alternative optimisation procedure to IO and considered

the optimisation of a different metric of uncertainty in the fluxes. As the alternative optimisation110

procedure, we used the genetic algorithm (GA), as described by Rayner (2004), which uses a very

different optimisation philosophy to the IO method.

This paper proceeds by introducing the inversion methodology, followed by an explanation of

the different sensitivity tests. The results are then presented for the South African optimal network

design under the standard conditions, followed by a comparison of the sensitivity tests. The conclu-115

sions provide insight into the most influential locations identified, and discuss courses of action to

address the optimal network design parameters highlighted in the study.

2 Methods and the South African Test Case

2.1 Surface Flux Inversion

The Bayesian synthesis inversion method, first proposed by Tarantola (1987) and used for the net-120

work design in this paper, is the most common method used for solving atmospheric inverse prob-

lems in the literature (Rayner et al., 1996; Bousquet et al., 1999; Kaminski et al., 1999; Rayner et al.,

1999; Gurney et al., 2002; Peylin et al., 2002; Gurney et al., 2003; Law et al., 2003; Baker et al.,

2006; Ciais et al., 2010; Enting, 2002). The regional inversion method we implemented is explained

in detail in part 1 (Ziehn et al., 2014). The observed concentration (c) at a measurement station at a125

given time can be expressed as the sum of different contributions from the surface fluxes (cs), from

the boundaries (cb) and from the initial condition (ci). For the purposes of the network design, the
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initial concentration is ignored since it is assumed that this condition is constrained by the observa-

tions. Peylin et al. (2005) found for their European regional inversion that the initial condition had

an effect on the flux estimates for only a few days. In a smaller domain, this effect will be even130

shorter, and therefore it is assumed that the initial condition will contribute very little to the total flux

uncertainty.

The linear relationship used to model the relationship between c and the contribution from the

sources (cs and cb) is as follows:

cmod = Tf (1)135

The vector of the modelled concentrations cmod is a result of the contribution from the sources f ,

described by the transport or sensitivity matrix T. The vector f can be composed of surface fluxes

and boundary concentrations (Lauvaux et al., 2012). The surface fluxes our inversion setup would

solve for are the total CO2 fluxes within a pixel, which we take to be the sum of the biospheric140

and fossil fuel fluxes. We aim to solve for the total flux since there is not enough information

to disentangle these fluxes. In this type of inversion setup, the surface fluxes can be separated into

biospheric and fossil fuel fluxes after the inversion run, using additional information regarding either

the fossil fuel or biospheric fluxes (Chevallier et al., 2014). The contribution from the boundaries

was first assessed to determine if its influence on the observation errors was negligible, in which145

case the boundary conditions could be excluded from the network design process. We developed

an algorithm for assessing the contribution of the boundary concentrations on the observation error

covariance matrix in Section 2.7.

As described in part 1, for the network design approach we are only interested in the posterior

covariance matrix of the fluxes, since our aim is to obtain a network that reduces the CO2 flux150

uncertainties (Ziehn et al., 2014). The posterior flux error covariance matrix, Cf , can be calculated

as follows (Tarantola, 1987):

Cf =
(
TTC−1

c T+C−1
f0

)−1

(2)

= Cf0 −Cf0T
T
(
TCf0T

T +Cc

)−1
TCf0 (3)155

where Cc is the covariance matrix of the observation errors, and Cf0 is the prior error covariance

matrix of the surface fluxes. Cf is obtained without the vector of observed concentrations c or the

vector of prior fluxes f0, which means that it is possible to assess the contribution that a hypothetical

station can have on the reduction of the flux uncertainty without the need to generate synthetic data.

2.2 Lagrangian Particle Dispersion Model (LPDM)160

To determine which sources and how much of each of these sources a measurement site sees at a

given moment, the sensitivity matrix T containing the influence functions is required. For a regional
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inversion this matrix can be directly obtained by running a Lagrangian particle dispersion model in

backward mode. The particles are released from the measurement locations and travel to the surface

and the boundaries (Lauvaux et al., 2008; Seibert and Frank, 2004). We used the model developed165

by Uliasz (1994) which we refer to as LPDM. In this mode the model simulates the release of a

large number of particles from arbitrary emissions sources by tracking the motion of the particles

backward in time (Uliasz, 1993, 1994). By running the model in this receptor-orientated mode the

influence functions for a given receptor are calculated, as described in part 1 (Ziehn et al., 2014).

LPDM is driven by the three-dimensional fields of mean horizontal winds (u, v, w), potential tem-170

perature and turbulent kinetic energy (TKE). In the case of the South African network design, these

variables are produced by the CSIRO Conformal-Cubic Atmospheric Model (CCAM), a variable-

resolution global circulation model run in regional mode. We use the regional mode so that we can

resolve the atmospheric transport at a high temporal resolution, which requires that the transport

model be run at a high spatial resolution as well (Sarrat et al., 2009). CCAM uses a two time-level175

semi-implicit semi-Lagrangian method to solve the hydrostatic primitive equations (McGregor and

Dix, 2008; McGregor, 2005; McGregor and Dix, 2001). Total-variation-diminishing vertical advec-

tion is applied to solve for the advective process in the vertical. CCAM employs a comprehensive

set of physical parametrisations, including the Geophysical Fluid Dynamics Laboratory (GFDL)

parametrisation for long-wave and shortwave radiation (Schwarzkopf and Fels, 1991) and the liquid180

and ice-water scheme of Rotstayn (1997) for interactive cloud distributions. A canopy scheme is

included, as described by Kowalczyk et al. (1994), having six layers for soil temperatures, six layers

for soil moisture (solving Richard’s equation), and three layers for snow. The cumulus convection

scheme uses mass flux closure and includes both downdrafts and detrainment (McGregor, 2003).

In the simulations performed here CCAM is applied in stretched-grid mode by utilising the185

Schmidt (1997) transformation. A multiple-nudging strategy was followed. First, a modestly-

stretched grid providing 60 km resolution over southern and tropical Africa was applied following

Engelbrecht et al. (2009), with subsequent downscaling to a strongly-stretched grid providing 15 km

resolution over southern Africa. Away from the high-resolution region over southern and tropical

Africa, CCAM was provided with synoptic-scale forcing of atmospheric circulation, from the 2.5
◦

190

(about 250 km) resolution National Centers for Environmental Prediction (NCEP) reanalysis data

set. This forcing was provided at 6-hourly intervals for the period 1979-2010 using a scale-selective

Gaussian filter (Thatcher and McGregor, 2009, 2010). CCAM was set up so that it produced output

at an hourly time step and at a 0.15
◦

spatial resolution over South Africa. The domain extended

far beyond the South African border, from 10
◦

South to 40
◦

South and from 0
◦

West to 60
◦

East.195

Meteorological inputs for LPDM were extracted for two months in 2010; January for Summer and

July for Winter. For a four week period during each of these months, LPDM was run for each of the

hypothetical measurement sites.

During processing of the particle count data from LPDM, particles that were near the surface were
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allocated to a surface grid cell and the total count within each of these was obtained to determine200

the surface influence or sensitivity. These counts depended on the dimensions and position of these

surface grid boxes. The particle counts were used to calculate the source–receptor (s–r) relationship,

or influence functions, which form the sensitivity matrix T. Here, we followed Seibert and Frank

(2004) to derive the elements of that matrix. As described in part 1 (Ziehn et al., 2014), we modified

the approach of Seibert and Frank (2004) to account for the particle counts which were produced by205

LPDM as opposed to the mass concentrations which were outputted by the transport model in their

study. The resulting s–r relationship between the measurement site and source i at time interval n,

which provide the elements of the matrix T, is:

∂χ̄

∂q̇in
=

∆Tg

∆P

(
Nin

Ntot

)
29

12
× 106, (4)

210
where χ̄ is a volume mixing ratio (receptor) expressed in ppm and q̇in is a mass flux density (source),

Nin the number of particles in the receptor surface grid from source grid i released at time interval

n, ∆T is the length of the time interval, ∆P is the pressure difference in the surface layer, g is the

gravity of Earth, and Ntot the total number of particles released during a given time interval.

For the network design we are interested in weekly fluxes of carbon separated into day and night215

time contributions, which means that we have to provide the particle count Nin as the sum over

one week (∆T=1 week (day/night)). Therefore, the mass flux density q̇in in Eqn. (4) has units of

gC/m2/week for the day and similarly for the night.

For the standard network design, the surface layer height is set to 50 m which corresponds to

approximately 595 Pa (∆P ). If we assume well mixed conditions, then the s–r relationship should220

be independent of the thickness of the surface layer, as long as the layer is not too deep, as the

particle count will be adjusted proportional to the volume of the grid box. Under stable conditions,

this may not be the case (Seibert and Frank, 2004). To test if changing the surface grid box height

affects the optimal network design, we have included two cases in the sensitivity analysis where the

height has been adjusted to 60 m and 75 m. The optimisation routine was run under each of these225

specifications, holding all other choices as for the standard network design.

As for most inversion studies, a compromise needs to be reached between the dimensions imposed

on the source regions and the computational resources available (Kaminski et al., 2001; Lauvaux

et al., 2012). To ensure that the computational time of each of the optimisation runs was feasible, the

spatial resolution of the surface flux grid boxes was set so that the domain was divided into 50 by230

25 grid boxes (a resolution of approximately 1.2
◦ × 1.2

◦
) for the standard optimal network design.

As a sensitivity test, the resolution of the surface grid boxes was adjusted so that there were 72 by

36 grid boxes (a resolution of 0.8
◦ × 0.8

◦
) in one case, and to 100 by 50 grid boxes (a resolution of

approximately 0.6
◦×0.6

◦
) in a second, much closer to the original resolution of the transport model.

This change in resolution of the surface grid boxes impacts on the sensitivity matrix, increasing the235

number of elements in the matrix by a factor of two in the medium resolution case and by a factor
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of four in the high resolution case. It has further consequences for the prior flux covariance matrix,

which needs to accommodate this change in source dimensions, increasing its element count by a

factor of four for the medium resolution case, and a factor of sixteen in the high resolution case,

requiring far more computational resources than the standard case.240

2.3 Observation error covariance matrix

Observation errors result in the values of cmod differing from the observed values in c. Sources

of these errors include random and systematic measurement errors, which are usually negligible

at an accredited measurement station, transport model errors, and aggregation errors, which are

discussed in more detail at the end of this section (Ciais et al., 2010). Baker (2000) estimated the245

observation error covariance matrix by comparing the monthly observation means at Mauna Loa to a

smoothed line and determining the monthly standard deviations. These values ranged between 0.34

and 0.16 ppm, and so in their case a value of 1 ppm was applied for the standard deviation to each

region, with the assumption that most places would have a higher standard deviation than Mauna

Loa. It was also assumed that the measurement sites would be independent of one another and no250

temporal correlation from month to month, so the matrix was assumed to be diagonal. Wu et al.

(2013) fitted the standard deviation terms of the observation error covariance matrix to available

data for a mesoscale inversion study, and estimated values between 2.9 and and 3.6 ppm.

We adopted the same observation errors as for the standard case in part 1 of 2 ppm. This value

falls within the range of values reported in the literature. The dominant source of observation error255

represented here is from the transport model. In part 1 (Ziehn et al., 2014), a sensitivity analysis was

conducted by adjusting the error estimate of the observations based on the location of the station.

Since there are far fewer existing stations in South Africa from which we can extract data to assess

the potential transportation error, we used the same error for all stations. As part of the sensitivity

analysis we assessed the impact of increasing the night time observation error uncertainty to 4 ppm260

to account for known errors in modelling night time atmospheric transport. In atmospheric inversions

night time observations are sometimes not considered at all, achieved by drastically increasing the

night time observation error uncertainties (Lauvaux et al., 2012).

The high resolution test case discussed above allows the opportunity to assess the aggregation

error as well. This is the error due to the degradation of the spatial resolution from the original reso-265

lution of the transport model to a lower resolution that the inversion can accommodate. When there

is heterogeneity in the surface fluxes and inhomogeneous transport, averaging the surface fluxes to

a coarser resolution leads to errors occurring in the modelled concentrations due to the measure-

ment not representing the larger pixels over which the transport is modelled (Kaminski et al., 2001;

Ciais et al., 2010). The aggregation errors need to be added to the observation errors, as shown by270

Kaminski et al. (2001) and Tarantola (2005), and must be adjusted if the resolution of the problem is

changed. To determine the aggregation error in a feasible manner for each of the potential measure-
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ment sites, the 0.6
◦ × 0.6

◦
test case was substituted as the high resolution case in this calculation,

where the grid cells of this case fit exactly into the grid cells of the standard low resolution case.

This allowed us to follow the method outlined in Kaminski et al. (2001), who determined that the275

aggregation error Cc,m can be calculated as:

Cc,m = TP−Cf0P
T
−T

T , (5)

where P− = I−P+ and P+ is the projection matrix which, if multiplied with the prior flux es-280

timates f0 of the high resolution case, produces the low resolution prior flux estimates in place of

the corresponding high resolution estimates. The solution of Cc,m was obtained for each measure-

ment site, and as a conservative approach, the maximum value of the diagonal was assigned as the

aggregation error for that measurement site for the standard resolution case. For the medium and

high resolution test cases, since aggregation error would certainly exist but presumably get smaller285

as the resolution approached that of the transport model (Wu et al., 2011), the aggregation error was

reduced according to the increase in number of grid cells. Therefore it was reduced by half for the

medium resolution test case, and by a quarter for the high resolution test case.

2.4 Prior flux error covariance matrix

The elements of the prior flux error covariance matrix need to be constructed from the best available290

knowledge of sources and sinks at the surface and at the boundaries. Lauvaux et al. (2008) carried

out a mesoscale inversion on synthetic data, where their inversion setup included the contributions

from the boundaries as part of the sources they wished to solve for. Their approach for obtaining

the boundary elements of the prior flux error covariance matrix was to use modelled values of CO2

and adjust them for biases based on observed aircraft and tower data that was available for the four295

day period under assessment. For the prior error covariance matrix of the fluxes, the error was set at

2 gC m-2 day-1 for the surface fluxes and 4 ppm for the boundary contributions, and they assumed

uncorrelated flux errors on the domain (no spatial correlation). This was further developed by Wu

et al. (2013) who used available data to fit hyperparameters, which were the variance and correlation

lengths of the prior flux and observation error covariance matrices.300

The approach of Chevallier et al. (2010) to obtain the elements of the prior flux error covariance

matrix was to set the standard deviations of the fluxes proportional to the hetrotrophic respiration flux

of land-surface model ORCHIDEE. This is the approach adopted in the case of the South African

optimal network design, where we used a recent carbon assessment study by Scholes et al. (2013)

which produced monthly maps of gross primary productivity (GPP), net primary productivity (NPP),305

hetrotrophic respiration (Rh), autotrophic respiration (Ra) and net ecosystem productivity (NEP) for

South Africa. Of these products, most confidence lay in the NPP product. Since NEP = NPP−Rh

and in a balanced system NEP should be a small flux (Lambers et al., 2008), NPP was used rather
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than Rh. The biosphere flux uncertainties for a particular month were estimated using the following

simple relationship:310

σNEP =

min(28gC/m2/week, NPP) if South Africa

min(28gC/m2/week,nearest(NPP)) if not South Africa
(6)

where nearest(NPP) represents the NPP estimated for the nearest South African grid cell. As a

realistic estimate, areas outside of South Africa, which had no estimates available for NPP from the315

carbon assessment product, were assigned the NPP estimate from the closest South Africa grid cell

for a particular month. In this way, pixels to the east of the continent in the Mozambican region

had similar flux uncertainties prescribed as for the northern savannah pixels within South Africa,

and those on the west of the continent in Namibia had uncertainties prescribed as for the semi-desert

pixels in Northern Cape Province of South Africa. This type of interpolation was carried out to avoid320

adding unnecessary aggregation errors at the South African terrestrial borders, which would occur if

a blanket estimate for NPP outside of South Africa was used. A blanket estimate would lead to artifi-

cially large changes in the flux uncertainties between neighbouring pixels, exaggerating aggregation

errors for stations near these borders, and conversely null changes in uncertainty between non-South

Africa terrestrial pixels. Since Ra and GPP were also available, and NPP = GPP−Ra, day time325

NPP and night time Ra were obtained by assuming that all the GPP took place during the day, and

half of the Ra took place during the day and half at night. This meant that the day time NPP values

tended to be larger in magnitude than the night time Ra values, which is what we would expect for

the South African systems. Using this assumption, the monthly estimates for NPP were converted

into weekly values, separately for day and night, to give the final uncertainty values used to construct330

the prior flux error covariance matrix. The day time NPP and night time Ra values used as proxies

for the NEP uncertainties are plotted for July and January (Fig. 1). In South African systems much

more biological activity occurs during the Summer months compared to the Winter months, with the

consequence that the uncertainty during the Summer months is considerably larger.

Since the domain of the network design includes the fossil fuel sources of South Africa, fossil fuel335

flux uncertainties needed to be derived as well. Previous regional inversions, where the total flux of

a source pixel was solved for, had detailed inventory data available for the fossil fuel emissions,

and they assumed these were perfectly known (Schuk et al., 2013). Since this information was not

available for South Africa, we had to consider errors in the fossil fuel fluxes. As for part 1 (Ziehn et

al., 2014), these uncertainties were derived from the Fossil Fuel Data Assimilation System (FFDAS)340

(Rayner et al., 2010; Asefi-Najafabady et al., 2014). Ten realisations for the year 2010 were obtained

from the FFDAS product at the original resolution of 0.1
◦×0.1

◦
. The fluxes were aggregated to our

network design resolution of 1.2
◦ × 1.2

◦
and then the variance calculated for each grid cell. Since

the emissions from fossil fuels are usually localised, such as those at power plant locations, the
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variability in the fossil fuel emissions between grid cells is quite large. But, as shown by Ziehn345

et al. (2014), the effect of aggregating the data smooths the fossil fuel emissions over the network

design domain, and this leads to a reduction in the variability between the different realisations of the

FFDAS. It also leads to the aggregation errors discussed in 2.2. Figure 2 shows that the uncertainties

for the ten realisations based on the original 0.1
◦ × 0.1

◦
resolution have much larger maximums for

individual grid cells than the uncertainties calculated for the aggregated fluxes (Fig. 2). The effect of350

using a higher spatial resolution for the surface grids, closer to the resolution of the transport model,

is considered in the sensitivity analyses as discussed above in section 2.2. The fossil fuel uncertainty

and NPP surfaces for these higher resolution cases are provided in Fig. 8.

For the standard network design, the prior flux error covariance matrix is estimated as a diagonal

matrix, where the diagonal elements are the sum of the variances of the biospheric fluxes and the355

fossil fuel fluxes for that grid cell. The biospheric flux uncertainties were multiplied by the fraction

of the grid cell covered by land, separately for day and night. By multiplying with the land fractions

we guarantee that the prior uncertainties for coastal grid cells are scaled accordingly and ocean only

grid cells are set to zero, since the NEP and fossil fuel products only apply to the land surface.

We assumed no correlation in the prior error covariance matrix of the fluxes. This is a necessary360

assumption since we have no data from which to determine the best correlation lengths. In reality,

grid cells with similar biota and under similar climate will have correlated fluxes. Similarly, fluxes

from the same source which occur close in time will also be correlated (Chevallier et al., 2010; Wu

et al., 2013). Correlation lengths in space and time are difficult to assess, but have a large impact on

the estimated fluxes (Lauvaux et al., 2012). Independence is assumed, which is a more conservative365

approach for the optimal network design. Eventual data from the implemented network will then

help to resolve the flux correlation estimates during the inversion procedure. To determine what

impact assuming positive correlation lengths in the prior flux error covariance matrix could have on

the optimal network design, we used the results from Chevallier et al. (2012), and put together a

simple correlation structure where it was assumed that temporal correlations for the same grid cell370

one week apart had a correlation of 0.5 (independent for day and night), decaying to 0.3 at two

weeks apart and 0.1 at three weeks apart. Grid cells adjacent to each other had a correlation of 0.3.

The interactions between time and space correlations were determined by the Kronecker product of

the spatial and temporal correlation matrices (e.g. two grid cells adjacent to each other but one week

apart would have a correlation of 0.3× 0.5). Therefore correlation lengths were relatively short.375

In the network design under the standard case, we kept the uncertainties of the ocean-only grid

cells set to zero, since our focus is on reducing the flux uncertainty over land. We are not seriously

assuming that we know the ocean fluxes perfectly, but for the purposes of this optimal network

design, we would prefer if the terrestrial measurements focused on solving for the terrestrial fluxes.

Of course, to run a full inversion, knowledge is needed about the ocean fluxes and this would be380

obtained through ocean based measurements. The contributions from the ocean can be divided
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into the ’near-field’ and ’far-field’. The far-field contributions are contained within the boundary

contributions. The near-field contributions are those within our domain. A sensitivity test was

conducted whereby 10% of the maximum land NEP standard deviation was allocated to the ocean

grid cells. This uncertainty represents the uncertainty in the ocean productivity models which would385

be used to obtain prior estimates of ocean fluxes during an inversion, which are similar to the values

allocated by Chevallier et al. (2010). A second case was considered where 10% of the nearest land

NEP uncertainty was allocated to each ocean grid cell, so that the uncertainties of the ocean grid

cells would increase as the uncertainties of nearby land fluxes increased. The purpose of this test

case was only to demonstrate the effect implementing a variable ocean uncertainty scheme.390

2.5 Optimisation

Three optimisation routines have been used for optimal network design in the literature, namely IO

(Patra and Maksyutov, 2002), GA (Rayner, 2004), and simulated annealing (Rayner et al., 1996).

We used the IO routine, as used for part 1 (Ziehn et al., 2014), for the standard network design. This

method was previously compared to simulated annealing by Patra and Maksyutov (2002) and found395

to perform as well or better, with significantly less computational cost.

During the IO procedure we added one station at a time from the candidate list to our base network

of two stations and calculated Cf . We chose the station that resulted in the smallest uncertainty

metric and added it to the network, simultaneously removing it from the candidate list. We then

repeated the process until we reached our target of five stations. The IO procedure provides us with400

a stepwise progression of the optimal network.

The overall uncertainty in fluxes can be expressed by two different metrics (Rayner et al., 1996).

Either through obtaining the trace of Cf (JCt) or by summing over all the elements of Cf (JCe):

JCt =

√√√√ n∑
i=1

Cfii (7)

405

JCe =

√√√√ n∑
i=1

n∑
j=1

Cfij (8)

where n is the number of elements in the diagonal of Cf . The use of equation 7 results in the min-

imisation of the average variability between surface pixels. Equation 8 is the more accepted metric

to calculate uncertainty for network designs, and it results in the minimisation of the uncertainty of410

the total flux over South Africa. As for part 1 (Ziehn et al., 2014) and as used by Rayner et al. (1996),

we use JCe as the uncertainty metric for the standard design. In our case, because the domain of the

transport model contains terrestrial regions outside of South Africa, we only include the elements of

Cf which are within South Africa in the calculation of the uncertainty metric.

As a sensitivity test, the JCt uncertainty metric was replaced with JCe. Minimising either of415

these metrics should result in an optimal network with reduced overall uncertainty in flux estimates
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across South Africa, but the results could potentially be quite different, particularly if there are large

correlations in the posterior flux error covariance matrix.

We evaluated the different networks in terms of their uncertainty reduction:

UR = 1− ĴCe

JCe base
(9)420

where ĴCe is the optimised uncertainty metric value and JCe base the value of the uncertainty met-

ric calculated from the posterior error covariance matrix of the fluxes if only the base stations are

included.

Although IO is expected to be more computationally efficient, optimisation through a GA would425

also be well suited for this kind of problem, considering that this network design for South Africa

is starting with so few existing stations. The GA begins with each of the solutions in the population

containing five stations. Therefore all five stations are optimised simultaneously, rather than sequen-

tially. This method therefore may be more suited to the case where there are multiple deployments,

as we have. It is possible under these circumstances that the best solution for a five station network430

in terms of reducing the overall uncertainty for South Africa, may not include the one station which

on its own reduces the uncertainty the most. The GA is highly parallel and we can therefore take

advantage of high performance computing, but the running time of a GA is still higher in comparison

to IO.

The approach used to run the GA during the sensitivity analyses is adopted from Rayner (2004).435

GA procedures are a class of stochastic optimisation procedures for any numerical algorithm which

calculates a score based on a function of inputs. In this case the algorithm calculates a score based

on the posterior flux error covariance matrix, given a set of stations. A GA does not optimise based

on a single solution, but rather by improving a population of solutions, from which a final solution is

selected. New members are added to the population through a process of loss of members which are440

not sufficiently fit (culling), pairwise combination of previous members (cross-over), and random

changes to members (mutation). This represents ’survival of the fittest’ and pairwise reproduction

and mutation in biological populations.

In this implementation of the GA, elitism is maintained by keeping the best solution from the pre-

vious population, without making any changes through cross-over or mutation on this member. The445

algorithm converges once a given number of iterations is reached, or once a convergence criterion

is met. The solution with the best fitness criterion is then selected from this population, where the

fitness F is calculated as:

F = 1− r− 0.5

N
(10)

450

where r is the ordinal ranking of the member and N is the population size, which for our South

African case study was taken to be 100 members. A pseudorandom number x is generated and

members are then deleted, or culled, if the value of F is less than x. The culling process will remove
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about 50 % of the population members. These need to be regenerated to get the population back to

the required size. Members are selected at random from the remaining population, and based on new455

pseudorandom numbers, members are duplicated if their fitness score is above this random number.

Sampling is with replacement, so the members with the highest fitness have a good chance of being

duplicated more than once. This continues until all the culled members have been replaced and the

population size is back to N .

The GA requires a trade-off between the diversity in the solutions, ensuring that the algorithm does460

not get stuck in local extrema, and strong selection to ensure that the population moves towards the

optimum solution. This is achieved by adjusting the mutation rate; high enough to produce diversity

in the solutions, but low enough to ensure that members with high fitness persist and so ensure a

tendency towards the optimum solution. From previous work (Rayner, 2004) a good mutation rate

for network design was found to be 0.01.465

The population size and number of iterations affects the computation time of the algorithm. A

large population size is favourable because this ensures diversity in the solutions. The more iterations

that take place, the more solutions the algorithm can assess and the better the chance of finding the

global minimum. High values for both of these parameters results in long computation times. In

this study the number of iterations was set at 100 for a single month optimisation, and to 150 for a470

combined month optimisation. These values were determined from GA trials carried out on the data

prior to deriving the results for this study.

2.6 Measurement sites

Hypothetical stations were selected from a regular grid over South Africa, resulting in 36 equally

spaced locations (Fig. 3), from which five stations need to be selected. Ultimately, the exact loca-475

tion of the stations will be determined by practical considerations, such as the presence of existing

infrastructure, such as communication towers and meteorological stations, available manpower, the

relative safety of the instruments, and the accessibility of the sites. The optimal network will be

used as a guide as to which locations are ideal. Once station sites have been chosen, it will be possi-

ble to again calculate the posterior flux error covariance matrix based on the exact tower locations,480

and determine how close to the idealisedbut not the same stations as July uncertainty reduction the

implemented network can achieve.

2.7 Influence from outside the modelled domain

Since the surface sources are expressed as fluxes in carbon, the contribution to the concentration

at the measurement site is expressed in the amount of carbon seen at the measurement site from a485

particular source. In the case of the boundary sources (or contributions from outside of the domain)

which are given as concentrations, their contributions to the concentration at the measurement site

are expressed as a proportion of their concentration, dependent on their influence at the receptor site.
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Part 1 (Ziehn et al., 2014) showed that the boundary contribution can then be written as:

cb,mod = MBcB (11)490

where MB is the submatrix of T for the boundary concentrations, cB. If the elements of MB are

large enough it may be necessary to include the boundary concentrations in the network design.

For the network design, four boundaries (north, south, east and west) were used and we calculated

the sensitivity of hourly observed concentrations to weekly boundary concentrations. To determine495

if the influence of the boundary concentrations on the observation errors should be included in the

network design, we needed to know whether the uncertainties contributed by the boundary concen-

trations were significant compared to other contributions. To see this we calculated MB for each

station. Assuming uncertainties of 1 ppm in the boundary concentrations (reasonable for the South-

ern Hemisphere) this yielded:500

Cb = MBCIM
T
B (12)

where CI is the prior error covariance matrix of boundary concentrations. The diagonal elements

of the error covariance matrix of the boundary concentrations, Cb, provided us with the uncertainty

contribution of the boundary concentrations to the observations. If they are much smaller than the505

observation error uncertainty we can neglect boundary influences in the network design. As the

boundary concentrations should be highly correlated, we also considered CI to have correlation

between boundary concentrations, where correlations of 0.5 were allocated between boundary con-

centrations during the same week, and values of 0.25 between boundary concentrations separated by

a week or more.510

2.8 Comparison of network solutions

To compare the utility of the optimal networks from each algorithm run, the uncertainty reduction

was assessed for each of these networks. The similarity of the networks in terms of the station

locations was assessed using a test statistic from the Chi-squared Complete Spatial Randomness test,

measuring the degree of clustering, where the expected value is based on the null hypothesis that the515

stations are located randomly over the domain. The intention here was not to perform a statistical

test based on the Chi-squared distribution, since the network did not constitute a sample nor were

there enough stations, but to calculate an indicator that would assess the degree of clustering of the

measurements stations for a particular network solution, referred to as the clustering index, which

was also used to compare between two networks.520

Clustering Index =
∑
i

∑
j

(Oij −Eij)
2

Eij
(13)

where i and j are the indicators for the latitude and longitude categories respectively, Oij was the

observed number of stations in quadrat ij and Eij the expected number of stations assuming the
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stations are scattered randomly. The domain was divided into quadrats; in this case 16 equally sized525

quadrats covering the entire domain.

A dissimilarity index (DI) was calculated as the sum of the distance to the nearest neighbour in

the compared network, over all the members in the pair of assessed networks.

DI =

5∑
i=1

min
√

∆x2
ij + ∆y2

ij +

5∑
j=1

min
√

∆x2
ij + ∆y2

ij (14)
530

where i and j ∈ [1,2,3,4,5], and ∆x2
ij and ∆y2

ij are the squared differences between the Cartesian

coordinates of the ith station in network 1 and the jth station in network 2. In cases where the two

networks compared were the same, the index results in a value of zero. The index increases as

the networks become more dissimilar in space. This provides a one-number measure of network

similarity that can consistently be used for the network comparisons provided each solution consists535

of the same number of stations. The index provides a measure in kilometres of how different two

network solutions are. This allows for an objective assessment of how different the positioning of

sites are between two network solutions which may not be obvious to the eye.

3 Results and Discussion

3.1 Influence from the boundaries540

The particle counts generated during the LPDM runs for each station were summed over the month

in order to obtain a footprint of each station. To illustrate this, plots of the influence footprint in

January (Fig. 4) are provided, using a logarithmic scale, for Cape Point and three other candidate

stations: 28 (near Potchefstroom), 18 (near Mthatha), and 4 (near Port Elizabeth). For both January

and July, the influence footprints show that the three candidate stations have more contributions from545

terrestrial South African sources than Cape Point has. The plots show that the majority of influence

for a site is from the sources in the surrounding pixels.

Using the influence functions now available for each station, the test of the influence from the

boundaries on to the observation errors was conducted. Given the large domain over which LPDM

was run, it was not surprising that the boundaries had minimal influence. Overall, the square root550

of the maximum diagonal element of Cb for all stations was only 0.012 ppm. The mean of the

maximum diagonal elements over all measurement sites was 0.006 ppm with a standard deviation

of 0.002 ppm. Even when correlation between the boundary concentrations was included in the

covariance matrix of the boundary concentrations, the maximum diagonal element only reached

0.012 ppm, and the maximum diagonal element for a particular station were no more than 40 %555

higher than for the independent case.
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3.2 Aggregation error

Aggregation errors were found to be a significant contributor to the overall observation error covari-

ance matrix. Aggregation errors of as high as 17.10 ppm were found for measurement sites in the

north eastern interior, and as low as 0.01 ppm for stations in the south western interior (Fig. 5).560

The average aggregation error across sites was 4.70 ppm with a standard deviation of 5.10 ppm.

The sites with the largest aggregation errors were generally those closest to large fossil fuel sources.

These large values are due to the significant amount of smoothing of the relatively localised fossil

fuel fluxes during the lower resolution case. This results in large heterogeneity between the high

resolution fossil fuel fluxes which contribute to the average fossil fuel flux estimate of the low res-565

olution case, which is exactly the circumstances that lead to the generation of aggregation error.

Sites near the terrestrial or coastal borders also tended to have large aggregation errors. Site specific

aggregation errors were determined, and these errors were added to the diagonal elements of the

observation error covariance matrix separately for each site.

When running LPDM to generate the sensitivity matrix, it is imperative to specify a sufficient570

number of particles per release, as well as to run the model for longer than required, with additional

time at the beginning of the run. This is to avoid transport errors, and to avoid exaggerating the

aggregations errors. Therefore, the aggregation errors were calculated using the last week of the

four week sensitivity matrix.

The next sections present the results of the optimal network design; first under the basic parametri-575

sations as used in part 1 (Ziehn et al., 2014), and then under the sensitivity tests.

3.3 Basic network design

The network solution for July was able to achieve a reduction in uncertainty in the total South

African flux from 6.42 gC/m2/week under the base network to 3.66 gC/m2/week under the optimal

network. The results under the standard conditions used in the basic network design for the month580

of July reveal that the best set of stations to add to the current network would include two stations

near the western coast of the country, including one just north of the City of Cape Town (Fig. 6).

These stations are located near the areas of highest NEP uncertainties during the Winter months.

These areas in the Western Cape fall into the fynbos biome, which is under a Winter rainfall regime.

Therefore productivity during the Winter months is expected to be higher in this area (Fig.1 a).585

In contrast, activity over much of South Africa during the Winter months, when water availability

is reduced, is expected to be low to almost entirely dormant. Due to the increased uncertainty in

NEP in the fynbos regions during this time, as well as the proximity to the City of Cape Town,

the optimal network would need a station in this area to reduce the overall uncertainty of South

Africa. Two stations are located in the eastern interior of the country, including one on the border590

of Lesotho, and a station in the central interior of the country, not far from the Zimbabwean border.
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These stations are located near to areas with high fossil fuel flux uncertainties. The base network

on its own reduced the posterior flux uncertainty by 17.0%. During the month of July, the best

station to add to this network would be station 24, located in the eastern interior of South Africa,

just north of Lesotho, which reduced the uncertainty relative to the base network by 12.8% (Table.595

1). The second best station to add is station 0, near the south east coast of South Africa. This station

reduced the uncertainty by an additional 10.5%. Since the optimal network included a station near

Cape Point during July, it supports the conclusions by Whittlestone et al. (2009) that measurements

at Cape Point are not sufficient to estimate fluxes for the Western Cape region. The reduction in

uncertainty by the addition of the three remaining stations to the network was an additional 19.3%.600

During the Winter months, the biospheric fluxes are small, with small uncertainties whereas the

fossil fuel flux uncertainties remain high. Due to the penalty imposed by the aggregation error for

measurement sites located near fossil fuel sources, the return on uncertainty reduction during the

Winter months is low, at only 42.9%.

In January the total flux uncertainty was much higher compared to July, with a total flux uncer-605

tainty of 128 gC/m2/week, which was reduced to 27.93 gC/m2/week under the optimal network. The

placement of stations changes with respect to July, with the stations all located towards the eastern

interior of the country, and no stations positioned on the western side of South Africa (Fig. 6). The

stations were located near regions of high Summer time NEP uncertainty and in the region where

most of the fossil fuel activities in the country are concentrated. In contrast to the Winter months,610

the NEP uncertainty during Summer is much higher on the eastern side of the country compared

to the mid interior or the west of the country (Fig.1 c), resulting in a need to concentrate the new

measurement sites in this area. The uncertainty reduction attributable to the base network in January

is similar to July, at 16.8%. The best performing station in the network for January is station 12,

located on the eastern coast of South Africa, which further reduces the uncertainty by 40.0% relative615

to the base network. The next best performing station was station 29, which reduced the uncertainty

by an additional 18.0%. An additional 10.3% increase in uncertainty reduction was attained from

adding the last three stations to the network. The total uncertainty reduction achieved in January is

much higher compared to July, at 78.3%. This is due to the ability of the network to view the larger

Summer biospheric fluxes in areas where the aggregation error penalty is low, or even despite the620

aggregation error penalty.

The total flux uncertainty under the base network for the combined months of January and July

was calculated to be 128.43 gC/m2/week, similar to the month of January. This is reduced to 19.83

gC/m2/week under the optimal network. The network for the combined months has a similar posi-

tioning of stations compared to January (Fig. 6), locating most of the stations in the eastern interior,625

as well as a very similar reduction in uncertainty at 84.6%. The most important station, as ranked by

the IO solution, is station 18, which reduces the uncertainty by 53.3% relative to the base network.

This station is located in a region of both high NEP and fossil fuel flux uncertainty (Fig. 1 and Fig.
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2). The second best station to add to the network is station 29, increasing the uncertainty reduction

by 24.4%. This station is located near the area of highest fossil fuel flux uncertainty (Fig. 2). The630

remaining three stations (stations 11, 22 and 27) add only 6.8% to the uncertainty reduction. The

network solution is different to January’s, in that the stations are more concentrated around the areas

of larger fossil fuel flux uncertainty. This is due to the much lower NEP uncertainty estimates for

the Winter months across South Africa compared to the Summer months, but the fossil fuel flux

uncertainties remaining consistent during the year. The optimal network for the combined seasons635

is therefore dominated by the need to reduce these consistently large uncertainties. The results from

the combined months shows that a substantial reduction in the posterior uncertainty for South Africa

is possible by introducing only a few additional stations at key locations.

3.4 Sensitivity analysis

The results for the sensitivity analyses run for both months, and the combined months of January640

and July appear in Fig. 7. During the Winter months, there was consistency between the network

solutions from the different sensitivity tests. All of the tests were in agreement that stations 0 and

18 should be included; station 0 near the Winter NEP uncertainties, and station 18 near an area of

large fossil fuel flux uncertainty. The tests assessing surface grid box height, the doubling of night

time observation error uncertainty, and the addition of ocean flux uncertainty, were identical to the645

standard network design solution. Both the medium resolution and the GA network solutions were

very near the standard solution, each obtaining the second smallest DI relative to the standard design

of 879. These tests both favoured two stations which were each one step away from a standard

network design station. The solution using the uncertainty metric based on the trace of the posterior

flux covariance matrix was similar to these two, but favoured a station near the south coast of South650

Africa, far from the general concentration of stations, near a localised fossil fuel source. The two

test cases most different from the standard solution were the high resolution network solution, and

the solution from the case considering correlation between the prior fluxes, obtaining a DI of 1747

and 1343 respectively. They also favoured stations near the south coast, but also located stations in

the north eastern interior, near areas of large fossil fuel uncertainty.655

The results from the sensitivity tests for January show a great deal more variability between net-

work solutions compared to July, with DI values of greater than zero for almost all network solution

comparisons. Similarly to July, the network solutions do appear to converge towards three stations,

but not the same stations as July. Under January’s conditions, only the homogeneous ocean vari-

ance test case resulted in an identical solution to the standard case. There is no single station which660

all network solutions contained. Stations 29 (north eastern interior) and station 12 (eastern coast)

were agreed on by ten out of eleven tests, and stations 27 (northern interior) and 11 (south eastern

interior) were agreed on by nine out of eleven tests. These four stations are influenced by areas of

large fossil fuel flux uncertainty, and stations 29 and 12 near regions or large Summer NEP uncer-
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tainty. Sensitivity tests with DI values below 1000 when compared to the standard case include the665

tests considering surface grid box height, doubling of night time observation error uncertainty, the

test considering variable ocean flux uncertainty, the trace uncertainty metric test, and the GA test

case. These five test cases show strong agreement. The trace uncertainty metric case favoured a

station near the central interior. This station was also included in the solutions of the correlation and

medium resolution cases, where these tests obtained DI values of 1225 and 1305 respectively when670

compared to the standard solution. These tests, as well as the GA and high resolution test cases,

included stations near the south coast, near areas of localised fossil fuel uncertainties.

The sensitivity tests from the combined months showed less variability between solutions com-

pared to January (Fig.7 c). Station 11 was included in all of the network solutions. Station 18

was agreed upon by ten out of eleven network solutions, and stations 27 and 29 (both in the north675

eastern interior) were favoured by nine out of eleven solutions. The tests considering 60 m surface

height, the trace uncertainty metric, doubling of the night time observation error uncertainty, and

inclusion of ocean flux uncertainty have identical solutions to the standard network design. The

75 m surface height and medium resolution tests cases obtained relative low DI values of 468 and

449 respectively when compared to the standard solution (Table 2). The high resolution test and test680

case considering correlation between prior fluxes obtained DI values of 1121 and 1162 respectively.

The solutions from these tests focused stations around areas of large fossil fuel flux uncertainty in

the north western and eastern interior. The solution from the GA resulted in the largest DI value

of 1213 when compared to the standard network, and equal to this or larger when compared to all

other network solutions. The station in the GA solution responsible for the disagreement with other685

solutions is station 7, located in the south western interior, far from the concentration of stations for

most network solutions. The remaining four stations from the GA test are located towards the north

western and eastern interior parts of the country. As discussed in the previous section (3.3) the three

best stations to add to the network according to the IO solution, are stations 18, 29 and 11, with

station 18 attaining the greatest uncertainty reduction. All of the network solutions for the combined690

months of January and July have included station 18, and the three most important stations are all in

the solution of the GA.

The statistics for the different sensitivity tests for the combined months (Table 3) indicate that

the test considering correlation between the prior fluxes obtained the highest uncertainty reduction,

followed by the GA test. The GA was able to achieve marginally greater uncertainty reduction by695

0.3% compared to the IO standard solution. Most of the test cases were able to achieve between

80% and 85% uncertainty reduction. The test case utilising the trace uncertainty metric achieved a

smaller uncertainty reduction, and the two higher resolution tests achieved the smallest uncertainty

reduction overall. Estimates of the posterior uncertainty for the total flux of South Africa under the

base and optimal networks were obtained for each month. Those which differed substantially from700

the standard network solution were the high and medium resolution test cases, and the correlation
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test case. Under the assumption of positive correlations between the flux errors, the base network

results in a higher total flux uncertainty of 205.82 gC/m2/week for the base network which is reduced

to 27.79 gC/m2/week under the optimal network, now similar to the result of the standard network

solution. Under the base network, the additional covariance terms introduced through the correlation705

structure are poorly resolved, leading to higher total uncertainties. When there are more stations

added to the network this is improved. The high and medium spatial resolution test cases gave total

flux uncertainties of 271.55 and 190.14 gC/m2/week respectively under the base network. These

were then reduced to 82.82 and 44.19 gC/m2/week respectively under the optimal network. At the

spatial resolutions that we’ve considered in our study, the between pixel variability in the terrestrial710

fluxes will increase as the spatial resolution is increased, for both the biospheric and fossil fluxes

(Turner et al., 2000). For the fossil fuel fluxes, we create the surface of flux uncertainties using the

same procedure for each of the different spatial resolution cases. As explained earlier, for each of

the ten realisations from the FFADS product, we regrid the 0.1
◦×0.1

◦
fossil fuel emissions onto the

surface grid we are using. To obtain the uncertainty estimates the within pixel variance is calculated715

for the ten realisations. The result of carrying this procedure out at higher spatial resolutions is that

the variance values are larger compared to lower resolutions, and the between pixel variability is

increased (Asefi-Najafabady et al. 2014). Therefore, the total flux uncertainty derived under a high

resolution is expected to be larger than for lower resolutions.

Most network solutions tended towards the same amount of clustering of stations, obtaining a720

clustering index of 23.8. The GA and test case considering correlation had more dispersed networks,

and the high resolution test case had the highest amount of clustering, with a clustering index of 36.6.

We would expect the correlation case to spread stations since a given station will reduce uncertainty

everywhere within one correlation length. The GA for the combined months took the longest to

run, at over 32 hours, which is 39 times longer than the running time of the standard IO solution.725

This was followed by the high resolution solution, which took 25.2 hours, and the two ocean flux

uncertainty test cases which took over five hours each.

4 Summary and Conclusions

Under a reference set of conditions, an optimal network design was obtained for South Africa for

two representative months of the year. The resulting designs reduced the uncertainty of carbon730

fluxes from South Africa compared to the base network by 43% in July and 78% in January. These

relatively large reductions in uncertainty are due to the lack of coverage by the current network,

which only reduces the uncertainty of fluxes from South Africa by 16% for both July and January.

The concentration of stations by all networks tended towards the central interior, near the North West

Province of South Africa and in the eastern parts of the country. These represent the areas with the735

largest uncertainty in biospheric fluxes, as well as fossil fuel emissions, in the country.
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Station 11 is located near the uKhahlamba Drakensberg World Heritage Site. Several remote hol-

iday destinations occur in this area, near the town of Mooi River, and road infrastructure is available.

Potentially, facilities at or near these holiday destinations could be utilised in order to conduct at-

mospheric measurements, particularly if there is a communications tower available. Station 18 is740

located near the peak of Ben Macdhui. This is near the site of a 1996 atmospheric monitoring cam-

paign, which assessed the ability of transport models to resolve recirculation over and exiting South

Africa to the Indian Ocean (Piketh et al., 1999). Station 29 is near the atmospheric monitoring site

of the North West University (South Africa), at Welgegund, about 20 km from the Potchefstroom

campus. This site was established in collaboration with the University of Helsinki to measure the745

impact of aerosols and trace gases on the climate and air quality (Tiitta et al., 2014). Therefore, for

at least three of the most influential stations, facilities or previous measurement campaigns exist,

indicating that it should be possible to establish long term monitoring of CO2 concentrations near

these sites.

The sensitivity analysis demonstrated that for most of the network design parameters considered750

in this study, the stations found to be most important by the standard network design were always

identified in the network design solution. Many of the choices required for the optimal network

design, such as the height of the surface grid cells, whether to inflate night time observation error

uncertainties relative to the day time, and the inclusion of ocean flux uncertainty, have a negligible

impact on the final network design. Substituting the trace for the sum of the covariance elements755

also resulted in similar solutions.

The test cases considering higher spatial resolution tended to result in network solutions different

from the standard case, largely due to the increase in spatial heterogeneity in prior flux uncertainties

compared to the coarser resolution. The spatial resolution of an inversion study impacts network

design in several ways. It is the main determinant of the amount of aggregation error attributed760

to a measurement site, with aggregation error reducing as the resolution increases. As the spatial

resolution is degraded, aggregation errors can become large, leading to the exclusion of sites in the

case of an optimal network design, even if they are in view of regions of large flux uncertainty. The

spatial resolution of the sources also determines the dimensions of the sensitivity matrix and prior

flux covariance matrix, which impacts on the computational resources required to run an inversion or765

network optimisation. Ideally, the highest manageable resolution should be used, as close as possible

to the resolution of the transport model and original spatial products used for obtaining the prior

fluxes and their covariances. Alternative approaches, such as the use of multi-scale representation

of the source region can be used to mitigate aggregation errors as well (Wu et al., 2011), but these

errors should always be considered during an inversion or inversion-based optimal network design770

exercise.

The GA was able to find marginally better solutions than the IO method, if run with sufficient

population size and number of iterations, but in general did include the most influential stations
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from the IO solution. The increase in uncertainty reduction was found to be marginal, but cost a

great deal more in running time before this solution was found. If the resolution of the standard775

case had been higher, the GA would have taken longer to run, and the current computing system

may have had insufficient memory. Moreover, to find a better solution than the IO, the iterations and

population size would have had to be set even higher, due to the greater heterogeneity in the prior flux

uncertainties in a higher resolution setup, further increasing the computational costs. An additional

advantage of the IO method over the GA method is that an evolution of results is generated, which is780

useful for practical purposes. By identifying the station which on its own best reduces the uncertainty

in the posterior fluxes, it gives the decision makers the location of the site which should be prioritised

over others in the network.

Even though we accounted for aggregation error, which would have corrected the total flux es-

timate for the domain, there were still large differences between the total flux uncertainties from785

the inversion results under different spatial resolutions. This was due to the treatment of the prior

uncertainties under the different spatial resolutions. Degrading the spatial resolution results in a loss

of information, therefore it is best to run the inversion at as high a resolution as possible. Favouring

optimisation techniques like IO, which can more easily accommodate high spatial resolution, over

those which could force a reduction in resolution due to high computational demands, such as the790

GA, may be unavoidable. Techniques like simulated annealing and the GA do not guarantee the

global optimum, as demonstrated by Patra and Maksyutov (2002) for simulated annealing and dur-

ing the initial trials of the GA in this study. Patra and Maksyutov (2002) also showed that as the

number of stations in the network increased, the performance of simulated annealing relative to the

IO decreased, with IO eventually achieving significantly better uncertainty reductions.795

Of the sensitivity tests, including correlation had one of the largest impacts on the final network

result, often differing significantly from the standard solution. The correlation structure used in this

study was generic, simply assuming that fluxes from nearby grid cells and fluxes at the same location

near in time would be correlated, included for the purpose of assessing the impact of correlation in

the prior fluxes. For a network to be based on a prior covariance matrix including correlation, there800

would need to be confidence that this correlation structure and size of correlations between fluxes

were accurate. This is generally not the case, and easier to assess when concentration measurements

are available, which is why many network designs have assumed independence between prior fluxes

(Rayner, 2004; Patra and Maksyutov, 2002). Including correlations which are too large can lead

to an over constrained system (Lauvaux et al., 2012), which is evidenced in this study where the805

uncertainty reductions were the largest under the correlation test case.

Overall the results suggest that a good improvement in knowledge of South African fluxes is

achievable from a feasible atmospheric network and that the general features of this network are

invariable under many reasonable choices in a network design study.
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Table 1: Ranking of the new stations added to the base network for two seasons (Winter and Summer)

represented by July and January, as well as the integrated two months. The cumulative reduction of

uncertainty relative to the base uncertainty is provided in brackets.

Rank July January July + January

1 24 (12.8 %) 12 (40.0 %) 18 (53.3 %)

2 0 (23.3 %) 29 (58.0 %) 29 (77.7 %)

3 21 (33.0 %) 11 (68.0 %) 11 (80.9 %)

4 18 (38.1 %) 21 (74.5 %) 22 (82.6 %)

5 6 (42.9 %) 24 (78.3 %) 27 (84.6 %)

Table 2: Ranking of the new stations added to the base network under ten different sensitivity tests

for the combined months of July and January. The tests are presented in the following order: surface

grid height set at 60 m; surface grid height set at 75 m; trace of the posterior covariance used in the

uncertainty metric; uncertainty of the night time observation errors is doubled; correlation structure

is included in the prior covariance of the fluxes; spatial resolution is increased to 0.8
◦
; spatial reso-

lution is increased to 0.6
◦
; ocean sources are assigned 10 % of max NPP variance; ocean sources are

assigned 10 % of nearest terrestrial NPP variance; and GA is used for optimisation. The percentage

cumulative reduction of uncertainty of the posterior fluxes relative to the base network is provided

in brackets.

Rank Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

1 18 (52.3) 18 (50.9) 18 (46.8) 18 (50.9) 24 (65.4) 18 (42.9) 18 (36.3) 18 (53.1) 18 (52.3) 27

2 29 (76.0) 29 (74.0) 29 (69.4) 29 (75.1) 11 (77.8) 29 (65.1) 28 (57.1) 29 (77.3) 29 (75.9) 7

3 11 (79.8) 11 (78.3) 11 (73.3) 11 (78.5) 28 (83.6) 11 (70.7) 11 (62.0) 11 (80.8) 11 (80.4) 29

4 22 (81.5) 24 (80.1) 22 (75.1) 22 (80.6) 31 (85.3) 30 (73.6) 30 (66.4) 22 (82.5) 22 (82.1) 18

5 27 (83.5) 27 (82.5) 27 (77.2) 27 (83.1) 27 (86.5) 27 (76.8) 24 (69.5) 27 (84.4) 27 (84.4) 11 (84.9)
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Table 3: Table of network comparison statistics for the combined months of January and July. The

sensitivity tests are presented in the same order as for Table 2.

Sensitivity Uncertainty Running Clustering

Test Reduction Time (hh:mm) Index

Standard 84.6 % 0:49 23.8

Ht 60 m 83.5 % 0:49 23.8

Ht 75 m 82.5 % 0:48 23.8

Trace 77.2 % 0:48 23.8

Night 83.1 % 0:48 23.8

Correl 86.5 % 1:13 17.4

Med Res 76.8 % 4:23 23.8

High Res 69.5 % 25:11 36.6

Ocean1 84.4 % 5:27 23.8

Ocean2 84.4 % 5:12 23.8

GA 84.9 % 32:01 17.4

Table 4: Table of dissimilarity indices for the optimal network solutions for the combined months of

January and July. The sensitivity tests are presented in the same order as for Table 2.

Sensitivity Standard Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

Test

Standard 0 0 469 0 0 1162 449 1121 0 0 1213

Ht 60 m 0 0 469 0 0 1162 449 1122 0 0 1213

Ht 75 m 469 469 0 469 469 761 380 720 469 469 1285

Trace 0 0 469 0 0 1162 449 1121 0 0 1213

Night 0 0 469 0 0 1162 449 1121 0 0 1213

Correl 1162 1162 761 1162 1162 0 1162 851 1162 1162 2046

Med Res 449 449 380 449 449 1162 0 741 449 449 1265

High Res 1121 1121 720 1121 1121 851 741 0 1121 1121 1693

Ocean1 0 0 469 0 0 1162 449 1121 0 0 1213

Ocean2 0 0 469 0 0 1162 449 1121 0 0 1213

GA 1213 1213 1285 1213 1213 2046 1265 1693 1213 1213 0
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Fig. 1: The day time net primary productivity (NPP) and night time autotrophic respiration (Ra) data

used as standard deviations of net ecosystem productivity (NEP) at the resolution of 1.2
◦

expressed

in gC/m2/week for July (left) and January (right). Values for the standard deviation are capped at

28 gC/m2/week. The maximum value (separately for day and night) is assigned to the non-South

African land surface, or set at 28 gC/m2/day if the maximum exceeds this value.
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Fig. 2: The standard deviations of ten realisations (top) of the Fossil Fuel Data Assimilations System

(FFADS) at the original 0.1
◦

resolution in gC/m2/week. The standard deviations of the aggregated

fluxes (bottom) (1.2
◦

resolution) showing significant smoothing of the fossil fuel fluxes over the

lower resolution.
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Fig. 3: The 36 potential locations of the new stations in the optimal network design. The locations

were spaced on a regular grid over the surface of South Africa. The existing Cape Point and the

Gobabeb GAW stations are marked by the triangles.

Fig. 4: The footprint of Cape Point, station 28 (top right), station 18 (bottom left), and station 4

(bottom right) relative to the surface grid cells at a resolution of 1.2
◦

expressed as the count of

particles over the month of January for each surface grid cell.
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Fig. 5: Map of the aggregation error values (ppm) associated with each measurement station for the

month of January.
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Fig. 6: Map of the optimal stations to add to the existing network to reduce the overall uncertainty

of fluxes in South Africa for July, January, and the combined months of July and January. The

standard network design conditions are: 50 m surface grid height, diagonal prior covariance, 2 ppm

uncertainty in concentration observations, a 1.2
◦

surface grid resolution, and the sum of the pos-

terior covariance matrix elements used to calculate the uncertainty metric for the IO optimisation

procedure.
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Fig. 7: Map of the optimal stations to add to the existing network to reduce the overall uncertainty

of fluxes in South Africa under the eleven different sensitivity cases for July (top), January (middle),

and the combined months of July and January (bottom). The cases include the standard case (Stan-

dard), surface grid height set at 60 m (Ht 60 m), surface grid height set at 75 m (Ht 75 m), use of

the trace in the uncertainty metric (Trace), doubling of the night time observation error uncertainty

(Night), addition of correlation between elements in the prior covariance matrix (Correl), spatial

resolution set at 0.8
◦

(Med Res), spatial resolution set at 0.6
◦

(High Res), uncertainty in the ocean

sources set at 10 % of the maximum land NPP (Ocean1), uncertainty in the ocean sources set at 10 %

of the nearest land NPP (Ocean2), and use of the GA.37



Fig. 8: The day time net primary productivity (NPP) data used as standard deviations of net ecosys-

tem productivity (NEP) at the resolution of 0.8
◦

expressed in gC/m2/week for January (a), and at

the resolution of 0.6
◦

(b). The Fossil Fuel Data Assimilation System standard deviations aggregated

over a resolution of 0.8
◦
, also expressed in gC/m2/week (c) and over a resolution of 0.8

◦
(d).
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